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90095, USA

(Received 11 February 2019; revised 3 June 2019; accepted for publication 3 June 2019;
published 30 June 2019)

Purpose: Dose calculation is one of the most computationally intensive, yet essential tasks in the
treatment planning process. With the recent interest in automatic beam orientation and arc trajectory
optimization techniques, there is a great need for more efficient model-based dose calculation algo-
rithms that can accommodate hundreds to thousands of beam candidates at once. Foundational work
has shown the translation of dose calculation algorithms to graphical processing units (GPUs), lend-
ing to remarkable gains in processing efficiency. But these methods provide parallelization of dose
for only a single beamlet, serializing the calculation of multiple beamlets and under-utilizing the
potential of modern GPUs. In this paper, the authors propose a framework enabling parallel computa-
tion of many beamlet doses using a novel beamlet context transformation and further embed this
approach in a scalable network of multi-GPU computational nodes.
Methods: The proposed context-based transformation separates beamlet-local density and TERMA into
distinct beamlet contexts that independently provide sufficient data for beamlet dose calculation. Beamlet
contexts are arranged in a composite context array with dosimetric isolation, and the context array is
subjected to a GPU collapsed-cone convolution superposition procedure, producing the set of beamlet-
specific dose distributions in a single pass. Dose from each context is converted to a sparse representa-
tion for efficient storage and retrieval during treatment plan optimization. The context radius is a new
parameter permitting flexibility between the speed and fidelity of the dose calculation process. A
distributed manager-worker architecture is constructed around the context-based GPU dose calculation
approach supporting an arbitrary number of worker nodes and resident GPUs. Phantom experiments
were executed to verify the accuracy of the context-based approach compared to Monte Carlo and a ref-
erence CPU-CCCS implementation for single beamlets and broad beams composed by addition of
beamlets. Dose for representative 4p beam sets was calculated in lung and prostate cases to compare its
efficiency with that of an existing beamlet-sequential GPU-CCCS implementation. Code profiling was
also performed to evaluate the scalability of the framework across many networked GPUs.
Results: The dosimetric accuracy of the context-based method displays <1.35% and 2.35% average
error from the existing serialized CPU-CCCS algorithm and Monte Carlo simulation for beamlet-
specific PDDs in water and slab phantoms, respectively. The context-based method demonstrates
substantial speedup of up to two orders of magnitude over the beamlet-sequential GPU-CCCS
method in the tested configurations. The context-based framework demonstrates near linear scaling
in the number of distributed compute nodes and GPUs employed, indicating that it is flexible enough
to meet the performance requirements of most users by simply increasing the hardware utilization.
Conclusions: The context-based approach demonstrates a new expectation of performance for beam-
let-based dose calculation methods. This approach has been successful in accelerating the dose calcu-
lation process for very large-scale treatment planning problems - such as automatic 4p IMRT beam
orientation and VMAT arc trajectory selection, with hundreds of thousands of beamlets - in clinically
feasible timeframes. The flexibility of this framework makes it as a strong candidate for use in a
variety of other very large-scale treatment planning tasks and clinical workflows. © 2019 American
Association of Physicists in Medicine [https://doi.org/10.1002/mp.13651]
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1. INTRODUCTION

Modern radiation treatment planning is powered by inverse
optimization algorithms that require causal information con-
necting the plan delivery parameters to the resultant patient
dose distribution. This information is encapsulated in a dose

influence matrix, consisting of the dose of individual beam-
lets, which are the smallest deliverable unit whose geometry
is typically determined by the multi-leaf collimator width.
Monte Carlo (stochastic) simulation is regarded as the gold
standard for dosimetric accuracy but remains impractically
slow for very large scale (VLS) optimization problems. On
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the other hand, deterministic approaches provide a faster
approximation by convolving reusable dose spread kernels
over analytically computed TERMA fields on each unique
patient geometry. The popularity of deterministic convolution
superposition (C/S) solvers such as collapsed-cone convolu-
tion superposition (CCCS)1,2 and analytical anisotropic algo-
rithm (AAA)3 have enabled acceptably accurate clinical dose
calculation that can typically be performed with an order of
magnitude reduction in time required for general purpose
(Geant4) and even special purpose (VMC++) Monte Carlo
methods in some circumstances.4

In practice, the dose influence matrix calculation speed is
generally acceptable with modern computers for IMRT plans
involving only a few predetermined beams. For arc optimiza-
tions and TomoTherapy, two orders of magnitude greater
number of beamlets are needed to construct the matrix.
Owing to the evidence that non-coplanar beam orientations
and automatic selection of beams and arc trajectories has
been shown to produce improved plan quality,5–12 there is
great research interest in automatic orientation selection from
a much larger set of beam candidates by learning-based13 and
dose-driven approaches.14–17 One such method, non-coplanar
IMRT with beam orientation optimization,16 selects beams
from several hundred candidates, escalating the requirement
for dose calculation proportionally. More recently, dynamic
collimator rotation18 and non-coplanar VMAT5 have been
developed for further improved dosimetry and delivery effi-
ciency, pushing the requirement of beamlet dose for opti-
mization to be ~1000 times greater than that of fixed beam
IMRT plans to account for the additional degrees of freedom.
Dose calculation for the increasing number of beamlets can
be a slow process by clinical standards, particularly when
higher dosimetric accuracy is desired. There has not yet been
an improvement to dose calculation processes using col-
lapsed cone beamlet dose generation that would make these
VLS treatment planning methods clinically tractable, despite
the clear dosimetric benefits granted for heterogeneous
geometries. The purpose of this work is to improve the dose
calculation speed for these VLS planning methods so that
standard clinical implementation may be achieved.

Since deterministic dose calculation is an embarrassingly
parallel computational problem, graphics processing units
(GPUs) with a large number of computational cores have
found widespread success in accelerating dose calculation for
treatment plan optimization and validation purposes. Chen
et al. employed efficient GPU memory coalescing and analyt-
ical dose spread kernels to achieve 1000–30009 speedup
over the central processing unit (CPU)-CCCS implementa-
tion for TomoTherapy dose calculation.19,20 Neylon et al. fur-
ther optimized memory access speeds during GPU-CCCS
convolution by first transforming voxelized TERMA to a
basis aligned with each collapsed-cone direction and subse-
quently carrying out efficient parallelized line convolutions,
demonstrating further acceleration over the CPU method.21

Tian et al. developed a GPU Monte Carlo dose calculator
(goMC) based on the OpenCL GPU computing framework to
enable widespread adoption of Monte Carlo simulation

across all popular GPU hardware architectures.22 Ziegenhein
et al. delocalized the dose calculation process with an inte-
grated cloud-based Monte Carlo framework that allows
dynamic scaling of computational resources as needed to
reduce workstation cost and complexity, improving the
expectation for performance scaling with additional hardware
on short-lived simulations where gains were previously per-
vasive.23 Park et al. performed beamlet-based dose convolu-
tion with adaptive finite-sized pencil beam kernels to reduce
the number of beamlets required to model arbitrary field
shapes and accelerate volumetric dose verification for the
optimized fluence maps.24 Cho et al. validated the use of a
GPU-accelerated convolution-superposition method for kilo-
voltage dose calculation in small animal irradiation
research.25

The foundation for our approach is the nonvoxel-based
(NVB) GPU dose calculation algorithm of Neylon et al.21

which optimizes previous GPU-based CCCS methods26–28

by employing efficient GPU memory handling practices.
The NVB algorithm is an improvement over these algo-
rithms in that it reduces latency in device memory access
by successive transformation of the CT density data to align
it with each collapsed-cone ray enabling efficient line con-
volution. Like the NVB approach of Neylon et al., we treat
the convolution operation on a continuous domain with
interpolation during dose kernel sampling and dose spread.
Unlike the NVBB approach of Lu,29 which treats TERMA
and dose calculation in a continuous domain without dis-
cretely modeling beamlets, we maintain the standard voxel-
based beamlet-superposition (VBS) representation in the
output of our algorithm such that we follow the path of pre-
calculating discrete, beamlet-specific dose distributions for
use during plan optimization. We make this choice primar-
ily to maintain compatibility with the variety of beamlet-
based planning techniques.

Our contributions are twofold. First, we propose a novel
modification to the existing GPU implementation of full
beam deterministic dose calculation, enabling efficient low-
level parallel computation of beamlet-specific dose using a
beamlet-context transformation. Second, we implement our
beamlet-based GPU dose calculation algorithm in a scalable
distributed framework supporting flexible high-level multi-
GPU acceleration. Our framework greatly improves the effi-
ciency of the VBS method for use in VLS optimization prob-
lems such as dose-driven automatic IMRT beam orientation16

and VMAT trajectory optimization,5,18p6, and TomoTher-
apy30 treatment planning. In this study, we introduce the
framework for our method, provide some dosimetric charac-
terization for standalone beamlets and their composition as a
broad beam, measure its computational performance, and dis-
cuss the scalability across networked computational nodes.
We also discuss the computational efficiencies enabled by
our proposed method and how it could potentially benefit
VLS optimization problems but recognize that classification
of dosimetric accuracy in clinical treatment planning settings
is a more involved matter and leave such investigation to
future work.
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2. MATERIALS AND METHODS

In this section, we describe our novel beamlet-context
approach for efficient beamlet-based dose calculation on a
GPU. Next, we show that our method may be further paral-
lelized in a scalable manner across a network of multi-GPU
compute nodes. Finally, we describe the experiments designed
to quantify our framework’s dosimetric accuracy against Monte
Carlo and CPU-CCCS reference doses and computational
speed in comparison to an existing GPUmodel-based method.

2.A. Nonvoxel-based dose calculation

2.A.1. Beamlet-based dose by intra-beam
parallelization

Dividing the dose calculation problem into per-beam tasks
is a trivial matter. While others have chosen to further sepa-
rate the problem into per-beamlet tasks, we instead chose to
calculate dose for these beamlets simultaneously. Our algo-
rithm processes each beam as a unit, concurrently producing
independent dose distributions for each of the beam’s active
beamlets before writing them to file and continuing with the
next beam. This innovation is the key to achieving an effi-
cient and scalable algorithm that minimizes GPU execution
and memory management overhead. Details of the low-level
parallelization are explained in the subsequent sections.

TERMA calculation: Dose calculation for each beam
begins by first generating a binary fluence map where active
beamlets are assigned a unit fluence. Active beamlets are
defined by projecting the target onto the fluence plane at the
isocenter [Fig. 1(a)] and detecting intersections with the target
volume along each of nine rays configured for each beamlet as
shown in Fig. 1(b). If any sample ray intersects any part of the
target volume, the beamlet is considered active and its dose will
be calculated. This approach is used frequently for beamlet
dose calculation and effectively minimizes the computational
complexity of the full problem without sacrificing plan quality.

The binary fluence map is used in calculating the TERMA
by means of a path-length tracing procedure31 that

implements a modified version of Siddon’s32 algorithm better
suited to the GPU. For every voxel, i, in the volume, a ray is
traced between the source position and the voxel’s center,
along which, the radiological path length is accumulated,
according to Eq. , for a line segment of variable length lj
through each voxel j ε Ri of density qj.

di ¼
X

j2Ri
ljqj (1)

To maximize calculation speed, dose is calculated assum-
ing a constant polyenergetic beam spectrum. Since beam
hardening effects change the true beam spectrum within an
attenuating medium, an auxiliary value, T�

i , is calculated for
each voxel, i, and used instead of the actual TERMA, Ti, dur-
ing dose convolution. Equation shows the expression for T�

i ,
with respect to Ti at voxel i, including corrections for beam
hardening and the inverse-square effect of diverging beams.

Ti
� ¼ D2

s;a

D2
s;i

 !
HiTi

Ti ¼
X

E
WE

lE
q

� �
e�

lE
qð Þdi (2)

where Ds,a is the distance from the source to the rotational
axis (isocenter), and Dsv is the distance from the source to
voxel i, in the direction of the beam’s central axis. Through
the beamlet-context extraction process, described in the fol-
lowing section, kernel tilting is implicit and a corrective term
(D2

s;a=D
2
s;i) for the inverse-square effects of a diverging beam

is applied directly to each Ti, Hi is a voxel depth- and tissue
density-dependent factor based on an effective x-ray attenua-
tion coefficient, which corrects for beam hardening effects. It
is interpolated from a table of precomputed values specific to
each beam spectrum and material. For this study, a single flu-
ence-attenuation-table (FAT) was calculated and used for a
6MV bremsstrahlung x-ray spectrum in water. Because the
utilized dose kernels are precomputed in homogeneous water,
the energy-dependent mass attenuation (lE/q) coefficients
are constant and equal to those of water. Thus, to correct for
material inhomogeneity, a standard C/S technique33 is used,
whereby the kernel is instead warped according to the

FIG. 1. (a) Intersection map for one beam orientation and target volume definition. Purple-colored cells have no target volume intersection and are excluded from
beamlet dose calculation, yellow: full intersection, others: partial intersection. (b) Super-sampling ray layout for testing beamlet-target intersection. (c) cross-
section of TERMA calculation sub-voxel arrangement for super-sampled averaging (29 and 39 options shown for one voxel). [Color figure can be viewed at
wileyonlinelibrary.com]
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material-dependent radiologic path length, di for each voxel
(expressed in Eq. ).

Anti-aliasing via uniform super-sampled averaging is
employed during TERMA calculation with negligible cost to
address aliasing (stair-stepping) otherwise observed along the
beam and beamlet edges. Each voxel is divided into a set of
k3 sub-voxels, for the user-selected integer super-sampling
level, k, as depicted by Fig. 1(c). The ray-based path length
and TERMA calculations are performed for each sub-voxel,
and the voxel’s TERMA is assigned to the average of their
values. The entire low-level process is presented for one com-
pute node in Fig. 2(a), including the GPU modules and post-
processing tasks. The distributed workflow in Fig. 2(b) is
explained further in Section 2.A.2.

Beamlet-context extraction: The classical implementation
of beamlet-based dose calculation treats each beamlet sepa-
rately and performs dose calculation for each, one-by-one.
While a functional solution, this approach results in a linear
scaling of calculation times with the total number of beamlets
as in Eq. 4.

Calculation Time /
XB

b¼1
nb

for
B : # of beams
nb : # beamlets in beams b

� (3)

Our method instead reduces the time scaling factor to B by
calculating individual dose for all beamlets in a beam at once.
During dose calculation for one beamlet on the GPU, 3D
dose spread is applied for every voxel in parallel. This
approach to parallelizing the problem is sub-optimal because
the random-access latency of globally stored data during con-
volution is high and the speed of the algorithm suffers. Try-
ing to directly implement the NVB algorithm with support
for beamlet-based dose calculation presents other difficulties
such as introducing dose assignment race conditions26 and
inflating the memory footprint beyond feasibility with

beamlet specific book-keeping. Attempting to store dose
directly as a sparse array on the GPU to overcome memory
consumption limits also introduces deleterious race condi-
tions and memory access latencies since constant speed ran-
dom-access of memory is no longer possible.

To circumvent these problems, we recognize that the dose
resulting from common clinical x-ray spectra is spread locally
around an interaction point with compact spatial support. For
the purposes of radiation beam selection and fluence map
optimization, a close approximation of the dose can be
obtained by limiting the calculation of dose spread to the
immediate neighborhood of each beamlet. This approxima-
tion known, as kernel or dose truncation, has been used previ-
ously for dose kernel generation34 and simultaneous Monte
Carlo beamlet dose simulation35 to accelerate dose calcula-
tion. Utilizing this approximation, we construct a composite
array of independent beamlet contexts (hereafter referred to
as the context array; depicted in Fig. 3) that each contain
only the density and TERMA data necessary for performing
the CCCS convolution operations within its beamlet’s con-
fined surroundings. The long axis of each context is aligned
in parallel to the long axis of its beamlet (called beamlets-
eye-view; BEV) such that a minimum distance from any
voxel of the beamlet to the boundaries of the context is
enforced by the selected context radius, as described by
Fig. 4. Aligning the contextual data in this way also implic-
itly corrects for beam divergence effects that would otherwise
require costly kernel tilting to be individually applied for
every beamlet. Since the contexts are independent and self-
containing, their arrangement in the construction of the con-
text array is unremarkable and therefore flexible. To construct
each beamlet’s context, we directly sample density from the
global coordinate system, while mapping each voxel in the
context to its corresponding global coordinate and directly
calculating TERMA at this location using the method
described in Section TERMA calculation. We ensure that
only TERMA attributable to a context’s beamlet is included

FIG. 2. (a) Beamlet dose calculation workflow. A single worker node processes beams in parallel across its resident graphical processing unit (GPU) devices.
Beamlet processing is further parallelized on a GPU using beamlet contexts. (b) Distributed computing framework. The manager node prepares independent task
lists for each worker node to process in parallel and receives the results for delivery to the requestor. [Color figure can be viewed at wileyonlinelibrary.com]
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in the context by projecting onto the fluence plane and testing
membership in the fluence element corresponding to that
beamlet using the procedure outlined previously.

Nonvoxel-based transformation: We combined our novel
context transformation with the NVB algorithm21 to calculate
beamlet-specific dose in parallel. To understand the motiva-
tion behind the NVB algorithm, we briefly describe the struc-
ture of the Monte Carlo point spread kernels; a complete
presentation can be found in the literature.1,2,36 The kernels
used in our approach contain coefficients calculated in a
polar system of homogeneous water with 24 radial and 48

angular points. By collapsing the full cartesian sampling
space into a set of radially divergent cones, the dose distribu-
tion may be closely approximated at a much lower computa-
tional cost. During convolution, the dose is only calculated
for voxels intersecting the central axes of these cones rather
than for a radial ray terminating at each of the original sam-
pling points on the dose grid. This is the defining distinction
of CCCS over more precise C/S algorithms.

One simple way to structure the CCCS algorithm on the
CPU is to iterate over the volume, stopping at each voxel to
spread dose to surrounding voxels before moving to the next
iterate. In GPU computing, memory read and write latencies

FIG. 3. (a) Visualization of the beamlet-context array for a single beam including contextual densities and beamlet-specific dose after calculation. (b) Beamlet-
context cross sections for various context radii with dose overlaid. (c) Convolution ray-aligned context array (cross section) for various kernel rays. Gray area is
allocated once and reused for all beams. White subregions are allotted for kernel ray-specific convolutions geometry. Black cells indicate unused space after pack-
ing beamlet contexts into the array. Convolution direction is into page. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 4. Construction of one beamlet context with implicit kernel tilting. Blue region indicates the volume of nonzero TERMA for a single beamlet. The distance
between the blue rings in the transverse view is representative of the context radius setting. The union of red and gold boxes represents the volume in which dose
is computed. [Color figure can be viewed at wileyonlinelibrary.com]
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usually present the greatest barrier to an efficient implemen-
tation. A direct translation of the CPU-based approach to
GPU leads to substantial memory latency and introduces race
conditions that force expensive synchronization of GPU
threads to obtain correct results. Same as the NVB algorithm,
we combat these issues by resampling (rotating) the context
array along each kernel ray in turn, placing TERMA and
density data into a new coordinate system referred to as the
rays-eye-view (REV). We use tri-linear interpolation to cast
the original density and TERMA data into the context-based
REV and back into the global coordinate system. As such,
each mapping is affine and performed on a continuous spa-
tial domain. Furthermore, each mapping is invertible to the
extent of the data retained after truncation by the selected
context radius. After transformation, each row of the contex-
tual data is arranged as a contiguous block of memory
permitting its efficient access by coalesced GPU memory
transactions during convolution. In doing so, we reduce the
memory access overhead and amplify the benefits of GPU
parallelization.

As there are many rays along which the dose will be
spread during convolution with the dose kernel, the array of
Fig. 3(a) is reconstructed in the REV specific to each convo-
lution ray prior to dose calculation. The resulting dose is suc-
cessively transformed into a fixed common orientation,
which aligns every context central axis in parallel with the
data column direction, for accumulation until dose for all rays
has been calculated. To efficiently obtain beamlet-specific
dose for every one of a beam’s active beamlets in parallel, we
maintain three arrays in the current REV coordinate system
to store the contextual density, TERMA, and resulting dose.
A fourth array is kept in the common orientation for accumu-
lation of dose from each REV. GPU memory requirements
for the context-based method are primarily determined by the
sizes of these four arrays which change based on a number of
user-controlled and geometry specific factors such as the
number of active beamlets in each beam, and various quality
settings (voxel size and context radius among others). To
maximize computational efficiency, we predetermine these
memory requirements for every beam before initializing the
memory allocations. This allows us to instead allocate a sin-
gle set of memory for these four arrays with sufficient size to
fit all scenarios rather than repeatedly allocating and deallo-
cating smaller memory segments and suffering from the sig-
nificant overhead such CUDA API operations impose on
overall runtime. The single allocation is represented by a gray
box in Fig. 3(c), and convolution along each kernel ray uses
its own subset of this memory (white box), dependent on the
rotated geometry of the context array. To provide flexibility
of our method to GPU hardware with lower available mem-
ory, we further implement optional beamlet batching which
divides the complete context array for a beam into two or
more sub-arrays to process successively. We allow explicit
control over the number of batches for all beams when
desired, and otherwise, dynamically detect when GPU mem-
ory restrictions necessitate batching for each beam on an indi-
vidual basis.

Dose ray convolution: For each instance of the ray-speci-
fic REV-aligned context array, line convolution is carried out
over the rows of the REV-aligned context array for every
voxel along the kernel ray. By design, the density and
TERMA accessed by the voxels in each row are restricted to
the values coincident with each ray. These data are cached
into shared memory for fast repeated access by neighboring
voxels, offering hundreds of times less latency than global
memory on average.37 GPU thread race conditions are
avoided by treating the CCCS operations from the “dose
deposition point of view,”1,26 enabling each thread to assign
to its own voxel-specific memory address without conflicting
with the data write operations of other threads. Each convolu-
tion is performed on a nonvoxel basis with linear interpola-
tion using the cumulative kernel (CK) technique developed
by Lu38 and summarized by Neylon.21 To obtain the full dose
distribution for each beamlet, this line convolution procedure
is performed along each kernel ray, and the dose from each is
transformed into a common orientation and accumulated.

Beamlet-context dose extraction: The dense dose distri-
bution attributed to each context’s beamlet is stored in the
context array in the common orientation. The selection of
context radius determines the physical spatial extent to which
the scattered dose is recorded. To represent this dose distribu-
tion in the original coordinate system, a beamlet specific
affine transformation is applied to each context and the dose
data are converted to a sparse representation in a two-column
coordinate list (COO) format. One column contains the lin-
earized volume index of each non-zero element, while the
second column contains the corresponding value (dose). A
threshold may be configured at this stage to exclude elements
of negligible magnitude to further reduce storage size and
improve data storage speeds. After conversion to the COO
format, the dose data are written in a widely supported and
flexible binary format (HDF5) to disk to be recalled and used
during treatment planning.

2.A.2. Distributed parallelization

Additional high-level parallelization of the algorithm is
achieved by embedding our context-based approach into a dis-
tributed multi-GPU framework. We harness the trivial separabil-
ity of per-beam processing to build a network of computational
workers, each of which may provide one or more GPUs. The
division of labor among the worker nodes is simple and flexible
with respect to the number available and is based on the compu-
tation of each beam as a standalone labor unit.

The beamlet dose calculation task is first executed on a
managing node whose job is to prepare the static data (CT
and configuration) and assign per-beam processing tasks to
the workers. The manager node considers the availability of
worker nodes and the number of GPUs provided before trans-
ferring the requisite data and task assignments to each. Upon
receipt, the worker further assigns per-beam tasks to its resi-
dent GPUs which each take responsibility for one beam at a

Medical Physics, 46 (8), August 2019

3724 Neph et al.: Parallel beamlet dose calc. via contexts 3724



time and run concurrently. Processing on each GPU proceeds
as described in Section 2.A.1. The resulting beamlet dose
data are immediately transferred over the network to the
managing node for inclusion in the user-facing HDF5 file.
The process flow detailing the distributed parallelization
structure is described in Fig. 2(b).

2.B. Measuring computational efficiency

To quantify the performance of our context-based GPU-
CCCS method for beamlet dose calculation, we measured
and compared its computational efficiency against an exist-
ing GPU-CCCS implementation6 that calculates beamlet
dose in sequence. Beamlet doses for two representative 4p
plans were calculated with isotropic 2 mm voxel sizes and
the average calculation times for each beam were recorded.
Each plan was composed of the same 1162 beam specifi-
cations distributed spherically around prostate and lung
PTV definitions in two distinct CT geometries. The total
number of beamlets for each plan was dependent upon the
PTV shapes; 434 670 and 302 643 beamlets were calcu-
lated in total by each method in the prostate and lung tar-
gets, respectively. Both our context-based GPU-CCCS and
the existing beamlet-sequential GPU-CCCS implementa-
tions shared CCCS quality settings that were set to match
one another, such as the number of convolution rays
(Nh 9 N/). The additional beamlet-context radius parame-
ter of our method was tested at 1, 2 and 3 cm to demon-
strate the flexibility provided in balancing speed and
accuracy. The per-beamlet calculation bounding box mar-
gins for the sequential GPU-CCCS method were matched
to the context radius to control for the effects of calcula-
tion over reduced volumes of different sizes when measur-
ing the performance. Nh and N/ were set to 8 9 8 and
16 9 16 for both methods to quantify computational effi-
ciency in these two common configurations. We also pro-
vide results for our method in distributed configurations
with 1, 2, and 3 networked worker nodes, each employing
two GPUs for a total workforce of 2, 4, and 6 GPUs,
respectively. To compare peak GPU memory usage for
each of the sequential and context-based GPU-CCCS
methods, 20 random non-coplanar beam orientations were
selected (10 from each of the prostate and lung CT geome-
tries), and doses for rectangular fields composed of various
quantities of 5 9 5 mm beamlets were calculated. Isotro-
pic 2 mm voxels and 16 9 16 convolution rays were con-
figured throughout testing, and the context radius of the
context-based GPU-CCCS method was additionally varied
between 0.3 and 3 cm. For each set of quality parameters,
the same 20 beam orientations were processed in a single
program execution and the peak GPU memory usage was
recorded.

2.C. Measuring dosimetric accuracy

Accuracy comparisons between the beamlet-sequential
GPU-CCCS algorithm6 and the NVB algorithm21 of which

our method is an extension have already been analyzed and
will not be repeated here. Instead, we provide an investigation
of the accuracy of our context-based method against Monte
Carlo and a reference CPU-CCCS implementation in two
phantom geometries: one homogeneous water and one
heterogeneous stack of slabs, each detailed in Fig. 5. Monte
Carlo dose was obtained using Geant4 for a continuous emis-
sion spectrum of a diverging square monoenergetic photon
beam, fit to the discrete spectrum used by CCCS. Monoener-
getic dose kernels used in our context-based GPU-CCCS and
the CPU-CCCS methods were previously synthesized39 using
an EGSnrc code, and the same emission spectrum was used
to construct a polyenergetic kernel for dose convolution.
Doses for 5 mm, 1 cm, and 2 cm wide beamlets were calcu-
lated. A voxel size of 1 9 1 9 1 mm3 was selected to com-
pare the dose profiles of all beamlets more accurately. For the
context-based GPU-CCCS method, the context radius was
fixed at 4 cm. Central beamlet-axis percent depth dose
(PDD) and lateral beamlet line profile at a depth of 10 cm
were visualized along with the error of our method from the
CPU-CCCS and Monte Carlo results.

To support the assumption that beamlet dose can be well
estimated by calculating only within a limited interaction
context, we varied the context radius parameter between
0.1 cm and 8 cm for each of the three previously tested
beamlet widths in the water phantom. From these experi-
ments, the lateral beamlet profile at 10 cm depth is included
with the maximum volumetric error for each pairing of beam-
let width and context radius compared to dose for the same
beamlet without using the context-based approximation by
the beamlet-sequential GPU-CCCS method.

We also constructed a 5 9 5 cm2 broad beam by addition
of context-based dose for 100 adjacent 5 9 5 mm2 beamlets
in the water phantom and compared the broad beam lateral
dose profile to that of a broad beam composed of beamlet
dose calculated without use of the context-based approxima-
tion. Lateral dose profiles were analyzed at depths of 5, 10,
and 15 cm and the broad beam error associated with the con-
text-based method was also reported.

FIG. 5. Cross sections of phantom geometries with beam entering from the
top; used to assess dosimetric accuracy. Materials and densities are provided.
[Color figure can be viewed at wileyonlinelibrary.com]
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Finally, the ability of our approach to scale to increased
hardware availability and reducing the overall calculation
time was investigated through timing experiments on multiple
nodes and code execution profiling. Execution profile data
were averaged across three independent application execu-
tions with 50 randomly selected 4p beams in each. All exper-
iments were performed using NVIDIA GeForce TITAN X
graphics cards from the Maxwell architecture. GPU program-
ming was done using CUDA v9.0. For single-node perfor-
mance evaluation, one node acted as both the manager and
worker, employing an intel Xeon E5-2670 CPU with eight
physical cores and a base clock speed of 2.6 GHz. For multi-
node evaluation, workers having either an Intel i7-5820K
CPU with six physical cores and a 3.3 GHz clock, or an Intel
i7-7700K CPU with four physical cores and a 4.2 GHz clock
were used. All data transfers between host and device mem-
ory were facilitated over 16-lane (916) PCIe 3.0 interfaces.

3. RESULTS

In Table I, we present the time required by each algorithm
to calculate beamlet dose for one beam averaged over the set
of 4p treatment beams.6 Our framework is implemented such
that we measured calculation time for a single GPU as well
as in various distributed multi-GPU configurations, emulat-
ing simple deployment scenarios. Figure 6 shows how the
performance of our approach scales in single-node and multi-
node configurations as a function of the number of GPUs uti-
lized. The colored dashed lines show the scaling performance
in the single-node configuration, where GPUs are simply
added to an existing compute node. Colored solid lines indi-
cate performance gains when GPUs on additional worker
nodes are introduced instead.

A decomposition of our algorithm into the fractions of
time spent on each sub-procedure is given in Fig. 7 for vari-
ous quality settings on a single node. Additional profiling
results for use of various GPU counts on a single node are
given in Fig. 8.

The memory usage recorded for both the sequential and
context-based GPU-CCCS methods are listed in Table II.
Figure 9 shows these results in graphical form.

Figures 10 and 11 give the PDD along the beamlet’s cen-
tral axis, the centered lateral line profile at 10 cm depth, and
the error for each result compared with the CPU-CCCS and
Monte Carlo methods. Results of our approach are given in
color for each beamlet size in both the water and stacked slab
phantoms. Monte Carlo outcomes are presented in gray, and
CPU-CCCS dose is given as a dotted curve. Normalized error
between our method and each of the Monte Carlo and CPU-
CCCS methods are additionally given.

The maximum error of the context-based compared to
noncontext-based beamlet dose resulting from various selec-
tions of context radius for the water phantom is given in
Fig. 12 with the resulting lateral line profile at 10 cm depth.
Absolute errors are expressed as percentages of the maximum
reference volume dose calculated without the context-based
approximation.

4. DISCUSSION

4.A. Performance

The performance improvements offered by our context-
based method over the beamlet-sequential GPU-CCCS
method are evident from Table I. When a 2-cm context radius
is used on a single GPU for both methods, our approach
offers 44–609 speedup and 14–179 speedup for the prostate
and lung plans, respectively. These results demonstrate a
clear efficiency advantage of our context-based processing.
Even for a larger context radius of 3 cm, ours demonstrates
25–289 and 99 speedups over the beamlet-sequential GPU-
CCCS method configured with its beamlet dose calculation
margin matching the context radius; demonstrating pure
acceleration without truncation-induced loss of dose fidelity.
Analysis of the error reported in Fig. 12 shows that <1%
beamlet-specific PDD error could be achieved in the water

FIG. 6. Performance for single-node and multi-node scaling strategies. For
multi-node measurements, each node was configured with two graphical pro-
cessing units. The dotted black line indicates theoretical linear scaling in
multi-node setups. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE I. Per-beam calculation times (average, in seconds)

Treatment site Prostate Lung
Nh 9 N/ 8 9 8 16 9 16 8 9 8 16 9 16

Single node

Sequential (1 GPU) 226.4 818.4 47.0 155.2

Context (1 GPU, 0.3 cm
context)

2.362 2.799 1.686 2.016

(1 GPU, 1 cm) 3.066 6.322 2.312 4.958

(1 GPU, 2 cm) 5.159 13.731 3.385 9.142

(1 GPU, 3 cm) 9.119 29.765 5.343 17.137

Multi-node

Context (1 9 2 GPU, 2 cm
context)

3.130 11.977 1.964 7.466

(2 9 2 GPU, 2 cm) 1.643 6.288 1.031 3.919

(3 9 2 GPU, 2 cm) 1.127 4.312 0.707 2.688

Average per-beam dose calculation times (in seconds) for various hardware con-
figurations, and quality settings.

Medical Physics, 46 (8), August 2019

3726 Neph et al.: Parallel beamlet dose calc. via contexts 3726

www.wileyonlinelibrary.com


phantom for the 5 9 5 mm2 beamlet width by setting the
context radius to just 3 mm. Targeting this beamlet dose error
of <1%, we additionally timed our approach on the 4p dose
calculation task using the reduced 3-mm context radius. In
this test, our method demonstrated even greater single GPU
acceleration rates of 95–2929 and 28–779 compared to the
beamlet-sequential GPU-CCCS baseline for the prostate and
lung plans, respectively.

With its simplicity in scaling, our approach was also con-
figured for multi-node calculation. When distributed across
three workers employing two GPUs each, for a total of only
six GPUs, we measured acceleration factors of 190–2009
and 58–669 for the prostate and lung plans, respectively,
using a 2-cm context radius. Applying the results of the sin-
gle GPU experiments, we expect even greater accelerations
for the dosimetrically similar 3 mm and 1 cm context radii.

FIG. 7. Fractional execution time spent in each sub-procedure on one computational node with four threaded postprocessing “SparseAgents.” Only time spent on
the main processing thread is represented. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 8. Fractional execution time for 1-cm context radius with a variable number of background postprocessing (dose sparsification) threads. Only time spent on
the main processing thread is represented. [Color figure can be viewed at wileyonlinelibrary.com]
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Figure 6 presents complete evidence of our framework’s scal-
ability, reaching nearly linear efficiency gains in the number
of GPUs used in a multi-node configuration. Network latency
did not contribute significant overhead in our testing. How-
ever, we believe multi-node scaling performance can be fur-
ther enhanced by utilizing dedicated 10 Gigabit inter-node
connections to increase the network communication band-
width over the 1 Gigabit connections used during testing but
will leave such confirmation for future work.

Looking more closely at Fig. 6, we observed that the single-
node performance gains quickly plateaued beyond the use of
three GPUs for the lung target. A performance bound is not
observed for the prostate, since we did not have the resources to
test the single-node configuration with more than four local
GPUs. We hypothesized that as the number of GPUs increased
on a node, the beamlet dose of multiple beams is computed
much more quickly than it can be transferred to the host, con-
verted to a sparse format, and stored to the hard drive (collec-
tively referred to as post-processing). By limiting the number
of GPUs on each device, and instead increasing the number of
computational nodes, we spread the GPU computational
resources across more CPUs and output disks, and better bal-
ance the computational speed with the postprocessing speeds.
We tested this hypothesis for both treatment sites by distributing
GPUs over more nodes and found that the multi-node configu-
ration reduces the effects of the bottleneck, overcoming the
undesired plateau of performance scaling seen in Fig. 6.

To confirm our hypothesis, moreover, we analyzed our algo-
rithm using standard code-profiling techniques. Figure 7 indi-
cates that the only sub-procedures with strongly dependent
runtime contention as the context radius and quality of the dose
increase are Context Construction and Dose Convolution, both
implemented on GPU. This is expected since these functions
are dependent on the size of the context array which is directly
affected by manipulation of the context radius. Unlike the for-
mer two GPU operations, which are executed once for each
convolution ray, the Extract Context Dose operation is executed
once for every beamlet to transform each set of computed
beamlet dose data from the context array (in the arbitrary com-
mon orientation, introduced in Section Nonvoxel-based trans-
formation) to the original coordinate system. This is a simple
transformation and is made efficient by coalesced GPU mem-
ory access from the context array.

Undesirable, however, is the observation that copying the
dose data from the GPU to the host memory (GPU-CPU
Data Transfer) follows a weakly scaling trend, indicating that
even as the quality of the dose (context radius) is reduced, the
total computation time approaches a lower bound, in part
determined by the memory transfer bandwidth between the
host and GPU device. The other, more dominant factor deter-
mining the efficiency bound is the speed of postprocessing
(dose sparsification and storage). Since these tasks place
postprocessing requests in a fixed-size queue, and are han-
dled by a team of SparseAgents in separate CPU threads, we
only see these operations contribute to the total runtime
(CPU Functions) when the GPU outpaces the CPU. When
this occurs, GPU computation is paused to limit the host
memory usage while the postprocessing queue is sufficiently
depleted. The combination of the Wait for Available
SparseAgent and Copy Data to SparseAgent operations indi-
cate the amount of time that the main processing thread must
wait while the occupancy of the postprocessing queue is
reduced. This type of delay is most pronounced when many
GPUs are available on each node. This limit is demonstrated
in Fig. 8 where we see that nearly every GPU operation
shortens in aggregate as more GPUs are added to a node,
while the inline postprocessing operations initially shorten as
more threaded SparseAgents are provisioned but quickly
exhibit diminishing returns; further supporting our hypothe-
sis that the single-node algorithm performance is bounded by
the postprocessing time consumed on each worker. This time
is in turn dominated by CPU core availability, as well as hard
drive write and network transfer speeds, that can potentially
be alleviated by increasing network transfer bandwidth and
distributing GPU resources over more computational nodes,
as suggested.

Using the memory usage results, reported in Table II and
Fig. 9, we show that the primary factors determining the
GPU memory usage of the context-based GPU-CCCS
method are the number of beamlets in each beam, and the
selected context radius, in addition to the general considera-
tions such as voxel size and patient size (determining the
beamlet length) common to all CCCS methods. We observed
that for some combinations of beamlet count and context

TABLE II. Peak memory usage for graphical processing unit (GPU)-based
CCCS methods (in Megabytes)

Context-based GPU-CCCS
(by context radius)

Sequential GPU-
CCCS0.3 cm 1 cm 2 cm 3 cm

50 beamlets 200.07 244.23 528.34 1053.16 959.03

100 beamlets 188.12 382.64 980.64 2136.38 973.84

150 beamlets 255.09 618.59 1774.54 4014.71 985.25

200 beamlets 323.60 864.74 2643.31 5634.15 1001.78

Graphical processing unit memory usage for sequential and context-based GPU-
CCCS methods for 2 9 2 9 2 mm3 voxels and 16 9 16 convolution rays.

FIG. 9. Peak memory usage for various beamlet counts and context radii.
[Color figure can be viewed at wileyonlinelibrary.com]
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FIG. 10. Single-beamlet depth dose and lateral profiles in the water phantom for increasing beamlet widths. Error is calculated between our context-based GPU-
CCCS method and each of CPU-CCCS and Monte Carlo. [Color figure can be viewed at wileyonlinelibrary.com]
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FIG. 11. Single-beamlet depth dose and lateral profiles in the stack of slabs phantom for increasing beamlet widths. Error is calculated between our context-based
GPU-CCCS method and each of CPU-CCCS and Monte Carlo. [Color figure can be viewed at wileyonlinelibrary.com]
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radius, the peak GPU memory usage was similar. Further
investigation of these cases confirms our intuition that for
each, a context array [Fig. 3(a)] of similar size and shape was
constructed. As expected, the peak memory usage of the
sequential GPU-CCCS algorithm shows no impactful depen-
dence on the number of beamlets in each beam, due to the
sequential calculation of beamlet dose inherent to the tech-
nique. A weak correlation was observed but is insignificant
and likely caused by changes in bookkeeping and the geome-
try of the calculated beamlets as the field size changes and
intersects with different volumes of the CT. As described in
Section 2.A.1, we have developed the context-based GPU-
CCCS method with optional dynamic beamlet batching to
alleviate high memory usage concerns for cases such as that
with 200 beamlets and 3 cm contexts, showing peak usage of
5.6GB. With this feature, we hope to increase compatibility
with budget-friendly GPUs providing less total memory.

4.B. Accuracy

Like the NVB algorithm on which we have based the core
of our algorithm, calculated dose closely agrees with the
CPU-CCCS calculated dose in the water phantom (Fig. 10),
with maximum single-beamlet PDD errors of 2% beyond the
high-dose gradient region found in the first few millimeters
of the phantoms. Single-beamlet lateral dose profile errors in
the water phantom are greatest at the beamlet edges where
high-dose gradients are again observed. Inspection of the
beamlet profile errors in Fig. 10 indicates that the context-
based method consistently displays smaller error in these

regions when compared to Monte Carlo dose than when com-
pared to CPU-CCCS dose, likely due to the use of TERMA
super-sampling that has been employed in the context-based
method to this effect. Errors in profile dose in the primary
portion of the beamlets are below 2% on average between
context-based and Monte Carlo methods for all beamlets
sizes. This small error results from slight depth-dependent
difference seen in the beamlet PDDs in the water phantom
geometry (Fig. 10), likely caused by the use of a continuous
beam spectrum in Monte Carlo simulation rather than a dis-
crete spectrum as in CCCS.

Single-beamlet dosimetric errors observed in the slab
phantom (Fig. 11) are slightly larger overall than those found
in the water phantom. The greatest deviations of the con-
text-based method from Monte Carlo beamlet dose occurs
after interfaces between media of substantially different den-
sities (particularly at depths of 32, 64, and 160 mm), an
effect attributable to the well-known shortcomings of the
heterogeneity correction used in the CCCS method that have
already been independently investigated.40–42 Closer agree-
ment of our context-based GPU-CCCS method with the ref-
erence CPU-CCCS implementation at these interfaces
support this explanation. Despite these inherent shortcom-
ings in the CCCS algorithm, the context-based method
shows average single-beamlet PDD errors of magnitude
<1.35% and 2.35% for all beamlet sizes in the water and
slab phantoms, respectively.

The dose truncation effects of our context-based approach
are evident in Fig. 12 where its resemblance to cylindrical
kernel truncation34 in the lateral direction is clear. In line with

FIG. 12. Central lateral line profile in the water phantom at 10 cm depth for various beamlet widths and context radii pairs (top). Maximum errors (%) between
noncontext-based (infinite radius) and context-based dose profiles are provided (bottom). The dose is normalized to the maximum dose in the volume. Y-axis
range is limited to better depict low-dose beamlet penumbra region where context-based approximation is active. [Color figure can be viewed at wileyonlinelibra
ry.com]
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our expectation, the maximum single-beamlet profile error
decreases quickly as the context radius is increased. The rate
of decrease in the error is smaller as the beamlet size is made
larger, because more dose is physically scattered outside of
the primary beam, as observed by the longer tails of the 2-cm
wide beamlet compared to the 0.5 cm beamlet. The profile
error for the 5 9 5 cm2 wide broad beam, composed as a
sum of 100 5 9 5 mm2 wide beamlets, presented in Fig. 13,
shows that full beam dose profile errors below 5% and 10%
can be expected for context radii above 2 and 1 cm, respec-
tively. The nature of the context-based method makes it diffi-
cult to directly truncate the polyenergetic dose kernel and
renormalize its remaining weights to sum to 1, and thus,
energy is not strictly conserved in the current implementa-
tion. We instead recommend the intuitive use of a small con-
text radius when the beam candidate pool is large, such as in
early stage of automatic beam orientation optimization which
considers over 1000 beams. Approximate dose is often suffi-
cient for ruling out trivially unsuitable beam orientations and
the context radius can be increased to recompute more accu-
rate beamlet dose once the beam candidate pool has been
reduced.

Our current implementation relies on the user-defined
context radius which corresponds to a physical path length
from the edge of a beamlet. We have also considered
dynamically setting the context radius of each beamlet in
response to local density patterns. By doing so, beamlets
in homogeneous high-density environments would be
assigned low radii to match the short radiological path
lengths, whereas those in low density or heterogeneous
environments would be assigned higher radii. This adap-
tive approach would allow more optimal allocation of
computational resources to beamlets where distant dose

scatter is expected; this work, however, has been left for
future investigation.

5. CONCLUSIONS

We developed and implemented a highly efficient GPU-
CCCS algorithm for computing beamlet dose with customiz-
able fidelity using an intuitive context radius setting for high
beam counts in complex static-beam and dynamic arc IMRT
planning problems. We have demonstrated that the use of our
novel parallel beamlet-context based technique substantially
outperforms the naive approach of computing beamlet dose
in sequence as is done by existing CCCS algorithms in terms
of efficiency, while maintaining similar levels of dosimetric
accuracy. Additionally, we embedded this approach in a scal-
able high-performance computing architecture that allows the
number of independent computing nodes, and the number of
GPUs employed by each to be adapted to match the resources
and demands of the user.
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