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Abstract

Introduction: Exposure to air pollution disproportionately affects racial/ethnic minorities that 

could contribute to health inequalities including metabolic disorders. However, most existing 

studies used a static assessment of air pollution exposure (mostly using the residential address) 

and do not account for activity space when modelling exposure to air pollution. The aim of this 

study is to understand how exposure to air pollution impacts metabolic disorders biomarkers, how 

this effect differs according to ethnicity, and for the first time compare these findings with two 

methods of exposure assessment: dynamic and static measures.

Methods: Among the Community of Mine study, a cross-sectional study conducted in San Diego 

County, insulin resistance, diabetes, hypertension, obesity, dyslipidemia, and metabolic syndrome 

(MetS) were assessed. Exposure to air pollution (PM2.5, NO2, traffic) was calculated using static 
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measures around the home, and dynamic measures of mobility derived from Global Positioning 

Systems (GPS) traces using kernel density estimators to account for exposure variability across 

space and time. Associations of air pollution with metabolic disorders were quantified using 

generalized estimating equation models to account for the clustered nature of the data.

Results: Among 552 participants (mean age 58.7 years, 42% Hispanic/Latino), Hispanics/

Latinos had a higher exposure to PM2.5 compared to non-Hispanics using static measures. 

In contrast, Hispanics/Latinos had less exposure to PM2.5 using dynamic measures. For all 

participants, higher dynamic exposure to PM2.5 and NO2 was associated with increased insulin 

resistance and cholesterol levels, and increased risk of obesity, dyslipidemia and MetS (RR 1.17, 

95% CI: 1.07–1.28; RR 1.21, 95% CI: 1.12–1.30, respectively). The association between dynamic 

PM2.5 exposure and MetS differed by Hispanic/Latino ethnicity.

Conclusion: These results highlight the importance of considering people’s daily mobility in 

assessing the impact of air pollution on health.

Keywords

Biomarkers; Pollution inequity; Ethnic inequalities; Geographic information systems (GIS); 
Kernel density estimators (KDE); Mobility

1. Introduction

In the US, it has been established that inequalities regarding detrimental environmental 

exposures across racial/ethnic groups exist (Hajat et al., 2015). Exposure inequalities 

could be even more pronounced between racial/ethnic groups compared to income and 

educational attainment (Mikati et al., 2018). Racial and ethnic minorities are often exposed 

to higher levels of air pollution compared to non-Hispanic Whites (Woo et al., 2019; Li 

et al., 2019; Bell and Ebisu, 2012; Rosofsky et al., 2018; Pratt et al., 2015; Clark et al., 

2014; Demetillo et al., 2021; Chambliss et al., 2021). Such differences are exacerbated 

by residential segregation in metropolitan areas (Woo et al., 2019) and linked to racially 

discriminatory housing policies during the twentieth century (Chambliss et al., 2021). For 

example, in a study by Jones et al. across six US cities, neighborhoods with higher Hispanic 

composition have higher air pollution exposures (Jones et al., 2014). Such documented 

exposure inequalities may lead to a higher health burden attributable to air pollution among 

racial and ethnic minorities (Di et al., 2017). While air pollution is decreasing overall 

across the US, minority populations are not equally benefiting from pollutant reductions. 

In fact, inequalities in exposure to particulate matter among racial/ethnic communities have 

increased between 2010 and 2016 (Jbaily et al., 2022), highlighting the importance for air 

pollution regulations to focus on the reduction of environmental injustice across the US.

Most studies documenting inequalities and related health burdens regarding exposure to air 

pollution use static measures drawn from the residential neighborhood. Static measures do 

not consider total exposure throughout the day or time spent in other locations, limiting 

the ability to assess daily variations in exposure and potentially under-estimating pollution 

effects on health (Shareck et al., 2014). Some studies relied on individual pollution sensors 

to directly measure time-varying exposure to air pollutants (Liu et al., 2013; Yarza et 
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al., 2020; Chaix, 2018) and related health outcomes such as blood pressure or heart 

rate variability (Ren et al., 2019; Smargiassi et al., 2014; Buteau and Goldberg, 2016). 

However, such studies require a dedicated data collection and can be difficult to implement 

logistically (Languille et al., 2020). When such data collection is not feasible because of 

costs, or simply because the study was not directly designed to answer question related 

to dynamic exposure to air pollution specifically via sensors, it is possible to capitalize 

on studies that collected Global Positioning Systems (GPS) data. GPS data can be used 

to model daily mobility and indirectly estimate dynamic exposure to air pollution. In the 

past decade, many studies collected individual GPS data to characterize activity spaces and 

various exposures such as tobacco retailers (Shareck et al., 2016) or active transportation 

(Chaix et al., 2019). With such data, it becomes possible to combine spatio-temporal 

estimates of air pollutants such as fine particulate matter (PM2.5) or nitrogen dioxide 

(NO2) or alternative metrics such as distance to major highways, and methods to calculate 

dynamic or time-weighted exposures such as Kernel Density Estimators (KDE) (Smith et 

al., 2019), which provide spatially varying exposures weighted on the time spent in each 

location. Comparison between dynamic and static exposure approaches is important as it 

may document potential exposure misclassification when using residential air pollution, 

which is the common approach in environmental epidemiological studies. To the best of 

our knowledge, no study has evaluated disparities in exposure to air pollution between 

Hispanics/Latinos and non-Hispanics considering both static and dynamic methods.

In parallel, ethnic inequalities in metabolic disorders are well established (Schneiderman et 

al., 2014; Shiels et al., 2017; Heiss et al., 2014). Metabolic syndrome (MetS) is a suite of 

conditions that contribute to cardiovascular morbidity and premature mortality. It has been 

shown that the highest prevalence of MetS in the US was observed among Hispanics/Latinos 

(Aguilar et al., 2015). Recent studies have also shown that traffic-related air pollution 

might play a role in MetS incidence mostly through inflammatory pathways (Ursula et al., 

2010; UP, 2015). Among Mexican-Americans, air pollution effects on metabolic disorders 

have been previously reported (Yu et al., 2020; Chen et al., 2016). Exposure to higher 

air pollution is associated with several metabolic outcomes in Hispanics/Latinos including 

insulin resistance, poor HDL-to-LDL cholesterol ratio, and elevations in fasting glucose, 

total cholesterol and blood pressure (Chen et al., 2016; Choi et al., 2019). Increased 

exposure to air pollution can lead to insulin resistance, associated with risk for type 2 

diabetes, cancer and cardiometabolic disease (Dang et al., 2018). Understanding the role of 

air pollution on metabolic disorders biomarkers across ethnic groups while considering daily 

variation in air pollution exposure can help us understand the role of air pollution on ethnic 

disparities and formulate targeted interventions while accounting for heterogenous activity 

spaces.

The aim of this study is to understand how exposure to air pollution impacts biomarkers 

of metabolic disorders, how this effect differs according to ethnicity, and for the first 

time compare findings using two methods of exposure assessment: dynamic and static 

measures. We utilize data from the Community of Mine study, involving an ethnically 

diverse population in San Diego, CA, where both static measures of exposure around 

participants’ home locations, and dynamic measures of exposure across multiple days were 

collected (Jankowska et al., 2019). Our objective can be divided into 3 steps. We first 
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investigated whether exposure to PM2.5, NO2 and traffic differed by ethnicity (Hispanics/

Latinos vs non-Hispanics), and we compared findings derived from static and dynamic 

methods. We then studied the relationship between air pollution (through both static and 

dynamic exposure) and metabolic disorders outcomes. Finally, we examined whether this 

relationship is modified by Hispanic/Latino ethnicity.

2. Methods

2.1. Study population

The Community of Mine study was an observational study completed between 2014 

and 2017 in San Diego County, California. The full protocol is described elsewhere 

(Jankowska et al., 2019). Briefly, 602 adults aged 35–80 years old living for at least 

6 months in a selected census block groups completed the study. About 40% of the 

participants were Hispanics/Latinos. The main objective of the Community of Mine study is 

to advance methods of cancer risk exposure assessment by measuring both neighborhood 

access and total exposure to healthy and unhealthy environments by integrating GPS 

data with Geographical Information System (GIS) data across the full day. Participants 

wore GPS and accelerometer sensors for up to two weeks and attended a clinical visit 

where they completed a medical history interview that included any current medications. 

At the visit, blood pressure, height, weight, hip, and waist circumference were recorded, 

and blood and urine samples were collected. Fasting plasma insulin, fasting plasma 

glucose, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density 

lipoprotein cholesterol (HDL-C), systolic blood pressure (SDB), diastolic blood pressure 

(DBP), triglycerides (TG), and hemoglobin A1C (HbA1c) were measured. Demographic 

characteristics (e.g., age, gender, race/ethnicity) were collected via self-report survey.

Study ethics approval was obtained from UCSD IRB protocol #140510. Signed informed 

consent was obtained from all participants who enrolled in the study.

2.2. Biological outcomes

We focused on six major biological outcomes: insulin resistance, diabetes, hypertension, 

obesity, dyslipidemia, and metabolic syndrome (MetS). Insulin resistance is gauged by the 

Homeostatic Model Assessment of Insulin Resistance (HOMA-IR). The HOMA-IR index 

was calculated according to the formula: fasting plasma insulin (mlU/L) x fasting plasma 

glucose (mg/dL)/22.5. Diabetes was defined as a blood glucose level higher than 126 mg/dl. 

Hypertension was defined as blood pressure of at least 140/90 mm Hg. Obesity was defined 

as body mass index (BMI) over 30 kg/m2. Dyslipidemia was defined as the presence of 

one of more of the following conditions: TC≥200 mg/dL, TG≥150 mg/dL, LDL-C ≥ 130 

mg/dL or HDL-C < 40 mg/dL. Using the NCEP ATP III definition (Huang, 2009), the 

presence of MetS (yes/no) was indicated based on having at least three of the following risk 

determinants: increased waist circumference (>102 cm [>40 in] for men, >88 cm [>35 in] 

for women); elevated triglycerides (≥150 mg/dl); low HDL cholesterol (<40 mg/dl in men, 

<50 mg/dl in women); hypertension (≥130/≥80 mmHg); and impaired fasting glucose (≥110 

mg/dl).
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2.3. Air pollution modelling

Based on daily observations of PM2.5 and NO2 in ug/m3 from eight Environmental 

Protection Agency Air Quality System (EPA AQS) monitoring stations in San Diego 

County, we used an inverse distance weighting approach to calculate yearly averages 

of air pollution across the study area for years 2014–2017. Interpolated values at each 

population-weighted zip code centroid were then assigned to each zip code. To validate 

interpolated estimates, each monitoring station data point was removed and then predicted at 

that location using remaining data points. Correlations between predicted and actual values 

at the location of the omitted point were used to assess validity of modeled estimates (with 

a minimum r of 0.55). The year a participant completed the study was matched to the same 

year of PM2.5 and NO2 air pollution if air pollution data was available in the census tract 

where the participant lived. If air pollution data from the year a participant completed the 

study was missing in the home census tract, air pollution data from the next subsequent 

year with available data was used. Traffic data was utilized as an additional proxy for air 

pollution. Average daily traffic volumes were pulled from ESRI Traffic Counts (Version 

19.3; Q4 2019) data for years 2013–2017. Updated quarterly, ESRI Traffic Counts data are 

produced from Kalibrate TrafficMetrix®, and are an aggregation of traffic volumes from 

multiple sources including city governments, engineering firms, highway and transportation 

departments, and field verifications.

2.4. Exposure measures

2.4.1. Static—Static measures of exposure were derived from buffers around participant 

homes using circular buffers. Static exposure was measured using the average pollution (for 

years 2014–2017) value for a 1600 m buffer around the participant’s home. We performed 

sensitivity analyses using additional buffer sizes for static exposure assessment (ranging 

from 1000 m to 3000 m).

2.4.2. Dynamic—Participants were asked to wear a GT3X ActiGraph accelerometer 

(ActiGraph, LLC; Pensacola, FL) and Qstarz GPS device (Qstarz International Co. Ltd, 

Taipei, Taiwan) on a belt around the waist for 14 days. Data was cleaned and processed 

through the Personal Activity and Location Measurement System (PALMS) and aggregated 

to the minute level (Carlson et al., 2015). Valid days were defined as having at least 10 h 

of accelerometer measured wear time after non-wear time was excluded using the validated 

Choi algorithm (Choi et al., 2012); missing GPS data was imputed per a previously validated 

algorithm (Meseck et al., 2016). It is important to note that participants do not wear devices 

during sleep, and thus wear time represents times of the day the participant is active and 

awake. Participants without at least four valid days were asked to re-wear devices for an 

additional seven days. Participants wore devices for an average (minimum - maximum) of 

11.8 valid days (Hajat et al., 2015; Mikati et al., 2018; Woo et al., 2019; Li et al., 2019; 

Bell and Ebisu, 2012; Rosofsky et al., 2018; Pratt et al., 2015; Clark et al., 2014; Demetillo 

et al., 2021; Chambliss et al., 2021; Jones et al., 2014; Di et al., 2017; Jbaily et al., 2022; 

Shareck et al., 2014, 2016; Liu et al., 2013; Yarza et al., 2020; Chaix, 2018; Ren et al., 2019; 

Smargiassi et al., 2014; Buteau and Goldberg, 2016; Languille et al., 2020).
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All valid-wear GPS points for the entire participant’s wear time were used to create a 

time-weighted activity space using the Kernel Density Equation (KDE) model in ArcGIS 

with a 200 m bandwidth, which has been shown in a previous study to be a reliable distance 

for exposure estimation (Lee and Kwan, 2019). To account for variation in amount of time 

participants wore devices, we normalized the time-weighted density measure values for each 

participant on a scale of 0–1 where the greatest amount of time spent by a participant in a 

location was equal to 1, and the least equal to 0 (Jankowska et al., 2021). The time-weighted 

activity space was then multiplied by each pollution layer using raster map algebra. The 

average pollution score across the entire time-weighted activity space was calculated to 

derive a total exposure measure that accounts for locations visited and the time spent in 

all locations. This dynamic exposure, similarly, to the static exposure, aimed at capturing 

long-term exposures and was based on data from years 2014–2017.

2.5. Covariates

Covariates included age, sex, ethnicity (Hispanic/Latino vs. non-Hispanic), income 

(categorized into 3 categories: less then 30 k, 30 k - 55 k, more than 55 k), current smoking 

status (yes, no) and Body Mass Index (BMI) (categorized into lean/normal (<25 kg/m2), 

overweight (25–30 kg/m2), and obese (>30 kg/m2)).

2.6. Statistical analyses

The baseline characteristics of the study population were described with mean (SD), median 

(interquartile range) or frequencies (%) according to ethnic status. Hispanics/Latinos’ 

and non-Hispanics’ static and dynamic exposures to the three measures of air pollution 

(PM2.5, NO2, and traffic) were compared using Wilcoxon test. Because the distribution 

of HOMA-IR was not normal, we chose to log transform this continuous variable. For 

the three exposures to air pollution generalized estimating equations (GEE) models with 

exchangeable matrixes were performed (accounting for participants clustering within census 

tracts) to quantify pollution exposure effects on six biological outcomes (one continuous 

outcome: log transformed HOMA-IR, and five binary outcomes: diabetes, hypertension, 

obesity, dyslipidemia, and presence of MetS). We used modified Poisson regressions to 

account for the high prevalence of the binary outcomes of interest. The GEE models were 

adjusted for age, sex, ethnicity, income, smoking status, and BMI (except for obesity ad 

MetS models). To evaluate whether the effect of air pollution on biological biomarkers 

was modified by ethnicity, we used stratified analyses. Moreover, to test if regression 

coefficients between air pollution and outcomes differed for Hispanic/Latino ethnicity, we 

used Cochran Q-tests, as recommended for assessing race/ethnicity as an effect measure 

modifier (Benmarhnia et al., 2021).

In supplementary analysis, we quantified the association between air pollution levels and 

eight continuous biomarkers of metabolic disorders: cholesterol (mg/dl), LDL cholesterol 

(mg/dl), SDB (mm Hg), DBP (mm Hg), triglycerides (mg/dl), HbA1c (%), fasting plasma 

glucose (mg/dl) and BMI (kg/m2).

Analyses were performed with R Version 4.1.
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3. Results

3.1. Study population

Among the 602 participants, we restricted the population to participants with HOMA-IR, 

diabetes, hypertension, obesity, dyslipidemia, and MetS data. Participants with missing 

information on covariates (income and smoking status) and without air pollution exposure 

data (PM2.5, NO2, or traffic data) were also excluded (Fig. 1).

Among 552 participants included, 312 were female (56.5%) and 231 were Hispanic/Latino 

(42.2%). The mean age was 58.7 years (SD 11.0). In comparison to non-Hispanics, 

Hispanic/Latino participants were younger (median age: 55.9 vs. 60.7), more often women 

(62.3 vs 52.3%), poorer, and they had worse cardiovascular health (Table 1). Hispanics/

Latinos had higher levels of insulin resistance (HOMA-IR median: 2.8 vs 1.8). Diabetes 

(11.3 vs 5.6%) and obesity (44.5 vs 28.7%) were also more frequent in Hispanic/Latino 

participants. However, no differences between Non-Hispanic and Hispanic participants were 

found for hypertension, dyslipidemia and MetS.

3.2. Air pollution exposures among Hispanics/Latinos and non-Hispanics

Using static air pollution measures, Hispanics/Latinos had higher exposure to PM2.5 

compared to non-Hispanics (9.36 vs 9.12 μg/m3, p-value<0.0001) (Table 2). However, with 

dynamic measures, they had lower exposure to PM2.5 (0.066 vs 0.073, p-value = 0.07). 

Using static and dynamic measures, Hispanics/Latinos had lower exposure to NO2 compared 

to non-Hispanics (9.77 vs 11.28 μg/m3 and 0.080 vs 0.092, respectively). For traffic-related 

exposures, we did not find any differential exposure between ethnic groups using both static 

and dynamic exposures.

3.3. Air pollution and biological outcomes

For all participants, higher dynamic exposure to NO2 was found to be associated with 

increased HOMA-IR (β 0.08, 95%CI: 0.03–0.13) (Table 3). Higher dynamic exposure 

to PM2.5 and NO2 was associated with obesity (RR 1.23, 95%CI: 1.10–1.37; RR 1.21, 

95%CI: 1.10–1.33, respectively), dyslipidemia (RR 1.12, 95%CI: 1.03–1.22; RR 1.14, 

95% CI: 1.06–1.22, respectively), and MetS (RR 1.17, 95%CI: 1.07–1.28; RR 1.21, 

95%CI: 1.12–1.30, respectively). No associations were observed with static measures for 

all outcomes. Static and dynamic traffic exposures were not associated with HOMA-IR, 

diabetes, hypertension, obesity, dyslipidemia or MetS.

Regarding the associations between air pollution and continuous cardiometabolic outcomes, 

no association between air pollution was observed with SDB, DBP, HbA1c and fasting 

glucose (Table S1). However, dynamic air pollution measures (PM2.5 and NO2) was 

associated with the level of total cholesterol, LDL cholesterol, triglycerides, and BMI. Only 

one association was observed with static air pollution measures. Higher static exposure to 

NO2 was associated with higher triglycerides (β 0.05, 95%CI: 0.02–0.09).

Letellier et al. Page 7

Environ Res. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.4. Association between air pollution and biological outcomes according to racial/
ethnicity status

No significant interactions were found between static or dynamic exposure and racial/

ethnicity status for all six outcomes. Among non-Hispanic participants, we found that 

dynamic exposure to PM2.5 and NO2 was associated with higher HOMA-IR level (β 0.13, 

95%CI: 0.03–0.24, β 0.06, 95%CI: 0.00–0.11, respectively) (Fig. 2). Dynamic exposure to 

PM2.5 was associated with higher risk of obesity (RR 1.21, 95%CI: 1.04–1.40), dyslipidemia 

(RR 1.16, 95%CI: 1.05–1.28), and MetS (RR 1.23, 95%CI: 1.12–1.34). Dynamic NO2 

exposure was also found to be associated with obesity (RR 1.18, 95%CI: 1.03–1.35), 

dyslipidemia (RR 1.21, 95%CI: 1.04–1.40) and MetS (RR 1.23, 95%CI: 1.12–1.33). 

Among Hispanic/Latino participants, greater dynamic exposure to NO2 was associated with 

increased HOMA-IR (β 0.13, 95% CI: 0.03–0.24) and higher risk of obesity (RR 1.22, 

95%CI: 1.05–1.42). Based on Cochran Q-test, the association between dynamic PM2.5 

exposure and MetS was significantly different according to ethnicity status (p-value 0.07) 

(Table S2).

The findings obtained through sensitivity analysis for static exposure (conducted for buffer 

sizes ranging from 1000 m to 3000 m) were in line with the 1600 m buffer findings. We did 

not find any association with static measures regardless of the buffer size used (see Table S3 

and Table S4). Moreover, when we removed non-Hispanic non-White participants (n = 50) 

(i.e., confined the analysis to Hispanics/Latinos vs non-Hispanic Whites), the results did not 

change (data not shown).

4. Discussion

Using data from the Community of Mine study, which includes 552 Hispanic and non-

Hispanic individuals in San Diego County, we observed major difference in air pollution 

health effects based on the type of air pollution assessment, static or dynamic measures. 

Air pollution exposure according to ethnicity was different based on static or dynamic 

assessment, and on which air pollution measure was used. Hispanics/Latinos were most 

exposed to PM2.5 compared to non-Hispanics using static measures, in contrast they were 

least exposed to PM2.5 using dynamic measures. For all participants, greater dynamic 

exposure to PM2.5 and NO2 was associated with increased insulin resistance, cholesterol, 

LDL-C, and triglycerides levels, and higher risk of obesity, dyslipidemia and MetS. The 

relationship between dynamic exposure to PM2.5 and MetS is greater among non-Hispanic 

participants. All these patterns were not identified when the exposure was evaluated using 

static methods more traditionally utilized in the existing literature (except for the level of 

triglycerides).

In this study, we highlighted the importance of considering dynamic exposure to air 

pollution in relation to air pollution exposure in-equalities and various metabolic disorders 

outcomes. We also proposed an approach to capitalize on studies that collected GPS data to 

indirectly estimate dynamic exposure to air pollution considering spatio-temporal mobility. 

While some studies were specifically designed to measure dynamic exposure to air pollution 

using sensors (Chaix, 2018; Buteau and Goldberg, 2016), we offer an alternative approach 
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to investigate analogous research questions relying on secondary data in which GPS data is 

available, which is becoming more common in the past decade.

These results have important implications for future studies as they highlight the importance 

of considering dynamic measures when assessing health effects of air pollution exposure. 

Activity space has been defined as “the subset of all locations within which an individual has 

direct contact as a result of his or her day-to-day activities” (Golledge, 1997). It is a measure 

of daily mobility (Sherman et al., 2005) that better reflects the individual exposure to the 

environment by capturing the spatial range of daily experience, and thus may provide a more 

complete picture of the inequalities induced by residential environmental exposure (Vallée, 

2017; Basta et al., 2010). Daily mobility and activity space are critical in the evaluation 

of inequalities in health (Shareck et al., 2014). Previous research showed substantial bias 

in neighborhood-limited measures of exposure. For example, exposure measures limited to 

the residential neighborhood may underestimate true exposure to certain food store types 

(Kestens et al., 2012) or even exposure to ambient NO2 (Setton et al., 2011). Bias may 

also become more strong as the geographic mobility (time and distance away from home) 

increases (Setton et al., 2011). Then, it was previously highlighted that considering mobility 

could exacerbated social inequalities (Shareck et al., 2014). However, few studies have 

directly examined the relationship between daily mobility and ethnic inequalities in health.

We highlighted that dynamic exposures to PM2.5 and NO2 were associated with insulin 

resistance, cholesterol levels, obesity, dyslipidemia and MetS, while static measures were 

not. However, we did not identified association neither with hypertension (including 

continuous SDB and DBP) nor with diabetes (including continuous fasting plasma glucose). 

It was previously shown that increased exposure to air pollution is associated with insulin 

resistance, increasing risk for type 2 diabetes, cancer and cardiometabolic diseases (Dang et 

al., 2018; Zhang et al., 2021). However, only two studies focused on Mexican-Americans 

(a growing portion of the US population with a high occurrence of MetS), and reported 

associations with insulin resistance, elevated fasting glucose and total cholesterol using 

static measures of air pollution (Yu et al., 2020; Chen et al., 2016).

In the US, Hispanics/Latinos have a higher prevalence of several cardiovascular risk factors 

such as obesity, diabetes mellitus, and dyslipidemia (Cortes-Bergoderi et al., 2013). In 

our study, Hispanic/Latino participants had poorer metabolic and cardiovascular health 

outcomes. However, we found one difference in health impact of dynamic air pollution 

exposure depending on Hispanic/Latino ethnicity, and paradoxically this impact seemed 

more important in non-Hispanic participants. The stronger impact of dynamically measured 

air pollution exposure on MetS among non-Hispanics than Hispanics/Latinos remains 

unclear. It could be due to some demographic differences (e.g., different prevalence of 

gender, important age difference) as well as difference in air pollution exposure. While 

Hispanics/Latinos tended to live in areas of higher PM2.5 pollution (static exposure), 

their dynamic exposure (which also accounts for exposure at home) was lower for both 

PM2.5 and NO2. The number of Hispanics/Latinos in our study were fewer compared 

to non-Hispanics, which reduces statistical power in stratified analyses (maximum 231 

Hispanic/Latino participants vs. 321 non-Hispanics). It can also be due to difference in 

personal mobility such as active travel (i.e., biking and walking to get from place to place). 
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Previously, it was shown that Non-Hispanics had more device-based active travel minutes, 

derived from accelerometer and GPS devices, than Hispanics/Latinos (Crist et al., 2021). 

This unexpected finding is not consistent with previous literature. Such paradox has been 

identified for other outcomes previously (Grineski et al., 2015; Parker et al., 2018; Mehta 

et al., 2021), and could be explained by underlying socio-economic determinant. Yet, it is 

also possible than in our sample we may have recruited healthier Hispanic participants as 

compared to the target population. Therefore, studies that would reproduce such analyses in 

other geographical contexts are crucial to unveil the role of air pollution on ethnic disparities 

in regards to metabolic disorders.

Our study has some limitations. First, our sample size is relatively small, and participants 

were recruited in the San Diego County limiting the generalization of these results. Second, 

the assessment of dynamic air pollution was carried out over a relatively short period 

of time (over a two-week period) and the health indicators were assessed at a single 

point in time. Third, some residual confounding may be present. While we controlled for 

several individual-level confounders such as income or age, and accounted for participants 

clustering within census tracts, some variables were not controlled for such as the type 

of occupation for example. Finally, individual-level data of air pollution exposure (from 

sensors for example) were not available which could lead to possible misclassification, 

and it would be interesting to compare individually measured dynamical exposure to air 

pollution (via sensors) and our approach to assess the amplitude of such bias. In the same 

vein, we used interpolated estimates from IDW models that have been traditionally used in 

epidemiological studies. Yet, more advanced interpolation (e.g. land use regression models 

based on ensemble models) have been developed in the past few years and may provide 

different estimates. It would be interesting for future studies having access to various air 

pollution estimates and GPS data to investigate to which extent the type of air pollution 

model influences the discrepancies between static and dynamic exposures.

Our findings highlighted the relevance of investigating both static and dynamic exposure 

when studying ethnic inequalities in health-relevant exposures. Our study showed that 

disregarding daily mobility and spatial variability of air pollution could lead to differential 

exposure misclassification and thus to biased health risk assessment. We found different 

health impact of exposure to air pollution according to the type of air pollution assessment, 

static or dynamic measures. Only dynamic exposure to air pollution was associated with 

insulin resistance, cholesterol, LDL-C, obesity, dyslipidemia and MetS.
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Fig. 1. 
Flowchart showing how participants from the Community of Mine study were selected for 

this study.
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Fig. 2. 
Association between air pollution measures (both static and dynamic) and metabolic 

disorders according to Hispanic/Latino ethnicity. PM2.5: fine particulate matter, NO2: 

nitrogen dioxide. Models were adjusted for sex, age, income, smoking status, and BMI 

(except for models with obesity and MetS as outcome).
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Table 1

Distribution of participants characteristics from the Community of Mine study according to racial/ethnicity 

status (N = 552)

n, (%) Non-Hispanic (n = 321) Hispanic/Latino (n = 231) p-value
c

Female 168 (52.3) 144 (62.3) 0.02

Age
a 60.7 (10.8) 55.9 (10.7) <.0001

Income <.0001

 30 k or les 66 (20.6) 88 (38.1)

 30 k to 55 k 63 (19.6) 68 (29.4)

 55 k+ 192 (59.8) 75 (32.5)

Smoking 26 (8.1) 16 (6.9) 0.73

Presence of metabolic disorders

HOMA-IR
b 1.79 (1.06–2.86) 2.78 (1.55–4.66) <.0001

Diabetes 18 (5.6) 26 (11.3) 0.02

Hypertension 82 (25.5) 44 (19.0) 0.09

Obesity 91 (28.3) 101 (43.7) 0.0003

Dyslipidemia 150 (46.7) 119 (51.5) 0.31

Metabolic Syndrome 127 (39.6) 100 (43.3) 0.43

HOMA-IR: Homeostatic Model Assessment of Insulin Resistance.

a
Mean (SD).

b
median (interquartile range).

c
Student or Wilcoxon test for quantitative variable. Chi-square or Fisher test for qualitative variable.
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Table 2

Air pollution measures among non-Hispanic and Hispanic participants.

Median, IQR Non-Hispanic Hispanic/Latino p-value

Static exposure (1600m buffer)

 PM2.5 9.12 (8.87–9.29) 9.36 (8.87–9.67) <.0001

 NO2 11.28 (10.70–11.87) 9.77 (9.19–11.10) <.0001

 Traffic
a 16,264 (13,587–18705) 16,159 (14,367–18108) 0.94

Dynamic exposure (KDE)

 PM2.5 0.073 (0.054–0.104) 0.066 (0.048–0.100) 0.07

 NO2 0.092 (0.071–0.129) 0.080 (0.063–0.108) <.0001

 Traffic
a 68.7 (45.4–109.0) 65.1 (44.7–99.1) 0.44

PM2.5: fine particulate matter (ug/m3), NO2: nitrogen dioxide (ug/m3). Median, Interquartile Range (IQR), Wilcoxon test for comparison.

a
Measured with average daily traffic volumes.
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