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Article
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Abstract: The global prevalence of counterfeit and low-quality pharmaceuticals poses significant
health risks and challenges in medical treatments, creating a need for rapid and reliable drug
screening technologies. This study introduces a cost-effective electrochemical paper-based device
(ePAD) modified with functionalized bamboo-derived biochar (BCF) for the detection of paracetamol
in substandard medicines. The sensor was fabricated using a custom 3D-printed stencil in PLA,
designed for efficient production, and a 60:40 (m/m) graphite (GR) and glass varnish (GV) conductive
ink, resulting in a robust and sensitive platform. The electroactive area of the ePAD/BCF sensor
was determined as 0.37 cm2. Characterization via SEM and cyclic voltammetry (CV) verified its
structural and electrochemical stability. The sensor demonstrated linear detection of paracetamol
from 5.0 to 60.0 µmol L−1 with a detection limit of 3.50 µmol L−1. Interference studies showed
high selectivity, with recoveries of over 90%, and the sensor successfully quantified paracetamol in
commercial analgesic and anti-flu samples. This sustainable, bamboo-based ePAD offers a promising
solution for rapid on-site pharmaceutical quality control, with significant potential to enhance drug
screening accuracy.

Keywords: electrochemical paper-based analytical devices (ePADs); 3D printing; conductive ink;
substandard drugs; paracetamol

1. Introduction

Substandard drugs are a serious worldwide issue that generates grave global health,
economic and social consequences, requiring innovative and safe anti-counterfeiting so-
lutions [1,2]. The World Health Organization (WHO) classifies these drugs as products
that do not meet the quality standards established by regulatory authorities and that are
incorrectly labeled regarding identity and/or origin [3–5]. Counterfeit drugs may contain
the correct ingredients, the incorrect ingredients, the active pharmaceutical ingredient in the
incorrect concentration, no active pharmaceutical ingredient or false labeling [3], and these
drugs are the cause of approximately 100,000 deaths per year worldwide [6]. In a global
context, researchers estimate that 1 in 10 pharmaceutical products are substandard [5–7],
and this number could reach 3 in 10 in some regions of Africa, Asia and Latin America [6].
Among the most counterfeited pharmaceuticals, it is estimated that 12% are painkillers [1].

Acetaminophen, popularly known as paracetamol (PARA), is an analgesic, antipyretic
and non-steroidal anti-inflammatory that can be purchased without a prescription [7,8].
Paracetamol is used to treat fever, headaches, muscle pain, body aches, toothaches, arthritis
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and other problems [8,9], and its consumption is estimated at 30 million doses per day [9].
Paracetamol is among the most counterfeited medicines [10], and the high consumption
associated with the counterfeiting rate can cause several problems, which necessitates the
development of analytical tools to monitor medicines that contain this substance [8]. In
doses above the permitted limit, this drug can cause various illnesses, from convulsions,
nausea, insomnia and tremors to kidney failure, liver necrosis and death [7,9,11].

It can be difficult to discern substandard drugs from authentic products just on visual
inspection, making their identification and analysis a complex and challenging task [1].
Since analytical techniques can offer a trustworthy and objective approach to identify and
quantify the active ingredients, contaminants, and other components in a sample, they are
consequently essential for the detection and analysis of these pharmaceutical products.
There are many analytical techniques that can be used for the detection and analysis of
substandard drugs, including high-performance liquid chromatography (HPLC) [5], mass
spectrometry (MS) [1], benchtop NMR spectroscopy [12], near-infrared chemical imaging
(NIR-CI) [13], thin layer chromatography (TLC) [1], Raman spectroscopy [10] and UV
spectrophotometry [5].

The use of electrochemical sensors to identify substandard drugs has gained popularity
in recent years [3,4]. They are able to detect a variety of substances, such as drugs [14,15],
pesticides [16,17] and biomolecules [18,19], and are highly sensitive and selective. Due to
their portability and simplicity of use, they can be especially useful in situations that require
in situ analysis [20]. Additionally, real-time data can be obtained from electrochemical
sensors [18,20], and detection in complicated matrices such as blood [21] or urine [3]
samples can be carried out.

The efficacy of electrochemical sensors has been demonstrated through several scien-
tific investigations. These studies have used a variety of materials to modify electrodes,
such as graphene oxide [14] and carbon nanotubes [22], and, more recently, materials based
on renewable carbon, such as biochar [23] and hydrochar [24], have gained considerable
prominence. These materials are obtained from biomass pyrolysis and can be used to
produce cheaper and more sustainable sensors [23,24]. Their effectiveness for determining
compounds is also being proven, which makes them a great option for manufacturing
analytical devices [23–26].

The emergence of electrochemical paper-based analytical devices (ePADs) presents an
opportunity to develop cost-effective tools for identifying potential water contamination.
This technology has been utilized in electroanalysis due to its favorable characteristics,
such as high sensitivity, versatility in applications, the ability to produce different electrode
configurations, and suitability for on-site monitoring [27,28]. Typically, an ePAD and a
screen-printed electrode (SPE) consist of three electrodes printed with carbon paste or
ink [29]. To enhance the durability of the printing process, the ink is primarily composed of
conductive materials like graphite or carbon black, along with a binder or plasticizer [30].
On a laboratory scale, carbon-based inks can be created using graphite powder and tradi-
tional binders such as glass varnish [28].

Therefore, this work aims to develop a paper-based analytical device (ePAD) using a
3D-printed Polylactic Acid (PLA) stencil with the creation of a hydrophobic barrier through
solid wax printing. Furthermore, functionalized bamboo-based biochar (BCF) was used
as a modifier to make a sustainable and affordable sensor for detecting paracetamol in
low-quality or counterfeit medicines.

2. Results
2.1. Morphological Characterization

Scanning electron microscopy (SEM) images of the fabricated ePADs are shown in
Figure 1, providing insights into the morphological characteristics that contribute to the
sensor’s performance. In Figure 1A, cellulose fibers are visible, interspersed with graphite
structures, indicative of the paper substrate’s natural texture combined with the conductive
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ink. This fiber–graphite interaction suggests good adhesion and integration of the ink with
the paper substrate, which is essential for consistent electrochemical behavior.
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Figure 1. SEM images of carbon ink spread on a paper substrate at magnifications of (A) 5000× and
(B) 10,000×; (C,D) ePAD modified with BCF.

Figure 1B reveals the graphite structures as randomly arranged agglomerates, with
particle sizes ranging from 0.5 to 50 µm. This irregular surface profile likely results from the
use of a brush in the manual printing technique developed in this study, which introduces
a degree of heterogeneity in particle distribution. Such roughness can be advantageous,
as it increases the effective surface area available for electrochemical reactions, potentially
enhancing sensitivity.

Figure 1C,D display the morphology of the ePAD after modification with the BCF
material. The presence of biochar is evident, with the particles forming a heterogeneous
layer characterized by a variety of sizes and the presence of porous, honeycomb-like
structures [31]. These pores are beneficial as they can facilitate electrolyte access, improving
ion exchange and enhancing electron transfer kinetics on the sensor surface. The biochar’s
porous nature, combined with its irregular distribution, contributes to an increased surface
area and additional active sites, which are crucial for improving the sensor’s responsiveness
to an analyte [32]. Overall, the SEM images suggest that the integration of BCF creates a
more complex surface morphology, which can promote greater electrochemical activity and
improve detection sensitivity.

2.2. Electrochemical Characterization of ePADs

To determine the optimal composition of the conductive ink for manufacturing ePAD
sensors, the ratio between graphite (GR) and glass varnish (GV) was optimized. Figure 2A
shows the voltammetric response of the ePAD sensor in 0.2 mol L−1 PBS solution (dashed
line) and in the presence of 5.0 mmol L−1 of the redox couple [Fe(CN)6]3−/4− (solid line) at
a scan rate of 50 mV s−1. The results showed no redox process in the absence of the probe,
indicating that the observed oxidation and reduction processes are associated with the iron
species in the solution.
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of [Fe(CN)6]3−/4−: (A) Comparison of ePAD performances with different formulations of GR-GV
conductive ink. (B) Cyclic voltammograms of ePADs fabricated with different conductive ink
compositions (Ink 1: 80:20, Ink 2: 70:30, Ink 3: 60:40, and Ink 4: 50:50 GR ratios, m/m) in 0.1 mol L−1

PBS containing 5.0 mmol L−1 [Fe(CN)6]3−/4− at 50 mV s−1. (C) Voltammetric response of the ePAD
sensor without modification (red line) and after BCF modification (black line).

Figure 2B presents cyclic voltammograms obtained with ePADs manufactured with
different GR-GV ink compositions, using a 150 µL aliquot of a 0.2 mol L−1 PBS solution
(pH 7.4) containing 0.1 mol L−1 KCl and 5.0 mmol L−1 of the redox couple [Fe(CN)6]3−/4−

at a scan rate of 50 mV s−1. The GR-GV (m/m) ratios were 80:20 (ink 1), 70:30 (ink 2), 60:40
(ink 3), and 50:50 (ink 4), based on a total mass of 150 mg. Table 1 presents the anodic (Ipa)
and cathodic (Ipc) peak currents, as well as the separation of anodic and cathodic peak
potentials (∆Ep) for the probe’s redox potentials across all sensors evaluated. As illustrated,
the ePAD sensor manufactured with the GR-GV ink at a 60:40 ratio (ink 3) demonstrated
the best voltammetric response, with an oxidation current of Ipa = 213 µA, a reduction
current of Ipc = −208 µA, and a peak potential separation (∆Ep) of 772 mV vs. graphite
(pseudo-reference). Additionally, this ink showed superior handling properties during
sensor fabrication, without cracking or leakage through the PLA stencil. Therefore, this
ink was selected for further investigation. Although inks with higher conductive material
content exist, excessive amounts can lead to the blockage of active sites, thereby reducing
the material’s sensitivity [33].

After the modification process with 10 µL of BCF (1.0 mg/mL) on the working elec-
trode, we can observe that the voltammogram showed a better reversibility of the redox
process, with ∆Ep = 387 mV vs. graphite (Figure 2C), along with a significant increase in the
anodic and cathodic current responses of the redox probe (Table 1). The increase in anodic
and cathodic currents may be attributed to the acid treatment of biochar, which results in
a reduction in both the H/C and O/C ratios. A lower H/C ratio suggests increased car-
bonization and the formation of more aromatic structures within the material. Additionally,
the decrease in the O/C ratio indicates a reduction in hydrophilicity and polarity, altering
the material’s surface properties. Furthermore, biochar functionalization likely contributes
to the formation of new active sites on the surface, enhancing the material’s electrochemical
reactivity [34,35].
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Table 1. Optimization of the ePAD sensor manufacturing process using different conductive ink
compositions and modification with BCF material. Comparison of anodic peak currents (Ipa), cathodic
peak currents (Ipc), and redox peak separation (∆Ep).

Scheme GR-GV Ratio Ipa (µA) Ipc (µA) ∆Ep (mV)

Ink 01—80:20 (m/m) N/A N/A N/A
ePAD Ink 02—70:30 (m/m) 158 −159 1420

Ink 03—60:40 (m/m) 213 −208 772
Ink 04—50:50 (m/m) 187 −190 980

ePAD/BCF 294 −284 387

Although the voltammetric performance of the ePAD/BCF sensor is lower compared
to other disposable sensors reported in the literature [33,36,37], this sensor demonstrated
a linear response when the cyclic voltammetry (CV) scan rate was varied from 10 to
100 mV s−1 (Figure 3A). A progressive and linear increase in redox process currents as a
function of scan rate is observed, as shown in the Ipa/Ipc vs. v1/2 plot (Figure 3B). The
linear relationship between I and v1/2 (Figure 3B) indicates that the studied process is
primarily diffusion-controlled, allowing the effects of capacitive charges to be neglected in
this system [33].
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The electroactive area of the ePAD/BCF sensor was calculated using the Randles–
Sevcik equation (Equation (1)):

Ip = 2.69 × 105 n
3
2 A D

1
2 C v

1
2 (1)

where Ip refers to the peak current (anodic or cathodic), A corresponds to the electroactive
area (cm2), C is the concentration of the probe used (mol cm−3), D is the diffusion coefficient
of the species in solution [Fe(CN)6]3−/4− (7.6 × 10−6 cm2 s−1) and n refers to the number of
electrons transferred in the redox reaction and v is the scanning speed [38,39]. Rearranging
Equation (1) in terms of the electroactive area of the electrode, we can compare it with
the curve equation in the graph in Figure 3B (Ipa vs. v1/2). Therefore, the first term of
Equation (2) corresponds to the slope of the graph (Ipa vs. v1/2):

A =
Ip

v
1
2

x
1

2.69 × 105 n
3
2 D

1
2 C

(2)

Considering the angular coefficient as 1.36 × 10−3 (after converting µA to A), we
conclude that the electroactive area of the ePAD/BCF sensor is 0.37 cm2.
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2.3. Electrochemical Behavior of Paracetamol

The electrochemical behavior of PARA in the ePAD/BCF sensor was evaluated by
cyclic voltammetry (CV) (v = 50 mV s−1) with a volume of 150 µL of PBS 0.2 mol L−1

pH 7.0, containing 200 µmol L−1 of PARA. The results presented in Figure 4A show that no
oxidation or reduction peak was observed for the voltammetric response in the absence of
PARA (dashed line). However, in the presence of PARA (solid line), a reversible process is
observed with an oxidation process at Epa = 500 mV vs. graphite, and a reduction process at
Epc = 300 mV vs. graphite. Figure 4B shows the redox mechanism involved in this process,
where PARA is oxidized to N-acetyl-p-benzoquinonaimine and consequently reduced back
to the original molecule [40].
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Figure 4. (A) Cyclic voltammograms of the ePAD/BCF sensor in the absence (dashed line) and
presence of 200 µmol L−1 of PARA in 0.1 mol L−1 of PBS (pH 7.0), v = 50 mV s−1. (B) Paracetamol
oxidation mechanism to N-acetyl-p-benzoquinonaimine on the ePAD/BCF sensor.

Figure 5 presents linear sweep voltammetry (LSV) voltammograms obtained for
different sensors. The measurements were carried out in the potential range between 0 and
1.1 V, in 0.1 mol L−1 PBS pH 7.0 in the absence (dashed line) and presence of 50 µmol L−1 of
PARA, for the ePAD sensor (curve a) and for the ePAD/BCF sensor (curve b). As illustrated
in the figure, there was a significant increase in the anode peak current for the sensor
modified with the BCF material, which was, therefore, selected for the construction of the
calibration curve.
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2.4. Calibration Curve

After electrochemical characterization by CV, the ePAD/BCF sensor was used to detect
PARA using LSV. These experiments were conducted within the potential range of 0 to 1.1 V,
with v = 25 mV s−1. Aliquots of the supporting electrolyte containing PARA concentrations
of 5, 20, 30, 50 and 60 µmol L−1 were used, as shown in the voltammograms in Figure 6A.
We observe a linear increase in the anodic peak current (Ipa) as the concentration of PARA
increases, ranging from 5.0 to 60 µmol L−1 with an R2 of 0.9834 (Figure 6B). The limit of
detection (LOD) is 3.50 µmol L−1, calculated using the calibration curve method with the
equation LOD = 3σ/S, where σ is the standard deviation of the blank and S is the slope of
the calibration curve.

Ipa (µA) = 3.70 + 0.07 × CPARA (µmol L−1) (3)
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The slight peak potential shift observed in Figure 6A likely results from interactions
between the analyte and electrode surface, as well as increased analyte concentration in the
diffusion layer, which can alter electrochemical conditions and the energy required for the
redox reaction [41]. Additionally, factors like double-layer capacitance and changes in the
ionic strength of the supporting electrolyte may contribute to this shift.

In this study, the peak potential shift was approximately 5 mV across the concentration
range tested, which is within acceptable limits for electrochemical measurements and is
considered minor. Theyagarajan et al. [9] have also reported similar shifts due to analyte–
electrode surface interactions at higher concentrations.

The ePAD/BCF sensor exhibited detection limits comparable to those of sensors using
graphite-based inks or cost-effective binders [26,33]. Additionally, incorporating other
carbon materials into the ink, such as multi-walled carbon nanotubes (MWCNTs) [36],
reduced graphene nanoribbons (rGNRs) [42], and commercially available carbon inks [43],
could further reduce detection limits. The ePADs also demonstrated analytical performance
on par with literature-reported values for the detection of various molecules, including
drugs, endocrine disruptors, and neurotransmitters, as shown in Table 2.

The stability of the ePAD/BCF sensor was evaluated using a standard solution of
25 µM acetaminophen in a three-electrode setup. The initial current response for the 25 µM
standard was 5.5 µA, and the final current was 5.32 µA, with these values representing the
average response from three separate ePAD/BCF sensors. The stability of the sensor was
calculated using the following formula:

Stability(%) = 1 − I0 − I1

I0
(4)
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Table 2. Characteristics of paper-based electrochemical analytical devices.

Manufacturing
Method Conductive Ink Analyte LOD

(µmol L−1) Ref.

Spread with brush Graphite/nail polish 80:20%
(m/m) Dopamine 5.2 [37]

Adhesive mask Graphite/glass varnish 80:20%
(m:m) Dopamine 4.1 [33]

Catechol 9.0
Hydroquinone 5.3
Estriol 0.08

Graphite/nail polish 52:48%
(m/m) + 20 µL of MWCNT
suspension

Caffeic acid 0.2 [36]

Screen-printed Graphite-based ink and
Ag/AgCl ink Bisphenol-A 0.03 [44]

Carbon powder (10% m/m)
with 9.0 g of graphite ink Capsaicin 0.085 [43]

Carbon ink and rGNRs Sulfamethoxazole 0.09 [42]
Trimethoprim 0.04

3D-printed stencil GR-GV 60:40% (m/m) + 400 µL
acetone/ethanol (1:1) PARA 3.50 *

* this work.

Substituting the measured values into this equation, the stability was found to be
approximately 96.7%, indicating minimal signal degradation. This high stability suggests
that the sensor retains a consistent and reliable response over repeated measurements,
which is crucial for accurate quantification in practical applications. The stable current
response also reflects the durability of the biochar modification, as it ensures that the sensor
can withstand multiple analyses without significant loss of performance.

2.5. Application of the ePAD/BCF Sensor in the Quantification of Paracetamol

The respective voltammograms are shown in Figure 7, where each panel (A–D) illus-
trates the response of the ePAD/BCF sensor in the presence of 20.0 µmol L−1 PARA and
one of the potential interferents: starch (A), PEG (B), PVA (C) and NaCl (D). As observed,
the voltammetric profiles demonstrate minimal interference from these substances, with no
significant changes in peak current or shifts in oxidation potential for most interferents. As
shown in Figure 7A, the addition of starch did not produce any noticeable alteration in the
peak shape or current, indicating that this common excipient does not interact significantly
with the electrochemical response of paracetamol. Similarly, in Figure 7B, PEG showed no
substantial effect on the peak potential or intensity, suggesting good compatibility with the
sensor. For NaCl, as shown in Figure 7D, a slight decrease in peak current is observed, likely
due to minor ionic interactions, but this does not affect the overall selectivity or accuracy
of the sensor. The only noticeable effect is seen in Figure 7C, where the presence of PVA
leads to minor variations in peak shape and intensity. Both peaks in this voltammogram
are attributed to paracetamol, and this behavior is likely due to the interaction of PVA
with the electrode surface, affecting the analyte’s diffusion and altering the electrochemical
interface slightly. Despite these minor variations, the overall recovery of the paracetamol
signal remains above 90% for all tested interferents, indicating that the ePAD/BCF sensor
maintains high selectivity and reliability in detecting paracetamol even in complex sample
matrices.

Table 3 summarizes the effect of potential interferents on the linear sweep voltammetry
(LSV) determination of 20µmol L−1 of paracetamol (PARA) at a 1:1 ratio of [PARA]/[interferent].
The results indicate minimal interference, with all tested substances causing less than a
10% change in the current response. Specifically, starch and PEG exhibited very low
interference levels, at −3.20% and −5.00%, respectively, suggesting minimal interaction
with the electrochemical detection of paracetamol. PVA and sodium chloride showed
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slightly higher interference, at −9.20% and −8.50%, respectively, which may be due to
minor effects on the electrode surface or analyte diffusion. However, these variations are
still within acceptable limits, as the sensor maintained over 90% of the original paracetamol
signal in all cases. This demonstrates the robustness and selectivity of the ePAD/BCF sensor,
confirming its suitability for accurate paracetamol quantification even in the presence of
common pharmaceutical excipients and potential adulterants.
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Figure 7. LSV voltammograms with 20 µmol L−1 of PARA, showing the electrochemical response
before and after the addition of (A) starch, (B) PEG, (C) PVA and (D) sodium chloride (1:1 ratio).
These additions assess the impact of common matrix components on PARA detection.

Table 3. Effect of potential interferents on the LSV determination of 20 µmol L−1 paracetamol (PARA)
at a 1:1 [PARA]/[interferent] ratio.

Interferents Interference (%)

Starch −3.20
PEG −5.00
PVA −9.20

Sodium Chloride −8.50

To assess the practical applicability of the ePAD/BCF sensor, we conducted quan-
tification of paracetamol (PARA) in commercial analgesic and anti-flu pharmaceutical
formulations. According to the manufacturers, each analgesic tablet contains 500 mg of
paracetamol, while each anti-flu capsule contains a combination of 400 mg of paracetamol,
4 mg of chlorpheniramine maleate, and 4 mg of phenylephrine hydrochloride. Following
sample preparation and appropriate dilution, paracetamol concentrations were determined
using standard addition and recovery protocols with the ePAD/BCF sensor. Figure 8 shows
linear sweep voltammetry (LSV) responses for a flu medicine sample containing an initial
concentration of 50 µM of paracetamol, recorded using a graphite-based ePAD sensor.
The red curve represents the original flu medicine sample (50 µM). Standard additions
of paracetamol at concentrations of 10 µM (green), 20 µM (blue) and 30 µM (cyan) were
subsequently added to the sample, resulting in a progressive increase in peak current for
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the redox process. This increase in current with each addition of standard confirms the
sensor’s sensitivity and response to paracetamol concentration. The inset graph shows
a linear calibration plot of peak current (I) versus paracetamol concentration (CPARA),
demonstrating the linearity and quantitative capability of the standard addition method
for accurate paracetamol determination in complex matrices.
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Figure 8. Linear sweep voltammetry (LSV) responses for a flu medicine sample with an initial
concentration of 50 µM paracetamol, recorded using a graphite-based ePAD sensor. The red curve
represents the LSV response of the original sample (50 µM), while subsequent standard additions of
paracetamol at concentrations of 10 µM (green), 20 µM (blue) and 30 µM (cyan) show progressive
increases in peak current. The inset displays a linear calibration plot of peak current (Ipa) vs. CPARA,
validating the linearity and accuracy of the standard addition method for quantifying paracetamol in
complex matrices.

Table 4 presents the labeled concentration of paracetamol, the concentration added
(µmol L−1), the concentration quantified by the sensor (µmol L−1) and the relative error.
All determinations were performed in triplicate to ensure the reproducibility and reliability
of the results.

Table 4. Determination of paracetamol (PARA) in real samples of commercial paracetamol tablets and
anti-flu capsules. The table presents the labeled values in mg for each drug, the added concentration
(µmol L−1), the concentration quantified by the ePAD/BCF sensor, the recovery percentage (%) and
the standard error of recovery (%).

Samples
Primary

Ingredients
Labeled (mg) Added

(µmol L−1)
Quantified
(µmol L−1)

Error
(µmol L−1)

Error
(%)

Recovery
(%)

Standard
Error of

Recovery (%)

Paracetamol
Tablet 500 mg/tablet 20.00 18.70 ± 0.03 0.03 −6.50% 93.50 0.15

Flu medicine
capsule

Paracetamol 400 mg
Chlorpheniramine

Maleate 4 mg
Phenylephrine

Hydrochloride 4 mg

20.00 18.50 ± 0.05 0.05 −7.50% 92.50 0.25

The ePAD/BCF sensor demonstrated satisfactory performance in quantifying parac-
etamol in both pharmaceutical matrices, with relative errors of −6.50% for the analgesic
tablet and −7.50% for the anti-flu capsule. These deviations fall within acceptable limits for
analytical applications, indicating that the sensor provides accurate and reliable measure-
ments of paracetamol, even in the presence of additional active ingredients and excipients.
The observed accuracy and selectivity underscore the ePAD/BCF sensor’s potential as a
practical tool for the quality control of paracetamol in complex drug formulations.
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3. Materials and Methods
3.1. Material and Reagents

Paracetamol (acetaminophen), Potassium Chloride (KCl), Potassium phosphate monobasic
(KH2PO4), Sodium phosphate dibasic (Na2HPO4), Potassium ferricyanide (III) (K3[Fe(CN)6]),
Potassium ferrocyanide (II) (K4[Fe(CN)6]), starch (C6H10O5)n), sodium chloride (NaCl),
graphite powder, Poly(ethylene glycol) (PEG), and Poly(vinyl alcohol) were purchased
from Sigma Aldrich (St. Louis, MO, USA) and were of analytical grade. Glass varnish
(Acrilex®, São Bernardo do Campo, SP, Brazil) was obtained from a local stationery store.

Mohini Sain of the University of Toronto generously donated the bamboo-based
biochar (BC) used in this work, which was produced by pyrolyzing bamboo biomass. For
functionalization, 1 g of BC was kept for 14 h in 500 mL of a mixture of H2SO4/HNO3 in
a 3:1 ratio. Then, the mixture with BC was filtered by a 0.45 µm GVS nylon membrane.
The material that remained on the membrane was dried in an oven set to 60 ◦C after being
cleaned with ultrapure water until the pH reached neutral. The resulting material was
the BCF, and a stock solution of 1.0 mg/mL was prepared in ultrapure water and kept
under refrigeration.

3.2. Instruments

Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were carried out using
a 6005E electrochemical workstation (CH Instruments Inc., Austin, TX, USA) equipped with
Chi6005e software (CHI version 16.08). The morphological characterization was performed
by scanning electron microscopy using FEI NovaNanoSEM 450 (Thermo Fisher Scientific,
Waltham, MA, USA).

3.3. Fabrication and Modification of ePADs

The stencil was specifically designed to facilitate the printing of six sensors in each
batch. It is composed of two main components: a 3D plate featuring two rows of three
electrodes (working, reference and auxiliary) and a support plate for the printing process.
These two components are connected using butterfly screws, as illustrated in Figure 9A,B.
The stencil was manufactured utilizing fused deposition modeling technology, employing
Cherry (Edison, NJ, USA) EasyFill 1.75mm Polylactic Acid (PLA) filament. The printing
process was carried out using an ANET ET4-PRO printer (Shenzhen, China), adhering
to precise conditions such as a nozzle temperature of 200 ◦C, a bed temperature of 65 ◦C
and a layer thickness of 0.1 mm. The G-CODE was generated using Ultimaker Cura
4.8.0 software.

Based on the study by Pradela-Filho et al. [37], the conductive ink was formulated by
mixing graphite powder and Glass varnish in a ratio of 60% to 40%, along with 400 µL of
an ethanol/acetone mix to achieve the desired viscosity (Figure 9C).

The fabrication process of ePAD sensors is illustrated in Figure 9D. To begin, a hy-
drophobic pattern was created to establish an electrolyte reservoir for voltammetry analysis.
Using Inkscape software (version 1.3.2), black dots on a white background were designed
and printed onto paper using a Xerox ColorQube 8580 printer (Norwalk, CT, USA). Subse-
quently, the wax paper was heated in an oven at 100 ◦C for 2 min to generate a hydrophobic
barrier surrounding the hydrophilic region. Lastly, the three-electrode system was printed
onto this setup utilizing the PLA stencil, and conductive ink was applied with a brush.

Finally, the ePADs were prepared for voltammetric experiments. The sensors were
dried at room temperature for 12 h before use. Each ePAD measured approximately 2.5 cm
in height and width, with a working electrode (WE) diameter of 5 mm. Approximately
150 mg of conductive ink was used per manufacturing batch. Prior to the voltammetric
experiments, the ePAD working electrode was modified with 10 µL of a BCF suspension
at a concentration of 1.0 mg/mL. Figure 9E illustrates the setup adaptations for analysis,
using metallic clips to secure the ePAD.
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Figure 9. Sequential fabrication of ePADs: (A) Stencil design conceptualized in PLA for sensor
creation. (B) Stencil produced using PLA filament via 3D printing. (C) Preparation of conductive
ink. (D) Definition of the electrolyte area, including the following steps: (I) digital design, (II) wax
printing, (III) wax melting to create a hydrophobic barrier within the paper, (IV) sensor fabrication
using the stencil and conductive ink and (V) final assembly of the ePAD. (E) Setup adjustment for
electrochemical measurements with metallic clips.

3.4. Sample Preparation

A stock solution of standard PARA at a concentration of 1 mmol L−1 was prepared
for the purpose of characterization and comparison analysis. To quantify PARA, tablets
containing 500 mg of paracetamol and anti-flu capsules containing 400 mg of paracetamol,
4 mg of chlorpheniramine maleate and 4 mg of phenylephrine hydrochloride were obtained
from a local pharmacy. The samples underwent maceration and weighing procedures.
Subsequently, two theoretical standard solutions were created with a concentration of
20.0 µmol L−1 of PARA, utilizing a 0.1 mol L−1 PBS solution at pH 7. The quantification of
PARA in the samples was determined by experiments of addition and recovery.

4. Conclusions

This study introduces a novel approach for fabricating electrochemical paper-based
analytical devices (ePADs) using a 60:40 (m/m) graphite-to-glass varnish (GR-GV) conduc-
tive ink and a sustainable functionalized bamboo-derived biochar (BCF) modification. The
integration of BCF significantly enhanced the sensor’s voltammetric response, particularly
with the redox probe [Fe(CN)6]3−/4−, demonstrating improved electron transfer and an
electroactive area of 0.37 cm2, which contributes to its high sensitivity. The ePAD/BCF
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sensor exhibited a linear detection range for paracetamol (PARA) from 5 to 60 µmol L−1,
with a detection limit of 3.50 µmol L−1, enabling low-concentration detection.

Practical applicability was confirmed through successful quantification of PARA in
commercial tablets and anti-flu capsules, achieving recoveries of 92.50% and 93.50%, re-
spectively, even in complex matrices. Additionally, the sensor showed strong selectivity
against common interferents, underscoring its potential for identifying counterfeit or sub-
standard drugs. These results position the ePAD/BCF sensor as a promising, accessible
and cost-effective tool for electrochemical analysis in pharmaceutical quality control and
public health applications, offering an innovative and sustainable approach for accurate
substance detection.
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