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ABSTRACT 

The majority of previous studies examining life cycle greenhouse gas (LCGHG) emissions of 

battery electric vehicles (BEVs) have focused on efficiency-oriented vehicle designs with limited 

battery capacities. However, two dominant trends in the US BEV market make these studies 

increasingly obsolete: sales show significant increases in battery capacity and attendant range, 

and are increasingly dominated by large luxury or high-performance vehicles. In addition, an era 

of new use and ownership models may mean significant changes to vehicle utilization, and the 

carbon intensity of electricity is expected to decrease. Thus, the question is whether these trends 

significantly alter our expectations of future BEV LCGHG emissions.  

To answer this question, three archetypal vehicle designs for the year 2025 along with scenarios 

for increased range and different use models are simulated in an LCGHG model: an efficiency-

oriented compact vehicle; a high performance luxury sedan; and a luxury sport utility vehicle. 

While production emissions are less than 10% of LCGHG emissions for today’s gasoline 

https://doi.org/10.1016/j.trd.2020.102287
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vehicles, they account for about 40% for a BEV, and as much as two-thirds of a future BEV 

operated on a primarily renewable grid. Larger battery systems and low utilization do not 

outweigh expected reductions in emissions from electricity used for vehicle charging. These 

trends could be exacerbated by increasing BEV market shares for larger vehicles. However, 

larger battery systems could reduce per-mile emissions of BEVs in high mileage applications, 

like on-demand ride sharing or shared vehicle fleets, meaning that trends in use patterns may 

countervail those in BEV design. 

 

Key words: EVs, batteries, LCA, carbon footprint, electric mobility, shared mobility 

 

1. Introduction 

Transportation comprises 28% of US greenhouse gas (GHG) emissions, 60% of which come 

from light-duty vehicles (LDVs) (US Environmental Protection Agency, 2018). While a 

multipronged approach is needed to achieve deep reductions in transportation GHG emissions, 

rapid and extensive deployment of battery electric vehicles (BEVs) is viewed as a crucial part of 

nearly all strategies (Alexander, 2015a; Meszler et al., 2015; Sperling, 2018). BEVs are typically 

referred to as zero emissions vehicles (ZEVs) because they eliminate tailpipe pollution. 

However, as with other de-carbonization policies for the transport sector, such as those that 

promote biofuels, a life cycle perspective is required to understand the actual mitigation achieved 

by ZEVs, since emissions are not eliminated, but rather shifted upstream in the fuel cycle (to the 

power plant) and potentially increased in the vehicle production supply chain. BEVs can also 

have considerable variability in life cycle operation emissions given the heterogeneity of 

electricity grids over space and time (Cerdas et al., 2018; Tamayao et al., 2015; Yuksel and 

Michalek, 2015). 

Numerous life cycle-based studies have been conducted with the goal of verifying if BEVs 

(including plug-in hybrid electric vehicles (PHEVs)) achieve real reductions in emissions 

relative to internal combustion engine vehicles (ICEVs, including hybrid electric vehicles 

(HEVs)). These studies suggest that GHG emissions associated with energy for BEV operation 

(i.e. production of electricity) can be 44% - 80% of BEV LCGHG emissions. For non-operation 

GHG emissions, energy required for manufacturing of LIBs is the primary driver of increased 
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GHG emissions relative to ICEVs (Peters et al., 2017). Uncertainty about battery manufacturing 

and a lack of primary data have contributed to a wide range of results for GHG emissions 

associated with battery production (Ambrose and Kendall, 2016; Ellingsen et al., 2014). 

Moreover, given the growth in BEV sales, the evolution of BEV designs and model availability, 

and declining prices for traction batteries (Nykvist and Nilsson, 2015), previous life cycle 

assessments (LCAs) may not be representative of current and future BEV performance, vehicle 

specifications, or patterns of use. 

1.1 Review of Literature and Relevant Data 

A review of previous LCAs (here we use the term LCA to refer both to comprehensive LCAs 

that track a suite of environmental impacts as well as those that narrowly assess GHG 

emissions), a selection of which are summarized in Table 1, shows that most studies used the 

early generations of the Nissan Leaf as the exemplar BEV (Archsmith et al., 2015; Ellingsen et 

al., 2014; Graff Zivin et al., 2014; Hawkins et al., 2013; Majeau-Bettez et al., 2011; Samaras and 

Meisterling, 2008; Tamayao et al., 2015). Because of this, most previous LCAs have used 

similar assumptions, including the ~24 kWh battery capacity and efficiency-oriented compact 

vehicle design. Many of the earliest LCA studies of BEVs found that emissions from the 

electricity grid used for charging were the most significant contributor to life cycle CO2e 

emissions from BEVs (Hawkins et al., 2012; Michalek et al. 2011). Justifiably, more recent 

studies have focused on interactions of BEVs and the electricity system, examining the 

consequential effects of replacing ICEVs with BEVs, and the intersection of charging strategies 

with the marginal dispatch decisions of electric utilities (Archsmith et al., 2015; Jenn et al., 2016; 

Yuksel and Michalek, 2015).  At least one study has considered the effect of battery range and 

vehicle size on BEV performance (Ellingsen et al., 2016). They found commensurate increases 

in LCGHG with increasing battery and vehicle size and, similar to previous studies, found that 

electricity grid carbon intensity determined the preference of BEV vehicles over their 

conventional fossil fuel counterparts. 
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TABLE 1 Review of Selected Vehicle and Performance Characteristics from Life Cycle 

Studies of BEVs and Gasoline Vehicles  

 

While previous studies provided valuable insights about the life cycle performance of vehicles 

and the importance of electricity grid emissions (whether modeled as marginal or average 

emissions), the majority of these studies reflect outmoded assumptions about BEV vehicle 

designs and did not reflect trends in the BEV market. A review of US BEV sales between 2012 

and 2018 shows a marked shift towards significantly higher capacity batteries, longer vehicle 

Study 
Vehicle 

Type 

Battery 

Capacity 

(kWh) 

Vehicle 

Production 

Emissions 

(kg CO2e) 

Battery 

Production 

Emissions  

(kg CO2e) 

Vehicle 

Operation 

Emissions  

(g 

CO2e/km) 

Samaras and Meisterling (2008) PHEV 20.1 7800 2420 40.0 

Notter et al. (2010) BEV 34.2 6200 1800 101 

Majeau-Bettez et al. (2011) BEV 24 7200 4704  

Dunn et al. (2012) BEV 28 7000 1092  

Hawkins et al. (2013) BEV 24 7813 4620  

Ellingsen et al. (2014) BEV 26.6  6400  

Graff Zivin et al. (2014) BEV 24   69 – 293 

Miotti et al. (2016) BEV 19 – 60 7360 1090 120 – 185 

Tamayao et al. (2015) BEV 24 2444 4124 41 – 144 

Kim et al. (2016) BEV 24 7500 3400  

Archsmith et al. (2016) BEV 28 7710 1542 124 – 194 

Ellingsen et al. (2017) BEV 60  6390  

Average ICEV 

(N=8 Studies, see table S1.1 for 

details) 

ICEV  8294  191.5 

Average HEV (traction battery 

included in vehicle production; 

N=6 Studies, see table S1.1 for 

details) 

HEV  9420  195 
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ranges, and an increasing preference for high performance and luxury BEVs. The combined 

effect of these two trends is evident in Figure 1, which shows the US sales-weighted average 

annual increase in BEV battery capacity of 6.5 kWh per year between the first quarter of 2012 

and the second quarter of 2018, reaching 74 kWh by the second quarter of 2018. As the market 

for BEVs has grown, so too have the number of BEV models available. Instead of the efficiency-

oriented compact passenger vehicle, the fastest selling BEV in the US has become the leader in 

the luxury sedan segment (Alternative Fuel Data Center, 2018). Sport-utility BEVs have 

emerged as an important market segment with several major vehicle manufacturers launching 

cross-over style BEVs (Gale, 2018).  

Two important trends in personal mobility are also changing the use-cases for BEVs: one, the 

increased use of and participation in on-demand ride sharing services; and two, increased 

reliance on automated and connected vehicle technologies to replace human driving activities 

(Greenblatt and Shaheen, 2015). While the net effects of these trends on vehicle travel is still 

unknown, the emergence of ride-hailing services like Uber and Lyft are having significant 

impacts on traditional modes (e.g. transit) and historical patterns of mobility (Clewlow and 

Mishra, 2017; Hall et al., 2018). Based on early research, individual shared or automated 

vehicles could generate three to four times the comparable annual VMT of a conventional 

(private) passenger vehicle (Fagnant and Kockelman, 2014; Gurumurthy and Kockelman, 2018; 

Loeb et al., 2018). Vehicles participating in ride-hailing services can also experience significant 

mileage from return links, also known as dead-heading (Henao, 2017). While induced VMT has 

important implications for climate and environmental policy, use of shared, automated vehicle 

technologies (SAVs) could increase access to mobility, particular for vulnerable, disadvantaged, 

or mobility challenged populations (Harper et al., 2016). 

While it is easy to point out the problem of LCAs that rely on existing technologies to shape 

future choices or decision-making, the challenge of predicting the performance of emerging 

technologies, particularly those that have the potential to transform a sector or induce 

consequential changes in other sectors, is enormous. A number of researchers have proposed 

frameworks and approaches to improve prospective modeling of technologies (e.g. Miller and 

Keoleian (2015)). Many researchers have also highlighted the problem of data availability in the 

context of prospective assessments or emerging technology assessments, noting not only the 

challenge of modeling the performance of a technology not yet in the market, but also the lack of 
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temporally appropriate background data for prospective assessment (e.g. Hetherington et al. 

2014; Arvisson et al. 2018).  To create a practicable scope of assessment, this study focuses only 

on trends in electric vehicle design with respect to performance characteristics and battery 

capacity, and considers changes to only a few background systems (e.g. the electricity grid).  

 

FIGURE 1 BEV sales and battery capacities in the US   

 

The combined effects of larger battery capacity; a shift towards large, high-performance BEV 

models; and the increased use of BEVs in high-mileage applications may challenge some of the 

widely accepted conclusions of earlier BEV LCAs, namely the small contribution of vehicle 

production-related emissions to life cycle emissions and that in many parts of the US (and in 

regions throughout the world) BEVs provide GHG mitigation benefits (albeit sometimes small) 

relative to ICEVs. This observation led to the following research questions explored in this 

study: 

(1) How do current trends in BEV vehicle design, including increased battery capacity and 

high performance and luxury vehicles, affect LCGHG intensity of vehicle?  
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(2) What is the combined effect of vehicle design trends and technology and electricity grid 

evolution on the LCGHG emissions intensity of BEVs?  

(3) How will these trends effect future emissions rates of BEVs, particularly in high-mileage 

applications like shared ride fleets 

2. Methodology 

2.1 Goal and Scope 

This study aimed to quantify the LCGHG emissions of three archetypal future BEVs that reflect 

the changing BEV market, as described below:  

Archetype 1 - An efficiency-oriented compact vehicle (EOV), based on the Chevrolet Bolt.  

Archetype 2 - A high performance luxury sedan (PLS), based on the Tesla Model S P100D. 

Archetype 3 - A high performance SUV (PSUV), based on the Tesla Model X P100D.  

For each vehicle archetype, the study considers how future changes in vehicle design, battery 

performance, changing electricity grid, and annual mileage will affect the total LCGHG 

emissions of the vehicle. Results are presented in a functional unit of vehicle mile travelled 

(VMT), where total emissions are divided by the lifetime miles of the vehicle. This facilitates 

comparisons with ICEVs.  

For each vehicle scenario, we evaluate a set of 2025 models with improved battery systems 

(Table 2). We then compare this to both current market BEVs, as well as a set of 2025 models 

with increased battery capacity and travel range (Long Range or LR).  Vehicle scenarios are 

evaluated across a set of use-phase scenarios reflecting differences in travel behavior, vehicle 

life, and electricity generation.  The model includes both the operation and non-operation stages 

of the vehicle life cycle.  

The vehicle life cycle is divided in two phases; the vehicle phase, which includes vehicle 

production and disposal, and the operation phase. The vehicle phase is broken down into the 

battery system and the rest of the vehicle, referred to as the glider. The end-of-life (EOL) stage 

includes disposal and recycling of the glider. Disposal and/or recycling of the traction battery is 

not included because of uncertainty in how batteries will be managed in the future, particularly 

as many more batteries are retired and either recycling networks or second life uses emerge.  
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Use-phase emissions for BEVs are then estimated as a function of vehicle energy efficiency and 

the emissions associated with electricity production and delivery. Two sets of travel scenarios 

were applied to the different vehicle models shown in Table 2: 

1. A privately-owned vehicle in an average US Household (referred to as the AVE scenario) 

2. A service vehicle deployed in an urban, ride-hailing fleet (referred to as the SAV scenario) 

To capture regional variability, changing fuel sources, generation technologies, and policy in the 

electricity system, a range of electricity generation forecasts were modelled for both California 

and the US region from the period 2017 to 2025.  The electricity generation scenarios are 

discussed further in a later section. 

2.2 LCI Inventory Model 

The life cycle inventory (LCI) model tracks only energy consumption and GHG emissions. A 

three part LCI model was developed to estimate the required inputs of energy and raw materials 

and resulting emissions: part one evaluated the production of the vehicle glider body and balance 

of systems (the glider model); part two evaluated the production of the battery system; and part 

three evaluated the generation of electricity supplied to charge the vehicle.   
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Table 2: Overview of Vehicle Scenarios Included in this Study 

  
ICEV 

car 

ICEV 

SUV 

HEV 

car 

2012 

MY 

Leaf 

2018 

EOV 

2018 

PLS 

2018 

PSUV 

2025 

EOV 

2025 

PLS 

2025 

PSUV 

2025 

LR 

EOV 

2025 

LR 

PLS 

2025 

LR 

PSUV 

Fuel Economy 

(kWh/100 mi) 
116 160 80 28.6 28.6 33.5 39.4 28.1 31.4 35.5 32.1 34.4 39.5 

Battery Capacity 

(kWh) 
₋ ₋ ₋ 24 60 100 100 60 100 100 100 125 175 

Utilization (VMT) Scenarios (annual VMT in year 1 shown*) 

AVE 13467 14026 13467 12135 12135 12135 14026 12135 12135 14026 13467 13467 14026 

SAV-High  ₋ ₋ ₋ ₋ ₋ ₋ ₋ ₋ ₋ ₋ 69350 69350 69350 

*VMT changes every year with a decreasing trend (NHTS, 2017)
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2.2.1 Glider Model 

The glider model examined the life cycle emissions of the vehicle without the battery, which 

included raw material acquisition and refining, processing, assembly and disposal. The reference 

LCI data for this model was acquired from the Greenhouse Gases, Regulated Emissions, and 

Energy Use in Transportation (GREET) 2 Model developed by Argonne National Laboratory 

(Argonne National Laboratory, 2017b). This data source provides the per-mass life cycle 

embodied energy and air pollutants, including GHGs, for materials used in vehicles. The data 

were combined with estimates of the material composition of vehicle gliders and their masses. 

The mass used for each modelled glider was the curb weight of the reference vehicle for each 

archetype (EOV/Chevy Bolt, PLS/Tesla Model S, PSUV/Tesla Model X) reduced by the mass of 

the battery. The impacts of material transformation were calculated for each material. The per-

vehicle assembly and disposal impacts were assumed to be identical across all modelled BEVs. 

Other assumptions included the mass and number of replacements for fluids and tires, also 

acquired from the GREET 2 model. Further, because electricity use does not constitute a large 

portion of total energy use and resulting emissions in this phase, time dependence of the electric 

grid was not considered in the glider model–meaning that a vehicle produced in the future is 

modeled using the same electricity grid LCI as those produced today. For both 2018 and 2025 

scenarios, glider material composition as well as per-mass emissions are assumed to be the same. 

And since no light-weighing was assumed, glider masses also remain the same. The baseline 

ICEV car, SUV, and HEV scenarios presented for comparison are taken from the default vehicle 

set in GREET 2.  The resulting estimates for the material balance of the vehicles, the average 

energy input for assembly processes, and further details on the vehicle model can be found in the 

Supporting Information S3. 

2.2.2 Battery Production 

Battery production LCIs were developed using the model described in Ambrose and Kendall 

(2016), which combines the Battery Performance and Cost (BatPAC) model and underlying 

research from Argonne National Labs (Dunn et al.); Nelson et al. (2011) with life cycle 

inventories from GREET 2 to examine the GHG emissions and material composition of lithium-

ion batteries (LIBs) for light-duty applications.  The methods used to develop this model are 

described in Ambrose and Kendall (2016). All vehicle scenarios are assumed to use a lithium 
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nickel manganese cobalt (NMC) battery chemistry. Variations of NMC have emerged as the 

dominate cathode chemistry for most light duty applications owing to its high specific power 

(Olivetti et al., 2017). The composition of lithium ion battery (LIB) packs can vary due to the 

type of cells used, thermal management systems, and structural elements. There is also 

considerable uncertainty in estimating the energy required for assembling LIB cells owing to 

limited, poor quality data (Peters et al., 2017). We considered several futures for battery design, 

production processes, and key inputs through a scenario based sensitivity analysis. These results, 

the normalized average material composition for each battery pack, assembly emissions 

estimates, as well as more discussion on the battery production model is included in the 

Supporting Information S4. 

The baseline assumption is that no battery replacements are required over the course of a 

vehicle’s lifetime. This assumption and the conditions where battery replacement is likely to be 

needed is discussed in Section 3.1. 

2.3 Use-Phase Model 

A use phase model was developed to estimate GHG emissions resulting from EV operation 

summarized in Equation 1, where the total emissions in kg CO2-equivalent (CO2e) for each 

technology (i) is the sum of, from 0 to the expected vehicle life (n), the annual miles travelled 

(VMT) in year (t), the average vehicle energy demands per mile (𝜌𝑖), the LCGHG emissions rate 

for electricity generation in each year (EF), and the efficiency of the charger system (𝜑).  

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝐺𝐻𝐺𝑖 = ∑ 𝑉𝑀𝑇𝑖𝑡 ∗ 𝜌𝑖 ∗
𝐸𝐹𝑡

𝜑⁄𝑛
0   Eq. (1) 

2.3.1 Vehicle Energy Demands 

An existing vehicle dynamics model, the Future Automotive Systems Technology Simulator 

(FASTSim) tool developed and maintained by the National Renewable Energy Lab (NREL), was 

used to estimate the average vehicle energy demand (𝜌𝑖). FASTSim simulates vehicle energy 

demands as a function of primary physical forces including drag, acceleration, ascent, rolling 

resistance, powertrain component efficiency and power limits, and regenerative braking (Brooker 

et al., 2015). Since FASTSim models vehicle performance at the powertrain component level, it 

allows users to modify the parameters of vehicle powertrain, such as battery capacity, energy 
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density, motor power, glider dimensions, and weight to examine how powertrain design impacts 

fuel economy. The model was used to simulate vehicle energy demand. To ensure that this 

model represents vehicle performance appropriately, the model was parameterized for the 2012 

and 2018 model years of the three archetypal vehicles and simulated results were validated 

against fuel economy values reported by the EPA (Environmental Protection Agency (EPA), 

2018). FASTSim results were found to be within a 7% range of the EPA reported fuel economy 

values for all models. 

Table 3: Vehicle mass and key parameters by scenario 

Table 3 shows the assumed curb weight and key vehicle specification inputs by vehicle scenario. 

The aerodynamic and motor specifications are held constant across each class of vehicle 

modeled. As explained in the section on Glider model, curb weights vary according to battery 

system improvements and battery sizing.  

It is widely expected that recent developments in LIB technology will enable battery packs with 

nearly double the energy density of early EV batteries.  Use of higher capacity cathodes, more 

efficient thermal management, improved electrolytes and anode materials could increase battery 

specific energy from today’s ~130 Wh/kg to over 250 Wh/kg by 2022 (Elgowainy et al., 2016).  

The current (2018) vehicle scenarios assume an average battery density of 138 Wh/kg, while the 

2025 scenarios assume an energy density of 208 Wh/kg, an improvement of 6% - 8% per year 

(US DRIVE 2013). Hence in the 2025 vehicle models, the expected increase in future battery 

density brings down the curb weights when battery capacities remain the same as 2018 vehicle 

models. But as battery capacities are increased in the long range scenarios, the curb weights 

  
Leaf 

(2012) 
EOV PLS PSUV 

2025 

EOV 

2025 

PLS 

2025 

PSUV 

2025 

LR 

EOV 

2025 

LR 

PLS 

2025 

LR 

EOV 

Drag coefficient 0.32 0.31 0.24 0.25 0.31  0.24  0.25  0.31  0.24  0.25  

Frontal area (m2) 2.76 2.82 2.34 2.59 2.82  2.34  2.59  2.82  2.34  2.59  

Curb Weight (kg) 1557 1619 2215 2459 1448 1929 2173 1640 2050 2543 

Battery mass (kg) 290 460 766 766 288 481 481 481 601 841 
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increase accordingly.  Additional review of the BEV assumptions and discussion is provided in 

the Supporting Information S5. 

The ICEVs included in the study for comparison are drawn directly from GREET 2, and include 

both emissions from fuel production (i.e. WTP) and fuel combustion (i.e. PTW).  The ICEV 

WTP and PTW emissions rates were estimated from the default ICE sedan, SUV, and HEV 

scenarios and VMT assumptions in GREET 2. The average fuel economies for these scenarios 

are 34 MPG for the sedan, 24 MPG for the SUV, and 42 MPG for the HEV respectively, while 

upstream emissions from fuel production as a share of combustion emissions (i.e. WTP/PTW) is 

0.24 to 0.27. 

2.3.2 Vehicle Miles Travelled (VMT)  

Automotive LCAs commonly rely on an assumption of fixed or average lifetime mileage, often 

based on data from industry associations or anecdotal data (Weymar, 2016). In reality, the total 

miles travelled by the vehicle lifetime (LifetimeVMT) is driven by two phenomena (Eq. 2): one, 

the scrappage rate (M), which is the probability or fraction of a given model year’s vehicles 

retired in each year (t) for each vehicle model year (a); and two, the utilization of the vehicle 

over the service life, defined here as the annual VMT (AnnualVMT).  In the US, survival and 

annual VMT data suggest two important trends: one, differences in the rates of survival and 

mileage generation across vehicle types; and two, a strong decline in mileage generation over the 

life of the vehicle, with older vehicles generally less likely to experience high annual mileage 

(Lu, 2006).    

𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒𝑉𝑀𝑇𝑎 = ∑  (1 − 𝑀𝑎𝑡) ∗  𝐴𝑛𝑛𝑢𝑎𝑙𝑉𝑀𝑇𝑎𝑡𝑡    Eq. (2) 

 

Two vehicle utilization scenarios were considered: one representing primary use in a personal 

passenger vehicle application and another representing use in a shared on-demand or potentially 

automated ride-hailing fleet (a shared autonomous vehicle, or SAV).  To estimate a function for 

annual mileage of personal vehicles, the average annual VMT for gasoline cars (i.e. automobiles 

and station wagons), HEVs, and gasoline SUVs (e.g. Santa Fe, Tahoe, Jeep, etc.) in the 2017 

NHTS were regressed against vehicle age.  The 2017 NHTS collected information on the type 
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(e.g. car, van, SUV, or truck), fuel, hybrid or electric powertrain, and annual mileage of vehicles 

present in the household.  While there are relatively few BEVs reflected in the 2017 NHTS 

sample (n=545 out of n=252,042 vehicles), BEVs reported 10% fewer annual miles travelled 

compared to ICEVs.  Conversely, HEVs reported 19% more annual miles compared to ICEVs.  

Due to the limited data on BEV annual mileage, the annual mileage for gasoline cars and SUVs 

were scaled linearly by the average difference in the NHTS sample to estimate annual miles for 

BEV and HEV scenarios.  The resulting linear functions and parameter estimates for annual 

mileage of the different vehicle types are provided in the Supporting Information Table S6.1.   

US vehicle scrappage data from 1999 – 2009 were used to estimate the average lifetime of 

vehicles for car and SUV scenarios respectively (Jacobsen and Van Benthem, 2015).  The 

lifetime annual mileage is then calculated as the cross product of the survivability and the annual 

VMT estimate (Lu, 2006).  This results in an estimated lifetime mileage of 155,276 miles for 

cars, 161,890 for SUVs, and 184,752 miles for HEVs, and an average vehicle life of 12.6 years.  

Given the lower annual VMT for BEVs, the same historical survival data yields a lower estimate 

for lifetime mileage of BEVs; 139,914 lifetime miles for EOV/PLS scenarios, and 148,775 miles 

for the PSUV scenario.  However, the cause for lower annual mileage is not known, and could, 

for example, reflect range restrictions that are not representative of future BEVs.  Because of 

uncertainty in how future vehicle lifetimes may unfold, vehicle annual and lifetime mileage is 

examined using three scenarios.  The first, or baseline, scenario (Mileage Scenario 1) reflects the 

method described in equation 2 and applying the linear scaling of annual mileage as described in 

table S6.1.  The second scenario (Mileage Scenario 2) is identical to Mileage Scenario 1, except 

that it treats BEVs and their ICEV analogs as identical with respect to annual and total lifetime 

VMT, while HEVs are represented by their respective NHTS annual mileage estimates. The third 

scenario (Mileage Scenario 3) treats the length of the use phase as constant across all vehicle and 

powertrain types at 12 years, but the difference in expected annual miles among all the 

powertrains are included (i.e. BEVs travel less, and HEVs more, than ICEVs). Table S6.3 in the 

Supporting information describes the resulting lifetime mileage for these three scenarios for each 

vehicle type. 

The SAV scenario was modelled based on secondary empirical data from ride hailing vehicles 

(Henao, 2017), and simulations of potential automated vehicle fleets (Fagnant and Kockelman, 
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2014; Gurumurthy and Kockelman, 2018; Loeb et al., 2018). In the SAV scenario, vehicles are 

assumed to travel 200 miles per day in service, and to have a declining utilization factor (i.e. 

days in service per year) averaging 80% over the vehicle lifetime. The survival rate is based on 

the observed ages and model years of livery taxicabs (Bishop et al. 2016).  It is common for 

conventional livery cabs to travel from 70 to 200 miles per ten-hour shift, and average 42,000 to 

72,000 miles annually depending on whether they are privately owned or operated in a fleet 

(Schaller Consulting, 2006). Bishop et al. (2016), estimated that the age of taxi cabs varied 

between 5.5 and 8.3 years between 1997 and 2014, with over 17% of taxis in the Chicago area 

exceeding 10 years of age in 2014.  These data also suggest that livery taxis could well exceed 

500,000 lifetime miles, which is a colloquial target for the iconic black, FX4 Fairway taxis of 

London (Bobbitt, 2002).  For the SAV scenario, the survival method yields an estimate of about 

351,000 to 584,000 lifetime miles, with average vehicle service life between 5.4 and 9.1 years.  

In Mileage Scenarios 1, SAVs are expected to travel 583,564 miles.  Additional information on d 

lifetime VMT for SAV scenarios is provided in the Supporting Information Table S6.3.  

2.3.3 Charging  

BEVs are likely to utilize a range of private or public charging infrastructures with different 

power levels for charging events, which could impact the efficiency of refueling the vehicle 

(Smart and Schey, 2012; Tal et al., 2014). Sears et al. (2014) collected data on charger efficiency 

for a range of charging power levels and climate conditions from a small sample of Nissan Leaf 

and Chevy Bolt drivers; the authors found efficiency ranged 83.8% to 89.4% for Level 1 vs 2 

charging events. There are much more limited data is available for the efficiency of high power 

chargers. It is likely that any variability in BEV emissions rate attributable to variation across 

charging infrastructures is less than that due to climate, driving distance, and other factors 

(Taggart, 2017). In this study, an average efficiency of 𝜑 = 86% is used for all scenarios, and the 

sensitivity of results to this assumption is explored in the discussion. 

2.3.4 Electricity Generation 

LCAs of EVs have long struggled to determine how best to model electricity used in vehicle 

charging. The alternatives from a modeling perspective are typically framed as either a 

consequential perspective (how the additional or new demand from a BEV charging event is 
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met) or an attributional perspective, where BEVs are treated as requiring an average unit of 

electricity. The average emissions or attributional approach assumes all electricity as a shared 

resource for all end uses, while the consequential emissions approach recognizes the role of 

certain generators in meeting marginal demand, thereby scaling in response to the incremental 

load of vehicle charging (Alexander, 2015b). Researchers have taken different approaches for 

estimating marginal emissions. Some studies try to identify the marginal electricity supply based 

on what will be or has been dispatched amongst the current mix of sources in response to an 

extra load, while other studies have looked at long term change in the grid mix in response to the 

additional demand from EVs (Archsmith et al.; Siler-Evans et al., 2012). While there is a strong 

argument for consequential approaches to estimating electricity emissions, the focus of this study 

is not to capture the short term consequences of deploying electric vehicles.  Instead, the goal is 

to estimate how trends in the foreground system (i.e. vehicle production and use) and 

background system (e.g. electricity grid mix) are likely to change the LCGHG performance of 

future vehicles. As such, the average fuel mix and associated GHG emission factors are used to 

estimate vehicle operation emissions for each year of vehicle operation.  

The projected electricity generation by fuel source was obtained from the US Energy 

Information Administration (2018). Two regions were considered, the California sub region of 

the Western Electricity Coordinating Council region (CAMX), and the U.S, national average. 

The California scenario provides a useful comparison: California represents nearly 50% of the 

US BEV fleet, over 8% of new vehicles sold in the state are electric (compared with 2% 

nationally), a large share of electricity in California is generated by renewable sources, and 

finally, the state has enacted progressive policies pushing further deployments of renewables and 

EVs (Argonne, 2019).  For both regions, emissions were evaluated under a reference case or 

business as usual scenario (BAU), and a carbon tax scenario which assumes a $25 allowance fee 

on CO2 emissions from utility-scale electricity generators beginning at $25 (in 2017 dollars) in 

2020 and increasing at 5% per year in real dollar terms (US Energy Information Administration, 

2018). The carbon tax scenarios were included to represent the potential impact of further 

changes to the grid mix, particularly for in-use vehicles, and the magnitude of potential change 

for the average US fleet. The average emissions rate (𝐸𝐹𝑡) is estimated as the mass of GHG 

equivalent emissions per unit of delivered energy with Equation 3, where the weighted 
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generation by year (t) and fuel source (x) is multiplied by the life cycle inventories (LCI) of 

emissions species (e) by fuel type (x), and the impact characterization factors (m): 

𝐸𝐹𝑡 =
𝐹𝑢𝑒𝑙𝑡𝑥

∑ 𝐹𝑢𝑒𝑙𝑡𝑥𝑥
∗ 𝐿𝐶𝐼𝑥𝑒 ∗ 𝑚𝑒   Eq. (3) 

The resource mix was broken into five fuel source categories: coal, natural gas, renewables, 

nuclear, and fuel oil. Generator technology LCI data were drawn from the 2017 GREET 1 model 

(Argonne National Laboratory, 2017a), and a representative LCI was estimated for each fuel 

source based on the net generation by generator type for each regional scenario (US 

Environmental Protection Agency, 2016). The renewables were treated as zero emission fuels 

here. The resulting carbon intensity forecasts for each electricity generation mix are shown in 

Figure 2(B), and the full results are available in the supporting information (S7). 
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Figure 2 (A) Total Electricity Generation by Fuel Source in California and the US and (B) 

Average GHG Emissions per kWh for Residential and Commercial End-Uses for BAU and 

$25 carbon tax ($25 C-tax) scenarios in California and the US (2017 – 2050) 
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3 Results 

LCGHG emissions for current market BEVs were found to range from 136 gCO2e/mile for an 

efficiency-oriented compact BEV in California up to 324 gCO2e/mile for the larger PSUV in the 

US average scenario. LCGHG emissions for 2025 BEVs decrease to 105 gCO2e/mile for an 

efficiency-oriented compact BEV in California, while potentially increasing to 374 gCO2e/mile 

for the larger PSUV in the US average scenario. This compares to conventional ICEV life cycle 

emissions of 460 to 504 gCO2e/mile and to HEV life cycle emissions of 301 gCO2e/mile. Figure 

3 summarizes the average contribution of vehicle and battery production, vehicle end of life, and 

vehicle operation to life cycle GHG emissions for each vehicle and utilization scenario based on 

Mileage Scenario 1. Life cycle emissions from (non-SAV) BEVs under the California scenarios 

(121 to 205 gCO2e/mile – blue diamonds in Figure 3), were ~45% lower than under the US 

average scenario (219 – 374 gCO2e/mile). Across all the three vehicle archetypes, emissions for 

the long range (LR) vehicles increased by 17% - 30% for 2025 models.  Like ICEVs and HEVs, 

the main driver of LCGHG emissions for BEVs is frequently the operation phase. But, while 

only 8% to 12% of LCGHG emissions for ICEVs are attributable to vehicle production, 

production emissions were estimated to contribute 30% - 66% of per mile emissions for BEVs. 

Production of the battery system contributed 28% - 51% of vehicle production emissions for 

BEVs, and 11% to 35% of overall per mile emissions. 
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Figure 3 LCGHG Emissions of vehicle, battery, and use phase by vehicle, grid, and 

utilization scenario, assuming Mileage Scenario 1  

Figure 3 reflects the mileage and vehicle lifetime assumptions represented by Mileage Scenario 

1. Mileage Scenario 2 resulted a 2-7 gCO2e/mile reduction in LCGHG emissions for BEVs (130 

to 367 gCO2e/mile), due to higher total lifetime mileage, which led to a lower contribution from 

vehicle and battery production on a per-mile basis as well as more vehicle miles accumulated 

with lower LCGHG intensity electricity. Mileage Scenario 3, in which vehicle lifetime is fixed at 

12 years for all vehicles, resulted in less than a ±1% change in all non-SAV applications, as 

shown in Table S8.1 of the Supporting Information. 
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The $25 US carbon tax scenario reduced life cycle emissions of current (2018) BEVs by 12% - 

15% compared to the USAVG (red × – Figure 3); emissions reductions grew to 23% - 38% for 

2025 BEV models. The carbon tax scenarios reveal the importance of assumptions about 

electricity generation over time in estimating use phase emissions rates and the significance of 

use-phase emissions in life cycle emissions. This includes both the types of generation 

technologies and fuel sources associated with electricity for vehicle charging. While BEV 

emissions were lower under the carbon tax scenarios, the difference was significantly larger for 

the US case (Table S8.2 of the Supporting Information). 

 The SAV scenarios assume the 2025 LR vehicle archetypes and grid mix, and these vehicles are 

assumed to travel approximately 200 miles per day, for an average of 5.45 times the annual 

mileage of the personal SUV scenario. The SAV scenarios resulted in lower LCGHG emissions 

for BEVs on a per mile basis compared to the private average personal vehicle scenarios when 

compared over equivalent service periods.  The use of BEVs could reduce LCGHG emissions of 

service vehicles by over 44% when switching from a comparable ICEV PSUV and 42% when 

switching from a comparable HEV to a 2025 LR-EOV.  These reductions become more 

significant under the carbon tax scenarios, with the BEV SAVs averaging 57 – 86 gCO2e/mile 

under the California with $25 carbon tax scenario. 

In these high mileage applications, it is also expected that key vehicle systems will require 

additional replacement due to excessive wear. The results reported for the SAV scenarios assume 

replacement of vehicle battery based on expected lifetimes. Battery systems are assumed to be 

replaced after delivering a fixed number of equivalent charge and discharge cycles, and the 

estimates in Figure 3 for BEV SAVs assume an average 1 to 1.5 battery replacements over the 

average 12 year vehicle life. Vehicle powertrain, chassis, and other systems were not assumed to 

experience additional replacements as a function of mileage. An expanded results section, 

including a full accounting of results from the carbon tax and SAV scenarios is include in the 

supporting information (S8).  The service life of the battery is discussed further in the next 

section.  
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3.1 Battery Replacement and Vehicle Lifetimes  

Battery cycle life is generally defined by the total number of times a battery can deliver its 

energy storage potential in a particular discharge program (Barré et al., 2014; Fortenbacher et al., 

2014; Han et al., 2014), thus the service life will vary under different duty cycles and operating 

conditions. The effective cycle life is highly dependent on the utilization of storage potential and 

the rate of discharge. A common metric or measurement of battery performance is cycles to 80% 

depth of discharge (DOD), or 80% of the battery energy storage potential. Cycles to 80% DOD is 

also convenient as utilization of the battery near the maximum and minimum of the battery 

potential are associated with accelerated battery degradation. Many battery systems are managed 

to prevent discharge below or charging above a certain threshold to prevent damage to the 

battery system.  While early lithium ion cells might only deliver several hundred cycles before 

experiencing noticeable capacity degredation (>20%), current and future batteries are expected to 

exceed 1000 cycles and may reach 5000 to 6000 cycles at 80% DOD (Burke, 2014; Howell et 

al., 2018). 

Given the average vehicle miles traveled (VMT) of personal vehicles and the range of vehicles 

included in the study, batteries would not necessarily exceed 1000 equivalent cycles over the 

average vehicle lifetime (12 years). Figure 4 shows the cumulative average battery cycles to 80% 

DOD for each scenario considered in this study. The vehicle survivability rates for cars and taxis 

are also included to illustrate the percentage of vehicles expected to still be in service by year.  In 

ride hailing applications, recent literature suggest vehicles could travel more than 2 to 5 times the 

average daily vehicle miles of a comparable personal vehicle (Fagnant and Kockelman, 2014; 

Gurumurthy and Kockelman, 2018; Henao, 2017). In the SAV scenarios, where vehicles 

travelled 200 miles per day on average, battery replacement could be required over the vehicle 

lifetime to ensure that older vehicles continue to meet range requirements.  In the SAV scenario, 

battery systems are discharged completely on most days and experience 277 - 323 equivalent 

cycles per year (Figure 4).  Assuming a limit of 1500 cycles to 80% DOD, the average vehicle 

would require one battery replacement on average (0.8 to 1.5 replacements in 12 years depending 

on battery size).  
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Figure 4 Battery Cycles and Vehicle Survival by VMT Scenario 

3.2 Electricity 

Emissions generated during the vehicle use-phase from producing electricity to charge the 

vehicle are on average more than 50% of LCGHG emissions. A key uncertainty in estimating 

use-phase emissions for BEVs stems from variability in the emissions rate for delivered 

electricity. The effects of BEV efficiency on per mile emissions have also been poorly addressed 

in many previous studies due to the limited types of vehicles evaluated. Figure 5 shows the 

relationship between vehicle efficiency (kWh/100 miles) vs. the GHG emissions per kWh of 

energy for vehicle charging. The labelled lines are constant emissions rates delimitating ranges 

of emissions from 100 to 500 gCO2e/mile. The average life cycle emissions rate for current and 

2025 LR vehicle archetypes are also indicated in the California and US reference case (BAU) 

grid scenarios in the left and right panels respectively.  
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Figure 5 EV LCGHG Emissions per Mile with Sensitivity to Grid Emissions and Vehicle 

Efficiency 

4. Discussion  

Increasing BEV battery capacities could have mixed impacts on the life cycle emissions rate of 

grid-tied BEVs and the GHG abatement from a transition away from gasoline-powered vehicles. 

Longer range BEVs could reduce barriers to adopting electric vehicles and enable more electric 

vehicle travel where charging infrastructure is undeveloped, but the materials and energy 

required to manufacture batteries could have a significant contribution to per-mile emissions 

rates, particularly when vehicles have low utilization. In the absence of other measures to de-

carbonization electricity for charging vehicles, future longer range BEVs may have higher life 

cycle emissions rates than current BEVs. 

A shift towards larger, less efficient vehicles can offset current transportation emissions 

abatement measures, but would only increase the importance of vehicle electrification to goals 

for de-carbonization. The 2017 NHTS data used in this study suggest SUVs and larger passenger 

vehicles travel 8% more miles per year on average, but this discrepancy is skewed towards older 

vehicles. Older SUVs can travel 20% more miles than the comparable age US passenger car. 

Prior assessment by the EPA for the mid-term evaluation for the Corporate Average Fuel 

Economy Standard found a similar pattern of vehicle aging on annual vehicle miles travelled for 

cars and light trucks (US Department of Transportation, 2017). While larger BEVs could have 

twice the emissions rate of efficiency-oriented compact designs, the total reduction in emissions 
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of switching from an ICE SUV to a BEV SUV is equivalent or greater to that for cars.  This 

highlights the increased benefit of substituting electric powertrains for gasoline powertrains in 

large, less efficient vehicles and the potential benefits of EVs entering that market segment.  

The fuel efficiency of ICEVs are also expected to improve by 2025, which could impact the 

relative benefits of electrification. Under the rules adopted in 2017 for vehicle GHG emissions 

and fuel efficiency targets for the Corporate Average Fuel Economy (CAFE) standards, the 

average fuel efficiency of light duty vehicles was expected to increase by 35% from 2018 to 

2025, resulting in approximately a 20% decrease in LCGHG emissions per mile.  In 2019, the 

National Highway Traffic Safety Administration (NHTSA) and EPA have proposed the “Safer 

Affordable Fuel-Efficient (SAFE) Vehicles Rule for Model Years 2021– 2026 Passenger Cars 

and Light Trucks”. The preferred alternative under SAFE would maintain the 2020 model year 

standards for CAFE and tailpipe carbon dioxide emissions for passenger cars and light trucks 

through 2026, effectively freezing the standard and reducing regulatory motivation for improved 

fuel efficiency. 

In general, BEVs in the US have 35% - 50% lower LCGHG emissions per mile than current, 

comparable ICEVs. The magnitude of emissions reductions from BEV adoption are in large part 

determined by how electricity for vehicle charging is generated. The time of day, day of the 

week, time of year, and power level of charging events all impact the emissions rates of electric 

vehicles, which signals towards the opportunities for improving BEV LCGHG emissions through 

optimizing charging strategies (Hoehne & Chester, 2016).  The carbon tax scenarios reveal the 

significant potential reductions in BEV emissions rates with relatively modest increases in 

renewable generation.  The minimum BEV emissions rate under the California + $25 carbon tax 

scenario was 108 gCO2e/mile for the EOV.  While this represents a 75% reduction from the 

current ICEV, it would be insufficient to meet the state’s climate policy target of climate 

neutrality by 2045 given expected levels of VMT generation (Executive Order B-55-18).   

Extending the vehicle life of BEVs and increasing vehicle utilization can lower the LCGHG 

emission intensity (i.e. gCO2e/mile) rate of BEVs. BEVs in high-mileage applications such as 

ride-hailing were found to have lower LCGHG emissions despite the potential for additional 

battery replacement. This was attributable to increased utilization of battery and vehicle systems 

(vehicles are usually idle), and the decreasing carbon intensity of electricity emissions. 
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There are some important limitations or caveats with respect to what we can learn or understand 

from this work. In particular, rapid changes in technology performance or the emergence of new 

and unanticipated technologies or vehicle use models are not addressed in this work.  Instead, we 

examined trends in BEVs, as we understand them today, and extend them into the future.  In 

addition, ICEV technologies were treated as static, meaning that improvements in ICEV 

technologies and fuels were not considered.  

5. Conclusions  

This study examined trends in BEV design choices and use models including battery pack size, 

vehicle archetype, and vehicle utilization (annual VMT assumptions), as well as changing 

electricity emissions to examine the potential effects on LCGHG emissions of BEVs. While 

BEVs can reduce emissions relative to conventional ICEVs, trends in vehicle choice, utilization 

of increasing battery capacity, and considerations of future ownership and utilization models all 

influence their relative performance. In particular, the trend towards larger vehicles with larger 

battery packs leads to a deterioration in BEV GHG mitigation potential compared to ICEVs as a 

result of both vehicle production and operation emissions. At the same time, the decreasing 

carbon intensity of electricity grids over time, not to mention current and future differences over 

space (i.e. California versus US average grid emissions), are largely countervailing trends that 

lead to improving GHG mitigation potential for BEVs over time. Increasing battery capacity (i.e. 

larger batteries), can reduce the per-mile life cycle emissions for vehicles, however, if they 

enable high-mileage use models, such as vehicles used in ride-hailing applications.  

These results suggest three important conclusions: (1) like all vehicle types (whether ICEVs or 

BEVs) larger high-performance vehicle choices are likely to decrease energy efficiency and thus 

increase emissions; (2) the most benefit for investing in large-capacity batteries and BEVs more 

generally are in high-mileage applications; and (3) including trends in BEV design choices, 

temporal and spatial heterogeneity of electricity grids, and new vehicle use and ownership 

models lead to non-negligible differences in estimates of the LCGHG emissions (and mitigation 

potential relative to ICEVs) of BEVs. The results highlight predictable opportunities to increase 

the abatement potential of BEVs, such as de-carbonization of the electricity grid and a focus on 

vehicle energy economy. Slightly less obvious opportunities include right sizing batteries based 
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on expected vehicle use, or put differently, higher utilization rates for BEVs (especially those 

with larger battery capacity). 
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Section S1. Literature survey for Life Cycle GHG Emissions from Battery Electric (BEV), Internal 

Combustion Engine (ICEV) and Hybrid Electric Vehicles (HEVs) 

Table 1 in the main text summarizes some of the key findings of prior studies examining the life cycle greenhouse gas (GHG) 

emissions of light duty vehicles, and provides comparison with both pure gasoline vehicles with a hybrid electric powertrain, and 

conventional gasoline ICEVs.  Table S1.1 provides a full list of the studies included, referenced, or used for calculations in Table 1.  

 

Table S1.1 Summary of Studies Examining the Life Cycle GHG Emissions of BEVs, ICEVs, and HEVs (Archsmith et al., 2015; 

Bandivadekar, 2008; Burnham et al., 2006; Dunn et al., 2012; Ellingsen et al., 2014; Graff Zivin et al., 2014; Hawkins et al., 2013; 

Kendall and Price, 2012; Kim et al., 2016; MacLean and Lave, 2003; Majeau-Bettez et al., 2011; Mercedes, 2008; Miotti et al., 2016; 

Notter et al., 2010; Samaras and Meisterling, 2008; Tamayao et al., 2015) 

 

Study 
Vehicle 

Type 

Battery 

Capacity 

(kWh) 

Vehicle + Battery 

Production (kg 

CO2e) 

Battery 

Production  

(g CO2e/km) 

Vehicle + Battery 

Production  

(g CO2e/km) 

Vehicle 

Operation  

(g CO2e/km) 

Samaras and Meisterling (2008) PHEV 20.1 7903 10 41 40 

Notter et al. (2010) BEV 34.2 6253 7 32 101 

Majeau-Bettez et al. (2011) BEV 24 7396 19 48  

Dunn et al. (2012) BEV 28 7039 4 32  

Hawkins et al. (2013) BEV 24 7934 18 50  

Ellingsen et al. (2014) BEV 26.6  26 26  

Graff Zivin et al. (2014) BEV 24    69 - 293 

Miotti et al. (2016) BEV 19 - 60 7389 4 34 120 - 185 

Tamayao et al. (2015) BEV 24 2616   41 - 144 

Kim et al. (2016) BEV 24 7640 14 44  

Archsmith et al. (2016) BEV 28 7765 6 37 124 - 194 

Maclean and Lave (2003) ICEV  9600  38 285 

Samaras and Meisterling (2008) ICEV  8500  34  

Burnham et al. (2006), in Hawkins et al. (2012) ICEV  7600  30  

Burnham et al. (2006), in Hawkins et al. (2012) ICEV  7000  28  

Notter et al. (2010) ICEV  6370  25 121 

Hawkins et al. (2013) ICEV  6566  26  

Miotti et al. (2016) ICEV  8178  33 282 

Archsmith et al. (2016) ICEV  7207  29 248 
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Study 
Vehicle 

Type 

Battery 

Capacity 

(kWh) 

Vehicle + Battery 

Production (kg 

CO2e) 

Battery 

Production  

(g CO2e/km) 

Vehicle + Battery 

Production  

(g CO2e/km) 

Vehicle 

Operation  

(g CO2e/km) 

Kim et al. (2016) ICEV  6200  25  

Kim et al. (2016) ICEV  7200  29  

Kim et al. (2016) ICEV  7000  28  

Kim et al. (2016) ICEV  7500  30  

Burnham et al. (2006), in Hawkins et al. (2012) HEV  9200  46  

Bandivadekar (2008) HEV  10800  54  

Samaras and Meisterling (2008) HEV  8800  44  

Mercedes (2008), in Hawkins et al. (2012) HEV  10600  53  

Kendall and Price (2012) HEV  9900  40 139 

Kendall and Price (2012) HEV  17300  69 131 

Miotti et al. (2016) HEV  9200  46 242 

 

https://pubs.acs.org/doi/abs/10.1021/acs.est.6b00177


3 
 

Section S2. Battery Electric Vehicle Sales in the US 

Table S2.1 summarizes the monthly sales data used to create Figure 1 in the main text.  The 

monthly vehicle sales data was obtained from the Inside EVs Monthly Sales Scorecard 

(Loveday, 2019). The estimated average vehicle battery pack capacity was obtained from the 

EPA vehicle fuel economy data file. 

 

Table S2.1 

 

Model 

Average 

Battery 

Pack 

Capacity 

2012 2013 2014 2015 2016 2017 2018 

BMW I3 BEV 33 0 0 6092 11024 7625 6276 6119 

FIAT 500e 24 0 260 5132 6194 5330 5380 2740 

Ford Focus 33.5 683 1738 1964 1582 901 1817 558 

Chevrolet Bolt EV 60 0 0 0 0 579 23297 16674 

Honda Clarity BEV 25.5 0 0 0 0 0 1121 1133 

Hyundai IONIQ EV 28 0 0 0 0 0 432 204 

Kia Soul Electric 30 0 0 359 1015 1728 2157 1113 

Mercedes B250e 28 0 0 774 1906 632 744 89 

Mercedes Smart 

fortwo ED 17.6 137 923 2594 1387 657 544 467 

Mitsubishi i-MiEV 16 588 1029 196 115 94 6 0 

Nissan LEAF 24 9819 22610 30200 17269 14006 11230 13388 

Tesla Model 3 75 0 0 0 0 0 1772 131382 

Tesla Model S 85 2171 19000 17800 25202 28896 27060 22445 

Tesla Model X 100 0 0 0 214 18223 21315 19150 

Volkswagen e-Golf 24.2 0 0 357 4232 3937 3534 1026 

 

 

  

Figure S2.1 Average, Sales-Weighted Battery Capacity (Left) and Fuel Economy (Right) 
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Section S3. Vehicle Production 

To model the emissions of the glider production, the material composition of the glider and its 

mass along with life cycle inventory of those materials is required:.  

 

The life cycle inventory used to model LCGHG emissions associated with vehicle production, 

assembly, and disposal was acquired from the GREET 2 model (Argonne National Laboratory, 

2017a). Their data on material acquisition and transformation, vehicle assembly, and vehicle 

disposal was combined with glider mass and composition to estimate emissions. In this study, the 

battery system was modelled separately from the rest of the vehicle, referred to as the glider. 

Hence the glider mass is calculated by subtracting battery mass from the curb weight. The 

material compositions for the Leaf (2012), PLS and the PSUV vehicle scenarios are based on 

material composition used in a similar study (UCS 2015) which builds off of material data used 

in GREET 2 model. The material composition for the EOV scenario is from the vehicle teardown 

performed on Chevrolet Bolt by Munro associates. 

 

The material composition of the glider and mass used for each of the four modeled vehicle 

scenarios can be seen in Table S3.1.  

 

Table S3.1 Average Glider Composition and Mass by Vehicle Group 

 EOV PLS PSUV Leaf (2012) 

Steel 54.25% 21.0% 21.0% 66.0% 

Cast Iron 4.24% 3.0% 3.0% 2.0% 

Wrought Aluminum 2.12% 26.0% 26.0% 1.5% 

Cast Aluminum 8.50% 17.0% 17.0% 5.0% 

Copper/Brass 7.63% 6.0% 6.0% 5.5% 

Glass 4.24% 4.0% 4.0% 3.0% 

Average Plastic 13.56% 15.0% 15.0% 12.0% 

Rubber 2.54% 2.6% 2.6% 2.0% 

Glass Fiber-Reinforced Plastic 0.00% 2.5% 2.5% 0.0% 

Others 3.0% 2.9% 2.9% 3.0% 

Glider Mass (lbs) 2,609 3,505 4,043 2,785 

 

Additional considerations included material transformation, fluid use, assembly, and disposal, 

which were also acquired from GREET 2 model. Fluids are included in the body and powertrain 

material life cycle stage of this study’s model, and in EVs include brake fluids, powertrain 

coolant, and windshield fluid; sedans and SUVs were assigned different sets of lifetime fluid use, 

with the latter having higher fluids use. All vehicles were given identical assembly and disposal 

impacts, where the energy use was 11.57 mmBTU and 3.26 mmBTU respectively. Note that the 

modeled emissions may underestimate true impacts, as the life cycle emissions of the 

https://www.ucsusa.org/sites/default/files/attach/2015/11/Cleaner-Cars-from-Cradle-to-Grave-full-report.pdf
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approximately 3% of “other” materials was not accounted for. Additionally, since electricity 

does not play a major role in this phase, time dependence of the electric grid was not included. 

Section S4. Battery Production 

 

The battery production model examined the cradle to gate of the battery life cycle, which 

included emissions from raw material extraction and refining, production, and assembly. An 

existing tool, the Battery Performance and Cost Model (BatPaC) constructed by Argonne 

National Laboratory, was used as the basis for the battery production model. BatPaC is based on 

a robust study of the material properties of LIB electrode and packaging materials, as well as 

battery pack design and production. BatPaC estimates the cost and composition of the LIB pack 

systems; in prior work (Ambrose, 2016), we connected these these outputs to material life cycle 

inventory data to estimate the GHG intensity of battery production processes. BatPaC offers the 

capabilities to compare the performance of different LIB cathode materials, however nickel rich 

cathode compounds NMC (e.g. 622 and 811), are being predicted to dominate light duty 

automotive applications (Curry, 2017).  Table S4.1 summarizes the key parametric assumptions 

relating to the battery pack design, i.e. pack size, mass, power output, and cell and module 

capacity.  The scenarios were developed based publicly available data on current models of 

archetypal vehicles described in main text.   

 

Table S4.1 Battery Pack Configuration Detail 

 Leaf EOV PLS PSUV 
2025 

EOV 

2025 

PLS 

2025 

PSUV 

2025 

LR-

EOV 

2025 

LR-

PLS 

2025 

LR-

PSUV 

Pack Capacity (kWh) 24 60 100 100 60 100 100 100 125 175 

Pack Mass (kg) 
295 434 723 723 288 481 481 481 601 841 

Battery power, kW 
100 170 386 568 170 386 568 170 386 568 

Battery energy kWh 
24 60 100 100 60 100 100 100 125 175 

Number of cells per 

module  8 29 516 516 29 516 516 48 648 906 

Number of cells in 

parallel 2 3 6 6 3 6 6 3 6 6 

Number of modules in 

row 24 2 2 2 2 2 2 2 2 2 

Number of rows of 

modules per pack 2 5 8 8 5 8 8 5 8 8 

Number of modules in 

parallel 1 1 1 1 1 1 1 1 1 1 

Battery Cathode 

Chemistry 
LMO NMC  NMC NMC NMC NMC NMC NMC NMC NMC 

 

The resulting breakdown of key materials are summarized in Table S4.2.  Material LCIs were 

then obtained from the GREET 2018 model, and used to estimate the total energy and global 
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warming potential for battery material production (measured in CO2 equivalents, or GHGs). We 

also conducted a sensitivity analysis on assumptions about battery assembly energy requirements 

(as measured by the kWh of energy input per kWh of usable storage) and pack energy density for 

the future vehicle case (Table S4.3). . 

 

Table S4.2 Battery Material Composition by Scenario 

 

 Leaf EOV PLS PSUV 
2025 

EOV 

2025 

PLS 

2025 

PSUV 

2025 

LR-

EOV 

2025 

LR-

PLS 

2025 

LR-

PSUV 

Aluminum (%) 32% 22% 32% 33% 22% 32% 33% 28% 24% 24% 

Graphite (%) 12% 20% 14% 13% 20% 14% 13% 27% 12% 12% 

PVDF (%) 2% 2% 2% 1% 2% 2% 1% 3% 1% 1% 

Binder (%) 2% 2% 2% 1% 2% 2% 1% 3% 1% 1% 

Copper (%) 11% 12% 17% 20% 12% 17% 20% 4% 6% 6% 

Electrolyte (%) 2% 11% 9% 9% 11% 9% 9% 5% 34% 34% 

Steel (%) 9% 3% 0% 0% 3% 0% 0% 2% 4% 4% 

Coolant (%) 0% 1% 4% 3% 1% 4% 3% 2% 4% 4% 

Plastics 2% 2% 2% 3% 2% 2% 3% 3% 2% 2% 

BMS 1% 0% 1% 1% 0% 1% 1% 0% 1% 1% 

Cathode Active 

Material (%) 27% 24% 17% 15% 24% 17% 15% 23% 11% 11% 

 

Table S4.3 shows the results of the scenario based sensitivity analysis of battery production 

energy and GHG emissions. Under the high assembly energy scenario, total energy requirements 

and GHG emissions more than doubled. While the efficiency of production processes increases 

significantly, those gains are not sufficient to offset the increases in battery capacity. 

 

Table S4.3 Battery Scenarios Sensitivity Analysis for 2025 

 Leaf EOV PLS PSUV 
2025 

EOV 

2025 

PLS 

2025 

PSUV 

2025 

LR-

EOV 

2025 

LR-

PLS 

2025 

LR-

PSUV 

Assembly Energy 

Low (kWh) 
804 2,118 3,530 3,530 2,118 3,530 3,530 3,530 4,413 6,178 

Assembly Energy 

High (100 

kWh/kWh) 

2,374 5,904 9,876 9,912 5,904 9,876 9,912 9,801 12,305 17,229 

Assembly Low 

GHGs (kg) 
420 1,108 1,847 1,847 1,033 1,722 1,722 1,722 2,152 3,013 

Assembly High 

GHGs (kg) 
1,242 3,089 5,167 5,186 2,879 4,816 4,834 4,780 6,001 8,402 

Material GHGs 1,481 3,080 5,133 5,133 2,048 3,414 3,414 3,381 4,226 5,916 
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Energy inputs and GHG emissions from battery assembly are primarily attributable to 

environmental controls and formation cycling. We assumed a constant inventory for battery 

assembly energy based on electricity generation for industrial purposes in South Korea. If the 

primary energy source for battery assembly was changed, this could significantly impact the 

emissions attributable to battery assembly energy inputs. 

Section S5. Vehicle Energy Demands 

FASTSim is a system analysis tool by NREL to compare the drivetrain performance. The model 

was first verified by modifying the inputs for three vehicles of our focus and cross checking the 

resulting fuel economy values with the 2018 values reported by the EPA. The vehicle parameter 

inputs are provided in Table S5.1 

 

 Table S5.1 Vehicle Input Parameters for FASTSim  
2018 2025 2025 LR 

  PLS PSUV EOV Leaf 

(2012) 

PLS PSUV EOV PLS PSUV EOV 

Drag coefficient 0.24 0.25 0.308 0.315 0.24 0.25 0.308 0.24 0.25 0.308 

Frontal area (m2) 2.341 2.59 2.816 2.755 2.341 2.59 2.816 2.341 2.59 2.816 

Curb weight (lbs) 

input to fastsim 

4883 5421 3570 3433 4254 4792 3192 4784 5851 3616 

Curb (kg) 2215 2459 1619 1557 1929 2173 1448 2170 2654 1640 

Vehicle glider 

mass (kg) 

510 723 503 763 630 844 575 535 652 498 

Battery mass  766 766 460 290 481 481 288 601 841 481 

Motor power 

(kW) 

285 311 60 80 285 311 60 285 311 60 

Battery power 

(kW) 

300 327 160 86 300 327 160 325 350 200 

Battery energy 

(kWh) 

100 100 60 24 100 100 60 125 175 100 
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Section S6. Annual Vehicle Miles Travelled (VMT) 

Two sets of scenarios for vehicle travel were developed: one, representing primary use in a 

personal passenger vehicle application (US Department of Transportation).; and two, 

representing use in a shared on-demand or potentially automated ride-hailing fleet. In all 

scenarios, annual VMT decreases as the vehicles age due to a variety of factors. Table S6.1 

shows the estimated annual mileage function for each scenario obtained from the regression of 

annual VMT on vehicle age within the NHTS data. 

 

Table S6.1 Estimated Annual VMT Function from NHTS and Lifetime Miles by Vehicle 

Scenario 

 Initial Annual Miles Annual Reduction Regression R2 

ICE Car 13604 -288.35 0.9219 

ICE SUV 14152 -252.23 0.8579 

HEV 16186 -343.07 0.9119 

EV Car 12258 -259.82  

EV SUV 12752 -227.28  
 

The lifetime vehicle miles travelled presented in Table S6.1 were estimated using the 

survivability data for cars, SUVs, and taxis obtained from Jacobsen et al. (2015), and Bishop et 

al. (2016) respectively.  Table S6.2 summarizes the survivability data used. 

 

Table S6.2 Vehicle Survivability for Cars, SUVs, and Taxis 

Vehicle Age 
Car Survivability 

(Jacobsen, 2015) 

SUV Survivability 

(Jacobsen, 2015) 

Taxi Survivability 

(Bishop et al., 2016) 

0 100% 100% 100% 

1 98% 98% 99% 

2 97% 96% 94% 

3 95% 94% 92% 

4 93% 92% 85% 

5 91% 89% 78% 

6 89% 87% 71% 

7 86% 84% 61% 

8 83% 81% 52% 

9 80% 77% 45% 

10 75% 72% 40% 

11 69% 66% 37% 

12 63% 60% 32% 

13 55% 52% 22% 

14 46% 44% 16% 

15 36% 35% 6% 

16 25% 26% 0% 

17 14% 16% 0% 

18 3% 6% 0% 

19 0% 3% 0% 

20 0% 0% 0% 
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Finally, the total lifetime VMT for each scenario is provided for both passenger and SAV 

scenarios in Table S6.3 

 

Table S6.3 Summary of Lifetime VMT by Vehicle Scenario 

 MS1: Baseline  

(Scrappage + Annual VMT) 

MS2: Constant VMT  

(Average ICE) 

MS3: Constant Lifetime  

(12 years) 

ICE Car 155275 155276 158105 

ICE SUV 161890 161890 167578 

HEV 184752 184752 188117 

EV Car 139914 155276 142464 

EV SUV 148775 161890 151000 

SAV Scenario 583564 - 800,915 

 

MS1: Mileage and scrappage rates for all powertrain and vehicle types reflect estimates drawn 

from the NHTS and vehicle scrappage rates as described in the article and estimated with 

Equation 2 (main text). 

MS2: BEVs and their conventional analogs are treated identically and use mileage and 

scrappage estimates for conventional powertrains.  

MS3: Assumes the same annual VMT as MS1 and MS2 but fixes vehicle life at 12 years for all 

vehicle types. 

 

Constant Lifetime (12 years)  
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Section S7. Electricity Generation 

This section provides the complete results of the electricity generation analysis and the resulting 

forecast for grid carbon intensity. The study considered two regional scenarios: the California 

subset of the WECC region (CAMX) and a US national average. The study also considered two 

policy scenarios: a business as usual case and a carbon tax scenario with a $25 dollar per ton cost 

of carbon. The Annual Energy Outlook 2018 defines the Reference case in which: population 

(including armed forces overseas) grows by an average rate of 0.6%/year, nonfarm employment 

by 0.7%/year, and productivity by 1.6%/year from 2017 to 2050. The real gross domestic 

product increases by 2.0%/year from 2017 through 2050, and growth in real disposable income 

per capita averages 2.2%/year (U.S. Energy Information Administration, 2018). 

For all scenarios, the study considered a time horizon from 2018 to 2050. Data on the net 

electricity generation by year by fuel source was obtained from the Annual Energy Outlook 

created by the Energy Information Administration. The AEO forecast is based on outputs of the 

National Energy Model, a large scale economic equilibrium model of energy supply and 

disposition (Gabriel et al., 2001). 

The average net generation by fuel source is provided for a subset of years in Table S7.1.  

Table S7.1 Average Net Generation by Fuel Source for Residential 

 and Commercial End Uses 

 

Scenario Region Fuel Source 2016 2020 2025 2030 2035 2040 

R
ef

er
en

ce
 c

as
e U
S

-A
V

G
 

 Coal 30% 28% 27% 26% 25% 24% 

 Petroleum 1% 0% 0% 0% 0% 0% 

 Natural Gas 34% 32% 33% 34% 34% 34% 

 Nuclear 20% 18% 16% 15% 14% 14% 

 Renewable Sources 15% 20% 22% 23% 26% 28% 

 Other 0% 1% 1% 1% 1% 0% 

W
E

C
C

-C
A

M
X

  Coal 5% 4% 0% 0% 0% 0% 

 Petroleum 0% 0% 0% 0% 0% 0% 

 Natural Gas 45% 33% 30% 27% 22% 20% 

 Nuclear 10% 10% 5% 0% 0% 0% 

 Renewables 40% 53% 65% 73% 78% 80% 

$
2

5
 c

ar
b

o
n
 a

ll
o

w
an

ce
 f

ee
 

U
S

-A
V

G
 

 Coal 30% 20% 9% 3% 1% 1% 

 Petroleum 1% 0% 0% 0% 0% 0% 

 Natural Gas 34% 40% 40% 42% 42% 39% 

 Nuclear 20% 18% 18% 17% 16% 16% 

 Renewable Sources 15% 22% 32% 37% 40% 43% 

 Other 0% 1% 1% 1% 1% 0% 

W
E

C
C

-C
A

M
X

  Coal 5% 0% 0% 0% 0% 0% 

 Petroleum 0% 0% 0% 0% 0% 0% 

 Natural Gas 45% 45% 30% 19% 14% 14% 

 Nuclear 10% 9% 5% 0% 0% 0% 

 Renewables 40% 45% 66% 81% 86% 86% 
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The average generation by fuel source data was combined with the life cycle emissions inventory 

data to estimate the emissions rates by year. For each fuel source, a regionally representative LCI 

was estimated using data from the GREET 1 model (Argonne National Laboratory, 2017b). 

Table S7.2 shows the estimated LCIs by fuel source and scenario. The final row of the table 

shows the estimated total greenhouse gas emissions of each kilowatt hour provided in carbon 

dioxide equivalents. A 100 year global warming potential is assumed, with characterization 

factors taken from the IPCC AR5. 

 

Table S7.2 Life Cycle Inventory by Fuel Source and Regional Scenario 

 

Flow 

California (CAMX) National Average (US-AVG) 

Unit 

Coal Oil 

Natural 

Gas Nuclear Coal Oil 

Natural 

Gas Nuclear 

Total 

energy 10751.1 12251.1 8402.1 3806.2 11560.4 12251.1 10246.5 3806.2 btu/kWh 

Fossil fuels 10740.3 12178.1 8392.7 123.9 11548.7 12178.1 10234.9 123.9 btu/kWh 

Coal 10527.7 38.7 3.9 13.8 11320.2 38.7 4.8 13.8 btu/kWh 

Natural gas 43.2 832.2 8356.1 96.6 46.4 832.2 10190.3 96.6 btu/kWh 

Petroleum 169.4 11307.3 32.6 13.6 182.1 11307.3 39.8 13.6 btu/kWh 

VOC 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 g/kWh 

CO 0.2 1.2 0.5 0.0 0.2 1.2 0.6 0.0 g/kWh 

NOx 1.4 7.2 0.5 0.0 1.5 7.2 0.6 0.0 g/kWh 

PM10 0.4 0.3 0.0 0.0 0.4 0.3 0.0 0.0 g/kWh 

PM2.5 0.2 0.2 0.0 0.0 0.2 0.2 0.0 0.0 g/kWh 

SOx 3.5 6.7 0.1 0.0 3.8 6.7 0.1 0.0 g/kWh 

CH4 1.6 1.2 1.6 0.0 1.7 1.2 1.9 0.0 g/kWh 

N2O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 g/kWh 

CO2 1069.2 1030.8 500.9 8.3 1149.7 1030.8 610.8 8.3 g/kWh 

CO2 (w/ C 

in VOC & 

CO) 1069.8 1033.0 501.9 8.3 1150.3 1033.0 612.1 8.3 g/kWh 

GHGs 

(CO2e) 1114.0 1064.8 545.4 9.0 1197.9 1064.8 665.1 9.0 g/kWh 
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Finally, the estimated average carbon intensity of electricity generation for each year is provided 

in Table S7.3. 

 

Table S7.3 Average Carbon Intensity of Electricity Generation by Year and Scenario 

 

Year California (CAMX) US (Average) CA ($25 C-tax) US ($25 C-tax) 

2017 296.7 525.1 297.4 522.2 

2018 308.4 523.2 306.3 521.7 

2019 297.1 506.5 299.5 502.1 

2020 228.0 496.3 248.6 438.1 

2021 216.5 485.5 220.4 408.3 

2022 190.0 477.4 175.1 378.4 

2023 160.3 479.6 167.6 356.2 

2024 149.8 484.7 154.8 338.7 

2025 166.0 487.7 163.5 322.1 

2026 180.4 489.7 174.4 305.6 

2027 174.7 488.1 155.0 288.7 

2028 168.5 486.3 140.3 281.8 

2029 161.1 485.8 125.2 278.0 

2030 149.3 484.4 101.0 269.1 

2031 135.0 480.8 85.2 263.9 

2032 127.4 476.6 84.3 259.0 

2033 123.2 473.0 82.2 254.6 

2034 123.8 471.0 78.8 250.2 

2035 120.8 467.0 77.8 246.7 

2036 117.9 465.7 77.0 243.3 

2037 114.7 463.3 77.0 240.1 

2038 112.4 460.5 77.1 235.1 

2039 112.8 458.3 75.2 231.0 

2040 109.3 456.0 73.7 225.6 

2041 108.8 454.1 72.4 220.0 

2042 108.4 451.3 69.8 214.0 

2043 107.2 449.3 69.8 211.4 

2044 105.7 448.3 69.5 208.2 

2045 104.0 445.9 69.6 204.7 

2046 98.7 442.3 70.1 200.4 

2047 97.1 440.0 70.5 196.3 

2048 96.3 437.9 70.7 191.5 

2049 96.7 437.0 70.4 185.5 

2050 94.8 436.6 70.9 184.0 
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Section S8: Full Results 

This section provides a table view of the complete results of the final GHG estimates. 

 

Beginning on the next page, table S8.1 contains per mile GHG emissions attributable to vehicle 

and battery for each vehicle design scenario. The results in table 8.1 for per mile emissions 

attributable to production of vehicle and battery systems use the survivability method for 

estimating lifetime vehicle miles.  The results are moderately reduced in the VMT scenario due 

to the assumed higher lifetime vehicle miles travelled.  The phase column corresponds with the 

key categories of emissions in producing the vehicle and battery system.  The survival and VMT 

methods result in the same estimated emissions rate for conventional ICE vehicles as the ICE 

vehicle is the basis for the VMT method used in the BEV cases. 

 

Table S8.2 shows the use-phase LCGHG emissions per mile for each vehicle and grid scenarios.  

The range of values provided in table 8.2 reflect the variability associated with uncertainty in the 

vehicle lifetime (8 to 12 years on average). The emissions rate decreases as the vehicle life 

decreases as the service life increases due to the (generally) decreasing carbon intensity of the 

grid. But the extent of this effect diminishes with the decreasing annual mileage. 

 

Table S8.3 provides the total results, which are the sum of the vehicle and battery emissions with 

the use phase emissions. As such, the total results are presented by grid scenario and service life 

in years. Table S8.3 makes clear the key trend, namely the increasing share of production 

emissions in life cycle emissions and per mile emissions for passenger vehicles.
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Table S8.1 Battery and Vehicle GHG Emissions (g CO2-e / mile) by Vehicle and Utilization Scenario 

 

Description 
ICE 

LDV 

ICE 

SUV 
HEV 

Leaf 

(2012) 
EOV PLS PSUV 

2025 

EOV 

2025 

PLS 

2025 

PSUV 

2025 

LR-

EOV 

2025 

LR-

PLS 

2025 

LR-

PSUV 

SAV 

ICE-

SUV 

SAV 

HEV 

SAV 

LR-

EOV 

SAV 

LR-

PLS 

SAV 

LR-

PSUV 

Body and 

Powertrain 

Materials 

                 

32.7  

                 

34.9  

                        

24.5  

                              

28.6  

                                  

29.7  

                 

53.0  

                                

57.8  

                               

29.7  

                                   

53.0  

                 

57.8  

                     

29.7  

                      

53.0  

                     

57.8  

                           

9.7  

                 

7.8  

                   

7.1  

                 

12.7  

                        

14.7  

Glider Assembly 
                   

4.8  

                   

4.6  

                          

4.0  

                                

5.3  

                                    

5.3  

                   

5.3  

                                  

5.0  

                                 

5.3  

                                     

5.3  

                   

5.0  

                       

5.3  

                        

5.3  

                       

5.0  

                           

1.3  

                 

1.3  

                   

1.3  

                   

1.3  

                          

1.3  

End of Life 
                   

1.4  

                   

1.4  

                          

1.2  

                                

1.6  

                                    

1.6  

                   

1.6  

                                  

1.5  

                                 

1.6  

                                     

1.6  

                   

1.5  

                       

1.6  

                        

1.6  

                       

1.5  

                           

0.4  

                 

0.4  

                   

0.4  

                   

0.4  

                          

0.4  

Battery Materials 
                   

0.3  

                   

0.4  

                          

1.3  

                              

10.6  

                                  

23.3  

                 

36.8  

                                

33.8  

                               

15.5  

                                   

24.5  

                 

22.4  

                     

25.0  

                      

36.0  

                     

47.4  

                           

0.1  

                 

0.4  

                 

15.5  

                 

22.3  

                        

28.2  

Battery 

Production 

                     

-    

                     

-    

                            

-    

                                

3.0  

                                    

7.9  

                 

13.2  

                                

12.4  

                                 

7.4  

                                   

12.3  

                 

11.6  

                     

12.3  

                      

15.4  

                     

20.3  
                     

7.6  

                   

9.5  

                        

12.0  

Use (Survival - 

CAMX) 

               

420.9  

               

462.5  

                      

301.2  

                              

71.4  

                                  

67.6  

                 

87.0  

                                

89.7  

                               

45.1  

                                   

50.1  

                 

57.2  

                     

51.9  

                      

63.0  

                     

72.6  

                       

462.5  

             

301.2  

                 

49.2  

                 

59.7  

                        

70.2  

Use (VMT - 

CAMX) 

               

420.9  

               

462.5  

                      

301.2  

                              

72.4  

                                  

68.6  

                 

88.2  

                                

91.0  

                               

45.9  

                                   

51.0  

                 

57.8  

                     

52.9  

                      

64.2  

                     

73.4  

                       

462.5  

             

301.2  

                 

54.3  

                 

66.0  

                        

77.6  

Use (12 Years- 

CAMX) 

               

413.4  

               

446.8  

                      

295.8  

                              

69.1  

                                  

65.5  

                 

84.2  

                                

88.4  

                               

43.2  

                                   

48.0  

                 

55.8  

                     

49.7  

                      

60.4  

                     

70.8  

                       

337.0  

             

219.5  

                 

44.7  

                 

54.2  

                        

63.8  

Use (Survival - 

USAVG) 

               

420.9  

               

462.5  

                      

301.2  

                            

169.7  

                                

160.7  

               

206.7  

                              

213.8  

                             

150.0  

                                 

166.6  

               

190.5  

                   

172.6  

                    

209.6  

                   

241.7  

                       

462.5  

             

301.2  

               

156.7  

               

190.2  

                      

223.8  

Use (VMT - 

USAVG) 

               

420.9  

               

462.5  

                      

301.2  

                            

194.4  

                                

165.9  

               

213.3  

                              

217.0  

                             

154.8  

                                 

172.0  

               

193.5  

                   

178.1  

                    

216.3  

                   

245.4  

                       

462.5  

             

301.2  

               

158.6  

               

192.6  

                      

226.5  

Use (12 Years - 

USAVG 

               

413.4  

               

446.8  

                      

295.8  

                            

158.9  

                                

150.6  

               

193.6  

                              

203.8  

                             

140.8  

                                 

156.5  

               

182.2  

                   

162.1  

                    

196.8  

                   

231.0  

                       

337.0  

             

219.5  

               

145.7  

               

177.0  

                      

208.2  
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Table S8.2 Sensitivity of LCGHG Emissions to Vehicle Lifetime Assumption (8 to 20 years) by Vehicle and Utilization 

Scenario (g CO2-e / mile) 

 Grid Scenario EOV PLS PSUV 

2018 

Average US Grid 255 - 215 360 - 295 374 - 306 

Average US Grid with $25 C-tax 231 - 173 329 - 241 341 - 249 

Average California Grid 167 - 119 246 - 171 254 - 175 

Average California Grid with $25 C-tax 168 - 115 247 - 166 255 - 170 

2025 

Average US Grid 235 - 198 303 - 245 335 - 273 

Average US Grid with $25 C-tax 171 - 131 233 - 171 253 - 187 

Average California Grid 131 - 92 189 - 128 201 - 136 

Average California Grid with $25 C-tax 122 - 82 178 - 116 189 - 122 

2025 Long 

Range 

Average US Grid 250 - 209 331 - 270 393 - 318 

Average US Grid with $25 C-tax 184 - 140 251 - 186 298 - 219 

Average California Grid 143 - 100 201 - 137 240 - 161 

Average California Grid with $25 C-tax 134 - 89 189 - 124 226 - 145 

 

  



16 
 

Table S8.3 Total GHG Emissions by Grid and Vehicle Scenario 

Grid Scenario 

Service 

Life 

(Years) 

Leaf 

(2012) 
EOV PLS PSUV 

2025 

EOV 

2025 

PLS 

2025 

PSUV 

2025 

LR-

EOV 

2025 

LR-

PLS 

2025 

LR-

PSUV 

SAV 

LR-

EOV 

SAV 

LR-

PLS 

SAV 

LR-

PSUV 

Unit 

CAMX 8 139 160 237 244 125 181 193 137 192 229 75 97 139 g CO2e/mile 

CAMX 12 117 132 192 197 102 143 153 110 153 181 65 84 117 g CO2e/mile 

CAMX 16 104 116 166 170 89 123 131 96 132 155 59 76 104 g CO2e/mile 

CAMX 20 95 104 150 92 81 110 71 52 71 139 56 71 95 g CO2e/mile 

USAVG 8 220 238 336 349 217 283 312 232 308 365 170 213 220 g CO2e/mile 

USAVG 12 207 217 302 313 199 252 279 211 276 325 166 206 207 g CO2e/mile 

USAVG 16 200 206 283 293 189 234 261 200 258 304 163 202 200 g CO2e/mile 

USAVG 20 195 199 271 169 183 224 150 115 148 290 161 199 195 g CO2e/mile 

CAMX-$25C 8 140 161 238 245 117 172 182 128 182 217 67 87 140 g CO2e/mile 

CAMX-$25C 12 117 131 191 196 92 132 140 100 141 167 55 72 117 g CO2e/mile 

CAMX-$25C 16 101 112 162 165 79 112 118 85 119 140 49 63 101 g CO2e/mile 

CAMX-$25C 20 90 99 143 87 70 99 63 46 63 123 45 58 90 g CO2e/mile 

USAVG-$25C 8 201 220 313 324 161 220 238 173 237 282 112 142 201 g CO2e/mile 

USAVG-$25C 12 175 187 263 271 139 184 201 149 200 236 104 130 175 g CO2e/mile 

USAVG-$25C 16 159 168 234 241 126 164 179 135 179 210 98 123 159 g CO2e/mile 

USAVG-$25C 20 149 155 215 133 118 151 100 75 99 193 94 117 149 g CO2e/mile 
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