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Abstract

Electronic Structure of Materials for Novel Computing and Energy Applications

by

Michael Warren Swift

First-principles calculations based on density functional theory are an invaluable tool

in the prediction and understanding of materials properties based on their atomic and

electronic structure. Computational results provide relevant insight for applications in

the energy sector and in novel computational platforms. We begin by addressing a

longstanding problem: the computation of binding energies and hyperfine interactions for

shallow dopants in semiconductors. We have developed new techniques for calculating

these properties with remarkable accuracy, providing guidance for engineering of spin

qubits. We move on to electronic complex oxides, studying electron-electron scattering in

SrTiO3. We develop a general methodology to calculate electron-electron scattering rates,

and identify the conditions under which the mechanism gives rise to a well-known T 2

power law in resistivity. We then turn to the unconventional electronic phase found in the

spin-orbit Mott insulator Sr3Ir2O7. The electron-doping-driven metal-insulator transition

is studied and structural distortions in the correlated metallic state are shown to arise

from a different mechanism from the transition itself. Turning finally from electronic

conduction to ionic conduction, we study hydrogen transport and optical properties in

BaCeO3. We establish a new understanding of electron localization in this material and

explain the results of luminescence experiments. In SrCeO3, cation vacancies are shown

to be an important source of proton traps which impede diffusion, and known benefits of

doping are explained as resulting from a suppression of these vacancies. In each material,

advances in fundamental understanding guide experiment and advance applications.
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Chapter 1

Introduction

The properties of the materials that make up our world are determined by their mi-

croscopic structure. In a crystalline solid, this structure takes the form of a periodic

arrangement of ions bound together by electrons. The research presented here is based

on Density Functional Theory (DFT), a technique which is able to calculate the ionic and

electronic structure of materials from first principles (i.e., starting from the fundamental

laws of quantum mechanics). We use this methodology, discussed in detail in Chapter 2,

to explore fundamental physical properties of materials with exciting applications in the

energy sector and/or in novel computational platforms. In each case, we seek to build

understanding that is interesting from a theoretical perspective, informs experiment, and

is relevant to real-world applications.

We begin by presenting work on shallow donors in silicon, a physical system that is

at the heart of modern electronics, and also an exciting platform for possible spin-based

quantum computation (Chapter 3). We provide new theoretical insight by overcoming

various challenges to the first-principles modeling of shallow impurities; we use hybrid

functionals to correctly capture localization and traditional functionals to extrapolate to

the dilute limit. This advance allows us to achieve remarkable accuracy in the calculation
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Introduction Chapter 1

of binding energies and hyperfine parameters. We also investigate bismuth donors under

strain, supporting recent experimental results showing that the hydrostatic component

of strain has an unexpectedly large impact on the hyperfine parameter, and ruling out a

proposed quadrupole-mediated mechanism for observed shifts under strain.

Moving beyond silicon, we focus on complex oxides, which are being explored as

next-generation electronic materials, necessitating a fundamental understanding of carrier

mobility and conductivity. Many complex oxides (including titanates, nickelates and

cuprates) show a regime in which resistivity follows a power law in temperature (ρ ∝ T 2).

By analogy to a similar phenomenon observed in some metals at low temperature, this has

often been attributed to electron-electron (Baber) scattering. In Chapter 4, we develop

a new computational methodology to calculate electron-electron scattering rates from

first principles. We show that Baber scattering should only be expected to give a T 2

power law under several crucial assumptions (which may not hold for complex oxides),

and we use our methodology to calculate the electron-electron scattering rate directly.

We demonstrate that for strontium titanate, ρel-el 6∝ T 2. This provides guidance for the

interpretation of experiments; an observation of ρ ∝ T 2 is not always sufficient evidence

for electron-electron scattering. The understanding of electron-electron scattering and

other scattering mechanisms is crucial for applications as well, since low carrier mobility

is a significant obstacle for many proposed electronic devices based on complex oxides.

In addition to conventional electronic behavior like electron-electron scattering, com-

plex oxides host a plethora of exotic electronic phases, including topological insulators

and high-Tc superconductivity. These unconventional phases could be the key to world-

changing applications such as topological quantum computing or superconducting elec-

tronics. One particularly exciting variety of unconventional electronic behavior is the

spin-orbit Mott phase, in which a gap is opened by a combination of electron correla-

tions and spin-orbit coupling. In Chapter 5, we apply our first-principles methodology

2
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to the spin-orbit Mott insulator Sr3Ir2O7. We explore the electron-doping-driven phase

transition in which this material goes from an antiferromagnetic insulator to a param-

agnetic metal. Both states are identified in our calculations, and the charge gap and

staggered magnetization are observed to decrease with increasing doping. We identify a

transition at a doping level that is in excellent agreement with experiment. This suggests

that the magnetic and electronic transitions are intimately related. Curiously, our first-

principles calculations fail to capture the low-temperature structural distortion reported

in La-substituted Sr3Ir2O7. This supports the notion that this distortion arises as a sec-

ondary manifestation of an unconventional electronic order parameter in this material,

and rules out a commonly proposed mechanism for the distortions and the transition.

Complex oxides are important not only for electronic applications, but also for energy

generation and storage, demanding investigations of ionic conduction in addition to elec-

tronic conduction. In particular, barium cerate (BaCeO3) and strontium cerate (SrCeO3)

are well-known proton conductors, with proposed applications in solid state fuel cells,

water splitting, batteries, and beyond. The cerates are frequently doped (for instance

with Y) to increase stability and promote diffusion. However, the effects of doping and

native defects are not fully understood. Computational studies have been stymied by

the cerium 4f states which make up the conduction band and which cannot be correctly

described by first-principles methods using traditional functionals. In Chapter 6, we use

a hybrid functional to overcome this obstacle, and use this theoretical advance to inves-

tigate the effects of hydrogen impurities and native defects on the electrical and optical

properties of BaCeO3. Since the primary applications of this material involve proton con-

duction, we focus on interactions between defects that may reduce proton diffusivity. We

discuss the tendency of excess electrons or holes to localize in the form of small polarons:

localized charge carriers coupled to a lattice distortion. We explore their interactions

with hydrogen impurities and their impact on optical properties of the material, opening

3
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the way for experiments to further probe the polaronic properties of this material. In

Chapter 7, we find the positions of the bands on an absolute energy scale, an essential

piece of information for water-splitting applications. We also study the atomic and elec-

tronic structure of impurities and defects, finding that interactions between hydrogen

and cation vacancies negatively impact proton conductivity. This explains the efficacy

of acceptor doping in proton conducting applications, since it will tend to reduce the

concentration of cation vacancies. Comparisons between SrCeO3 and BaCeO3 allow us

to establish general trends that are relevant across a wide variety of proton-conducting

complex oxides.

By the end of this dissertation, we hope to have shown that first-principles calculations

have expanded our understanding of the fundamental microscopic properties, paving the

way for exciting applications in the energy sector and in novel computational platforms.

4
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1.1 Permissions and attributions

The content of Chapter 4 has previously appeared in The European Physical Journal

B [1]. It is reproduced here with the permission of EDP Sciences, which holds the

copyright.

The content of Chapter 5 has been submitted to Physical Review B.

The content of Chapter 6 has previously appeared in Physical Review B [2]. It is

reproduced here with the permission of the American Physical Society, which holds the

copyright.

The content of Chapter 7 has previously appeared in The Journal of Physical Chem-

istry C [3]. It is reproduced here with the permission of the American Chemical Society,

which holds the copyright.

Appendix A consists of notes written by J. T. Devreese and S. N. Klimin, which are

reproduced by permission.
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Chapter 2

First-Principles Computational

Methods

2.1 The many body problem

The behavior of electrons in a solid is given by the many-body Schrödinger equation

ĤΨ(r1, r2, . . . , rN) = EΨ(r1, r2, . . . , rN), (2.1)

where Ĥ is the Hamiltonian that describes the electrons’ interaction with each other

and the nuclei in the solid. Within the Born-Oppenheimer approximation, the nuclei are

treated as fixed point charges, so their degrees of freedom can be ignored while solving

the electronic problem. The Hamiltonian becomes

Ĥ = − ~2

2m

N∑
i=1

∇2
i −

e2

4πε0

N∑
i=1

M∑
j=1

Zj
|ri −Rj|

+
e2

4πε0

∑
i<k

1

|ri − rk|
, (2.2)

6
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where i and k index electrons and j indexes nuclei. For all practical purposes, this

Hamiltonian is impossible to solve exactly. Not only does the electron-electron interaction

term combined with the required antisymmetry of the wavefunction under exchange of

two electrons lead to an extremely complicated electronic wavefunction, but the 3N

degrees of freedom necessary to describe the full wavefunction would make the result

unfeasible to store, process, or interpret. A simplification is needed.

2.2 Density functional theory

In 1964, Pierre Hohenberg and Walter Kohn proved that, for Hamiltonians describ-

ing particles moving in an external potential (such as the many-body Hamiltonian in

Eq. (2.2)), the potential, and hence the wavefunction and all the properties of the sys-

tem, are all universal functionals of the electron density n [4]. A particularly relevant

functional is the energy E0 = E0[n(r)] of the ground state. Given the exact form of this

functional, the many-body problem reduces from the 3N -dimensional problem of finding

the many-body wavefunction to a 3-dimensional problem of finding the electron den-

sity. Hohenberg and Kohn went on to propose the first approximations to this universal

functional based on the Thomas-Fermi method.

In 1965, Walter Kohn and Lu Jeu Sham outlined a method to build an effective

potential veff for non-interacting single-particle orbitals φ which, when populated with

the correct number of Fermions, reproduce the ground-state electron density:

(
− ~2

2m
∇2 + veff(r)

)
φi(r) = εiφi(r), (2.3)

n(r) =
N∑
i

|φi(r)|2. (2.4)

7
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The energy is written as a functional of the density:

E[n] = Ts[n] +

∫
dr vext(r)n(r) + EH [n] + Exc[n], (2.5)

where

Ts[n] =
N∑
i=1

∫
dr φ∗i (r)

(
− ~2

2m
∇2

)
φi(r), (2.6)

EH =
e2

2

∫
dr

∫
dr′

n(r)n(r′)

|r− r′|
, (2.7)

vext(r) is the external potential (provided by the nuclei), and Exc[n] is the so-called

“exchange-correlation” functional, which includes all effects induced by wavefunction

antisymmetry (exchange energy) and by many-body correlations. Most of the approxi-

mations involved with DFT are contained in Exc, and improving this functional has been

the focus of substantial effort.

2.3 Local density and generalized gradient approxi-

mations

One of the earliest approximations to Exc is the so-called Local Density Approxima-

tion, or LDA. Proposed by Hohenberg and Kohn in their original paper, this approxi-

mation assumes that the exchange-correlation energy is local, with the contribution due

to the electron density at each point equal to that of a homogeneous electron gas with

that density. Since the homogeneous electron gas has been solved analytically, the LDA

8
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exchange-correlation functional can be written down:

ELDA
xc [n] =

∫
n(r)εxc(n) dr = −3

4

(
3

π

)1/3 ∫
n(r)4/3 dr . (2.8)

This was further improved by the Generalized Gradient Approximation or GGA,

which takes into account the gradient of the density in addition to its local value:

EGGA
xc [n↑, n↓] =

∫
εXC(n↑, n↓,∇n↑,∇n↓)n(r)d3r . (2.9)

A common GGA is that of John Perdew, Kieron Burke, and Matthias Ernzerhof, com-

monly known as PBE [5].

The LDA and GGA have enjoyed remarkable and wide-ranging success across many

fields of physics and chemistry. This success is particularly remarkable given their relative

simplicity compared to the immense complexity of the many-body problem. However,

these approximations are far from perfect. One of their most egregious shortcomings

is the so-called “self-interaction” error. This arises because the term describing the

mean-field Coulomb repulsion (the “Hartree term”, Eq. (2.7)) includes an unphysical

interaction between an electron and its own density. Self-interaction error leads to an

over-delocalization of the electronic states, and is related to the “band-gap problem” in

which LDA and GGA underestimate the band gap of most semiconductors and insulators.
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2.4 DFT+U

Localized states and correlation-driven physics (e.g. Mott insulating behavior) are

often described through the Hubbard model:

Ĥ = −t
∑
〈i,j〉,σ

(ĉ†i,σ ĉj,σ + ĉ†j,σ ĉi,σ) + U

N∑
i=1

n̂i↑n̂i↓ . (2.10)

The parameters of this model are the hopping strength t and the on-site Coulomb re-

pulsion U . Inspired by the success of this model, DFT+U adds a term to penalize

double-occupation of an orbital:

ELDA+U [n] = ELDA[n] +
∑
I

[
U I

2

∑
m,σ 6=m′,σ′

nIσm n
Iσ′

m′ −
U I

2
nI(nI − 1)

]
, (2.11)

where nIσm are the occupation numbers of localized orbitals identified by the atomic site

index I, state index m and by the spin σ [6]. This term induces physics similar to that

observed in the Hubbard model into DFT, and allows for the successful application of

DFT+U to materials that are inaccessible to LDA and GGA, such as Mott insulators.

A weakness of the DFT+U method is the need to choose a value for the onsite

Coulomb repulsion parameter U . In practice, U is often tuned to reproduce the ex-

perimental band gap, though this can be problematic for a number of reasons. Tuning

to experiment loses some of the ab initio nature of the method, and thus some of the

predictive power. In addition, there are multiple reasons why experimental signatures

purporting to measure the band gap may not be expected to match a DFT band struc-

ture (temperature effects, renormalization due to many-body effects, and unintentional

measurement of a sub-band-gap excitation, among others), so matching to an experimen-

tal gap may actually give incorrect physics. Another method is to use constrained DFT

10
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or similar approaches to self-consistently calculate the value of U . This is additional

computational effort, and may not reproduce experimental results as well as a U tuned

to do so, but it retains the ab initio predictive power of DFT.

DFT+U is used in this dissertation for simulation of the spin-orbit Mott insulator

Sr3Ir2O7 (Chapter 5). The U value is taken from constrained RPA calculations in the

literature.

2.5 Hybrid functionals

Unlike in the Kohn-Sham approach, wavefunctions in the Hartree-Fock method are

Slater determinants, which enforce the Pauli antisymmetrization condition by construc-

tion. Hartree-Fock is thus said to have “exact exchange”, since the exchange properties

of the wavefunction are necessarily correct. While Hartree-Fock has significant limita-

tions when applied to solids (especially metals) [7], inclusion of this “exact” exchange

energy is attractive as a possible way to improve the DFT exchange-correlation func-

tional. This is accomplished through a mixing of the Hartree-Fock with conventional

DFT exchange-correlation functionals. In the PBE0 hybrid [8], the exchange-correlation

energy is

Exc = EDFT
xc + a0(Ex − EDFT

x ), (2.12)

where Ex is the Fock-like exact exchange for the Kohn-Shame states:

Ex = 〈Ψ| V̂ee |Ψ〉 −
e2

2

∫
d3r d3r′

n(r)n(r′)

|r− r′|
. (2.13)

A value of a0 = 1/4 is argued to be best for typical molecules based on Görling-Levy

perturbation theory. PBE0 was further improved in 2003 by Jochen Heyd, Gustavo

Scuseria, and Matthias Ernzerhof in the HSE functional [9]. This is a “range-separated”
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hybrid, in which screening is taken into account by separating 1/r into short-range (SR)

and long-range (LR) parts:

1

r
=

erfc(ωr)

r︸ ︷︷ ︸
SR

+
erf(ωr)

r︸ ︷︷ ︸
LR

, (2.14)

where ω is the “screening length”, a parameter describing the extent of range separation,

typically set to ω = 0.207 Å
−1

[10]. The HSE hybrid functional has shown remarkable

success, not only in chemistry, but also in fixing the band-gap problem in semiconductors

(with occasional tweaks of the mixing parameter a0) and in the correct description of

localized states in many materials systems. Our calculations of donors in silicon (Chap-

ter 3), SrTiO3 (Chapter 4), BaCeO3 (Chapter 6), and SrCeO3 (Chapter 7) all make use

of the HSE hybrid functional with the standard mixing and screening lengths.

2.6 Practical aspects

Our calculations are performed using the Vienna Ab initio Simulation Package (VASP)

[11]. Core electrons are described using the Projector-Augmented Wave (PAW) method

[12], an extension of the common pseudopotential method which allows reconstruction of

wavefunctions including the core electrons through the use of projectors. Valence elec-

trons are described by Kohn-Sham states, which are expanded in a plane wave basis.

This allows for systematic improvement of the basis set through increasing of the plane-

wave energy cutoff, which is increased until convergence is reached. The cutoffs used and

various other technical details are reported in the individual chapters.
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2.7 Defect formation energies

The energy cost of incorporating a defect X in charge state q in the solid is given by

the formation energy [13]

Ef [Xq] = Etot[X
q]− Etot[bulk]−

∑
i

niµi + qEF + ∆q , (2.15)

where Etot[X
q] is the DFT total energy of a supercell containing the defect X in charge

state q, Etot[bulk] is the total energy of a supercell of the same size but without the

defect, and ni is the number of atoms of type i added (ni > 0) or removed (ni < 0) to

form the defect. µi are the corresponding chemical potentials of the species, referenced

to the total energies per atom of their respective ground-state phases. The chemical

potentials are treated as variables that can depend on growth or processing conditions.

However, bounds are placed on these values by imposing the conditions for stability in

thermodynamic equilibrium.

The chemical potential of electrons in the solid is the Fermi energy EF ; the qEF

term is the energy required to add or remove electrons to achieve charge state q. By

convention, we take EF = 0 at the valence-band maximum. The final term, ∆q, is a

correction term designed to compensate for interaction between a charged defect and its

periodic images. This allows us to study defects in the dilute limit. Refs. [14] and [15]

describe the method used to calculate ∆q. Calculation of this term requires the static

dielectric constant of the material, including both the electronic and ionic contributions.

13



First-Principles Computational Methods Chapter 2

2.8 Shallow donors in silicon

Chapter 3 deals with the calculation of shallow donors in silicon using density func-

tional theory. In this section we lay out the theoretical background of the study of shallow

donors and discuss some technical details of the calculations.

2.8.1 Kohn-Luttinger effective mass theory

The effective mass approximation was developed by Kohn and Luttinger in the

1950s [16, 17, 18] to describe shallow donors in silicon and other semiconductors. Ac-

cording to this theory, a shallow donor has a binding energy (relative to the CBM) of

Eb
D =

m∗e
m0

1

ε2
r

m0e
4

2(4πε0~)2
, (2.16)

where m∗e is the effective mass of the band state, m0 is the free electron mass, and εr is

the dielectric constant of the crystal [19]. The wavefunction itself is given by a product

of the host wavefunction at the CBM and a hydrogenic envelope function:

Ψ =
1√
πa3

D

e−r/aDeik·ruk(r) , (2.17)

where k is the position of the CBM in k-space. The extent of the hydrogenic wavefunction

is given by the “effective Bohr radius”

aD =
m0

m∗e
εraB , (2.18)

where aB = 0.053 nm is the Bohr radius [19]. In the case of silicon, the transverse and

longitudinal effective masses are quite different: m∗L = 0.916me and m∗T = 0.191me.

Including this anisotropy requires only a modest generalization of the theory, and the

14



First-Principles Computational Methods Chapter 2

ground state may be found variationally [20]. An isotropic effective mass of m∗ = 0.3me

may be defined for use in Eq. (2.16), giving similar results [20]. In this way, one is

able to derive the Kohn-Luttinger binding energy for donors in silicon: 31.2 meV [20].

This underestimates the ground-state binding energy of (e.g.) a bismuth donor, 70.88

meV [20].

Two complications quickly became apparent: multivalley effects and the central-cell

correction [21]. Subsequent developments in the treatment of shallow impurities have

focused on corrections for these two effects and attempts to include them in models.

This effort has met with success through the use of empirical fitting parameters, but

a full ab initio description has remained elusive. As recently as 2015, Saraiva et al.

reported that they were “unaware of any successful description of the complete spectrum

of the [shallow donor] 1s manifold from first principles.” [20]

2.8.2 Multivalley effects

In bulk silicon, the conduction-band minimum is a set of six degenerate valleys [19].

As discussed above, Kohn and Luttinger approximated these valleys as non-interacting,

effectively reducing the system to a one-valley problem with anisotropic effective masses

and achieving only rough agreement with experiment [18]. The largest correction is

valley-orbit coupling, which breaks the degeneracy of the valleys and significantly lowers

the energy of the ground state [20, 21, 22]. This is allowed because the effective-mass-

theory approximation of the impurity potential as a small perturbation of the host crystal

breaks down close to the impurity site. Group-theoretic arguments show that the 6-fold

degenerate CBM splits into states corresponding to irreducible representations of the Td

symmetry group: singlet A1, doublet E, and triplet T2 [20, 23]. Perturbative methods

with no adjustable parameters have had some success in describing intervalley coupling for
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phosphorus in silicon [24], but empirical impurity potentials fitted to experimental data

remain the standard for treating multivalley effects in effective mass methods [25, 26, 27],

tight-binding methods [28], and exact-diagonalization methods [23].

The different valley-orbit-coupled states have significantly different spatial distribu-

tions from one another, which in turn influences the hyperfine parameters [29]. Therefore

a correct description of valley-orbit coupling is essential, not only for the description of

binding energies, but for the calculation of hyperfine parameters.

2.8.3 Central-cell correction

The strong perturbation of the bulk potential near the impurity site is key to the cor-

rect description of multivalley effects, as discussed in Sec. 2.8.2. This perturbation has

other effects as well. The impurity potential is screened by valence electrons in the host,

and the host crystal itself will react to the presence of the impurity in complex material-

and impurity-dependent ways. These effects are collectively known as “central-cell cor-

rections”, a term which is sometimes defined to include valley-orbit coupling. Empirical

impurity potentials are the standard tool to account for central-cell corrections in effective

mass theory [30, 31, 32] and tight-binding [33]. The greater spread of multivalley wave-

functions in k-space allows them to be more concentrated towards the impurity center

in real space, making the central-cell correction more important for multivalley materi-

als such as silicon [20]. Since the isotropic hyperfine parameter (i.e., the Fermi contact

interaction) is based purely on the wavefunction at the impurity, central-cell corrections

are especially important for the hyperfine interaction [32, 33].
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2.8.4 Prior first-principles work

Density functional theory has been shown to correctly predict hyperfine parameters

for localized defect states [34], but shallow donors are more challenging. This difficulty

comes primarily from the spatial delocalization of the donor wavefunction (which is much

more extended than the size of typical DFT simulation cells) and from the overdelocal-

ization inherent in traditional functionals. Previous work in this area is discussed in

Sec. 3.2. Various authors have used ab initio impurity studies with a Green’s function

approach to study shallow donor wavefunctions [35, 36].

Given a linear operator L, a Green’s function is a function G(x, s) such that

LG(x, s) = δ(x− s) . (2.19)

Once calculated, the bulk Green’s function can be perturbed by the impurity potential,

as calculated in a small supercell, and then extended to calculate the entire wavefunction

of the shallow donor. The Green’s function method is well-suited for the calculation of

the hyperfine interaction of shallow donors because it does not rely on a supercell to

describe the wavefunction in the central region. Only the change in potential due to

the impurity is needed, since this information is sufficient to perturb the bulk Green’s

function. Non-negligible changes in the potential occur only quite close to the impurity

center, so the need for large supercells is avoided. However, since the Green’s function

ignores the long-range tail of the Coulomb potential for that part of the induced density

that is not contained within the perturbed region, the binding energy is not correctly

captured [35]. The perturbation of the bulk Green’s function by the impurity potential

is also complicated and requires various approximations. In spite of these complications,

hyperfine parameters have been successfully calculated by this method. In Ref. [35],

Overhof and Gerstmann calculated hyperfine parameters of various common shallow
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donors in silicon and found good agreement with experiment. In Ref. [36], Huebl et al.

employed the Green’s function method to include the effects of strain, again achieving

good agreement with experiment.

Over the past decade, the defect Green’s function method for treating impurities

in general has largely fallen out of favor due to increasing computational power and

improved algorithms to correct for supercell artifacts, and the fact that finding the bulk

Green’s function can be difficult. However, it remains attractive for calculating hyperfine

parameters, due to its ability to correctly simulate properties of the center of a defect

without needing to explicitly calculate a large supercell of the host material.

2.9 Electron-electron scattering

Electron-electron scattering is discussed in Chapter 4. The effects of this scattering

mechanism on transport signatures are described by Boltzmann transport theory. The

equilibrium occupation of a state in band n with crystal momentum k and energy εn,k

is given by the Fermi-Dirac distribution

f(εn,k) =

(
exp

(
εn,k − µ
kBT

)
+ 1

)−1

, (2.20)

where µ is the chemical potential, T is the temperature, and kB is the Boltzmann con-

stant. εn,k and µ are referenced to the conduction-band minimum. The Boltzmann

transport equation describes the effects of external forces, diffusion, and internal colli-

sions on the time evolution of the distribution function:

v · ∇f +
e

~
E · ∂f

∂k
=

(
∂f

∂t

)
scatt

. (2.21)
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We introduce Φn,k, the deviation of the distribution function from equilibrium:

fn,k = f(εn,k) + Φn,k
∂f(ε)

∂ε
. (2.22)

Letting X be the left-hand side of Eq. (2.21) and P be an operator representing the

effects of scattering, it can be shown [37] that Eq. (2.21) may be written as X = PΦ.

With the inner product 〈A,B〉 =
∑

n

∫
dkAB, this implies

〈Φ, X〉 = 〈Φ, PΦ〉 . (2.23)

The variational principle established by Ziman in Ref. [37] shows that the solution Φ

minimizes 〈Φ, PΦ〉. Using the trial function Φ = v · û, where û is the direction of the

electric field, this gives a collision integral for electron-electron scattering [38]:

〈Φ,PΦ〉 =
1

2kBT

1

(2π)9

2π

~
∑

n1,n2,n3,n4

∫
dk1dk2dk3dk4 (2.24)

× [(vn1,k1 + vn2,k2 − vn3,k3 − vn4,k4) · û]2

× f (εn1,k1) f (εn2,k2) [1− f (εn3,k3)] [1− f (εn4,k4)]

×
(
U

(eff)
k1,k3

)2

δ (εn1,k1 + εn2,k2 − εn3,k3 − εn4,k4)

× δ (k1 + k2 − k3 − k4) .

This represents scattering between two electrons in bands n and n′ with initial momenta

k1 and k2 and final momenta k3 and k4. U
(eff)
k1,k3

is the effective interaction for the momen-

tum transfer k3 − k1, and vn,k = 1/~ ∂ε/∂k is the band velocity. Note that momentum

conservation sends the velocity term (and thus the entire expression) to zero in the ab-

sence of a mechanism for “momentum relaxation”. This can be provided by Umklapp

processes (k1 + k2 − k3 − k4 = G, a lattice vector) or by scattering between states with
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different masses [39].

Eq. (2.24) can be normalized to give the resistivity:

ρel-el = N〈Φ, PΦ〉 , with N = [〈Φ, X(E = 1)〉]−2 , (2.25)

where X(E = 1) indicates the left-hand side of the Boltzmann transport equation with

a unit electric field. The normalization factor N is given by

N =
(2π)6

4e2

[∑
n

∫
dkvn,kΦn,k

∂f(εn,vk)

∂εn,k

]−2

. (2.26)

2.9.1 U (eff)

The form of U (eff) for the electron-electron interaction including Coulomb, optical

phonon-mediated, and acoustic phonon-mediated terms is [38]

U (eff) =UC + Uop + Uac (2.27)

UC =
4πe2

ε∞ (κ2
s + q2)

(2.28)

Uop =−
∑
λ

2 |Vq,λ|2

~ωq,λ (εe(q))2 (2.29)

Uac =−
2
∣∣∣V (ac)

q

∣∣∣2
~ω(ac)

q

. (2.30)

Coulomb term

The Coulomb term (in Gaussian units) is

UC =
4πe2

ε∞ (κ2
s + q2)

. (2.31)
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A common form of the screening length κs is given by the Thomas-Fermi approximation

κ2
s =

6πe2n0

ε∞EF
. (2.32)

This form has limited applicability. In particular, it is ill-defined when EF is negative, so

we use a generalized Thomas-Fermi screening [40], which is also described as Lindhard

screening:

κ2
s =

4πe2

ε∞

∂n

∂µ
. (2.33)

We use ε∞ since the scattering is on a shorter timescale than atomic motion. We calculate

the derivative numerically.

Some numerical results for these constants follow. In cgs units, e = 4.803×10−10 statC.

(Note that statC is the cgs unit of charge, and is equivalent to cm
√

dyn =
√

cm erg.)

Thus, e2 = 2.307×10−19 cm erg = 1.440×10−7 cm eV = 14.40 eV Å. 4πe2 = 180.95 eV Å.

When ∂n
∂µ

is expressed in eV−1 Å−3,

κ2
s =180.95

∂n

∂µ
Å
−2
. (2.34)

If q2 is expressed in Å−2, the Coulomb term is

UC =
4πe2

q2ε∞εe(q)
=

180.95

q2ε∞εe(q)
eV Å

3
. (2.35)

Optical term

We treat coupling between the electrons and the optical phonons through the Fröhlich

model. Derivation of the Fröhlich coupling for multiple optical modes was provided by
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Burak Himmetoglu and is reproduced here.

Uop =−
∑
λ

2 |Vq,λ|2

~ωq,λ (εe(q))2 (2.36)

εe(q) =1 +
κ2
s

q2
(2.37)

Vq,λ =
1

q

(
e2~ωL,λ

2ε0

) 1
2 1
√
ε∞


∏

j

(
1− ω2

T,j

ω2
L,λ

)
∏

j 6=λ

(
1− ω2

L,j

ω2
L,λ

)


1
2

(2.38)

Uop =−
∑
λ

2

~ωq,λ (εe(q))2

1

q2

e2~ωL,λ
2ε0

1

ε∞

∏
j

∣∣∣1− ω2
T,j

ω2
L,λ

∣∣∣∏
j 6=λ

∣∣∣1− ω2
L,j

ω2
L,λ

∣∣∣ (2.39)

=− 2e2~
~ (εe(q))2 q22ε0ε∞

∑
λ

ωL,λ
ωq,λ

∏
j

∣∣∣1− ω2
T,j

ω2
L,λ

∣∣∣∏
j 6=λ

∣∣∣1− ω2
L,j

ω2
L,λ

∣∣∣ (2.40)

=− e2

ε0ε∞

q2

(q2 + κ2
s)

2

∑
λ

ωL,λ
ωq,λ

∏
j

∣∣∣1− ω2
T,j

ω2
L,λ

∣∣∣∏
j 6=λ

∣∣∣1− ω2
L,j

ω2
L,λ

∣∣∣ (2.41)

=− 180.95 Å eV

ε∞

q2

(q2 + κ2
s)

2

∑
λ

ωL,λ
ωq,λ

∏
j

∣∣∣1− ω2
T,j

ω2
L,λ

∣∣∣∏
j 6=λ

∣∣∣1− ω2
L,j

ω2
L,λ

∣∣∣ (2.42)

Acoustic term

The acoustic-phonon-mediated term is given by [38]

Uac =−
2
∣∣∣V (ac)

q

∣∣∣2
~ω(ac)

q

where (2.43)

V (ac)
q =(4παac)

1/2 ~2

mD

q1/2 and (2.44)

αac =
E2
dm

2
D

8πn~3v
, (2.45)
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ωq = vq is the acoustic phonon frequency, n = 5.11 g cm−3 is the density of STO, Ed is

the deformation potential, mD is the density-of-states band mass, and v = 8.1×103 m s−1

is the speed of sound in STO. Note that mD cancels out. Thus

Uac =−
2(4παac)

~4
m2
D
q

~ωq
= −8παac~3q

m2
Dωq

= − 8πE2
dm

2
D~3q

m2
Dωq8πn~3v

= − E2
dq

ωqnv
. (2.46)

Assuming a linear phonon dispersion ωq = vq,

Uac =− E2
d

nv2
= −(0.477881 Å

3
eV−1)E2

d . (2.47)

2.9.2 Anisotropic parabola

It is desirable to contract the delta functions in 2.24 analytically, because numerical

smearing of the delta functions introduces troublesome artifacts. We therefore follow

Klimin et al. [38] and model the dispersion of SrTiO3 as a set of 3 anisotropic parabolic

bands

ε1 =tδ
a2

0k
2
x

4
+ tπ

a2
0k

2
y

4
+ tπ

a2
0k

2
z

4
, (2.48)

ε2 =tπ
a2

0k
2
x

4
+ tδ

a2
0k

2
y

4
+ tπ

a2
0k

2
z

4
, and (2.49)

ε3 =tπ
a2

0k
2
x

4
+ tπ

a2
0k

2
y

4
+ tδ

a2
0k

2
z

4
, (2.50)

where tπ is the curvature in the more dispersive direction, and tδ is the curvature in the

less dispersive direction. This is equivalent to

mπ =
2~2

a2
0tπ

, mδ =
2~2

a2
0tδ

. (2.51)
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The dispersion of the first band is

ε1 =
~2k2

x

2mδ

+
~2k2

y

2mπ

+
~2k2

z

2mπ

(2.52)

=
~2k2

xa
2
0tδ

4~2
+

~2k2
ya

2
0tπ

4~2
+

~2k2
za

2
0tπ

4~2
(2.53)

=tδ
a2

0k
2
x

4
+ tπ

a2
0k

2
y

4
+ tπ

a2
0k

2
z

4
. (2.54)

Changing units to dimensionless k,

ε1 =tδπ
2k2
x + tππ

2k2
y + tππ

2k2
z . (2.55)

The dispersions of the other bands are analogous.

2.9.3 Simplifying the collision integral

We now turn to a simplification of the collision integral [Eq. (2.24)]. A key aim is

to analytically satisfy all the δ functions, leaving an integral which may be calculated

numerically. Appendix A contains notes provided by J. T. Devreese and S. N. Klimin,

which were very valuable in this endeavor. However, our goal is to test the claimed T 2

scaling, so we must avoid making various Fermi liquid approximations which lead to that

T 2 behavior. These approximations will be discussed further in Sec. 4.3. For now, we

begin with Eq. (16) from Devreese’s notes, which contains the following expression for

the collision integral:
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〈Φ, PΦ〉 =
1

2kBT

1

(2π)9

2π

~
~2m

6
D

~14

∑
n,n′

(
1

m
(n)
zz

− 1

m
(n′)
zz

)2

m(n)
zz

∫
dΩ1 dΩ2 dΩ3 dΩ4 (2.56)∫ √

2ε1dε1

√
2ε2dε2

√
2ε3dε3

√
2ε4dε4 ×

(
U

(eff)
k1,k2

)2

f (εn,k1) f (εn′,k2)

[1− f (εn,k3)] [1− f (εn′,k4)] (p1 cos θ1 − p3 cos θ3)2

δ (εn,k1 + εn′,k2 − εn,k3 − εn′,k4) δ (k1 + k2 − k3 − k4) .

Furthermore, on page 6, the notes indicate that

δ(k1 − k3 + k2 − k4) =
~3

m
3/2
D

δ(p2 − p4 + Qn,n′) , (2.57)

and on page 7,

∫
dΩ2 dΩ4 δ(Qn,n′ + p2 − p4) =

2π

p2p4

1

|Qn,n′ |
Θ (Pmin < |Qn,n′| < Pmax) , (2.58)

where Pmin = |p2 − p4| and Pmax = p2+p4. We substitute these expressions into Eq. (2.24)

to get an expression for the collision integral without the approximations made in Ap-

pendix A which, as we will argue, do not hold in SrTiO3:

〈Φ, PΦ〉 =
1

2kBT

1

(2π)9

2π

~
~2m

6
D

~14

~3

m
3/2
D

2π
∑
n,n′

(
1

m
(n)
zz

− 1

m
(n′)
zz

)2

m(n)
zz

∫
dΩ1 dΩ3 (2.59)∫ √

2ε1dε1

√
2ε2dε2

√
2ε3dε3

√
2ε4dε4 ×

(
U

(eff)
k1,k2

)2

f (ε1) f (ε2)

[1− f (ε3)] [1− f (ε4)] (p1 cos θ1 − p3 cos θ3)2

δ (ε1 + ε2 − ε3 − ε4)
1

p2p4

1

|Qn,n′|
Θ (Pmin < |Qn,n′| < Pmax) .
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Since pj =
√

2εj, the denominator cancels with ε factors from the integration measure.

Carrying out this cancellation and contracting the delta functions,

〈Φ, PΦ〉 =
1

2kBT

1

(2π)9

2π

~
~2m

6
D

~14

~3

m
3/2
D

2π
∑
n,n′

(
1

m
(n)
zz

− 1

m
(n′)
zz

)2

m(n)
zz

∫
dΩ1 dΩ3 (2.60)∫ √

2ε1dε1 dε2

√
2ε3dε3 ×

(
U

(eff)
k1,k2

)2

f (ε1) f (ε2)

[1− f (ε3)] [1− f (ε1 + ε2 − ε3)]
(√

2ε1 cos θ1 −
√

2ε3 cos θ3

)2

1

|Qn,n′|
Θ (Pmin < |Qn,n′ | < Pmax)

=
m

9/2
D

kBT (2π)7~10

∑
n,n′

(
1

m
(n)
zz

− 1

m
(n′)
zz

)2

m(n)
zz

∫
dΩ1 dΩ3 dε1 dε2 dε3 (2.61)

√
ε1ε3

(
U

(eff)
k1,k2

)2

f (ε1) f (ε2) [1− f (ε3)] [1− f (ε1 + ε2 − ε3)](√
2ε1 cos θ1 −

√
2ε3 cos θ3

)2 1

|Qn,n′|
Θ (Pmin < |Qn,n′ | < Pmax)

=
m

9/2
D

kBT (2π)7~10

∑
n,n′

(
1

m
(n)
zz

− 1

m
(n′)
zz

)2

m(n)
zz

~6

m3
D

∫
dk1 dk3 dε2 (2.62)

(
U

(eff)
k1,k2

)2

f (ε1) f (ε2) [1− f (ε3)] [1− f (ε1 + ε2 − ε3)](√
2ε1 cos θ1 −

√
2ε3 cos θ3

)2 1

|Qn,n′|
Θ (Pmin < |Qn,n′ | < Pmax)

=
m

3/2
D

kBT (2π)7~4

∑
n,n′

(
1

m
(n)
zz

− 1

m
(n′)
zz

)2

m(n)
zz

∫
dk1 dk3 dε2 (2.63)

(
U

(eff)
k1,k2

)2

f (ε1) f (ε2) [1− f (ε3)] [1− f (ε1 + ε2 − ε3)](√
2ε1 cos θ1 −

√
2ε3 cos θ3

)2 1

|Qn,n′|
Θ (Pmin < |Qn,n′ | < Pmax)

=
m

3/2
D

2πkBT~4a6

∑
n,n′

(
1

m
(n)
zz

− 1

m
(n′)
zz

)2

m(n)
zz

∫ 1/2

−1/2

dk1 dk3

∫ εmax

0

dε2 (2.64)

(
U

(eff)
k1,k2

)2

f (ε1) f (ε2) [1− f (ε3)] [1− f (ε1 + ε2 − ε3)](√
2ε1 cos θ1 −

√
2ε3 cos θ3

)2 1

|Qn,n′|
Θ (Pmin < |Qn,n′ | < Pmax) .
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We note that

cos θ1 =
p1,z

p1

√
2ε1 cos θ1 =p1,z . (2.65)

Therefore,

〈Φ, PΦ〉 =
m

3/2
D

2πkBT~4a6

∑
n,n′

(
1

m
(n)
zz

− 1

m
(n′)
zz

)2

m(n)
zz

∫ 1/2

−1/2

dk1 dk3

∫ εmax

0

dε2 (2.66)

(
U

(eff)
k1,k2

)2

f (ε1) f (ε2) [1− f (ε3)] [1− f (ε1 + ε2 − ε3)]

(p1,z − p3,z)
2 1

|Qn,n′|
Θ (Pmin < |Qn,n′ | < Pmax) .

Verification

Now that we have arrived at a simplified expression without the Fermi liquid approx-

imations, we verify that this expression replicates the results from Ref. [38] when their

assumptions are in place.

~
τ

=(kBT )2 π

192

n0

(4π)2

m
3/2
D mb

~3µ3
p4
µ

∑
n,n′

(
1

m
(n)
zz

− 1

m
(n′)
zz

)2

m(n)
zz (2.67)

×
∫ π

0

sin θ1 dθ1

∫ π

0

sin θ3 dθ3

∫ 2π

0

dϕ1

∫ 2π

0

dϕ3

(
U

(eff)
k1,k2

)2

× (cos θ1 − cos θ3)2

|Qn,n′|
Θ(2pµ − |Qn,n′ |) .

This matches Klimin’s result [38]. Converting to resistivity requires

~
τ

=
~ω2

p

4π
ρ , ω2

p =
4πe2n0

mb

. (2.68)
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Therefore Klimin’s result may also be written

ρ =(kBT )2 π

192

1

(4π)2e2

m
3/2
D m2

b

~4µ3
p4
µ

∑
n,n′

(
1

m
(n)
zz

− 1

m
(n′)
zz

)2

m(n)
zz (2.69)

×
∫ π

0

sin θ1 dθ1

∫ π

0

sin θ3 dθ3

∫ 2π

0

dϕ1

∫ 2π

0

dϕ3

(
U

(eff)
k1,k2

)2

× (cos θ1 − cos θ3)2

|Qn,n′|
Θ(2pµ − |Qn,n′ |) .

Approximation: pj → pµ

We make the approximation that pj is given by its value at the Fermi level. As

discussed on page 7 of the notes in Appendix A, this approximation allows Eq. (2.69) to

be derived from 2.56, reproduced below:

〈Φ, PΦ〉 =
1

2kBT

1

(2π)9

2π

~
~2m

6
D

~14

∑
n,n′

(
1

m
(n)
zz

− 1

m
(n′)
zz

)2

m(n)
zz

∫
dΩ1 dΩ2 dΩ3 dΩ4 (2.70)∫ √

2ε1dε1

√
2ε2dε2

√
2ε3dε3

√
2ε4dε4 ×

(
U

(eff)
k1,k2

)2

f (εn,k1) f (εn′,k2)

[1− f (εn,k3)] [1− f (εn′,k4)] (p1 cos θ1 − p3 cos θ3)2

δ (εn,k1 + εn′,k2 − εn,k3 − εn′,k4) δ (k1 + k2 − k3 − k4) .

There are three steps involved. One is

δ(k1 − k3 + k2 − k4) =
~3

m
3/2
D

δ(p2 − p4 + Qn,n′) (2.71)∫
dΩ2 dΩ4 δ(Qn,n′ + p2 − p4) =

2π

p2p4

1

|Qn,n′ |
Θ (Pmin < |Qn,n′| < Pmax) . (2.72)

Eqs. 2.71 and 2.72 hold without any approximations. For the second step, we note that

ε4 =ε1 + ∆ and ε3 = ε2 + ∆′ . (2.73)
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The delta function δ(ε1 + ε2 − ε3 − ε4) guarantees ∆′ = −∆.

∫
dε1 dε2 dε3 dε4 f (ε1) f (ε2) [1− f (ε3)] [1− f (ε4)] δ(ε1 + ε2 − ε3 − ε4) (2.74)

=

∫
dε1 dε2 dε3 f (ε1) f (ε2) [1− f (ε3)] [1− f (ε1 + ε2 − ε3)] (2.75)

=

∫ ε2

−ε1
d∆

∫ ∞
0

dε1 f (ε1) [1− f (ε1 + ∆)]

∫ ∞
0

dε2 f (ε2) [1− f (ε2 −∆)] (2.76)

=(kBT )3

∫ ∞
−∞

z2 e−z

(1− e−z)2
dz =

2π2

3
(kBT )3 . (2.77)

This has been verified numerically in the case µ� kBT . However, this is the key source of

the T 2 scaling, and the integral does not give T 2 in intermediate regimes (see Sec. 4.3.3),

so we must retain the integral to be done numerically at each desired temperature.

~
τ

=
1

kBT

1

128π

n0

(4π)2

m
3/2
D mb

~3µ3
p4
µ

∑
n,n′

(
1

m
(n)
zz

− 1

m
(n′)
zz

)2

m(n)
zz

∫
dε1 dε2 dε3 dε4 (2.78)

× f (ε1) f (ε2) [1− f (ε3)] [1− f (ε1 + ε2 − ε3)]

∫ π

0

sin θ1 dθ1

∫ π

0

sin θ3 dθ3

×
∫ 2π

0

dϕ1

∫ 2π

0

dϕ3

(
U

(eff)
k1,k2

)2 (cos θ1 − cos θ3)2

|Qn,n′|
Θ(2pµ − |Qn,n′ |) .

Distributing p4
µ back into the integral,

~
τ

=
1

kBT

1

128π

n0

(4π)2

m
3/2
D mb

~3µ3

∑
n,n′

(
1

m
(n)
zz

− 1

m
(n′)
zz

)2

m(n)
zz

∫ √
2µ dε1

√
2µ dε2

√
2µ dε3

(2.79)

×
∫ √

2µ dε4 f (ε1) f (ε2) [1− f (ε3)] [1− f (ε1 + ε2 − ε3)]

∫ π

0

sin θ1 dθ1

∫ π

0

sin θ3 dθ3

×
∫ 2π

0

dϕ1

∫ 2π

0

dϕ3

(
U

(eff)
k1,k2

)2 (
√

2µ cos θ1 −
√

2µ cos θ3)2

√
2µ
√

2µ |Qn,n′|
Θ(2pµ − |Qn,n′ |) .
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Calculating resistivity from scattering rate

The plasma frequency is

ω2
p =

4πe2n0

mb

. (2.80)

This allows

ρ =
4π

ω2
p~

~
τ

=
mb

e2n0~
~
τ
. (2.81)

Final simplification

We have

~
τ

=
1

kBT

1

128π

n0

(4π)2

m
3/2
D mb

~3µ3

∑
n,n′

(
1

m
(n)
zz

− 1

m
(n′)
zz

)2

m(n)
zz

∫
p1 dε1 p2 dε2 p3 dε3 p4 (2.82)

× f (ε1) f (ε2) [1− f (ε3)] [1− f (ε1 + ε2 − ε3)]

∫ π

0

sin θ1 dθ1

∫ π

0

sin θ3 dθ3

×
∫ 2π

0

dϕ1

∫ 2π

0

dϕ3

(
U

(eff)
k1,k2

)2 (p1 cos θ1 − p3 cos θ3)2

p2p4 |Qn,n′ |
Θ(2pµ − |Qn,n′ |) .

Converting to resistivity,

ρ =
1

kBT

1

128π

1

e2(4π)2

m
3/2
D m2

b

~4µ3

∑
n,n′

(
1

m
(n)
zz

− 1

m
(n′)
zz

)2

m(n)
zz

∫
p1 dε1 p2 dε2 p3 dε3 p4 (2.83)

× f (ε1) f (ε2) [1− f (ε3)] [1− f (ε1 + ε2 − ε3)]

∫ π

0

sin θ1 dθ1

∫ π

0

sin θ3 dθ3

×
∫ 2π

0

dϕ1

∫ 2π

0

dϕ3

(
U

(eff)
k1,k2

)2 (p1 cos θ1 − p3 cos θ3)2

p2p4 |Qn,n′ |
Θ(2pµ − |Qn,n′ |) .
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However, this expression still contains the denominator evaluated in the fixed-µ approx-

imation

[〈Φ, X(E = 1)〉]2 =e2 8

π4

µ3

~6

m3
D

m2
b

. (2.84)

Removing this from the expression for the resistivity, we have a final expression for the

main integral

〈Φ, PΦ〉 =
1

2kBT

1

(2π)7

m
9/2
D

~10

∑
n,n′

(
1

m
(n)
zz

− 1

m
(n′)
zz

)2

m(n)
zz

∫
p1 dε1 p2 dε2 p3 dε3 p4 (2.85)

× f (ε1) f (ε2) [1− f (ε3)] [1− f (ε1 + ε2 − ε3)]

∫ π

0

sin θ1 dθ1

∫ π

0

sin θ3 dθ3

×
∫ 2π

0

dϕ1

∫ 2π

0

dϕ3

(
U

(eff)
k1,k2

)2 (p1 cos θ1 − p3 cos θ3)2

p2p4 |Qn,n′ |
Θ(2pµ − |Qn,n′ |) .

This can also be derived from Eq. (2.56) by applying Eqs. (2.71) and (2.72). All that

remains is to explicitly calculate the denominator

[〈Φ, X(E = 1)〉]2 =
4e2

(2π)6

[∑
n

∫
dkvn,kΦn,k

∂f(εn,vk)

∂εn,k

]2

, (2.86)

or in reduced units,

[〈Φ, X(E = 1)〉]2 =
4e2

a6

[∑
n

∫
dkvn,kΦn,k

∂f(εn,vk)

∂εn,k

]2

. (2.87)

Eqs. 2.24, 2.85, and 2.87 represent the final equations which we implement in code in

order to calculate the electron-electron scattering rate.
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2.9.4 Code

The code used to calculate electron-electron scattering rates is written in C and uses

Divonne, a Monte Carlo integration algorithm which uses stratified sampling for variance

reduction, as implemented in the Cuba package [41]. The full code may be found at

https://bitbucket.org/numenorean7/electron-electron/.
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Chapter 3

Shallow Donors in Silicon

3.1 Introduction

Doped semiconductors are well known as the heart of modern electronics, but they

are also an exciting platform for novel quantum computation in the form of spin-based

qubits. Doping of semiconductors is typically accomplished through the introduction

of so-called “shallow” impurities that contribute carriers to the delocalized band states:

electrons to the conduction-band minimum (CBM) in the case of shallow donors (n-type

doping) or holes to the valence-band maximum (VBM) in the case of shallow acceptors

(p-type doping).

A shallow donor is an impurity with charge +1 relative to the host crystal (in the case

of a single donor) which donates an electron to the conduction band. A shallow acceptor

behaves similarly with opposite sign of the charges. According to “effective-mass theory”

(discussed in Sec. 2.8.1), a donor modifies the band occupied by the donated electron

much like a point charge modifies the vacuum states. This creates “hydrogenic” states

in which the electron is loosely bound to the donor, analogous to the bonding of an

electron to a proton in a free hydrogen atom. Originally studied by Kohn and Luttinger
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in the 1950s [16, 17, 42, 18], this model has been extended and improved, but still faces

limitations due to its intrinsic approximations. Within hydrogenic effective mass theory,

screening of the impurity potential is approximated by using the macroscopic dielectric

constant, but actual screening by the valence electrons proceeds in complex material-

and impurity-dependent ways. These are known as “central-cell” effects (see Sec. 2.8.3).

Further complications arise from the fact that the conduction-band minimum of silicon

is a set of six degenerate valleys [19]. These six valleys are not independent, but mix and

split through a process known as “valley-orbit coupling”. Group theoretic arguments

show that the CBM splits into states corresponding to irreducible representations of

the Td symmetry group: singlet A1 (the ground state), doublet E, and triplet T2 (see

Sec. 2.8.2).

Developments in the treatment of shallow impurities have largely focused on cor-

rections for these effects and attempts to include them in models. [25, 23, 26, 27, 20]

Within effective mass theory, this effort has met with success largely through the use of

empirical fitting parameters. It is desirable to avoid fitting to experimental input and to

calculate properties of shallow impurities from first principles. This effort has met with

some success using a variety of techniques (as discussed in Sec. 3.2), but accuracy has

been limited by electron overdelocalization of traditional functionals and by the large size

of the donor wavefunction compared to typical simulation-cell sizes. We overcome these

obstacles by using a hybrid functional to provide a correct description of localization,

and demonstrate a simple extrapolation to the dilute limit using traditional functionals.

This technique provides results that are in excellent agreement with experiment.

Our ability to model shallow donors using first-principles methods provides valuable

background for the engineering of silicon-based spin qubits [43, 44]. This theoretical un-

derstanding also allows us to explain an unusual phenomenon observed in experiments

by Pla et al. [45] These experiments use electron spin resonance (ESR) to measure tran-
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sitions between total-spin states of the coupled electron-nucleus spin degree of freedom

of shallow bismuth donors in silicon. They observe a split Hahn echo peak corresponding

to the |4,−4〉 ↔ |5,−5〉 transition. Orientation-dependent measurements suggest that

this results from strain caused by the thermal contraction of an aluminum resonator

patterned on the surface of the sample.

This result raises the question: how does strain cause such a dramatic splitting in

the ESR line? Traditionally, strain effects have been explained through the “valley re-

population model” [46], which describes changes in the valley-orbit ground state caused

by shifts of the conduction-band valleys. This model provides no explanation for the

observed ESR splittings. Pla et al. proposed a possible mechanism involving a term in

the ESR Hamiltonian which couples the quadrupole moment of the donor nucleus with

the electric field gradient (EFG) induced by the electron wavefunction. Their model

included a parameter γ, which enters as a scaling term in the quadrupole Hamiltonian.

The main contribution to this term should be the Sternheimer antishielding factor, a

measure of how the core electrons amplify an externally-applied EFG (in this case com-

ing from the shallow donor wavefunction). Isolated Bi+ ions have γ = −925.6. They find

that γ = −900 fits their data. It remains to be seen whether this value of γ is realistic

for a bismuth donor in silicon. Other observations, such as g-factor anisotropy, are also

not well explained by the quadrupole mechanism. [45] Ab initio calculations using the

projector-augmented-wave method have successfully determined EFGs at nuclei without

using empirical corrections such as the Sternheimer antishielding factor [47]. An accurate

calculation of the donor wavefunction will thus allow the determination of the EFG at

the nucleus and the strength of the quadrupole coupling. Subsequent experiments by

the Morton group identified an unexpectedly large dependency of the isotropic hyperfine

parameter A on the hydrostatic component of strain [48]. We therefore also study strain

effects on shallow donors using our first-principles technique.
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3.2 First-principles studies of shallow impurities

Density functional theory (DFT) has been shown to correctly predict hyperfine pa-

rameters for localized defect states [34], but shallow states are more challenging due to

the large extent of the wavefunction. Capturing this large extent within a supercell ap-

proach, which is the most commonly used technique to calculate impurities in solids [13],

is extremely challenging. Calculations based on an impurity Green’s function approach

are in principle more suited (see Sec. 2.8.4), and have been successfully used to study

the isotropic hyperfine parameter of shallow donors [35] and to explore their evolution

for phosphorus donors at very high strain [36]. However, the Green’s function technique

is far less intuitive than the supercell approach, and is difficult to generalize.

To overcome the limitations of the supercell approach, Wang [49] used a potential

patching method to calculate supercells up to 64,000 atoms, achieving modest success in

the calculation of binding energies of some acceptors. Yamamoto et al. [22] modeled an As

donor in Si by performing DFT calculations using the generalized gradient approximation

(GGA) for supercells up to 10,648 atoms. They calculated binding energies based on

wavefunctions extracted from the supercells combined with a model for the screened

impurity potential, and found a good description of the Bohr radius and the binding

energy. More recently, Smith et al. [50] used a similar approach for P in Si. These studies

show that, while it is extremely difficult to capture the exponential tail of shallow impurity

wavefunctions with first-principles methods, DFT is able to describe the wavefunction in

the vicinity of the impurity. This is encouraging because the isotropic hyperfine coupling

and quadrupole coupling both depend on the properties of the wavefunction at the donor

nucleus. This also suggests that it may be possible to introduce a systematic correction for

errors induced by the overlap of the exponential tail of the wavefunction into neighboring

supercells.
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In this work, we present DFT calculations of the arsenic and bismuth shallow donor

in Si. Calculated values of the hyperfine parameter and donor binding energies are in

good agreement with experiment in the isolated limit. We also demonstrate that the

variation of the isotropic hyperfine parameter as a function of strain can be captured in

feasible supercell calculations, correctly including central-cell and valley-orbit effects.

The present work is on silicon, but the same techniques should work for donors in other

multivalley semiconductors such as germanium. Donors in single-valley semiconductors

such as gallium arsenide are simpler due to the lack of multivalley effects, and are much

better described by effective mass theory [20]. We also expect that our techniques can

be generalized to shallow acceptors, including the treatment of the degeneracy at the

valence-band maximum.

3.3 Computational methods

A general overview of our computational approach to modeling shallow donors may

be found in Sec. 2.8. Here we discuss specifics of the methodology that are pertinent to

the questions at hand.

3.3.1 Binding energies

The binding energy of a shallow donor can be obtained from the Kohn-Sham eigen-

values:

Eb = εdonor
Γ − εCB

Γ + ∆ (3.1)

where εdonor
Γ is the Kohn-Sham eigenvalue of the occupied donor state (evaluated at Γ,

as discussed in Sec. 3.3.6) and εCB
Γ is the Kohn-Sham eigenvalue of the conduction band

in a bulk calculation of a supercell of the same size (also evaluated at Γ for consistency).
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Because the Kohn-Sham eigenvalues are referenced to the average electrostatic potential,

we must adjust for any shifts in the potential due to the presence of the impurity in

order to meaningfully compare eigenvalues between bulk and impurity cells. Assuming

the valence-band maximum is unperturbed by the presence of the donor impurity, this

alignment may be accomplished by introducing the correction term ∆ = εVBM,bulk −

εVBM,defect. This term aligns the Kohn-Sham levels between the bulk and donor cells,

allowing for meaningful comparison.

3.3.2 Strain effects

The isotropic hyperfine parameter is given by Eq. (3) of Ref. [34]:

A =
2µ0

3
geµBgIµN |Ψ(r)|2 , (3.2)

where ge is the electron g-factor, gI is the g-factor of the nucleus in question, µB is

the Bohr magneton, muN is the nuclear magneton, and Ψ(r) is the wavefunction at the

nucleus. Symmetry restricts the form of the strain dependence of the isotropic hyperfine

parameter [48]. Expanded to second order in strain, this dependence is given by

A/A0 =1 +
K

3
(εxx + εyy + εzz) (3.3)

+
L

2

[
(εyy − εzz)2 + (εyy − εzz)2 + (εyy − εzz)2

]
,

where A0 is the value in the absence of strain. Shear terms were also included in Ref. [48],

but were shown to be negligible; they will not be discussed here. The valley repopulation

model [46] predicts a quadratic dependence of L = −2Ξ2
u/(9∆2), where Ξu = 8.6 eV is

the uniaxial deformation potential of the CBM and ∆ is the splitting between the A1 and

the E valley-orbit states. This gives a numerical value of L = −9720, in good agreement
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with experiment [46, 36, 48].

Since hydrostatic strain acts on all the valleys equally, it will not lead to a repopu-

lation effect. However, the magnitude of the wavefunction at the donor nucleus—which

determines A—will be affected by hydrostatic strain, leading to a nonzero value of K.

At the level of effective mass theory, a dependence on hydrostatic strain occurs through

variations in the dielectric constant ε and effective mass m∗. The donor Bohr radius aD

is proportional to ε/m∗ [19]. Literature shows that these properties vary linearly with

small hydrostatic pressure. According to Ref. [51], ∆ε/ε = −2.8× 10−3 for P = 1 GPa,

and according to Ref. [52], ∆m∗/m∗ = −1.4 × 10−3 for P = 1800 kg/cm2. Using the

bulk modulus of silicon (97.88 GPa) [53], these results give the dependence of ε and m∗

on small hydrostatic strain εxx = εyy = εzz = ε:

∆ε

ε
= 0.819ε and

∆m∗

m∗
= 2.322ε . (3.4)

The donor Bohr radius is therefore given by

aD(ε) = aD0

1 + 0.819ε

1 + 2.322ε
. (3.5)

The EMT wavefunction is proportional to a
−3/2
D and the hyperfine parameter is propor-

tional to the square of the wavefunction at the nucleus [Eq. (3.2)] [19]. Therefore the

hyperfine parameter is

A(ε) = A0
(1 + 2.322ε)3

(1 + 0.819ε)3
= A0

(
1 + 4.524ε+O(ε2)

)
. (3.6)

In the notation of Eq. (3.3), this corresponds to K = 4.524. The experimentally

observed value is K = 19.1 [48]. Within effective mass theory, the impact of hydrostatic

strain is clearly not negligible, but it is also clearly not the dominant factor. Other
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factors, such as central-cell effects which lead to mixing with the donor 2s states, also

play a role [48]. We will use first-principles computations to capture these effects.

3.3.3 Density Functional Theory

We use DFT with the standard approach discussed in Chapter 2. Calculations em-

ployed the HSE functional with the standard parameters as well as the PBE functional.

Hyperfine parameters were calculated following the methodology described in Refs. [54]

and [55], and electric field gradients and quadrupole couplings were calculated using the

method of Ref. [47]. Calculations were performed in supercells that are n×n×n multiples

of the conventional 8-atom cubic cell. The largest PBE supercell corresponds to n=7,

containing N=2744 atoms. The largest HSE supercell corresponds to n=4, containing

N=512 atoms. Further details may be found in Sec. 2.8.

3.3.4 Finite size effects

The Bohr radius of a shallow donor in silicon within effective mass theory is approx-

imately 23.8 Å. This is only slightly smaller than the side lengths of the largest (n = 7,

N = 2744) supercells we use: 32.8 Å. The Coulomb envelope only drops to 1% of its

central value 54.7 Å from the center. Therefore, a significant part of this exponential tail

necessarily overlaps into neighboring supercells. We will therefore need to extrapolate to

the N →∞ limit, where N is the number of atoms in the supercell, in order to calculate

physical results. We expect that, for large enough supercells, the error will scale inversely

with the volume of the supercell, or equivalently with 1/N .
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3.3.5 Occupation of states

Occupancies of the Kohn-Sham states in DFT are typically set through a “smearing”

procedure. This is done to avoid various convergence issues that can arise when bands

are partially occupied, and a scheme for extrapolating to zero smearing is typically in-

cluded. This procedure is benign for most situations, but it leads to severe problems in

this particular case. The energy spacing between valley-orbit split states of the donor

wavefunction is approximately 10 meV, comparable in size to the smallest smearing pa-

rameters typically used; smearing will mix states other than the ground state into the

final charge density. This is a problem because the A1 state has a peak at the nucleus,

while the other states have nodes. We are comparing to experiments performed at low

temperature, so the measured properties are determined entirely by the ground state.

Mixing with excited states of the donor will defeat any chance of calculating the hyper-

fine parameter correctly. To overcome this issue, we do not use smearing in our final

calculations. This requires care to ensure proper convergence, but has proven feasible

through the use of intermediate calculations which include small amounts (e.g. 0.01 eV)

of smearing.

3.3.6 Brillouin zone sampling

The A1 valley-orbit ground state is made up of a combination of all six conduction-

band valley states. Therefore a correct calculation of the donor wavefunction must include

contributions from each valley. For the equilibrium structure, and under hydrostatic

strain, the six valleys are equivalent and equally occupied. Under uniaxial deformation,

splitting of the valleys occurs, and ensuring correct sampling of all of the valleys (which

is necessary to obtain the correct valley-orbit splitting) could be tricky.

Most of the supercells used in the present study are large enough to ensure that, in
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reciprocal space, the conduction-band valleys are folded back to a point very close to the

zone center. Therefore sampling the Brillouin zone at a single k point automatically al-

lows for all of the proper interactions and mixing between the valleys in the self-consistent

calculation. Our calculations use the Γ point to maintain an unbiased sampling of the

valleys and to reduce the computational demand. A detailed analysis of Brillouin-zone

sampling was included in Ref. [50], and also reached the conclusion that sampling at the

Γ point provided reliable results.

We verified that our calculations capture the correct valley-orbit state through sym-

metry analysis of the wavefunction [see Sec. 3.4.5].

3.4 Results

3.4.1 Binding energies

Calculated binding energies for bismuth and arsenic shallow donors in silicon are

shown in Fig. 3.1. For sufficiently large supercells, the error in the calculated binding

energy comes from the exponential tail of the donor wavefunction, which extends into

neighboring supercells. This error is expected to scale inversely with the volume of the

supercell (see Sec. 3.3.4), and therefore we plot our results as a function of 1/N where

N is the number of atoms in the supercell. Our results for bismuth donor supercells

with n ≥ 4 (N ≥ 512) show a clear linear trend with 1/N , allowing extrapolation to

the N → ∞ limit. Extrapolating PBE results gives a value of −21.4 meV for bismuth

donors, significantly underestimating the experimental result of −70.9 meV [20]. For the

arsenic donors, the PBE extrapolated value is −12.5 meV, compared to an experimental

value of −53.8 meV [20].

This underestimation of the binding energy can be attributed to the over-delocalization
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Figure 3.1: a) Binding energy [Eq. (3.1)] for a bismuth donor as a function of supercell
size. PBE results are in blue circles and HSE results are in orange squares. The blue
line is a linear fit to the PBE data for n ≥ 4, N ≥ 512: Eb = −0.0214 − 35.4/N .
The orange line is an extrapolation from the HSE n = 4, N = 512 point using the
PBE slope: Eb = −0.0697 − 35.4/N . This HSE extrapolated value of −69.7 meV is
in excellent agreement with the experimental binding energy of −70.9 meV, shown
as a black dashed line. b) Similar results for an arsenic donor. Blue PBE line fit
to data with for n ≥ 4, N ≥ 512 is Eb = −0.0125 − 26.6/N , orange HSE line is
Eb = −0.0513 − 26.6/N This HSE extrapolated value of −51.3 meV is in very good
agreement with the experimental binding energy of −53.8 meV.
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of the wavefunctions inherent in PBE which results in a lower spin density close to

the impurity site and thus a lower Coulomb attraction between the electron and the

donor nucleus. This effect has been found in previous work on shallow impurities using

DFT [22, 49, 50]. A better description of localization can be achieved with more sophisti-

cated functionals, such as the HSE hybrid functional. The vastly greater computational

cost of HSE does not allow the calculation of supercells large enough to reliably calculate

all properties of the donor wavefunction; however, we are able to perform calculations up

to n=4 (N=512) (see Fig. 3.2).

As we can see from the PBE results, results obtained with theN=512 (n=4) supercells

are still far from the converged value; however, the PBE results also show that N=512 is

within the regime in which the value of the hyperfine parameter A scales as 1/N . We can

therefore rely on the known PBE scaling (which we assume also applies to HSE; this will

be verified in Sec. 3.4.2) to extrapolate the HSE results to N →∞. This procedure gives

−69.7 meV for Bi donors and −51.3 meV for As donors, in excellent agreement with the

experimental values (−70.9 meV for Bi and −53.8 meV for As) [20]. These results show

that HSE is able to correct the PBE underestimation of shallow donor binding energies

in silicon, achieving remarkable agreement with experiment.

3.4.2 Hyperfine parameter

Results for the hyperfine parameter of bismuth and arsenic shallow donors are shown

in Fig. 3.2. The error is expected to scale inversely with the volume of the supercell

much as in the case of binding energies (see Sec. 3.4.1), so we again plot our results as a

function of 1/N . The linear trend in hyperfine parameter for PBE calculations starts at

even lower cell size of n ≥ 3 (N ≥ 216) than the binding energies, allowing extrapolation

to the N → ∞ limit. Extrapolating PBE results gives a value of 891 MHz for bismuth
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Figure 3.2: a) Calculated isotropic hyperfine parameter for a bismuth donor in silicon
as a function of 1/N , where N is the number of atoms in the supercell. PBE results
are in blue, and the line shows a linear fit for n ≥ 3, N ≥ 216: A = 891+4.40×105/N .
HSE results are in orange, and the line shows a linear fit for n ≥ 3, N ≥ 216 with the
slope fixed to match the PBE fit: A = 1310 + 4.40× 105/N . The dashed black line is
the experimental value, A = 1475 MHz. b) Calculated isotropic hyperfine parameter
for an arsenic donor in silicon as a function of 1/N , with the same color coding as the
top plot. PBE fit: A = 93.6 + 1.06× 105/N . HSE fit with slope fixed by the PBE fit:
A = 148.2 + 1.06× 105/N . The experimental value is A = 198.3 MHz.
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donors, significantly underestimating the experimental result of 1475 MHz [45]. For the

arsenic donors, the extrapolated value is 93.6 MHz, compared to an experimental value

of 198.3 MHz [20].

This underestimation of the hyperfine parameter is due to PBE overdelocalization,

and may be fixed using HSE in a similar way to that employed for the binding energies.

HSE results show linear scaling in the same regime as PBE and with the same slope,

supporting our assertion that PBE scaling extends to HSE results for binding energies.

This procedure gives 1310 MHz for Bi donors and 148.2 MHz for As donors (compared

with experimental values of 1475 MHz for Bi [45] and 198.3 MHz for As.[20]), providing

a vast improvement over PBE.

3.4.3 Electric field gradients and quadrupole couplings

We have calculated the EFG at the nucleus of the Bi shallow donor in unstrained

silicon and find it to be zero to within the accuracy of our calculations; we estimate the

error bar to be approximately 1 V/Å2, corresponding to a quadrupole interaction strength

of approximately 1 MHz. For the unstrained case, the zero value is as expected, since

symmetry arguments show that the EFG should vanish [45]. However, the calculated

EFGs remain zero (within the error bar) when strain is applied. This runs counter to

the hypothesis of Pla et al. [45], which assumed a quadrupole interaction on the order

of 100 MHz, and thus calls into question the proposed quadrupole mechanism for the

splitting observed in the ESR spectrum. These results highlight the need for a different

mechanism to explain the observed splitting. In the next section we will explore the shift

of the isotropic hyperfine parameter with the hydrostatic component of strain.
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3.4.4 Strain

The calculated dependence of the isotropic hyperfine parameter on strain is shown in

Fig. 3.3 for a bismuth donor in silicon (using PBE in the n = 6, N = 1728 supercell).

Figure 3.3 (a) shows the data for hydrostatic strain, which are well described by a linear

fit up to the highest strains tested (2 × 10−3), with a coefficient that corresponds to

K = 17.5 [Eq. (3.3)]. This value is in good agreement with the experimental value

K = 19.1 [48]. Figure 3.3 (b) shows uniaxial strain. We varied εzz up to 2×10−3, keeping

εxx = εyy = 0. The calculated points are fitted to Eq. (3.3) using the K value obtained

from the hydrostatic strain calculations. The quadratic term is found to be L = −11700.

Using tight binding, Mansir et al. [48] obtained L = −9064; they also reported a value

L = −9720 predicted by the valley repopulation model. Deviations from the quadratic

behavior are observed for higher strains, consistent with the higher-order repopulation

effects.

The linear fit to hydrostatic component of strain [Fig. 3.3 (a)] for n = 6, N = 1728

may be repeated at different supercell sizes and subjected to similar scaling analysis as

binding energies (Sec. 3.4.1) and hyperfine parameters (Sec. 3.4.2). The results of this

procedure are shown in Fig. 3.4. K also shows linear scaling with 1/N , but it begins

at a higher N value than observed for the hyperfine parameter itself. Extrapolation to

the dilute limit gives a coefficient of K = 20.2, in good agreement with the experimental

value K = 19.1 [48]. We have not attempted an HSE correction, since PBE and HSE

results for K are very similar at small N .

The bismuth-silicon bond lengths in the unstrained case are 2.651 Å, compared to

2.367 Å in bulk silicon. When hydrostatic strain is applied, all Bi-Si and Si-Si bond

lengths simply scaled by hydrostatic strain to within better than 0.001 Å. Our results

clearly show that the isotropic hyperfine parameter depends linearly on the hydrostatic
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Figure 3.3: a) A/A0 − 1 versus hydrostatic strain for a bismuth donor in silicon in
the n = 6, N = 1728-atom supercell using PBE. A linear fit produces K = 17.5
[Eq. (3.3)]. b) A/A0 − 1 versus uniaxial strain for a bismuth donor in silicon. Taking
K = 17.5 fixed based on the hydrostatic case, a fit to the data up to ε = 10−3 using
Eq. (3.3) is shown, which gives L = −11700.
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in blue circles, HSE in orange squares. A fit to PBE data for N ≥ 512 is shown:
K = 20.2− 5290/N . The dashed line shows the experimental value.
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component of strain with a coefficient that significantly differs from that predicted by

effective mass theory, highlighting the importance of valley-orbit coupling and central-cell

corrections.

3.4.5 Irreducible representations

The symmetry and group-theoretic properties of the ground-state wavefunction are

key to all of our results. As discussed in the Introduction, the 6-fold degenerate CBM

splits into states corresponding to irreducible representations (irreps) of the Td symmetry

group: singlet A1, doublet E, and triplet T2 [20, 23]. The A1 wavefunction (the fully

symmetric state) has a peak at the center while the others have nodes. This allows the

A1 state to maximize the Coulomb binding energy, making it the ground state, with

an energy that is significantly lowered compared to effective mass theory. This also

means that the hyperfine parameter is directly related to the amount of A1 character

in the ground state; as more of the other irreps are mixed in, the hyperfine parameter

decreases. In the case of uniaxial strain (Fig. 3.3, second panel), the symmetry is lowered,

at the expense of the weight of the fully symmetric A1 state, and A decreases for both

compressive and expansive uniaxial strain.

To demonstrate that our calculations correctly capture these symmetry effects, we

project out the portions of the donor wavefunctions which transform according to the

various irreps of Td. We use the projection operator

P̂ j =
lj
h

∑
R

χ(R)jR̂ , (3.7)

where j indexes the various irreps, lj is the dimension of the irrep, h is the order of the

Td group, R is summed over all the symmetry operations in the group, and χ(R)j is the

character of the operation in the jth representation [56]. Note that the rotation matrices
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Figure 3.5: Fraction of the spin density which transforms according to the A1 irre-
ducible representation [Eq. (3.8)], plotted as a function of applied uniaxial strain. At
zero strain, ρ transforms under the A1 representation. As uniaxial strain is applied,
the fraction of ρ which transforms under A1 decreases.

cannot simply be added together; each must be applied separately to the charge density,

and the results must be added. Code implementing this projection may be found at

https://bitbucket.org/numenorean7/symmetry_projection.

With cell volume Ω, we define the fraction of the spin density ρ which transforms

under the jth irrep

xj =
1

Ω

∫
d3r

∣∣∣P̂ jρ
∣∣∣

|ρ|
. (3.8)

The xA1 values as a function of strain εzz with εxx = εyy = 0 are shown in Fig. 3.5.

At zero strain, ρ transforms almost entirely under the A1 representation, and as uniaxial

strain is applied, the fraction of ρ which transforms under A1 decreases, following a

trend similar to the hyperfine parameter (Fig. 3.3, second panel). Visualizations of the

projected spin density are shown in Fig. 3.6.
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Figure 3.6: Results of projecting ρ onto the A1 representation for a calculation with
εxx = 10−3 uniaxial strain, in a N = 1728 (n = 6) supercell. Left: The portion of ρ

which transforms as A1. Isosurface value 2.7×10−4e/Å
3
. Right: The remainder after

projection. Isosurface value 5.4× 10−5e/Å
3
.

3.5 Conclusions

The study of shallow impurity wavefunctions has a long history, beginning with Kohn-

Luttinger effective mass theory in the 1950s. We have overcome some of the challenges

to modeling these wavefunctions from first principles, allowing us to employ DFT calcu-

lations which fully include central-cell and valley-orbit effects. This allows us to study

the evolution of the hyperfine parameter and quadrupole coupling of shallow donors as

a function of strain without the use of empirical fitting parameters.

Our calculations show that the electric field gradients at the site of the nucleus are

negligible even when strain is applied. This suggests that the splittings observed by Pla

et al. [45] do not in fact arise from quadrupole interactions.

Instead, our calculations lend strong support to an alternative mechanism recently

explored in Ref. [48], which suggests a large linear dependence of the isotropic hyperfine

parameter A on the hydrostatic component of strain. Our calculations find just such a

dependence, with a coefficient K = 20.2 that is in good agreement with the experimental
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value K = 19.1. The linear dependence on hydrostatic strain is significantly larger than

the dependence predicted by effective mass theory.

Finally, we have calculated accurate hyperfine parameters and binding energies of

bismuth and arsenic shallow donors by using PBE, identifying a 1/N scaling with su-

percell size and extrapolating to the N → ∞ limit, and correcting the results for PBE

self-interaction error using the HSE hybrid functional. This procedure represents a sig-

nificant step forward in the ab intio simulation of shallow donors in silicon, and we expect

it to be generalizable to other shallow impurities in silicon and other materials.
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Chapter 4

Conditions for T 2 Resistivity from

Electron-Electron Scattering

4.1 Introduction

A resistivity component of the form ρ = AT 2 has been observed in a variety of

materials. The most well known are metals at low temperature, including transition

metals [57, 58, 59] (with A ∼ 10−4 to 10−5 µΩ cm/K2) and alkali metals [60, 61, 62] (with

A ∼ 10−6 to 10−7 µΩ cm/K2). The mechanism behind this contribution to resistivity has

been identified as electron-electron scattering (or Baber scattering [63]). This scattering

mechanism is well described by Fermi liquid theory, which predicts ρel-el = AT 2 of a

similar magnitude to that seen in experiments [64, 65, 66]. Unifying features of electron-

electron scattering in these materials include a relatively small scattering rate and a low

temperature threshold (∼ 20 K for transition metals, a few K for alkali metals) above

which other scattering mechanisms (such as electron-phonon) dominate.

More recently, investigations into transport properties of complex oxides have also

found a resistivity component ρ = AT 2, or a component of electron mobility µ = αT−2.
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Examples include SrTiO3 (STO) [67, 68, 69, 70], rare-earth nickelates [71, 72], and

cuprates [73, 74]. Discussions of the T 2 behavior (and deviations from it) are often

based on the assumption that the T 2 comes from Fermi-liquid electron-electron scatter-

ing, much as it does in metals. Though the power law is the same, this mechanism is

several orders of magnitude stronger (A ∼ 10−1 to 10−2 µΩ cm/K2) and has been ob-

served in some cases up to room temperature. Other transport signatures have also

clashed with predictions from Fermi liquid theory [70, 75].

In this work, we show that the T 2 exponent of Baber scattering arises only under a

certain set of assumptions. These assumptions are fulfilled in metals at low temperature

(as we show explicitly for the case of sodium metal), but are not necessarily fulfilled

in semiconductors at higher temperature. In the specific case of bulk STO, we find

that many of the assumptions do not hold, and explicit calculations of this scattering

mechanism result in a resistivity that significantly deviates from the T 2 behavior. More

generally, this implies that observation of ρ ∝ T 2 in a given system is not evidence for

electron-electron scattering unless the assumptions behind the Baber T 2 hold in that

system.

4.2 Theory

4.2.1 Boltzmann transport for electron-electron scattering

We approach the study of this electron-electron scattering using Boltzmann transport

theory, following methods derived in Refs. [37, 38]. The methodology is laid out in detail

in Sec. 2.9. The resistivity is given by Eq.( 2.25), which is reproduced below:

ρel-el = N〈Φ, PΦ〉 , with N = [〈Φ, X(E = 1)〉]−2 , (4.1)
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and where 〈Φ, PΦ〉 is given by Eq.( 2.24), also reproduced below:

〈Φ,PΦ〉 =
1

2kBT

1

(2π)9

2π

~
∑
n,n′

∫
dk1dk2dk3dk4 (4.2)

× [(vn,k1 + vn′,k2 − vn,k3 − vn′,k4) · û]2

× f (εn,k1) f (εn′,k2) [1− f (εn,k3)] [1− f (εn′,k4)]

×
(
U

(eff)
k1,k3

)2

δ (εn,k1 + εn′,k2 − εn,k3 − εn′,k4)

× δ (k1 + k2 − k3 − k4) .

These equations are the basis for our discussion of electron-electron scattering.

4.2.2 Derivation of T 2

We now lay out the standard derivation of a T 2 power law from Eq. (4.2), in order

to understand the assumptions involved. We begin by separating the k-space integral

into an integral over the Fermi surface and an integral in the perpendicular direction.

Assuming the chemical potential is constant with temperature (Assumption 1), integra-

tion over the Fermi surface will give a result that is independent of temperature. In

the direction perpendicular to the Fermi surface, the Fermi function terms and energy

and momentum conservation restrict the scattering states to a narrow thermal envelope

around the Fermi surface. Assuming the non-Fermi-function terms vary slowly enough

over the width of this envelope (Assumption 2), they may be approximated as constants

given by their value at the Fermi surface. Ignoring the temperature-independent terms

and changing integration variables to energy, we can define the integral I, which contains

the temperature dependence of the resistivity:
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ρel-el ∝ I =
3

2π2k3
BT

∫ ∞
0

dε1 dε2 dε3 f (ε1) f (ε2) (4.3)

× [1− f (ε3)] [1− f (ε1 + ε2 − ε3)]

We extract the dimensionful quantities by changing integration variables again to xi =

(εi − µ)/kBT and assuming the lower bound on xi integration can be taken to −∞

(Assumption 3):

I =
3T 2

2π2

∫ ∞
−∞

dx1 dx2 dx3 (ex1 + 1)−1(ex2 + 1)−1 (4.4)

×
[
1− (ex3 + 1)−1

] [
1− (ex1+x2−x3 + 1)−1

]
The integral is a dimensionless constant, so ρel-el ∝ T 2.

4.3 Assumptions

As highlighted during the course of the derivation, this result depends on three key

assumptions. We will explore each of the assumptions and determine whether they are

satisfied in our case studies, Na metal and STO. We will investigate the impact of each

assumption on the final result by calculating ρ as a function of T employing the assump-

tion and comparing to a numerical calculation with the assumption removed. Numerical

integration is carried out with Divonne, a Monte Carlo integration algorithm which uses

stratified sampling for variance reduction, as implemented in the Cuba package [41].

4.3.1 Assumption 1

As temperature changes, the chemical potential µ of the electrons is constant and

equal to its zero-temperature value. While this is a very good approximation in metals
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at low temperature, it may not hold in semiconductors at intermediate temperature. In

many cases (including degenerately doped semiconductors), the quantity which actually

remains constant with temperature is the electron density n. The chemical potential µ

is determined by the equation

n =
∑
i

∫
dε Di(ε)f(ε) , (4.5)

where Di is the density of states of band i, and µ and T are implicit in f [Eq. (2.20)].

With Assumption 1 in place, µ is set to its zero-temperature value, which we calculate

analytically. When this assumption is relaxed, the integral in Eq. (4.5) is calculated

numerically, and µ is recalculated at any given temperature to keep n fixed. When

µ � kBT , smearing of f due to increased T does not have a strong effect on Eq. (4.5),

so µ has negligible temperature dependence. However, when µ ∼ kBT , the chemical

potential does have a significant temperature dependence, as shown in Fig. 4.1.

4.3.2 Assumption 2

The integrand in Eq. (4.2) is slowly varying compared to the Fermi functions over

the width of the thermal envelope. When Assumption 2 is in place, the non-Fermi-

function terms in the integrand are taken to be constant for a given direction in k-space,

equal to their value at the Fermi surface. This reduces the radial part of the integral

to Eq. (4.3). When Assumption 2 is relaxed, the radial dependence of the integrand is

included explicitly. This assumption is valid at temperatures that are small compared to

the scale over which the non-Fermi-function terms vary. This scale is difficult to predict

a priori, so we will assess the validity of this assumption on a case-by-case basis.
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Figure 4.1: Chemical potential as a function of temperature in strontium titanate for
three different fixed electron concentrations, expressed in cm−3. Inset: illustration of
Eq. (4.5) applied to find µ for n = 1020 cm−3 at T = 10 K and T = 300 K. These
results were calculated using our anisotropic parabolic fit to the conduction band of
SrTiO3 [Eq. (4.7)].
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Figure 4.2: Log-log plot of I [Eq. (4.4)] as a function of temperature for fixed chemical
potential µ/kB = 50 K (indicated by the solid vertical line). I shows a clear change
from T 2 to T 2/9.62.

4.3.3 Assumption 3

The lower limit of integration in Eq. (4.4) can be taken to −∞. In fact, since

the lower limit in Eq. (4.1) is set by the conduction-band minimum (ε = 0), the

lower limit of integral I should be −µ/kBT . If µ � kBT , Assumption 3 is valid

and I = T 2. However, if µ � kBT , Eq. (4.4) should instead run from 0 to ∞, and

I = T 2(1/4− 3(ln 2)2/π2) ≈ T 2/9.62. These different prefactors imply that an interme-

diate regime (µ ∼ kBT ) must exist, in which I 6∝ T 2. This becomes obvious when

evaluating I versus T numerically, as shown in Fig. 4.2. A similar approximation is also

discussed in Ref. [76].
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4.4 Sodium

We now apply this methodology, starting with the test case of sodium metal. The

sodium band structure was modeled by fitting a parabolic dispersion relation to a den-

sity functional theory calculation (as implemented in the Vienna Ab initio Simulation

Package (VASP) [11], employing the Perdew, Burke and Ernzerhof [5] functional). We

find that a parabolic effective mass of m = 1.06me fits the first-principles result with an

accuracy better than 0.05 eV. Since sodium has a single parabolic band, momentum re-

laxation comes from Umklapp scattering. Electrons interact through a screened Coulomb

potential

U (eff)
q =

4πe2

q2 + κ2
, (4.6)

where q = k−k′ and κ2 = 4πe2 ∂n
∂µ

is the Lindhard screening length. The zero-temperature

chemical potential is µ = 1.96 eV. This guarantees µ� kBT , so we expect the chemical

potential to stay fairly constant with temperature (Assumption 1), and we expect to be in

the regime where I = T 2 (Assumption 3). Additionally, since the scattering mechanism

is usually observed at very low T , the thermal envelope is quite narrow, so we would

expect Assumption 2 to hold as well. Our numerical results confirm these expectations

(Fig. 4.3). All the assumptions hold well in sodium, so ρel-el ∝ T 2.

It is worth noting that the prefactor A = 1.4 × 10−5 µΩ cm/K2 is larger than that

observed experimentally (A = 1.7 − 2.2 × 10−6 µΩ cm/K2 [60]). A careful inclusion of

phonon-mediated electron-electron scattering could bring the calculated value closer to

experiment [77]. This mechanism will not invalidate the assumptions or change the T 2

power law, so we do not discuss it further here.
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Figure 4.3: Resistivity due to electron-electron scattering versus temperature for
metallic sodium. The solid blue line was calculated using all the assumptions while
the green data points were calculated without any assumptions. The assumptions
hold in this case, so the two computations agree.

4.5 Strontium titanate

We now turn to electron-electron scattering in doped STO. We consider doping levels

and temperatures that correspond to experimental conditions over which a T 2 dependence

of the carrier mobility has been reported [68, 38, 69]. STO has a low critical density for

degenerate doping [78], so we assume that all the electron donors remain ionized as a

function of temperature, leading to a constant carrier density. We also assume the cubic

structure and neglect spin-orbit coupling. Away from the conduction-band minimum at

the Γ point, the bands split into two “light” bands (mass mπ) and one “heavy” band

(mass mδ) with lobes along the Cartesian directions. This allows momentum relaxation

through scattering between bands. As discussed in Sec. 2.9.2, we model the dispersion
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relation as an anisotropic parabola:

εi =
~2k2

x

2mix

+
~2k2

y

2miy

+
~2k2

z

2miz

, (4.7)

where i indexes the three conduction bands, m1x = m2y = m3z = mδ, and the other

masses are mπ. STO band masses of mπ = 1.16me and mδ = 15.31me were fit to a first-

principles band structure (using VASP with the Heyd, Scuseria, and Ernzerhof [9, 10]

functional). This fit produced an accuracy better than 8 meV in the region of interest.

The effective electron-electron interaction as discussed in Sec. 2.9.1 is

U (eff)
q =

4πe2

ε∞(q2 + κ2)
−
∑
λ

2 |Vq,λ|2

~ωλ(q2 + κ2)2
−

2
∣∣∣V (ac)

q

∣∣∣2
~ω(ac)

q

. (4.8)

The three terms represent screened Coulomb interaction, optical-phonon-mediated scat-

tering, and acoustic-phonon-mediated scattering. ε∞ is the high-frequency dielectric

constant, κ2 is the Lindhard screening length defined above, and Vq,λ is the Fröhlich

interaction with optical phonons [79]. The acoustic potential is given by

V (ac)
q =

√
4παac

~2

mD

q1/2 with αac =
E2
dm

2
D

8πn~3v
, (4.9)

where ωq = vq is the acoustic phonon frequency, n = 5.11 g cm−3 is the density of STO,

Ed is the deformation potential, mD = (m2
πmδ)

1/3 is the density-of-states mass, and

v = 8.1× 103 m/s is the speed of sound in STO. Optical phonon frequencies were taken

from the calculations in Ref. [80], and the deformation potential for the conduction band

was taken to be −4.0 eV as calculated in Ref. [81].

With all Assumptions in place, ρel-el ∝ T 2, as shown in Fig. 4.4. However, none of

these Assumptions actually hold in STO, due to the significant change of the chemical
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potential with temperature and its position close to the band edge, as illustrated in

Fig. 4.1. The full result, obtained without any assumptions, does not follow a T 2 power

law (Fig. 4.4). The deviation is particularly pronounced for lower doping (1018 cm−3).

The temperature dependence is closer to T 2 for higher doping (1020 cm−3) and lower

temperature (T < 30 K) because the chemical potential is higher and changes less with

temperature in this regime (as shown in Fig. 4.1), so the Assumptions are closer to being

satisfied.

It is worthwhile to discuss our results in the context of earlier work by Klimin et

al. [38]. While we use the same expression for ρel-el, our values for the parameters are

different and thus we obtain a different scattering rate. Our masses give a better fit to the

first-principles band structure of STO, and our deformation potential is calculated instead

of being used as a fitting parameter. This affects the relative contributions of the various

scattering mechanisms: while we find that Coulomb scattering is dominant, Klimin et al.

found a competition between Coulomb and acoustic-phonon-mediated scattering due to

their much larger deformation potential (23.3 eV). However, their ρel-el ∝ T 2 dependence

is a result of employing the Assumptions, so these quantitative differences do not impact

our main conclusion. Tests employing the assumptions and parameters used by Klimin

et al. [38] reproduce their results, and if we use their parameters but do not make the

Assumptions, no T 2 dependence is found.
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Figure 4.4: Log-log plots of ρel-el versus T in STO, with zero-temperature carrier den-
sities as indicated in the panels. Solid blue lines are the pure T 2 law, obtained using all
three Assumptions. Orange circles are calculated by computing I [Eq. (4.4)] numeri-
cally (i.e., by removing Assumption 3). Green squares show data for which the radial
variation of the non-Fermi-function terms is also included (removing Assumptions 2
and 3). Red diamonds show data in which the chemical potential is also allowed to
move with temperature to keep the carrier density fixed; all the Assumptions have
been removed, so this represents our final results for the electron-electron resistivity.

65



Conditions for T 2 Resistivity from Electron-Electron Scattering Chapter 4

4.6 Conclusions

When the Assumptions listed here are satisfied (as in sodium metal or STO at high

doping and low temperature), electron-electron scattering gives rise to a T 2 power law

in the resistivity. When the Assumptions are not satisfied, there is no reason to believe

the power law will still hold, and numerical calculations in the case of STO show that in

fact the temperature dependence is far from T 2. This has significant implications for the

interpretation of measured temperature dependences of transport properties. The com-

mon practice of interpreting a T 2 power law as a signature of electron-electron scattering

is only supported by theory if the Assumptions are satisfied in the regime over which the

power law is observed. If the Assumptions are not satisfied, there is no basis for such

a conclusion. This is particularly salient for systems (such as lightly- and moderately-

doped semiconductors) in which the chemical potential of the electrons may be close to a

band edge, since the Assumptions are likely to be invalid in these systems. In conclusion,

T 2 resistivity should not be taken as evidence of Fermi-liquid electron-electron scattering

unless the validity of the Assumptions can be established, and caution must always be

used when attempting to identify the physical mechanism behind an observed T 2 power

law.
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Chapter 5

Electron Doping in Sr3Ir2O7:

Metal-Insulator Transition and

Collapse of Magnetic Order

5.1 Introduction

Materials with strong electron correlations and/or strong spin-orbit coupling host

many unconventional electronic phases, with many exciting applications such as super-

conducting circuits for quantum computation or a host of other novel device types. In

the Ruddlesden-Popper iridates (Srn+1IrnO3n+1), the correlation energy U is comparable

in magnitude to the spin-orbit coupling energy λ. This gives rise to an unusual variation

on typical Mott insulating behavior in which a combination of U and λ opens a charge

gap [82, 83, 84]. Iridium in these compounds is in the 4+ oxidation state with the t2g

states occupied with 5 electrons; however in both the n = 2 case (Sr3Ir2O7, or Sr-327)

and the n = 1 case (Sr2IrO4, or Sr-214), spin-orbit coupling entangles these states and

lifts their orbital degeneracy, resulting in a fully occupied Jeff = 3/2 quadruplet and
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a half-occupied Jeff = 1/2 doublet. This splitting, combined with on-site Coulomb re-

pulsion, opens a Mott-Hubbard gap in the half-occupied doublet, forming an insulating

antiferromagnetic (AF) Jeff = 1/2 ground state. The spin-orbit-assisted stabilization

of a Mott gap amongst Jeff = 1/2 electrons renders these materials excellent platforms

for the observation of many exotic phenomena including proposals of high-temperature

superconductivity [85].

The metallic state realized just beyond the antiferromagnetic insulating Jeff = 1/2

Mott state is often an anomalous one. The propensity for these weakly correlated spin-

orbit assisted Mott states to host unconventional metallic phases is rapidly being estab-

lished. Examples include the formation of pseudogapped metals [86, 87, 88] with propos-

als of incipient superconductivity [89, 90], the formation of spin density wave metals [91]

and paramagnetic states with unconventional spin dynamics [92, 93, 94], the emergence

of competing electronic order parameters [95, 96, 97, 98], two-dimensional metallic phases

[99], and reports of negative electronic compressibility [100]. Understanding the under-

lying mechanisms driving many of these exotic phase phenomena remains an ongoing

challenge.

Of particular interest is the metal-insulator transition (MIT) obtained upon electron

doping in Sr-327—a transition recently reported to stabilize a metallic state hosting a

charge-density-wave (CDW)-like instability [98]. Through substitution of lanthanum on

the strontium site [forming (Sr1−xLax)3Ir2O7], experiments have observed a transition

from an AF insulating state into a paramagnetic metallic state near a lanthanum con-

centration x = 0.04 [95]. The mechanism behind this transition and a theoretical model

of how it arises remain open questions. Further open questions concern the nature of the

correlated metallic state that results across the MIT as well as the origin of the proposed

CDW instability and its relation to the coincident structural distortion [98, 101].

In this chapter, we seek to advance the understanding of these questions through the
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use of first-principles calculations modeling the response of Sr-327 to electron doping.

While previous theoretical works have discussed the band structure [82, 83, 84, 102, 103],

crystal structure [92], and magnetic order [104, 105] of the Ruddlesden-Popper iridates,

first-principles calculations addressing electron doping directly or calculating the metal-

insulator transition are notably absent. We will separate the effects of ionic substitution

from electron doping, finding that ionic substitution leads to a steric tendency to contract

the lattice, which competes with the electronic tendency to expand the lattice.

In Sec. 5.3.2 we address the effect of La impurities used to introduce electrons in

experiments on the lattice of the system, separating the effects of ionic substitution from

electron doping. The ionic substitution leads to a steric tendency to contract the lattice,

which competes with the electronic tendency to expand the lattice.

We calculate an MIT at an electron concentration corresponding to 4.8% substitution

of strontium with lanthanum, consistent with experimental results; however, our calcu-

lations do not fully model the correlated metallic state on the high-doping side of the

phase transition. We will argue that the experimental observation of a low-temperature

structural distortion in the metallic phase necessarily arises from many-body correlation

physics active in the metallic regime. Our results provide a step forward in understanding

the MIT that occurs in electron-doped Sr-327 and suggest that phase competition from

the electronic order parameter observed within the unconventional metallic state of this

system is not the primary driver of the MIT.

5.2 Computational methods

Our calculations use the general methodology described in Chapter 2. Spin-orbit

coupling is included using the non-collinear spinor method as implemented in VASP.

The spin quantization axis is chosen along an in-plane lattice vector; tests show that
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results are insensitive to this choice. Correlation effects are taken into account using

the DFT+U approach [106] with the Perdew-Burke-Ernzerhof (PBE) functional [5]. The

value of the on-site Hubbard U parameter is taken to be U = 1.6 eV based on constrained

random-phase-approximation calculations from Ref. [105].

Experimental results for lattice parameters of doped samples at 300 K are extracted

from Le Bail refinements of laboratory-source x-ray diffraction (XRD) profiles to the

structural model in Ref. [92] by our collaborators Zach Porter and Stephen Wilson. They

measured lanthanum and calcium substitution levels for the samples using wavelength-

dispersive x-ray fluorescence spectroscopy (WDXRF), in addition to energy-dispersive

x-ray spectroscopy (EDS) to confirm microscopic uniformity.

The starting structure in the calculations is taken from the 100-K refinement in

Ref. [92], and the lattice parameters and ionic positions are fully relaxed in all calcula-

tions. The Brillouin zone is sampled using a 4×4×1 Γ-centered grid; only a single k-point

point is needed in the kz direction because of the size of the c lattice parameter and be-

cause of the quasi-2D nature of the material. To capture the details of the conduction

band with sufficient accuracy, the zone is sampled more finely near the conduction-band

minimum (CBM). The Voronoi cell of the k point closest to the CBM is sampled with

a fine mesh, with density equivalent to a 24 × 24 × 1 grid. Supercells used for studying

lanthanum and calcium substitution contain 2 × 2 × 1 unit cells and use a 2 × 2 × 1

Γ-centered k point grid. All calculations use a plane-wave energy cutoff of 500 eV.
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Figure 5.1: Structural visualizations of a) Sr2IrO4 and b) Sr3Ir2O7. Sr-214 takes a
tetragonal structure (space group I41/acd) [109], and slight deviations from tetragonal
make Sr-327 monoclinic (space group C2/c) [92]. The first Brillouin zone for Sr-327
is shown in c), with high-symmetry points labeled [110].

5.3 Results and discussion

5.3.1 Electron doping Sr-327

The Ruddlesden-Popper iridates (n = 1 and n = 2) are formed of n layers of corner-

sharing IrO6 octahedra with Sr in the voids, interspersed with SrO rock-salt layers [83].

Visualizations of the structures are given in Fig. 5.1, and the band structure of Sr-327 is

shown in Fig. 5.2. The lattice structure of Sr-327 was recently identified to have a subtly

monoclinic C2/c symmetry [92] and the system is known to order antiferromagnetically

below 280 K [107, 98] with an ordered moment of m ≈ 1
3
µB [108, 102, 95].

Initially, the magnitude of the charge gap of Sr-327 was difficult to experimentally

access, with reported values ranging from 85 meV from optical spectroscopy [83, 111]
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Figure 5.2: DFT+U band structure of Sr-327. Solid lines show the undoped (insulat-
ing) case, and dashed lines show the band structure at a doping level above the MIT
(at x = 0.08). Occupied states (Ir 5d states with a mix of Jeff = 3/2 and Jeff = 1/2)
are shown in blue, and unoccupied states (Ir 5d states with Jeff = 1/2) are shown in
orange. The gap in the undoped case is 0.27 eV, indirect between Γ and a point 81%
of the way from Γ to X. The smallest direct gap is 0.44 eV, 78% of the way from Γ to
X. The gap in the doped case is negligibly small at 7 meV.
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to 0.3 eV from angle-resolved photoemission spectroscopy (ARPES) data on doped sam-

ples [112, 100]. This suggests the optical spectroscopy (as well as DC transport) measure-

ments may probe a sub-band-gap or phonon-assisted transition [111] rather than the gap

itself. In a number of other Mott insulators, defects or small polarons have been identified

as sources of sub-band-gap transitions observed in optical spectroscopy [113, 114]. Our

calculated value of the band gap, 0.27 eV, agrees well with reported ARPES data and is

consistent with the notion of polaronic effects in Sr-327 [115].

In experiments, doping is typically accomplished by substituting some fraction of

the strontium with lanthanum, which acts as an electron donor [116, 112, 117, 100, 95,

118, 98]. The effects of cation substitution and electron doping are thus inextricably

linked. The bare effect of cation substitution may be approximated by substituting

calcium, since it is isoelectronic with strontium but similar in size to lanthanum [95], but

this approximation is imperfect. First-principles calculations can explicitly separate the

cationic and electronic effects.

To examine pure electron doping, we introduce fractional electrons to the unit cell,

with overall charge neutrality ensured by a uniform compensating background. This al-

lows us to capture the physics of electron doping in isolation from the effects of lanthanum

impurities that introduce electrons in an experiment. As the number of electrons in the

cell increases, there is a slight decreasing trend in the gap and the magnetization. We are

able to stabilize two different states: one antiferromagnetic state (aligned out-of-plane)

with a larger gap and a second non-magnetic state with a smaller gap. This is consis-

tent with the experimentally observed enhancement of the gap in the antiferromagnetic

state [95].

At each doping level the structure with the lower total energy was identified as the

ground state. As seen in Fig. 5.3, at low doping the antiferromagnetic insulator is more

stable, but the smaller-gap state becomes increasingly favorable as doping increases. At
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x = 0.048, or 0.144 electrons per formula unit, the non-magnetic state becomes the

favored ground state. This is the MIT, at which the gap and magnetization collapse

simultaneously. The calculated critical doping value is in good agreement with x = 0.04

from experiments, as is the magnitude of the sublattice magnetization and its evolution

with doping [95]. Below the transition, the doped electrons in the high-gap state will likely

localize, leading to reduced conductivity which will still show an activated (insulating)

behavior. This expectation is consistent with resistivity measurements [95]. The collapse

of the gap past the transition is consistent with the switch to metallic resistivity in

transport experiments [95] as well as the direct measurements of the band gap in doped

samples using ARPES [100].

The shape of the conduction and valence bands remain fairly constant with doping;

the collapse in the band gap is due primarily to an overall shift of the bands, with changes

in band shape playing only a minor role. The CBM remains at the valley 81% of the

way from Γ to X for all values of doping (x = 0.0 to 0.10). The valence band has two

extrema, one at Γ and the other at C. At x = 0 the valence-band maximum (VBM) is at

Γ; C is lower by 52 meV. As doping increases, the extremum at C rises, until it passes

Γ to become the VBM beyond x = 0.06. At x = 0.10, the highest level of doping we

tested, the Γ maximum is lower than the C maximum by 38 meV. See Fig. 5.2.

The character of the bands, nominally iridium d, actually shows significantly hy-

bridization with oxygen. The valence band at Γ consists of 39% oxygen p character and

the CBM is 27% O p. These values remain constant to within one percentage point from

x = 0 to x = 0.1. Changes are only slightly larger at the C point, going from 35% O

p at x = 0 to 31% O p at x = 0.1. This strong hybridization is consistent with earlier

work [83], explains observed magnetic moments on the oxygen sites [119] and various

signatures in optical spectroscopy [111], and plays a role in the dimensionality-induced

phase transition across the Ruddlesden-Popper series [103].
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Figure 5.3: a) Indirect band gap and b) out-of-plane magnetization as a function of
the number of doping electrons per strontium atom (x). Lowest-energy structures
for each doping level are shown in blue circles, connected by lines as a guide to the
eye. Calculated metastable structures are shown in red triangles. Inset c): energy
difference between the non-magnetic state and antiferromagnetic (AF) state. The
crossover at x = 0.048 is the critical doping level for the phase transition.
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It is significant that the collapse of the charge gap is associated with the collapse in

magnetization, even in the metastable states. This is strong evidence that these two phe-

nomena are fundamentally related, and both are captured via the quasi-two-dimensional

spin-orbit Mott state as described by DFT+U with spin-orbit coupling. Recent ex-

periments, however, have suggested a CDW instability in the metallic phase of Sr-327,

accompanied by a lattice distortion that creates two inequivalent iridium sites with sig-

nificantly modified octahedral tilting [98]. Though we allow for this symmetry breaking

in our calculations, it does not occur, and when the distortion is introduced manually the

calculations show it to be unstable. It is significant that, while DFT is able to capture

the MIT, the CDW and lattice distortions in the metallic state are not captured. This

suggests that these phenomena emerge from many-body effects in the correlated metal

distinct from the mechanism behind the transition itself. It is worth noting that the non-

magnetic state in our calculations is only a mean-field approximation to the magnetism

of the true paramagnetic state; a more thorough treatment of paramagnetic fluctuations

requires a supercell approach [120]. More work is needed to explore the metallic state of

this material and determine the source of the CDW-like instability.

5.3.2 Impurity substitution and lattice parameters

We now consider the other aspect of doping: ionic substitution. Our results show

that the primary effect of cation substitution is steric. Since the ionic radii of lanthanum

and calcium are smaller than that of strontium, they are expected to shrink the lattice.

We replace one strontium ion with a lanthanum or calcium ion within a supercell that is

large enough to minimize the interaction between the defect and its periodic images. The

steric effect of lanthanum substitution is isolated from the electronic effect by removing

the electron that the donor would donate to the conduction band (i.e., placing the system
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in a positive charge state). As in the electron doping study, overall charge neutrality is

ensured by a uniform compensating background. Calculations which include electron

doping show the same MIT found in bulk cells doped purely with electrons, without any

atomic substitution. Figure 5.4 shows the lattice parameter decreasing with increasing

incorporation of calcium and positively charged lanthanum, confirming the expectation

based on ionic size. Figure 5.4 also shows the pure electronic effect of doping, which is a

tendency toward lattice expansion.

The effect of electron doping on the lattice is well known in semiconductors and

referred to as a “deformation potential” effect. Deformation potentials describe the shift

of the bands as a function of strain, and when the conduction band is occupied with

electrons, the energy of the system can be lowered by a deformation that lowers the

energy of the conduction-band minimum. This creates a driving force for the expansion

or contraction of the lattice, depending on the sign of the deformation potential [121].

This theory has been successfully applied to other complex oxides [81], and we expect

that it explains the effect of electron doping on the lattice in Sr-327. When both the

electronic and ionic effects are applied [through a supercell containing both the lanthanum

donor(s) and the associated free electron(s)], the electronic effect largely cancels out the

steric effect.

Figure 5.4(b) includes a comparison with experiment. Lanthanum doping results are

taken from Refs. [95, 101], calcium doping results were obtained using the methodology

outlined above. Our calculated results are consistent with measurements of the fractional

volume change for both lanthanum- and calcium-substituted samples [Fig. 5.4(b)]. For

lanthanum, a very small effect on volume is observed; for calcium, the experimental

results by our collaborators Zach Porter and Stephen Wilson show a sizeable decrease in

volume with increasing calcium doping, again consistent with our calculations.
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Figure 5.4: Percentage change of a) out-of-plane lattice parameter c and b) cell vol-
ume as a function of doping. Note the tendency of the lattice to contract on calcium
doping (or incorporation of La+), driven by steric effects, and the tendency toward
lattice expansion on electron doping, driven by the deformation-potential effect. Lines
connecting data points are a guide to the eye. Electron doping (without ionic substi-
tution) is shown in red triangles, La+ (lanthanum substitution without the donated
electron) is shown in green diamonds, and La+ + e− (lanthanum substitution includ-
ing the donated electron) is shown in blue circles. Experimental data for lanthanum
doping [95, 101] are shown as solid black circles. For comparison, calculated results
for calcium substitution are shown as orange squares, and experimental results by our
collaborators Zach Porter and Stephen Wilson are shown as black squares.
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5.4 Conclusion

In summary, our calculations show a MIT and the concomitant collapse of magneti-

zation in (Sr1−xLax)3Ir2O7 at x = 0.048, in good agreement with experimental results.

This transition comes about purely through the effect of electronic doping; ionic effects

are primarily steric. The tendency toward lattice contraction driven by ionic size is coun-

teracted by the tendency of the electrons to expand the lattice through the deformation

potential of the conduction bands. Our calculations do not show the CDW instability

nor lattice distortions observed in the paramagnetic state of Sr-327. This suggests that

the CDW and accompanying lattice distortion in the metallic state arise from many-

body effects not present in our calculations, whereas the spin-orbit-assisted MIT and the

collapse of magnetization both arise from physics that is well-described by DFT+U with

spin orbit coupling.
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Chapter 6

Small Polarons and Point Defects in

Barium Cerate

6.1 Introduction

Hydrogen is known to readily incorporate in many oxides with the perovskite crystal

structure, such as barium cerate [122] (Fig. 6.1(a)). BaCeO3 has been explored for use in

numerous applications, including steam electrolysis for hydrogen production, hydrogen

gas sensors, hydrogen pumps and membranes, and solid oxide fuel cells for operation

at intermediate temperatures [123]. Historically, ab initio techniques based on density

functional theory (DFT) have encountered obstacles when applied to cerium-containing

compounds. This is due in large part to the important role cerium 4f electrons play in

the physics of these materials. Localization and correlation effects are strong for bands of

f electrons, and exchange-correlation functionals such as the local density approximation

(LDA) or generalized gradient approximation (GGA) fall short in capturing the physics

of f states. Hybrid functionals, on the other hand, combine exact Hartree-Fock exchange

with GGA, and have been shown to improve the description of strongly localized car-
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!a) b) 
!

Figure 6.1: a) Visualization of the orthorhombic perovskite structure of barium
cerate. Cerium ions are octahedrally coordinated by oxygen, with barium ions inter-
spersed. (Barium ions are green, cerium-centered octahedra are yellow, and oxygen
ions are red.) b) Brillouin zone of the orthorhombic lattice, illustrating the conven-
tional path along high-symmetry directions [110].

riers [124, 125, 126, 127]. They have also proven accurate in the description of defects

in a wide variety of semiconductor systems, correcting the band-gap problem of LDA

and GGA [128]. These advantages make DFT with hybrid functionals very well suited

for the study of barium cerate. We calculate formation energies of defects and binding

energies of defect complexes, which are essential for describing hydrogen motion through

the material.

Hydrogen incorporation into BaCeO3 often proceeds through the reaction [123]

H2O + V 2+
O ↔ OO + 2H+

i (6.1)

where V 2+
O indicates an oxygen vacancy acting as a double donor, OO indicates an oc-

cupied oxygen site, and H+
i indicates a proton occupying an interstitial position in the

lattice. A thorough understanding of ionic conduction in barium cerate thus requires an
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investigation of interstitial hydrogen and oxygen vacancies, as well as of their interaction,

including the possible formation of a defect complex.

BaCeO3 is often doped with elements such as yttrium (BaCe1−xYxO3) or neodymium

(BaCe1−xNdxO3). This process increases the chemical stability of the material and en-

hances oxygen vacancy concentrations, while still maintaining good ionic conduction. We

therefore also investigate substitutional yttrium, YCe, as well as its complexes. Since yt-

trium has one fewer valence electron than cerium, yttrium on the cerium site is expected

to act as a single acceptor. In its negative charge state, it will strongly interact with

positively charged defects such as interstitial hydrogen or oxygen vacancies.

6.2 Computational methods

Our calculations use the general methodology described in Chapter 2. All calculations

used the HSE hybrid functional with standard parameters (HSE06). The chosen pseu-

dopotential for cerium included 46 electrons in the core ([Kr] 4d10), leaving 12 valence

electrons (5s25p64f5d6s2) for the PAW calculation. Lattice parameters and band struc-

ture were calculated for a 20-atom conventional cell using a 4×4×4 Monkhorst-Pack grid

in reciprocal space [129]. Defect and polaron calculations were performed in a 160-atom

supercell using a single point in reciprocal space, k = (0.25, 0.25, 0.25). All calculations

used a plane-wave energy cutoff of 400 eV. We verified precision by performing tests with

500 eV cutoffs and a 2×2×2 k-point mesh. The tests gave discrepancies of less than 2%

for formation energies, lattice parameters, and the band gap, indicating that our results

are converged with respect to both k-point density and plane-wave cutoff.
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Table 6.1: Structural parameters of BaCeO3 as calculated using HSE, compared with
experimental values [130]. The angles measure the degree of octahedral tilting: ∠1 is
the in-plane (⊥ z) Ce-O-Ce angle for cerium atoms separated along the z direction,
and ∠2 is the out-of-plane (‖ z) Ce-O-Ce angle.

Theory Exp

a (Å) 6.233 6.237
b (Å) 6.223 6.218
c (Å) 8.782 8.780
∠1 159.4◦ 158.8◦

∠2 156.6◦ 156.1◦

6.3 Results

6.3.1 Structural Parameters

The low-temperature phase of barium cerate is an orthorhombic perovskite with mod-

erate octahedral tilting and very similar a and b lattice parameters [130]. Table 6.1 shows

the structural parameters of pure BaCeO3 as calculated using HSE, and Fig. 6.1 shows

a visualization of the structure. The calculated structural parameters are in good agree-

ment with experiment.

6.3.2 Band Structure

Fig. 6.2 shows the calculated band structure of barium cerate. The band gap of

4.17 eV is in very good agreement with the experimental value of 4.1 eV obtained from

optical absorption spectroscopy [132]. Since HSE has been shown to correctly describe

the cerium-containing oxides CeO2 and Ce2O3 [133, 134], including the 4f conduction-

band states, we expect BaCeO3 to also be well described by HSE. The valence band is

primarily composed of O 2p states, and is separated from the conduction band by a direct

gap at Γ. There is a further gap of 0.54 eV between the Ce 4f and 5d bands.
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Figure 6.2: Band structure of BaCeO3 as calculated with HSE, plotted along the
high-symmetry lines illustrated in Fig. 6.1(b). The valence bands are primarily O 2p
states. The band gap is 4.17 eV. The lowest conduction bands are composed of Ce
4f states; they are separated from the higher-lying Ce 5d states by a gap of 0.54 eV.
The experimental density of states from Ref. [131] is plotted on the right-hand side
for comparison.

84



Small Polarons and Point Defects in Barium Cerate Chapter 6

HSE corrects the band-gap problem of the commonly-used GGA of Perdew, Burke,

and Ernzerhof (PBE) [5], which predicts a gap of 2.21 eV for BaCeO3. HSE also reduces

the width of the 4f band and narrows the gap between the 4f and 5d bands as compared

to PBE results. This brings the band structure into good agreement with experimental

density of states results [131], as shown in Figure 6.2.

6.3.3 Formation Energies

Formation energies are calculated using the methodology described in Sec. 2.7. We

used an experimental value of 98 for the static dielectric constant, calculated from the

capacitance measurements and experimental geometry of Ref. [135]. Due to the high

value of the dielectric constant, the magnitude of ∆q is small (of order a few 0.01 eV and

uniformly less than 0.07 eV). The equilibrium conditions limiting the chemical potentials

of the relevant atomic species are as follows:

µBa + µCe + 3µO = ∆Hf (BaCeO3), (6.2)

where ∆Hf (BaCeO3) is the formation enthalpy of BaCeO3. In order to prevent formation

of bulk Ba and Ce phases, and to prevent loss of O2, the chemical potentials are bounded

from above by

µBa, µCe, µO ≤ 0. (6.3)
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To prevent formation of secondary BaO, BaO2, CeO2 and Ce2O3 phases, it is also required

that:

µBa + µO ≤ ∆Hf (BaO), (6.4)

µBa + 2µO ≤ ∆Hf (BaO2), (6.5)

µCe + 2µO ≤ ∆Hf (CeO2), and (6.6)

2µCe + 3µO ≤ ∆Hf (Ce2O3). (6.7)

The quantities ∆Hf (BaO), ∆Hf (BaO2), ∆Hf (CeO2) and ∆Hf (Ce2O3)) are the en-

thalpies of formation of BaO, BaO2, CeO2 and Ce2O3, respectively, and these are cal-

culated from first principles and listed in Table 6.2. The inequalities above allow us to

describe the region of chemical potentials in the µCe-µO plane for which BaCeO3 is stable.

It is worth noting that PBE has been shown to outperform HSE in the calculation of

the reduction energy of CeO2 to Ce2O3 [134, 136]. However, the HSE formation enthalpies

themselves are closer to experiment; the PBE reduction energies are accurate due to a

cancellation of errors in formation enthalpies for the particular case of ceria [134]. To

allow comparison with other materials and to maintain consistency with the electronic

structure calculations we have chosen to use HSE throughout this work.

Fig. 6.3 shows the resulting phase diagram for the system. For a fixed µO, we observe

that BaCeO3 forms in a narrow µCe window of width 0.26 eV. For our calculations of

defect formation energies, we fix µCe as a function of µO by assuming the system lies

on a line running through the middle of the BaCeO3 region of stability (which is quite

narrow). We can then choose µO to reflect different growth conditions. For impurities,

we perform similar calculations to fix µH (limited by formation of H2O) and µY (limited

by the formation of Y2O3). Thus the only remaining variable is µO. For the calculation

of formation energies, we considered two values: µO = −0.42 eV (near the oxygen rich
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Table 6.2: Calculated enthalpy of formation per formula unit of barium cerate and the
possible limiting phases. Experimental values [137, 138] are provided for comparison.

Compound ∆Hf (eV)
Theory Experiment

BaCeO3 -17.23 -17.52
BaO -5.10 -5.68
BaO2 -5.77 -6.57
CeO2 -11.61 -11.30
Ce2O3 -19.75 -18.65
H2O -2.67 -2.51
Y2O3 -19.18 -19.74
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Figure 6.3: Phase diagram of BaCeO3. The region of cerium and oxygen chemical
potentials for which BaCeO3 is stable is indicated by the (green) shaded region. Above
this region, CeO2 will form. Below this region, BaO or BaO2 will form.
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limit) and µO = −2.5 eV (relatively oxygen poor, corresponding to O2 gas at 1100 K and

0.1 MPa [139]).

Following Eq. (2.15), we calculate the formation energy of various defects and defect

complexes in all possible charge states. We plot the formation energies by finding the

most stable charge state at each value of the Fermi level, and then plotting the energy

of that charge state (Fig. 6.4). Note that using Y2O3 as the solubility-limiting phase for

µY leads to the lowest possible formation energy for YCe defects before precipitation of

Y2O3. Realistic µY values will be lower, and formation energies correspondingly higher.

Figure 6.4 shows that the formation energy of YCe is low, and hence the impurity

will easily incorporate in the lattice, particularly under more oxygen-rich (=cerium-poor)

conditions. The incorporation of yttrium, which acts as an acceptor, will drive the Fermi

level down, which in turn promotes the incorporation of point defects or impurities with

donor character, such as oxygen vacancies or hydrogen. Charge neutrality between the

positively charged donors and the negatively charged acceptors will then determine the

position of the Fermi level. Hydrogen impurities have low formation energies, which

enables high solubility and is conducive to good proton conduction.

When hydrogen and yttrium are simultaneously present, Y−Ce + H+
i complexes will

easily form. This may impede proton diffusion. To assess the impact of these complexes,

we calculate a binding energy of hydrogen to the yttrium impurity. The binding energy

Eb between two entities A and B when they form a complex AB is defined by adding

the formation energies of the isolated species and subtracting the energy of the complex

[140]:

Eb(AB) =Ef (A) + Ef (B)− Ef (AB) (6.8)

Calculated values are listed in Table 6.3. While the binding energy between Y−Ce and H+
i

is relatively modest (0.26 eV), it is sizeable on the scale of the proton migration barrier
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Figure 6.4: Calculated formation energies of various impurities, defects, and com-
plexes as a function of Fermi level for given values of the oxygen chemical potential.
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Table 6.3: Calculated binding energies of defect complexes and between defects and
polarons in barium cerate, as given by Eq. (6.8).

Complex Binding Energy (eV)

Y−Ce + H+
i 0.26

Y−Ce + V2+
O 0.19

H+
i + e−polaron 0.05

V2+
O + e−polaron 0.44

V2+
O + 2 e−polaron 0.62

Y−Ce + h+
polaron 0.22

in this material (0.22 to 0.58 eV) [141]. In equilibrium, at a given temperature, Y−Ce-H
+
i

complexes will only be present in concentrations larger than those of the isolated species

if the binding energy of 0.26 eV exceeds the formation energies of the isolated species

[142]; however, even if this criterion is not met, trapping of hydrogen at Y impurities

may impact kinetics.

If yttrium forms a complex with an oxygen vacancy, the resulting entity is positively

charged over a range of Fermi levels between 0 and almost 3 eV; such positive charged

complexes would not trap protons, due to Coulomb repulsion. Formation of such com-

plexes would therefore be desirable, but unfortunately the binding energy is quite small

(0.19 eV, Table 6.3) and hence they are unlikely to occur.

6.3.4 Polarons

We expect that localization of carriers will be important in barium cerate, due to the

relatively flat dispersion of the bands. This localization manifests itself in the form of

polarons: localized electrons together with a lattice distortion. In our calculations, we

form an isolated polaron by introducing an extra electron into bulk BaCeO3 and locally

breaking the symmetry of the lattice through small perturbations of the atomic positions.
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This allows an electron to localize near the perturbation. The lattice is then allowed to

relax, forming a polaron. The energy of this configuration is lower than that of an electron

in the conduction-band minimum, and the energy difference is the self-trapping energy.

Our calculations show that polaron formation is extremely favorable for an electron in

the conduction band [Fig. 6.5(a)]: the self-trapping energy is 780 meV. A hole polaron in

the valence band has a smaller, but still significant, self-trapping energy of 150 meV. An

electron polaron on a cerium atom stretches the Ce-O bond length by 2% and decreases

Ce-O-Ce angles by 2%. This distortion is highly localized; the displacements from the

nominal lattice sites are smaller than the calculational error bars already for cerium

atoms directly adjacent to the polaron. This high degree of localization of the lattice

distortion indicates that electrons in BaCeO3 localize in the form of small polarons.

Polarons are likely to occur in the vicinity of defects that have a charge opposite to

that of the carrier. This can be more energetically favorable than having electrons localize

on the defect itself. The neutral charge state of interstitial hydrogen is an example.

While H−i is a “genuine” defect state (the proton sits between two barium atoms and two

electrons are localized on the defect center), we find that similar configurations with only

one electron (H0
i ) are unstable. Instead, the proton tends to bond to an oxygen atom (as

in H+
i ), while an electron polaron forms on an adjacent cerium atom. [Fig. 6.5(b)]. This

leads to an entity that is overall neutral, but it would be inaccurate to describe this as

“neutral interstitial hydrogen”since the electron is not localized on the defect center.

The case of oxygen vacancies is similar: the +1 charge state consists of V2+
O + e−polaron,

and the neutral charge state consists of V2+
O +2e−polaron [Fig. 6.5(c)]. While the structure of

the polaron bound to H+
i is similar to that of an isolated polaron, polarons bound to the

oxygen vacancy have a different magnetic quantum number. This state is likely favored

because it allows higher electron density near the positively charged defect center. When

two polarons are bound to the same vacancy, they have opposite spins due to the partial
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Figure 6.5: Visualization of the structure of electron polarons in various configu-
rations: a) e−polaron in bulk; b) H+

i + e−polaron; c) V2+
O + 2e−polaron. Color coding as in

Fig. 6.1; the hydrogen ion is white. Charge-density isosurfaces at 10% of the maximum
are also shown (in blue) for the polaron state.
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overlap of their wavefunctions at the defect center.

Binding energies of polarons to various donors in BaCeO3 are listed in Table 6.3.

Note that when two polarons are bound to an oxygen vacancy, the energy cost to remove

one of the polarons is only 0.18 eV.

In order to study the hopping of polarons, we calculated the energies of a series

of structures with atomic positions interpolating between polaron configurations on two

adjacent sites. The highest energy among these structures has roughly half of the polaron

localized on both sites. This was taken to be the transition state for hopping between

the sites, and its energy (referenced to the relaxed polaron) is the activation energy for

polaron hopping. This activation energy is 0.29 eV for in-plane hopping (⊥ c) and 0.31

eV for out-of-plane hopping (‖ c).

6.3.5 Optical Properties

Our first-principles studies allow for the calculation of optical properties, including

the energetics of radiative transitions [143]. We have applied this methodology to bar-

ium cerate. Our results for key processes are presented in Table 6.4, and two important

cases are illustrated in Fig. 6.6. In these diagrams, the horizontal axis is a generalized

“configuration coordinate”: atomic configurations were generated by interpolating the

atomic positions between two structures. In Fig. 6.6(a) the first structure corresponds

to the atomic configuration for the ground state of the oxygen vacancy in a 2+ charge

state, and the second structure to the atomic configuration for the ground state of the

oxygen vacancy in a + charge state. The generalized coordinate is thus representative

of the displacements of atoms surrounding the oxygen vacancy as the charge state is

changed. In Fig. 6.6(b) the first structure corresponds to the atomic positions in bulk

BaCeO3, and the second structure to the atomic configuration corresponding to an elec-
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Table 6.4: Calculated energy peaks of optical absorption and emission processes in
barium cerate. h+

VBM indicates a hole at the valence-band maximum (VBM), and
e−CBM indicates an electron at the conduction-band minimum (CBM).

Ground state Excited state Absorption (eV) Emission (eV)

H+
i H0

i + h+
VBM 4.25 2.31

V2+
O V +

O + h+
VBM 3.38 2.43

Bulk h+
polaron + e−CBM 4.17 2.99

Bulk e−polaron + h+
VBM 4.17 2.43

tron polaron. Here, the coordinate represents the relaxation of (mainly) oxygen atoms

away from the localizing electron (cf. Sec. 6.3.4). For each intermediate configuration,

the electronic structure was solved self-consistently. The upward-pointing arrow illus-

trates the formation of an electron-hole pair through absorption of a photon. Absorption

is followed by lattice relaxation through phonon-mediated nonradiative processes. The

downward-pointing arrow illustrates the luminescence step, in which the electron-hole

pair recombines radiatively, emitting a photon. Finally, the lattice goes through another

phonon-mediated relaxation into the ground-state configuration. A full description of

these processes would involve transitions between vibronic states, and would allow the

prediction of luminescence lineshapes [143]. Here, we focus on the most probable radia-

tive transitions, which are represented by the arrows in Fig. 6.6 and correspond to peaks

in absorption or luminescence spectra; these peak energies are listed in Table 6.4.

Kompan et al. [144] reported luminescence spectra for BaCeO3 prepared under various

conditions. The authors observed luminescence peaks at 2.48 and 2.92 eV after sub-gap

UV excitation. They suggested that this luminescence originated from the capture of

an electron in the conduction band by a cerium atom to form Ce3+, i.e., an electron

polaron. The formation of a polaron from an electron in the conduction band involves
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Figure 6.6: a) Configuration coordinate diagram illustrating absorption and lumi-
nescence processes associated with oxygen vacancies. The lower parabola represents
an oxygen vacancy in its 2+ charge state, while the upper parabola represents the
1+ charge state. We predict absorption peaked near 3.4 eV and luminescence peaked
around 2.4 eV. b) Configuration coordinate diagram showing band-to-band absorp-
tion, polaron formation, and luminescence due to radiative recombination of the po-
laron with a free hole. The lowest parabola represents the bulk, the highest parabola
represents the bulk with an e−, h+ pair, and the intermediate parabola represents an
electron polaron. We predict this process will also contribute to the luminescence
peak near 2.4 eV.
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an energy gain of 0.78 eV, a phonon-assisted process that is nonradiative. We therefore

feel the luminescence mechanism proposed in Ref. [144] cannot be correct. Instead,

we propose a process in which the incoming 3.68 eV photons in the experiment can

excite V 2+
O → V +

O + h+
VBM. Our calculated 2.43 eV luminescence peak corresponding to

V +
O + h+

VBM → V 2+
O is in very good agreement with the observed peak at 2.48 eV, and

our 2.99 eV peak for h+
polaron + e−CBM is in very good agreement with the observed peak

at 2.92 eV. Kompan et al. also reported that the luminescence signal disappears when

the sample is prepared in an oxygen-rich environment, supporting our attribution of the

signal to oxygen vacancies.

6.4 Conclusions

We have investigated the structural and electronic properties of barium cerate, and

shown that they are well described by DFT using a hybrid exchange-correlation func-

tional. Formation, properties, and interactions were calculated for the impurities and

intrinsic defects that are most relevant for proposed applications. We have found that

polaron formation is an important phenomenon in the study of BaCeO3, and it is essen-

tial to take the effects of polarons into account when describing the behavior of defects

and impurities. These effects have been explored in detail, calculating formation ener-

gies, favorable charge states, polaron binding energies, and optical transition levels. In

Chapter 7, we will compare the case of SrCeO3, in which the same general principles

hold. We expect this also to be the case in the case of other cerium-containing oxides

such as CeO2.
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Chapter 7

Impact of Point Defects on Proton

Conduction in Strontium Cerate

7.1 Introduction

Hydrogen readily incorporates in many oxides with the perovskite crystal structure.[145,

146, 122] Strontium cerate (SrCeO3) (Fig. 7.1) has been investigated for use in numer-

ous applications, including solid oxide fuel cells, hydrogen sensors, and steam electroly-

sis [147, 148, 149, 150]. Acceptor dopants are typically introduced to enhance the stability

and increase the proton solubility; during this process, oxygen vacancies are created to

compensate for the acceptors. Subsequent exposure to H2O then leads to incorporation

of hydrogen while simultaneously removing oxygen vacancies [151]. After this exchange

has taken place, hydrogen plays the role of the compensating donor, but the preparation

technique potentially leaves a sizeable fraction of oxygen vacancies in the samples. In

spite of the critical role played by hydrogen in SrCeO3, the microscopic mechanisms of

its incorporation and interactions with other defects and impurities have not yet been

explored in detail.
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As discussed in Chapter 6, computational studies using density functional theory

(DFT) have often encountered obstacles when attempting to describe cerium-containing

compounds [152], particularly with regard to the strongly localized 4f electrons. Exchange-

correlation functionals such as the local density approximation (LDA) or the generalized

gradient approximation (GGA) tend to over-delocalize carriers, leading to a poor de-

scription of systems in which localization plays a central role. This shortcoming can

be addressed by using hybrid functionals, which combine exact Hartree-Fock exchange

with GGA, and have been shown to improve the description of strongly localized car-

riers [124, 125, 126, 127]. Hybrids also correct the “band-gap problem” of traditional

functionals [128], and have been successfully applied to the study of defects in many

semiconductors and insulators. We therefore expect DFT with a hybrid functional to

describe strontium cerate accurately. To our knowledge, this is the first application of

hybrid functionals to this material.

In this work, we provide a thorough microscopic description of proton conduction

and the factors that can affect it. We first investigate the thermodynamics of SrCeO3

formation and its decomposition into various alternate phases. We calculate the electronic

band structure and perform a slab calculation to find the absolute position of the bands

with respect to the vacuum level; this provides insight into the electronic character of

the material and the likelihood of donor versus acceptor incorporation. Next, we look at

proton conducting behavior directly, predicting the energetics of hydrogen incorporation,

its location in the crystal lattice, the strength of its interactions with other defects, and

energy barriers to migration. We also investigate vacancies of strontium and cerium,

which act as acceptors and are therefore expected to strongly interact with protons and

potentially act as traps. Comparisons with our results in barium cerate (Chapter 6)

establish trends across these well-known proton conductors.
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Sr

Ce

(a) (b)

Figure 7.1: (a) Visualization of the crystal structure of strontium cerate. Cerium–
centered octahedra are yellow, strontium ions are green, and oxygen ions are red.
SrCeO3 occurs in the perovskite crystal structure. The unit cell is orthorhombic due
to octahedral tilting. (b) High-symmetry points in the first Brillouin zone of an or-
thorhombic lattice. Lines connecting the points indicate the conventional path for
band-structure plots [110].
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7.2 Computational methods

Our calculations use the general methodology described in Chapter 2.

All calculations used the HSE hybrid functional with standard parameters (HSE06).

The cerium pseudopotential included 46 electrons in the core ([Kr] 4d10), so the PAW

calculation contained 12 valence electrons per cerium (5s25p64f5d6s2). The 20-atom unit

cell was used for calculation of lattice parameters and band structure. The Brillouin

zone was sampled using a 4× 4× 4 Monkhorst-Pack grid [129]. Defects were introduced

into a 160-atom supercell to minimize interaction with periodic images. The supercells

used a single special k-point, k = (0.25, 0.25, 0.25). The plane-wave energy cutoff for all

calculations was 400 eV.

Surface calculations were performed for slabs oriented in the (001) direction with a

CeO2 termination on both sides. The slabs contained 4 CeO2 and 3 SrO layers (ap-

proximately 13 Å total thickness). The vacuum spacing between slabs was 21 Å. Tests

indicate the results are converged to within 0.01 eV with respect to vacuum spacing.

Formation energies are calculated using the methodology described in Sec. 2.7. We

used an experimental value of 68, calculated from the bulk capacitance measurements of

Ref. [153].

Migration barriers were calculated by finding the minimum-energy path with the

climbing image nudged elastic band method [154]. The migration barrier is the total

energy difference between the saddle-point configuration and the stable configuration.

The path was found using PBE [5] rather than HSE to reduce computational cost, but

the saddle-point energy was then calculated using HSE for greater accuracy. This method

has been used with success to calculate migration barriers in other materials [155].
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Table 7.1: Structural parameters of SrCeO3 and comparison with BaCeO3. Calculated
results based on HSE; experimental values from Ref. [158]. The angles are for Ce-O-Ce
and measure octahedral tilting: ∠1 = ∠2 = 180◦ for a cubic perovskite. The degree of
tilting is different along different directions: ∠1 is the angle involving cerium atoms
separated along the c direction, and ∠2 involves cerium atoms which lie in the plane
perpendicular to the c axis.

SrCeO3 BaCeO3

Theory Exp Theory Exp

a (Å) 5.945 6.012 6.233 6.237
b (Å) 6.103 6.154 6.223 6.218
c (Å) 8.506 8.589 8.782 8.780
∠1 146.3◦ 146.9◦ 159.4◦ 158.8◦

∠2 144.0◦ 144.9◦ 156.6◦ 156.1◦

7.3 Results

7.3.1 Structural parameters

Strontium cerate is a perovskite with an orthorhombic unit cell (Fig. 7.1), space group

Pbnm. The structural parameters as calculated by HSE are shown in Table 7.1 and show

good agreement with experiment. As typical of an orthorhombic perovskite, the cerium-

centered octahedra are tilted. The a and b lattice parameters are very similar. For

comparison, Table 7.1 also shows the calculated parameters of BaCeO3 from Sec. 6.3.1.

SrCeO3 has a smaller lattice parameter and more significant octahedral tilting, due to

the smaller ionic radius of strontium as compared to barium. This effect is quantified

by the Goldschmidt tolerance factor t [156], which is calculated based on the ionic radii

of the constituents and can predict the level of distortion in a perovskite. For SrCeO3,

t = 0.80, less than t = 0.86 for BaCeO3. This leads to a greater distortion from the cubic

phase; the latter is seen in perovskites with 0.89 ≤ t ≤ 1.0 [157].
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Figure 7.2: HSE band structure of SrCeO3, plotted along the high-symmetry path
illustrated in Fig. 7.1(b). The valence bands have primarily O 2p character, the lowest
conduction bands are composed of Ce 4f states, and the next higher bands are Ce 5d
states. The 4.33 eV band gap is direct Γ→ Γ. The 4f and 5d states are separated by
a second gap of width 1.00 eV.

7.3.2 Band structure

Figure 7.2 shows the calculated band structure of strontium cerate. The accuracy of

HSE in producing the gap of BaCeO3 (Sec. 6.3.2) provides us with confidence that the

predicted gap value of 4.33 eV for SrCeO3 is also accurate. Experimental measurements

have yielded a variety of values, ranging from 3.5 eV based on electron energy loss

spectroscopy and diffuse reflection [152], to 5-6 eV based on optical absorption [159].

The present hybrid functional results represent an improvement over the results given by

traditional functionals such as PBE, which underestimate the gap [152].
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7.3.3 Chemical potentials and phase stability

As discussed in Sec. 2.7, the atomic chemical potentials µi are subject to various

constraints:

µSr, µCe, µO ≤ 0, (7.1)

µSr + µCe + 3µO = ∆Hf (SrCeO3), (7.2)

µSr + µO ≤ ∆Hf (SrO), (7.3)

µSr + 2µO ≤ ∆Hf (SrO2), (7.4)

µCe + 2µO ≤ ∆Hf (CeO2), and (7.5)

2µCe + 3µO ≤ ∆Hf (Ce2O3). (7.6)

where ∆Hf (X) is enthalpy of formation of compound X. Expression (7.1) avoids for-

mation of bulk Sr and Ce phases and prevents loss of O2, (7.2) ensures that SrCeO3 is

thermodynamically stable, and (7.3)-(7.6) exclude formation of secondary BaO, BaO2,

CeO2 and Ce2O3 phases. Enthalpies of formation are calculated from first principles and

listed in Table 7.2. The inequalities above allow us to describe the region of chemical

potentials in the µCe-µO plane for which SrCeO3 is stable.

The phase diagram of this system in µO-µCe space is shown in Fig. 7.3. For a fixed

µO, the window of SrCeO3 stability in µCe is only 0.05 eV wide. In order to calculate

defect formation energies, we fix µCe as a function of µO by assuming the system is in

the middle of the SrCeO3 region of stability. We perform similar calculations to fix µH

(limited by formation of H2O) and µY (limited by the formation of Y2O3). Thus the

only remaining variable is µO, which we adjust to reflect different growth conditions. We

considered two values: µO = −0.17 eV (point A in Fig. 7.3, near the oxygen-rich limit)

and µO = −2.5 eV (point B in Fig. 7.3, relatively oxygen-poor, corresponding to O2 gas
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Table 7.2: Enthalpy of formation of SrCeO3 and possible precipitates. Experimental
values [137, 138] are provided for comparison.

Compound ∆Hf (eV)
Theory Experiment

SrCeO3 -17.36 -17.49
SrO -5.64 -6.13
SrO2 -5.88 -6.57
CeO2 -11.61 -11.30
Ce2O3 -19.75 -18.65
H2O -2.67 -2.51
Y2O3 -19.18 -19.74
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Figure 7.3: Phase diagram of SrCeO3. The dominant phase for each region of cerium
and oxygen chemical potentials is indicated. The region of stability for SrCeO3 is
indicated by the narrow (green) shaded region. Chemical potential conditions used
for plotting formation energies in Fig. 7.4 are at points A and B.

104



Impact of Point Defects on Proton Conduction in Strontium Cerate Chapter 7

at 1100 K and 0.1 MPa [139]).

The phase diagram of BaCeO3 is similar, but the window of stability is wider (0.26

eV) and extends approximately 1 eV lower in oxygen chemical potential (Figure 6.3).

This suggests that stability concerns may be even more important in SrCeO3 than in

BaCeO3.

7.3.4 Point defects and impurities

Formation energies for defects and impurities in various charge states are calculated

using Eq. (2.15) and plotted as a function of Fermi level in Fig. 7.4. For each Fermi-

level position, only the most stable charge state of a given defect is plotted. As may be

seen from Eq. (2.15), the slope of a line corresponds to its charge state, and therefore

charge-state transition levels occur at kinks where the line changes slope.

There are two symmetry-inequivalent oxygen sites: “apical” and “in-plane” with

reference to the plane perpendicular to the c axis. Our calculations find that a vacancy

on the apical site is lower in energy by 27 meV, so the results shown are for apical oxygen

vacancies. Similarly, there are 8 distinct hydrogen interstitial sites, four on each oxygen.

We follow the numbering scheme of Ref. [141], in which sites are labeled with 1 or 2

(bonded to apical or in-plane oxygen respectively) and a, b, c, or d (according to the

orientation of the bond). We used PBE tests to find the two lowest-energy configurations,

and then compared them using HSE to find the minimum-energy site. We found that 1b

(bonded to the apical oxygen, oriented in the same direction as the octahedral tilting) is

the most stable, and 2b (bonded to the in-plane oxygen, oriented in the same direction

as the octahedral tilting) is higher in energy by 64 meV.

Yttrium substituted on the cerium site is stable only in the negative charge state

and thus acts as an electron acceptor at all Fermi levels. The possible donors that
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Figure 7.4: Calculated formation energies as a function of Fermi level in the gap, for
two values of the oxygen chemical potential: (a) µO = −0.17 eV and (b) µO = −2.5
eV. Dashed segments for VO and Hi indicate states which have one or more electron
polarons localized on cerium ions adjacent to the defect, rather than localized on the
defect itself as in a “true” defect state. Dotted lines for H+

i and H−i extend above the
dashed line to show the +/− transition level at their intersection 4.10 eV above the
VBM.
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compensate the yttrium acceptor are oxygen vacancies (VO) and hydrogen impurities

(protons). Figure 7.4 shows that hydrogen has a lower formation energy than VO. The

formation energies plotted here assume equilibrium with H2O, so we indeed find that upon

exposure to water hydrogen becomes the most favorable donor in the system, replacing

oxygen vacancies. This agrees with the experimental findings of Ref. [151].

The other point defects included in Fig. 7.4 are the Ce and Sr vacancies, both of which

act as acceptors: VCe accepts four electrons, and VSr accepts two, consistent with the

valence of these cations. The Fermi level of the system system is fixed by the requirement

of overall charge neutrality. Since defect and impurity concentrations have an exponential

dependence on formation energy [13], the Fermi level will be pinned very close to the

point where two oppositely charged defects have the same formation energy. In the

absence of any impurities, the Fermi level would be determined by equilibrium between

V2+
O and V2−

Sr . Doping with yttrium lowers the Fermi level (and will hence reduce the

concentration of VCe and VSr). Introducing hydrogen replaces VO as the dominant donor

and pushes the Fermi level higher. These qualitative considerations apply irrespective of

the precise value of the oxygen chemical potential [Figs. 7.4 (a) and (b)].

For all of the Fermi levels that are relevant to the physical system, hydrogen prefers

the positive charge state (H+
i ) and thus incorporates as an interstitial proton and acts as

a donor. The proton interacts with an oxygen lone-pair electron, forming a covalent bond

of length 1.01 Å oriented at a 6◦ angle from the c axis. It is also of interest to examine

what happens at higher Fermi levels. Unlike its behavior in most other materials, in which

interstitial hydrogen can assume different charge states [160], we find that the hydrogen

in SrCeO3 is intrinsically stable only in the positive charge state (i.e., as a proton).

However, an electron can localize on a cerium ion adjacent to the proton, forming an

electron polaron (much like in BaCeO3, see Sec. 6.3.4). This can be equivalently viewed

as a Ce4+ becoming Ce3+). The polaron and the H+
i together make up an overall charge-
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neutral entity represented by the horizontal part of the Hi line in Fig. 7.4 at Fermi levels

above 3.36 eV. However, it would be inaccurate to call this state “H0
i ”, since that would

imply the electron was localized on the hydrogen itself. It should rather be denoted H+
i

+ e−polaron, and is thus indicated by a dashed line in the figure. It is possible to stabilize

a negatively charged hydrogen interstitial, i.e., a true H−i state in which both electrons

localize on the hydrogen, which is located between two strontium ions); however, this

state is stable only for Fermi levels well above the conduction-band minimum, and thus

it will not be observed. Still, its energy is of interest for band alignment as discussed

below, and therefore we included it in Fig. 7.4.

The microscopic process by which a proton diffuses through the lattice is quite com-

plicated, involving hops from an oxygen atom to one of many nearby oxygens as well as

reorientations of the OH bond [141]. A full treatment of diffusion is beyond the scope of

this work. In order to capture some of the physics involved, we calculated the migration

barrier from a 2b site to a neighboring 2b site (see the second paragraph of this section

for a discussion of proton sites). This path was chosen because it is a direct transfer be-

tween spatially separated but equivalent sites, and can thus lead to long-range diffusion

on without separate reorientation steps. A visualization of hydrogen in an intermediate

state during this diffusion process is shown in Figure 7.5. We found an activation en-

ergy of 0.67 eV, in good agreement with the experimental value of 0.63 eV [161]. This is

slightly larger than the barrier in BaCeO3, which is 0.22 to 0.58 eV from calculation [141]

and 0.54 eV from experiment [162].

Protons moving through the lattice will interact with defects in the lattice, partic-

ularly negatively charged defects. We characterize this interaction by a binding energy,

defined as

Eb(AB) = Ef (A) + Ef (B)− Ef (AB) (7.7)
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Figure 7.5: A proton in an intermediate state during the process of hopping from one
equlibrium site to the next.
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The binding energy of H+
i with Y−Ce is 0.18 eV. This is fairly small compared to the

migration barrier (0.67 eV), and hence trapping at yttrium acceptors will not be a major

concern for proton diffusion. Binding to cation vacancies is more significant. The binding

energy of a proton with V2−
Sr is 0.88 eV, and a second proton can bind with 7 meV.

The binding energy of a proton with V4−
Ce is 1.43 eV, and a second proton can bind

with energy 1.07 eV. These large numbers indicate that any cation vacancies present in

the material will trap hydrogen very effectively, and a significant concentration of these

vacancies would negatively impact proton conductivity. Though the binding energy with

yttrium is small, dopants are typically incorporated in concentrations well above the

equilibrium concentrations of cation vacancies, so dopant sites may also be an important

source of proton trapping. As we already discussed, doping with yttrium (or other

acceptors) tends to reduce the concentration of cation vacancies, but for the relevant

Fermi levels a significant concentration of V2−
Ce and, in particular, V2−

Sr may still be present,

especially under oxygen-rich conditions [Fig. 7.4(a)]. The strong binding of hydrogen

to the cation vacancies also implies that these vacancies will more readily form in the

presence of hydrogen, since the vacancy-hydrogen complexes have lower formation energy

than the bare vacancies. All of this points to the need for more detailed experimental

characterization and better control of cation vacancies in the material.

7.3.5 Band alignment

Band alignments provide valuable information about the electronic properties of a

solid. They of course determine the band offsets when two materials are joined at an in-

terface, but the alignment of the band structure on an absolute energy scale also provides

insight into the ability to dope a material n-type or p-type (see Sec. I.A.1 of Ref. [13]).

To calculate the absolute position of the bands with respect to the vacuum we use a slab
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geometry, following the approach of Ref. [163]. The geometry of the setup is visualized

in Fig. 7.7. The slab is oriented in the (001) direction with CeO2 layers at both surfaces

to ensure mirror symmetry. The CeO2 termination was chosen instead of the SrO termi-

nation because it gives more physically representative results. Additionally, the shared

CeO2 surface of BaCeO3 and SrCeO3 makes comparison more straightforward. The band

alignment results are shown in Fig. 7.7, for both SrCeO3 and BaCeO3.

Another way of assessing the band alignment of materials is provided by the energy

of the +/− charge-state transition level of interstitial hydrogen, i.e., the Fermi level

at which the + and − charge states of hydrogen have equal formation energy. It has

been demonstrated [164, 165] that this level can serve as a means of aligning the band

structures in many classes of materials. Figure 7.7 shows the position of this level within

the band gaps of SrCeO3 and BaCeO3, confirming that it is indeed aligned across these

two materials.

The position of the +/− charge-state transition level of Hi level is expected to occur

at about 4.5 eV below the vacuum level.[164] In SrCeO3, this level is only 2.32 eV below

the vacuum level (4.10 eV above the VBM). This discrepancy is due to the character

of the positively charged hydrogen interstitial (H+
i ). In SrCeO3, BaCeO3, and many

other perovskites, the proton strongly interacts with oxygen lone-pair electrons to form

an O-H bond approximately 1 Å in length [166, 167, 168]. This is in contrast to the

configuration of H+
i in the materials explored in Ref. [164], in which H+

i takes a bond-

center or antibonding position. The lone-pair O-H configuration of SrCeO3 is lower in

energy than the bond-center or antibonding position, thus raising the energy of the +/−

transition level.

One might expect that the configuration in which H+
i is attached to the lone pair

would not provide a suitable value for the +/− level, since it is not in the spirit of the

alignment physics discussed in Ref. [164]. However, as can be seen from Fig. 7.7, it turns
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Figure 7.6: Perspective view of the SrCeO3 slab used for surface calculation. The slab
thickness is ∼13 Å, and vacuum spacing between slabs is 21 Å. Color coding of atoms
as in Fig. 7.1.
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Figure 7.7: Band alignments of SrCeO3 and BaCeO3 on an absolute scale referenced
to the vacuum level. Also shown is the hydrogen +/− transition level, which is found
to be aligned within 50 meV across the two materials.

out that the level still serves as a reliable means of aligning the band structures of SrCeO3

and BaCeO3, probably due to the similarity of the two hosts.

7.4 Conclusions

We have calculated the structural and electronic properties of strontium cerate from

first principles. The aim was to provide a comprehensive microscopic picture of proton

conductivity in SrCeO3, and establish trends across this class of proton conductors. This

is the first time a hybrid functional has been applied to this material, as well as the first

ab initio analysis of defects in this material. We mapped out the electronic structure,

and based on surface calculations we found the alignment of the bands with respect

to vacuum. We also compared the alignment of the bands in BaCeO3, and found an

alignment between hydrogen +/− transition levels in these materials.

We reported the behavior of various important point defects in SrCeO3: hydrogen,
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vacancies, and the common acceptor dopant yttrium. The migration barrier for hydrogen

was calculated to be 0.67 eV, in very good agreement with experiment. The interactions

between hydrogen and the other defects were studied. Strong binding energies between

hydrogen and cation vacancies were found (0.88 eV with VSr and 1.43 eV with VCe).

When present, these vacancies will strongly trap hydrogen and significantly impact proton

conduction.
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Conclusions and Outlook

We have performed first-principles calculations to explore fundamental topics in condensed-

matter physics with experimental relevance and real-world applications for energy and

computation. Our work provides guidance for experimentalists and engineers, sheds light

on open research questions, and paves the way for future work in these materials.

We began with silicon, the basis of modern electronics. Shallow donors in silicon

have long been well-characterized experimentally, but the details have previously eluded

precise calculation by first-principles methods because of the large extent of the wavefunc-

tion and the over-delocalization inherent in traditional exchange-correlation functionals.

We found a new technique to overcome both of these challenges, allowing unprecedented

accuracy in the prediction of the properties of shallow donors. Future work may extend

the hybrid functional calculations to larger cell sizes or expand this technique to a wide

variety of dopants and host materials. We also calculated the linear shift of the hyperfine

parameter of these shallow donors with the hydrostatic component of strain, providing

theoretical background for the use of strain to fine-tune atomic clock transitions. Our

results help develop the understanding necessary to build spin qubits based on shallow

donors in silicon.
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We moved from silicon to complex oxides, exciting materials that are being considered

for next-generation electronics. Many complex oxides show a regime in which resistivity

scales with the square of the temperature, which is often attributed to electron-electron

scattering. We explored the conditions under which electron-electron scattering may

be expected to give rise to such a power law, providing guidance to experimental groups

seeking to identify the source of signatures observed in transport experiments. The results

also prevent the mis-identification of a T 2 power law in SrTiO3 as arising from electron-

electron scattering; recent unpublished work by Edelman and Littlewood has suggested a

polaron-mediated mechanism for this transport signature. We have also opened the way

for the direct calculation of electron-electron scattering rates in other materials using our

methodology.

Turning to more exotic electronic behavior, we explored Sr3Ir2O7, an excellent plat-

form for studying the interactions between spin-orbit coupling and Coulomb correlations.

This is a rapidly growing area of research, relevant to the study of topological phases

and high-Tc superconductivity. In our work, we established that DFT+U captures both

the electronic transition and the concomitant magnetic transition. This limits the types

of mechanisms which may be at play in this transition, and suggests that magnetism

is an important factor in the transition. The fact that the calculated phase transition

is not accompanied by the charge-density-wave-like structural distortion also limits the

types of mechanisms which may be at play in the transition. In particular, our results

rule out a joint cause for the distortion and the phase transition. These results will

guide future theoretical attempts to explain the transition and experimental attempts to

probe it. In addition, joint experimental and theoretical work investigating the topotactic

transformation of this material into the band insulator Sr3Ir2O7F2 is ongoing.

Finally, turning from electron conduction to proton conduction, we applied our first-

principles methodology to barium cerate and strontium cerate. We showed that cation
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vacancies act as hydrogen traps and may limit proton conductivity. This provides an

explanation for the efficacy of acceptor-type dopants, which lower the Fermi level and

reduce the concentration of cation vacancies, and opens the way for experiments in which

optimizing doping or growth conditions to minimize these vacancies may improve pro-

ton conductivity. We also identified the position of the bands on an absolute energy

scale, providing data for possible water-splitting experiments in the future. We predicted

that electrons will self-trap as polarons in this material; a wide variety of experimental

probes, including further luminescence experiments, could be brought to bear to verify

and characterize these polarons.

In conclusion, we have used first-principles computational methods to tackle fun-

damental questions about materials, providing answers with practical impacts in novel

computation and energy applications.

117



Appendix A

Electron-Electron Scattering Notes

The notes in this section are written by J. T. Devreese and S. N. Klimin and are repro-

duced by permission.
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On the resistivity and relaxation rate of Nb-doped strontium

titanate provided by the Baber scattering (explanatory note)

J. T. Devreese, S. N. Klimin

(Dated: May 19, 2016)

In the present note, the derivation of the ìBaber contributionî to the relaxation rate is

described. Within the Baber mechanism, the DC conductivity is provided by the interaction

between the charge carriers with di§erent band masses (or between electrons and holes, as

in the original paper [1, 2]). When the carriers with di§erent masses are present in a

crystal, the normal electron-electron scattering processes (i. e., the scattering processes

without umklapp) can bring a nonzero contribution to the relaxation rate and to the DC

conductivity.

The calculation is performed using the Boltzmann equation and following Ref. [3] (Chap-

ters 7 to 9). Within this approach, the non-equilibrium distribution function fn;k for the

carriers is the n-th subband determined as

fn;k = f
(0)
n;k ! "n;k

@f
(0)
n;k

@"n;k
; (1)

where f (0)n;k " f ("n;k) is the equilibrium (Fermi) distribution. The function "n;k is a measure

of the deviation from equilibrium in the electron distribution. We use here the notations

from Ref. [3]. The inner product of two functions % and " is deÖned by

h%;"i "
Z
dk %(k) " (k) : (2)

As established in Ref. [3], from a mathematical point of view, the collision integral of the

Boltzmann equation can be represented even as h"; P"i where P is a scattering operator

which transforms the function " into another function % = P". In the notations by Ziman,

the DC resistivity is expressed as

) =
h"; P"i

[h"; X (E = 1)i]2
; (3)

where X (E = 1) represents the left-hand side of the Boltzmann equation in a unit electric

Öeld,

h"; X (E = 1)i = 2
X

n

Z
evn;k"n;k

@f ("n;k)

@"n;k

dk

(2-)3
:
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2

Here, vn;k is the velocity in the n-th subband,

vn;k =
1

~
@"n;k
@k

:

In Ref. [3], the collision integral for the electron-electron scattering processes is determined

as

h#; P#i =
1

2kBT

X

n;n0

Z
dk1

(2*)3
dk2

(2*)3
dk3

(2*)3
dk4

(2*)3
(#n;1 + #n0;2 # #n;3 # #n0;4)

2

$ P (n; 1; n0; 2! n; 3; n0; 4) (4)

Here, P (n; 1; n0; 2! n; 3; n0; 4) is the scattering probability,

P (n; 1; n0; 2! n; 3; n0; 4) =
#
U
(eff)
k1;k3

$2
f ("n;k1) f ("n0;k2) [1# f ("n;k3)] [1# f ("n0;k4)]

$
2*

~
- ("n;k1 + "n0;k2 # "n;k3 # "n0;k4)

$ (2*)3 - (k1 + k2 # k3 # k4)

with the matrix element of the e§ective electron-electron interaction U (eff)k1;k3
. In general, the

e§ective electron-electron interaction includes both the Coulomb repulsion and the phonon-

mediated attraction.

The function #n;k is a trial function for the variational principle from Ref. [3]. In the

theory of the electric resistivity [3], #n;k is chosen in the form

#n;k = vn;k ' u

where u is the unit vector parallel to the applied dielectric Öeld. Thus the collision integral

is

h#; P#i =
1

2kBT

1

(2*)9
2*

~

X

n;n0

Z
dk1dk2dk3dk4 ((vn;k1 + vn0;k2 # vn;k3 # vn0;k4) ' u)

2

$
#
U
(eff)
k1;k3

$2
f ("n;k1) f ("n0;k2) [1# f ("n;k3)] [1# f ("n0;k4)]

$ - ("n;k1 + "n0;k2 # "n;k3 # "n0;k4) - (k1 + k2 # k3 # k4) (5)

The electrons in the conduction band are described by the matrix Hamiltonian from Ref.

[4]

H = 4

0

BBB@

"1 (k) 0 0

0 "2 (k) 0

0 0 "3 (k)

1

CCCA
+
1

2
W; (6)
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3

with the energies

"1 = t! sin
2

!
a0kx
2

"
+ t# sin

2

!
a0ky
2

"
+ t# sin

2

!
a0kz
2

"
;

"2 = t# sin
2

!
a0kx
2

"
+ t! sin

2

!
a0ky
2

"
+ t# sin

2

!
a0kz
2

"
;

"3 = t# sin
2

!
a0kx
2

"
+ t# sin

2

!
a0ky
2

"
+ t! sin

2

!
a0kz
2

"
; (7)

where a0 is the lattice constant. The matrix W

W =

0

BBB@

2D ( (

( 2D (

( ( !4D

1

CCCA
(8)

describes the mixing of subbands within the conductivity band.

In the present note, we neglect the band mixing and assume the anisotropic parabolic

dispersion in each of three subbands of the conductivity band (as in Refs. [4, 5]) with the

tensor e§ective masses
)))m(n)

jj

))) (j = x; y; z; n = 1; 2; 3). The masses m(n)
jj can take two values:

the ìlightî mass m# = ~2= (2a20t#) and the ìheavyî mass m! = ~2= (2a20t!). In addition,

it is assumed that the temperature is su¢ciently low so that the chemical potential of the

carriers 0 is relatively close to their Fermi energy EF . In this approximation, both the

collision integral and the normalization factor the resistivity are substantially simpliÖed.

The normalization factor becomes

[h-; X (E = 1)i]2 = e2
8

944
03

~6
(2m! +m#)

2

m!

: (9)

Using the deÖnitions of the average inverse band mass mb and the density-of-state band

mass mD,
1

mb

=
1

3

!
2

m#

+
1

m!

"
; mD =

*
m2
#m!

+1=3
(10)

the normalization factor takes the form

[h-; X (E = 1)i]2 = e2
8

44
03

~6
m3
D

m2
b

: (11)

In the same approximation, the collision integral is

h-; P-i =
1

2kBT

1

(24)9
24

~

X

n;n0

Z
dk1dk2dk3dk4 (vn;z;k1 ! vn;z;k3 + vn0;z;k2 ! vn0;z;k4)

2

$
.
U
(eff)
k1;k3

/2
f ("n;k1) f ("n0;k2) [1! f ("n;k3)] [1! f ("n0;k4)]

$ < ("n;k1 + "n0;k2 ! "n;k3 ! "n0;k4) < (k1 ! k3 + k2 ! k4) : (12)
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4

Here, the factor (vn;z;k1 ! vn;z;k3 + vn0;z;k2 ! vn0;z;k4)
2 is other than zero when n 6= n0

(vn;z;k1 ! vn;z;k3 + vn0;z;k2 ! vn0;z;k4)
2 = ~2

!
1

m
(n)
zz

!
1

m
(n0)
zz

"2
(k1;z ! k3;z)

2 : (13)

Thus the Baber scattering is realized here through the interaction of the electrons in di§erent

subbands. The collision integral is then

h&; P&i =
1

2kBT

1

(2))9
2)

~
~2
X

n;n0

!
1

m
(n)
zz

!
1

m
(n0)
zz

"2 Z
dk1dk2dk3dk4 (k1;z ! k3;z)

2

%
%
U
(eff)
k1;k3

&2
f ("n;k1) f ("n0;k2) [1! f ("n;k3)] [1! f ("n0;k4)]

% . ("n;k1 + "n0;k2 ! "n;k3 ! "n0;k4) . (k1 ! k3 + k2 ! k4) : (14)

Let us perform the replacement of variables [separately for each term with a given (n; n0)]:

k1;x &
1

~

q
m
(n)
xx p1;x; k1;y &

1

~

q
m
(n)
yy p1;y; k1;z &

1

~

q
m
(n)
zz p1;z;

k3;x &
1

~

q
m
(n)
xx p3;x; k3;y &

1

~

q
m
(n)
yy p3;y; k3;z &

1

~

q
m
(n)
zz p3;z;

k2;x &
1

~

q
m
(n0)
xx p2;x; k2;y &

1

~

q
m
(n0)
yy p2;y; k2;z &

1

~

q
m
(n0)
zz p2;z;

k4;x &
1

~

q
m
(n0)
xx p4;x; k4;y &

1

~

q
m
(n0)
yy p4;y; k4;z &

1

~

q
m
(n0)
zz p4;z:

After this replacement, we Önd that

"n;k =
1

2

(
p2x + p

2
y + p

2
z

)
=
p2

2
;

and Z
dkj : : : =

m
3=2
D

~3

Z
dpj : : : (j = 1; : : : ; 4) :

In these variables, the collision integral takes the form

h&; P&i =
1

kBT

1

(2))8
m6
D

2~13
X

n;n0

!
1

m
(n)
zz

!
1

m
(n0)
zz

"2
m(n)
zz

Z
dp1dp2dp3dp4 (k1;z ! k3;z)

2

%
%
U
(eff)
k1;k3

&2
f ("n;k1) f ("n0;k2) [1! f ("n;k3)] [1! f ("n0;k4)]

% . ("n;k1 + "n0;k2 ! "n;k3 ! "n0;k4) . (k1 ! k3 + k2 ! k4) : (15)

The integrals are further calculated in the spherical coordinates,

dpj = p
2
jdpjd+j; d+j = sin 1jd1jd'j:
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what gives us the result

h!; P!i =
1

2kBT

1

(2%)9
2%

~
~2
m6
D

~14
X

n;n0

"
1

m
(n)
zz

#
1

m
(n0)
zz

#2
m(n)
zz

Z
d'1

Z
d'2

Z
d'3

Z
d'4

Z p
2"1d"1

Z p
2"2d"2

Z p
2"3d"3

Z p
2"4d"4

% f ("1) f ("2) [1# f ("3)] [1# f ("4)] * ("1 + "2 # "3 # "4)

%
%
U
(eff)
k1;k3

&2
(p1 cos -1 # p3 cos -3)

2 * (k1 # k3 + k2 # k4) : (16)

The next approximation is the same as in Chap.9 of Ref. [3]. Under the condition

"1 + "2 # "3 # "4 = 0

provided by the delta function * ("1 + "2 # "3 # "4), the product of the functions

f ("1) f ("2) [1# f ("3)] [1# f ("4)] (17)

is not negligibly small only inside the thermal layer of the width *" & kBT near the Fermi

surface. Therefore the other functions can be assumed slowly varying with respect to (17)

and replaced by their values at the Fermi surface. In particular, we set pj '
p
2/ ( p).

The argument of the delta function * (k1 # k3 + k2 # k4) is (by components)

k1;j # k3;j + k2;j # k4;j =
1

~

q
m
(n)
jj (p1;j # p3;j) +

1

~

q
m
(n0)
jj (p2;j # p4;j)

Herefrom we Önd that

* (k1 # k3 + k2 # k4)

=
~3

Q
j=x;y;z

q
m
(n0)
jj

Y

j=x;y;z

*

0

@(p2;j # p4;j) +

vuutm
(n)
jj

m
(n0)
jj

(p1;j # p3;j)

1

A

=
~3

m
3=2
D

Y

j=x;y;z

*

0

@p2;j # p4;j +

vuutm
(n)
jj

m
(n0)
jj

(p1;j # p3;j)

1

A :

Therefore the vector Qn;n0 can be introduced, with the components

(Qn;n0)j (

vuutm
(n)
jj

m
(n0)
jj

(p1;j # p3;j) ; (18)
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6

and the delta function is expressed as

! (k1 ! k3 + k2 ! k4) =
~3

m
3=2
D

! (p2 ! p4 +Qn;n0) :

The integrals over the energies with the distribution functions

f (") =
1

e("!&)=(kBT ) + 1
:

are calculated analytically using the change of the variables

"4 = "1 +&; "3 = "2 +&
0:

The Jacobian of this transformation is equal to 1:
!!!!
@ ("1; "2; "3; "4)

@ ("1; "2;&;&0)

!!!! = 1:

Using the variables
"! )
kBT

= x;
&

kBT
= z

we Önd that
Z 1

0

d"1f ("1) [1! f ("1 +&)] = kBT
z

1! e!z
;

Z 1

0

d"2f ("2) [1! f ("2 !&)] = kBT
ze!z

1! e!z
:

The integral over the energies gives the result
Z 1

!1
d&

Z 1

0

d"1f ("1) [1! f ("1 +&)]
Z 1

0

d"2f ("2) [1! f ("2 !&)]

= (kBT )
3

Z 1

!1
z2

e!z

(1! e!z)2
dz =

2/2

3
(kBT )

3 :

Using this result, we Önd that h+; P+i is explicitly proportional to T 2:

h+; P+i = (kBT )
2 1

12~10

 
m
3=2
D

4/2

!3X

n;n0

&
1

m
(n)
zz

!
1

m
(n0)
zz

'2
m(n)
zz p

6
&

$
Z
d-1

Z
d-3

(
U
(eff)
k1;k3

)2
(cos 31 ! cos 33)

2

$
Z
d-2

Z
d-4! (p2 ! p4 +Qn;n0) : (19)

The integral
R
d-2

R
d-4! (p2 ! p4 +Qn;n0) is calculated analytically (similar calculations

can be found in Ref. [3]). Let us introduce the momentum P = p2 ! p4. Its modulus is

P 2 = jp2 ! p4j
2 = p22 + p

2
4 ! 2p2p4 cos1; (20)
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where ! is the angle between p2 and p4 Therefore, at Öxed p2; p4

2PdP = 2p2p4 sin!d!;

and hence

sin!d! =
P

p2p4
dP: (21)

The modulus P varies between the bounds

Pmin = jp2 " p4j ; Pmax = p2 + p4:

The element d(4 of the angular integration (choosing the z axis parallel to p2) can be written

as

d(4 = 2' sin!d!:

Therefore, using (21), we Önd that:

d(4 = 2'
P

p2p4
dP

The di§erential element of the three-dimensional space dP is:

dP = P 2dPd(P = P
2dPd(2:

Hence, the product dPd(2 is expressed as:

dPd(2 =
1

P 2
dP:

Using these formulae, we represent the angular integral
R
d(2d(4 : : : in the form

Z
d(2d(4 : : : = 2'

Z Pmax

Pmin

P

p2p4
dP

Z
d(2 : : :

= 2'

Z

Pmin<P<Pmax

P

p2p4

1

P 2
dP : : : =

2'

p2p4

Z

Pmin<P<Pmax

1

P
dP : : : (22)

Consequently the integral with the (-function ( (Qn;n0 + p2 " p4) is explicitly calculated:Z
d(2

Z
d(4( (Qn;n0 + p2 " p4)

=

Z
d(2

Z
d(4( (P+Qn;n0)

=
2'

p2p4

Z

Pmin<P<Pmax

1

P
( (P+Qn;n0) dP

=
2'

p2p4

1

jQn;n0 j
!(Pmin < jQn;n0 j < Pmax)

#
2'

p2%

1

jQn;n0 j
!(2p% " jQn;n0 j) ;
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where !(2p! ! jQn;n0 j) is the unit step function. Substituting these results to (19) and using

the normalization factor (11) we arrive at the resistivity

" = (kBT )
2 %

192

1

(4%)2 e2
m
3=2
D m2

b

~4(3
X

n;n0

"
1

m
(n)
zz

!
1

m
(n0)
zz

#2
m(n)
zz p

4
!

#
Z )

0

sin )1d)1

Z )

0

sin )3d)3

Z 2)

0

d'1

Z 2)

0

d'3

%
U
(eff)
k1;k3

&2

#
(cos )1 ! cos )3)

2

jQn;n0 j
!(2p! ! jQn;n0 j) (23)

with

jk1 ! k3j
2 =

p2!
~2
'
m(n)
xx (sin )1 cos'1 ! sin )3 cos'3)

2

+m(n)
yy (sin )1 sin'1 ! sin )3 sin'3)

2 +m(n)
zz (cos )1 ! cos )3)

2(

and

jQn;n0 j = p!

"
m
(n)
xx

m
(n0)
xx

(sin )1 cos'1 ! sin )3 cos'3)
2

+
m
(n)
yy

m
(n0)
yy

(sin )1 sin'1 ! sin )3 sin'3)
2 +

m
(n)
zz

m
(n0)
zz

(cos )1 ! cos )3)
2

#1=2
: (24)

The relaxation rate 1=/ and the resistivity are proportional to each other as

1

/
=
!2p
4%
"; (25)

where !p =
q

4)e2n0
mb

is the plasma frequency for the electron gas in the conductivity band.

Thus we obtain the resulting expression of the relaxation rate

1

/
= (kBT )

2 %

192

n0

(4%)2
m
3=2
D mb

~4(3
p4!
X

n;n0

"
1

m
(n)
zz

!
1

m
(n0)
zz

#2
m(n)
zz

#
Z )

0

sin )1d)1

Z )

0

sin )3d)3

Z 2)

0

d'1

Z 2)

0

d'3

%
U
(eff)
k1;k3

&2

#
(cos )1 ! cos )3)

2

jQn;n0 j
!(2p! ! jQn;n0 j) : (26)

The remaining four-fold integral over the angles is calculated numerically.
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