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Abstract

Heart failure is becoming increasingly prevalent in the United States and is a significant cause of 

morbidity and mortality. Several therapies are currently available to treat this chronic illness; 

however, clinical response to these treatment options exhibit significant interpatient variation. It is 

now clearly understood that genetics is a key contributor to diversity in therapeutic response, and 

evidence that genetic polymorphisms alter the pharmacokinetics, pharmacodynamics, and clinical 

response of heart failure drugs continues to accumulate. This suggests that pharmacogenomics has 

the potential to help clinicians improve the management of heart failure by choosing the safest and 

most effective medications and doses. Unfortunately, despite much supportive data, 

pharmacogenetic optimization of heart failure treatment regimens is not yet a reality. In order to 

attenuate the rising burden of heart failure, particularly in the context of the recent paucity of new 

effective interventions, there is an urgent need to extend pharmacogenetic knowledge and leverage 

these associations in order to enhance the effectiveness of existing heart failure therapies. The 

present review focuses on the current state of pharmacogenomics in heart failure and provides a 

glimpse of the aforementioned future needs.
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INTRODUCTION

Heart failure has reached epidemic proportions. Approximately 5 million adults have heart 

failure in the United States with recent projections suggesting that by 2030, the prevalence 
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of this syndrome will increase another 25%. 1 Thus, heart failure has tremendous impact on 

the health care system and constitutes a major medical and societal burden. Heart failure is 

characterized by insufficient cardiac performance to meet metabolic requirements or 

accommodate systemic venous return. 2 The body’s neurohormonal system including the 

renin-angiotensin-aldosterone system (RAAS) and the sympathetic nervous system (SNS) is 

activated in order to compensate for these deficiencies 2 but activation of these systems 

contribute to worsening heart failure, worsened quality of life, and poor outcomes such as 

the need for a heart transplant, or sudden cardiac death. 3 Evidence-based medical therapies 

that suppress these responses can substantially reduce the progression of this syndrome. 4–6 

Accordingly, comprehensive heart failure management guidelines from both the American 

College of Cardiology (ACC)/American Heart Association (AHA) and the Heart Failure 

Society of America (HFSA) recommend specific pharmacological management, mostly 

focused on neurohormonal suppression, to improve outcomes in all patients with heart 

failure and reduced ejection fraction. 7,8 β blockers and angiotensin converting enzyme 

(ACE)-inhibitors are considered the foundation, but evidence has shown important roles for 

other therapies which help delay progression of heart failure and reduce mortality including 

angiotensin receptor blockers (ARB)s, aldosterone antagonists, hydralazine/isosorbide 

combination, and even device therapies such as implanted defibrillators and cardiac 

resynchronization therapy (CRT). 7,8 In addition, while there is no evidence for mortality 

benefits with loop diuretics and digoxin, these agents are indispensable, improving 

symptoms and possibly reducing hospitalizations. 9,10 It is thus evident that heart failure 

patients are currently subjected to a multiplicity of medications to achieve maximum benefit 

and optimized outcomes. This polypharmacy in health failure patients is associated with 

increased risk of toxicity, drug interactions, and poor compliance. 11 Current guidelines do 

offer some advice regarding tailoring of therapy on clinical grounds; for example, the HFSA 

guidelines recommend that factors such as age, ethnicity, heart failure severity, renal 

function, and serum potassium should be used to choose which of the many agents a heart 

failure patient should receive in his or her regimen. 7 However, even in patients who appear 

to have similar clinical factors, a great deal of variability exists in response to treatment. 12 

Genetic variability in response to heart failure treatment exists 13 and genetic information 

may complement conventional clinical information in tailoring therapy to an individual 

patient, ultimately improving outcomes. The present review focuses on available data from 

pharmacogenomic studies in heart failure medications, particularly focusing on new 

developments over the past 2 years (earlier literature has been nicely described 

elsewhere 14,15), summarized by medication class. Proof-of-principle findings are presented 

that are important to be aware of, but actionable genetic testing to guide therapeutic choices 

in heart failure remains limited to date. Thus, the review also shows that further work in this 

area is needed before the clinical implementation of heart failure pharmacogenomics 

becomes a reality, and we provide a glimpse of the future needs and directions.

BETA ADRENERGIC ANTAGONISTS

The role of the adrenergic signaling pathway of the SNS in heart failure is characterized by a 

vicious cycle in which chronic stimulation of the adrenergic receptor (AR) by circulating 

catecholamines norepinephrine (NE) and epinephrine promotes cardiac dysfunction that 
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results in the release of more adrenergic-stimulating catecholamines and further disease 

progression. 16 While the sub-cellular mechanism of action is not completely elucidated, it is 

clear that β blockers work by suppression of the adrenergic pathway and interruption of this 

vicious cycle. 17 Due to evidence of survival benefit, β blockers have been a mainstay of 

heart failure pharmacotherapy for almost 20 years. 18–20 However, there is great variation in 

response to β blocker therapy including certain subsets of the heart failure population that do 

not receive the same mortality and morbidity benefit. 21,22 Single nucleotide polymorphisms 

(SNPs) in the β1-AR (ADRB1), β2-AR (ADRB2), α2C AR (ADRA2C), and G-protein 

receptor kinase 5 (GRK5) genes of the adrenergic system may partially explain the variable 

effects received from β blockade. In fact, most of the published pharmacogenomic literature 

over the past 2 years concerning heart failure has focused on response to β blockers; thus we 

have given it first and most attention among the drug classes of interest.

β1-AR is the primary pharmacologic target of β blockers. One of the most widely-studied 

polymorphisms for heart failure in ADRB1 is the Arg389Gly variant. Arg389 is associated 

with enhanced adrenergic response to agonist stimulation of β1-AR in vitro 23 and in vivo24. 

Importantly, in a genetic substudy of the β Blocker Evaluation of Survival Trial (BEST), a 

relationship between β1 genotype and mortality response to treatment with the β blocker 

bucindolol was found.25 BEST was a large, randomized, clinical trial testing the efficacy of 

bucindolol in heart failure patients. 26 The trial was terminated prematurely at 2 years due to 

a lack of mortality benefit, though bucindolol significantly improved mortality in the non-

black subset (~75% of the patients).26 As a result of clinical failure in the overall population, 

bucindolol was never approved by the FDA for the treatment of heart failure. Notably, 

bucindolol also acts as a potent sympatholytic in addition to its β blocking properties, 

reducing circulating NE levels to a much greater extent than the β blockers FDA-approved 

for heart failure (e.g. carvedilol and metoprolol succinate).27 This distinct property of 

bucindolol may have reduced NE to deleteriously low levels thereby abrogating cardiac 

contractility and negating any beneficial effects realized through β blockade.25 In the genetic 

substudy, Arg389 homozygotes were found to have a 34% mortality benefit from 

bucindolol. 25 A greater survival rate in patients with this genotype was found when NE 

levels did not decrease compared to baseline, suggesting that an enhanced β blockade affect 

rather than protection from exaggerated sympatholysis may be responsible for reduced 

mortality in this population. In contrast, no clinical benefit was observed in carriers of the 

Gly389 variant. 25 These results were backed up by ex vivo and cell data which also showed 

that enhanced bucindolol response was associated with Arg389. 25 In addition, the results 

may explain racial differences in bucindolol efficacy, as blacks were less likely to carry 

Arg389 compared to non-blacks. 25 However the relatively small difference in allele 

frequencies between racial groups (0.62 in blacks, 0.73 in non-blacks)25 and contradictory 

clinical trial data that do not show variation in response to β blocker therapy across race28, 

suggest that Arg389 does not sufficiently explain racial disparities in bucindolol response.

In addition to the Arg389Gly polymorphism, a variant at codon 49 also has been found to 

influence drug response and clinical adverse outcomes in heart failure patients. Specifically 

in a population of patients with idiopathic dilated cardiomyopathy, Ser49 homozygotes had 

worsened prognosis (death or cardiac transplantation) compared to Gly49 carriers. 29 This 

Oni-Orisan and Lanfear Page 3

Cardiol Rev. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



association remained present among patients who received β blocker therapy (~39% of the 

population), though the specific β blocker drug patients were taking was not specified. 29 

These data were supported by mechanistic follow-up studies where cells transfected with 

Gly49 had increased sensitivity to metoprolol as well as enhanced catecholamine-induced 

β1-AR desensitization, which is considered a protective response to heart failure 

progression. 30 An expanded clinical follow-up confirmed that Gly49 carriers had better 

survival compared to Ser49 homozygotes, suggesting that higher β blocker doses may be 

warranted in Ser49Ser patients to achieve optimal survival response. 31

ADRB2 has a role in adrenergic signaling in parallel with ADRB1. Indeed, clinical trial data 

from the COMET trial and experimental evidence both suggest that antagonism of β2 AR is 

at least partially responsible for beneficial effects of carvedilol in heart failure. 32,33 ADRB2 

genotype may be important in heart failure pathophysiology and response to β blocker 

therapy. Kaye et al. were able to show that among heart failure patients receiving carvedilol, 

the proportion of patients with a favorable EF response to therapy (≥10% improvement in 

absolute LVEF or ≥5% improvement in absolute FS) was significantly higher in Glu27 

carriers compared to Gln27 homozygous patients34. These findings were validated in a 

larger population.35 Moreover, this effect has been replicated in terms of survival in several 

subsequent studies. 36–38 For example, in a well-treated cohort of advanced heart failure 

patients (81% were receiving β blockers), individuals who carried 2 copies of the ADRB2 

Arg16-Gln27 haplotype were more likely to die or require a heart transplant.38

The ADRA2C gene is responsible for the expression of the α2C AR, an autoreceptor located 

on presynaptic adrenergic neurons, which limits the release of NE through a negative 

feedback system. 39,40 Genetic disruption of α2 ARs in mice resulted in elevated NE levels 

and hearts with significant hypertrophy. 40 The multiple-nucleotide polymorphism α2C322–

325 deletion (Del) similarly increased risk of developing heart failure in black patients 41, 

who have a minor allele frequency of 0.4 compared with 0.04 in whites 42. In a BEST DNA 

substudy, ADRA2C variability surprisingly did not alter baseline levels of NE or the natural 

course of heart failure progression in placebo-treated patients. ADRA2C genotype, however, 

did affect response to bucindolol treatment. 42 Patients who were carriers of the Del allele 

had enhanced norepinephrine reduction from bucindolol compared to wild-type patients. 

Furthermore, bucindolol was found to improve survival only in α2C322–325 wild-type 

homozygotes. 42 Though the precise mechanisms by which ADRA2C genotype impacts the 

ability of bucindolol to reduce NE levels remain unknown, these results are consistent with 

previous findings25 that an exaggerated sympatholytic response to bucindolol is associated 

with reduced survival response to bucindolol.

GRK5 codes for G-protein receptor kinase 5 which desensitize β AR signaling. 43 

Substitution of Gln at the 41st amino acid position with Leu has been found to be a gain-of-

function allele resulting in enhanced desensitization, 43 analogous to an endogenous β 

blocking effect. In a prospective cohort of African American heart failure patients, who have 

10-fold higher allele frequencies of this gain-of-function polymorphism than Caucasians, the 

presence of GRK5 Leu41 was just as protective in preventing cardiac death or heart 

transplant as β blocker use. 43 These findings were recapitulated in an expanded population 

of African American heart failure patients: GRK5 Leu41 improved survival. 44
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Inconsistencies that contradict the above associations between variants in genes of the 

adrenergic system and survival response to β blockers exist in the literature. For example, 

the significant relationship between ADRB1 Arg389Gly genotype and mortality response to 

bucindolol is less clear with the β blocker therapies FDA-approved for heart failure27,45–48; 

however, the aforementioned differences in sympatholytic properties among β blockers may 

explain why the pharmacogenetic association with ADRB1Arg389Gly in heart failure 

patients is inconsistent across members of this drug class. Moreover, De Groote et al. did not 

find a significant genetic association between any of the five aforementioned adrenergic 

receptor polymorphisms and survival in β blocker-treated heart failure patients. 49 An 

investigation in a large registry of heart failure patients with left ventricular dysfunction 

receiving metoprolol or carvedilol showed that individual variants and haplotypes involving 

ADRB1, ADRB2, and ADRA2C were not found to have a significant effect on survival.27 

Altogether, these results imply that other factors such as race, disease severity, specific β 

blocker, and phenotype may interact with pharmacogenomic associations. In addition, SNPs 

may interact with each other and attenuate the elucidation of these associations.

Despite these challenges (or perhaps because of them), the pharmacogenetics of β blockers 

in heart failure continues to be an active area of investigation in recent years. Further work 

has attempted to sort out these inconsistencies, validate findings, and fully characterize the 

subset of optimal responders to β blocker therapy. An approach that continues to be used to 

address contradictions in the literature is the investigation of associations between genetic 

combinations and response to β blocker therapy, rather than individual polymorphisms. 50 

This strategy has been adopted by multiple investigators in recent years. Petersen et al. 

observed that heart failure patients who were homozygous for ADRB Arg389 and carriers of 

ADRB2 Gln27 in combination received less survival benefit from carvedilol treatment. 51 In 

contrast, this genotype combination did not impact response to metoprolol, likely due to 

differences in pharmacological properties. 51 More recently, O’Connor et al. have further 

elucidated the interaction of multiple adrenergic polymorphisms on β blocker response with 

another genetic substudy in BEST.52 In particular they reported an additive loss of 

bucindolol response in terms of morbidity and mortality in carriers of β1 Gly389 and 

α2C322–325 Del alleles, consistent with the effects of the individual SNPs on bucindolol 

response. 52 And an even more recent BEST substudy shows that genotype combinations 

determined from β1 Gly389 and α2C322–325 Del interact with response to bucindolol in 

terms of its efficacy in preventing ventricular arrhythmias in heart failure patients53; this 

morbidity response to bucindolol is similar to the abovementioned mortality response when 

using the same SNP combinations. Another important issue that is often overlooked in heart 

failure pharmacogenomic studies involves the impact of other comorbidities. This issue has 

been recently explored as well. In a substudy of BEST, atrial fibrillation status did not affect 

response to bucindolol. β1 Arg389 homozygote patients, but not β1 Gly389 carriers, had 

reduced death and hospitalization from bucindolol; which confirms the pharmacogenomic 

association discovered in the full BEST genetic population. 54 On the contrary, atrial 

fibrillation history impacted genetic response to β blockers in a population of elderly 

patients (age > 65) with heart failure. 55 Patients who were β1 Arg389 homozygotes and also 

suffered from atrial fibrillation had blunted heart rate reduction from carvedilol, but not 

bisoprolol; no attenuation in response to therapy was seen with patients in normal sinus 
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rhythm regardless of β blocker or genotype 55 demonstrating that comorbidities may interact 

with pharmacogenetic associations. Indeed β blocker response to adrenergic polymorphisms 

in acute myocardial infarction patients conflict with those seen in heart failure patients.56 In 

addition to these studies which look at the impact of gene-gene interactions and 

comorbidities on pharmacogenomic associations, investigators continue to report data on 

individual polymorphisms. In a prospectively recruited population of heart failure patients, 

Talameh et al. showed that β1 Ser49Ser homozygotes, but not Gly49 carriers, had enhanced 

survival response to β blocker therapy, using a larger population to corroborate previous 

findings that β blocker therapy has a greater influence on outcomes only in patients with 

Ser49Ser genotype. 31,57 Another recent genetic substudy looked at the impact of genotype 

on dose response in heart failure patients receiving metoprolol or carvedilol. 58 β1 Arg389 

homozygote patients had increased mortality and worsened quality of life from lower β 

blocker doses, whereas dose did not affect outcomes in Gly389 carriers. 58 This contribution 

is significant, because few have assessed quality of life outcomes or gene-dose response in 

pharmacogenomic heart failure studies. 58 Collectively, these recent findings indicate that 

while progress in this field continues, more work is still needed before clinical utility of β 

blocker pharmacogenomics can be achieved. At the current rate, this goal does not seem 

achievable in the near future; a heightened effort is warranted.

DRUGS TARGETING THE RENIN-ANGIOTENSIN-ALDOSTERONE SYSTEM

The RAAS also plays a key role during the development and worsening of heart failure. 59 

Several classes of agents for heart failure are available that work at different sites within the 

RAAS to suppress its effects. In particular, ACE inhibitors help to comprise the cornerstone 

of modern heart failure pharmacotherapy and have compelling evidence of survival benefit 

in multiple clinical trials. 60,61 ACE inhibitors act by blocking ACE-mediated conversion of 

angiotensin I to angiotensin II, thereby reducing vasoconstriction, salt-retention, and 

hypertrophy that occur with this neurohormone. 62 Genetic modifiers of ACE inhibitor 

effectiveness have been long sought with some early success. An insertion (I)/deletion (D) 

polymorphism in ACE is responsible for half of the variance in systemic ACE levels; the D 

allele is associated with increased ACE. 63 The presence of this variant is also associated 

with heart failure incidence and severity. 64,65 Additionally, past research has shown that 

this polymorphism alters response to ACE inhibitors. Cuoco et al. showed in a population of 

heart failure patients (90% receiving ACE inhibitors) that carriers of the D allele had 

significantly improved LVEF compared to wild-type patients after a mean follow-up of ~39 

months. 66 In contrast, in a population of patients with left ventricular hypertrophy and 

hypertension receiving ACE inhibitors, patients with the D/D genotype had less 

improvement in hypertrophy. 67 In a third study, the presence of the D allele had no impact 

on mortality in diastolic heart failure patients who received ACE inhibitors. 68 This finding 

that does not concur with either of the above results, but does agree with an earlier study in 

systolic heart failure patients that also showed a diminished impact of the polymorphism on 

outcomes in patients receiving ACE inhibitor therapy, specifically at higher doses. 69

Currently, the pharmacogenomic impact of ACE genetic variation in heart failure remains a 

controversial subject. In a recent genetic substudy of a randomized trial investigating the 

impact of pharmacist intervention on outcomes in heart failure patients (68% receiving ACE 
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inhibitors and 13% receiving ARBs at baseline), the ACE I/D polymorphism was not found 

to be associated with the composite of ED visits and hospitalizations. 70 Further work, 

including the resolution of the aforementioned conflicting data, is necessary to elucidate the 

potential application of using of pharmacogenomic information to guide the therapeutic 

regimen of RAAS drugs in heart failure.

OTHER HEART FAILURE THERAPIES

Guidelines recommend additional therapy as adjuncts to β blockers and ACE inhibitors for 

relieving symptoms, delaying the progression of cardiac dysfunction, and improving 

survival in heart failure patients. 7,8 Among others, adjunct therapies with the most 

promising pharmacogenetic evidence are digoxin and loop diuretics.

It is fairly well established that digoxin reduces symptoms of heart failure and 

hospitalizations. 10 Digoxin has been used for centuries in heart failure and continues to be 

recommended in this population, but only at doses that correlate with relatively low serum 

levels due to increased mortality at higher levels. 7,71 Given this narrow therapeutic range, 

factors which impact digoxin concentration may have important clinical implications. P-

glycoprotein which is coded by ABCB1 plays a role in digoxin elimination.72 The TTT 

haplotype is a combination of three SNPs (the substitution of thymine at positions 1236, 

2677, and 3435) in ABCB1 that are highly linked and have been found to be associated with 

digoxin serum levels. 73 In particular, a 2008 study reported that the TTT haplotype was 

associated with increased digoxin levels in a population of elderly Caucasian patients 

receiving digoxin. 73 This contrasts an earlier study that evaluated this association in a small 

population of heart failure patients did not find a significant ABCB1effect on digoxin 

levels, 74 suggesting that further work investigating the pharmacogenetics of digoxin is 

needed. This area continues to be investigated; a recent study confirms that the ABCB1 TTT 

haplotype may be predictive of elevated digoxin concentrations in patients receiving this 

medication, especially in females. 75 However, similar to the 2008 digoxin report 

mentioned, this 2012 study did not include a population of exclusively heart failure patients. 

The negative finding in heart failure patients hint that perhaps clinical or other factors 

related to the disease state may override any genetic association altering digoxin response. 

Validation in a larger independent population is necessary to establish if there is a genetic 

link to digoxin levels and clinical response in heart failure patients receiving digoxin.

Loop diuretics, similar to digoxin, have not been found to have a mortality benefit but are 

the most common agents used for symptomatic relief due to sodium and water retention. 

They act by inhibiting sodium-potassium-chloride luminal transporters in the loop of Henle 

causing an attenuation of the reabsorption of sodium and water. 76 Recently a small study in 

healthy volunteers suggests that genetics may play a clinically-relevant role in response to 

loop diuretics. 77 Polymorphisms in GNB2, ANP, ACE, and ADD1 impacted the excretion 

amounts of sodium chloride, potassium, and calcium. 77 Similar to the pharmacogenetics of 

digoxin, further work including confirmation in heart failure patients and a link to clinical 

efficacy is a necessary fundamental to understand if clinical application is possible.
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FUTURE PROSPECTS FOR PHARMACOGENOMICS

Over the past 15 years the field of pharmacogenetics has spread to include therapy for heart 

failure. Since the earliest periods of discovery, β blocker pharmacogenomics has been the 

most heavily explored, however response to other heart failure therapies also have shown 

the potential to be impacted by genotype. Taken together, the knowledge base summarized 

above demonstrates that genetic information does have the potential to guide therapeutic 

regimens for patients with heart failure and to improve outcomes. Despite this wealth of 

investigation, however, the pharmacogenomics of heart failure therapies still have not 

reached clinical utility. Additional steps are needed before this can be realized.

First, clarifying the current areas of inconsistency between gene-drug response associations 

should be a high priority. These inconsistencies suggest that complex genetic and 

environmental factors play a role. There needs to be a continued focus on the creation of 

‘polygenic profiles’ which serve as novel biomarkers for the response to heart failure 

medications and allows for the identification of ‘full’, ‘intermediate’, and ‘non-’ responder 

subsets. Additionally the consideration of comorbidities and other clinical factors are 

beginning to show utility in predicting which subsets of the heart failure population would 

respond best to certain agents; these results require further exploration.

Secondly, much emphasis has been placed on genes related to the adrenergic system as 

expected considering its great promise in predicting response to β blockers in clinical 

practice. Nonetheless, more attention needs to be placed on emerging pharmacogenetic 

biomarkers. In addition to the aforementioned pharmacogenetic findings that have been 

investigated in the past couple years involving ACE inhibitors, digoxin, and loop diuretics, 

novel genetic biomarkers in the early phases of discovery have potential to determine drug 

response in the heart failure population. For example, a recent study has shown that 

variation in genes coding for matrix metalloproteinases may interact with response to 

therapies altering the risk of heart failure development in hypertension patients. 78 

Furthermore, novel genetic biomarkers have the potential to predict response to heart failure 

therapies beyond pharmacological agents. De Maria et al. recently found that among heart 

failure patients receiving CRT, those who did not achieve clinically significant reverse 

remodeling were more likely to have the NR3C2 minor C allele (rs5522 C/T) compared to 

patients who achieved reverse remodeling. 79 These data, of course require validation, but 

overall, support the potential of emerging genetic predictors of response to both 

pharmacological and non-pharmacological treatment in the early development as well as the 

advanced progression of heart failure.

Another important step is the continued and expanded use of genetic analyses of heart 

failure randomized clinical trials (Table). These datasets serve as critical platforms to 

determine pharmacogenetic associations because they can supply large cohorts in which the 

impact of the therapy-gene interaction on outcomes can be most clearly demonstrated. 

Although genetic substudies are limited when the initial intervention has already become 

standard of care since this may preclude replication in an independent population, alternates 

for the validation of pharmacogenomic findings exist; these are beyond the scope of this 

review and are reviewed in great depth elsewhere. 80 Furthermore, these types of studies are 
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ideal for emerging therapies where they may aid in identifying the best responders to a 

therapy and reduce the probability of drug development failure in clinical trials. As a result 

of genetic substudies of BEST that have provided a wealth of knowledge, bucindolol may be 

the most auspicious candidate to be approved as a heart failure therapy that incorporates a 

pharmacogenomic-guided strategy. While genetic information is now routinely being 

collected in clinical trials worldwide 81,82, it is not always being actively utilized or opened 

for exploration, squandering many great opportunities.

Ultimately randomized clinical studies of pharmacogenomic-guided therapy would be 

needed to conclusively establish the utility of a pharmacogenomic approach in a clinical 

setting. The authors feel that one pharmacogenetic clinical trial success in heart failure 

would invigorate interest and open the flood gates for future studies. On the other hand, 

while randomized clinical trials represent the definitive proof, it is not a practical endeavor 

for each genetic variant and drug of potential interest. Indeed efforts to incorporate 

pharmacogenomic-guided decision making at the bedside at progressive institutions are 

taking place without the evidence of randomized, prospective trials.83–85 The medical and 

scientific community still needs to grapple with and decide on the level of evidence required 

for universal integration of heart failure pharmacogenomics in clinical practice.

In conclusion, progress in the field of heart failure pharmacogenetics continues, but further 

research is necessary. A collective and concerted effort between basic, clinical, and 

translational researchers is merited to achieve its incorporation into guidelines as a standard 

of clinical care.
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