
UCLA
UCLA Electronic Theses and Dissertations

Title
The Computational Complexity of Presburger Arithmetic

Permalink
https://escholarship.org/uc/item/6j9051vs

Author
Nguyen Luu, Danh

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6j9051vs
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

The Computational Complexity of

Presburger Arithmetic

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mathematics

by

Danh Nguyen Luu

2018

c© Copyright by

Danh Nguyen Luu

2018

ABSTRACT OF THE DISSERTATION

The Computational Complexity of

Presburger Arithmetic

by

Danh Nguyen Luu

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2018

Professor Igor Pak, Chair

A wide variety of problems in Discrete Optimization and Integer Programming can be natu-

rally phrased in the language of Presburger Arithmetic (PA), which is the first order logic on

the integers with only additions and inequalities. Understanding the exact computational

complexity of PA is a classical topic in both logic and computer science. In this dissertation,

we give answers to several open questions in this area.

Most important in PA are the numbers of variables and inequalities involved. The main

question addressed in Part I of the dissertation is: By restricting the number of variables

and inequalities in PA, do we obtain polynomial complexity? We give a negative solution

to this, which also settles two questions by Kannan and Barvinok–Woods on Parametric

Integer Programming and Short Presburger Arithmetic, respectively. Our argument combines

elements from Number Theory and Discrete Geometry. As applications, we apply our tools

to analyze the VC-dimensions of PA formulas, as well as a variant theory, called Parametric

Presburger Arithmetic.

In Part II, we investigate the related theory of Short Generating Functions developed by

Barvinok and Woods. First, we first extend their polynomial time algorithm for enumerating

projected integer points in polytopes to the unbounded polyhedra case. Then we demon-

strate several limitations of their general theory under simple point set operations such as

ii

projection and union, in the sense that the lengths of the generating functions do not remain

polynomially bounded. The reasoning here parallels with Part I, and crucially exploits the

structures of PA definable sets.

In Part III, we present two different problems. The first one concerns an extension of PA

with scalar multiplications by algebraic irrationals. We show that it has high non-elementary

complexity far exceeding that of classical PA, even with a restricted number of variables and

inequalities. The second problem is about minimizing the number of integer points in a

polytope under translation. We show that it is NP-hard by embedding arbitrary polynomial

functions as integer point counting functions of polytopes. We derive from this a consequence

about the universality of Ehrhart quasi-polynomials.

iii

The dissertation of Danh Nguyen Luu is approved.

Matthias J. Aschenbrenner

Artem Chernikov

Alexander Sherstov

Igor Pak, Committee Chair

University of California, Los Angeles

2018

iv

For my family.

v

TABLE OF CONTENTS

I Presburger Arithmetic 3

1 Background . 4

2 Complexity of Integer Programming with alternations 10

2.1 Introduction . 10

2.2 Geometric constructions and properties . 13

2.3 Proof of Theorem 2.2 . 16

2.4 Proof of Theorem 2.3 . 21

2.5 Proof of Theorem 2.6 . 23

2.6 Another hard decision problem . 27

2.7 Final remarks . 28

3 Complexity of short Presburger Arithmetic 31

3.1 Introduction . 31

3.2 Basic properties of finite continued fractions 35

3.3 From arithmetic progressions to short PA . 37

3.4 Proof of Theorem 3.1 . 45

3.5 Proof of Theorem 3.3 . 47

3.6 Proof of Theorem 3.2 . 47

3.7 Bilevel optimization and Pareto optima . 51

3.8 Covering with arithmetic progressions . 54

3.9 On Kannan’s Partition Theorem . 58

3.10 Final remarks and open problems . 66

vi

4 VC-dimensions of Presburger formulas . 69

4.1 Introduction . 69

4.2 Proofs . 73

4.3 Final remarks and open problems . 76

5 Parametric Presburger Arithmetic . 78

5.1 Introduction . 78

5.2 Proof of Theorem 5.10 and its corollaries . 82

5.3 Counting-universality of 2-parametric PA . 87

5.4 Counting in parametric unordered PA . 93

5.5 Summary of complexity results . 98

II Short generating functions 100

6 A strengthening of the Barvinok–Woods theorem 101

6.1 Introduction . 101

6.2 Structure of a projection . 104

6.3 Finding short GF for unbounded projection 113

6.4 Generalization to Presburger formulas . 115

6.5 The k-feasibility problem . 119

6.6 Final remarks . 121

7 Complexity of short generating functions 123

7.1 Introduction . 123

7.2 Preliminaries on short GFs . 127

7.3 Short GFs and the class P/poly . 131

vii

7.4 Short GFs and the hierarchy PH/poly . 137

7.5 A hierarchy of generating functions . 140

7.6 Short GFs have long projections . 141

7.7 Intersections, unions and Minkowski sums 143

7.8 Squares, primes, and short GFs . 146

7.9 Relative complexity of short GFs . 151

7.10 Proof of Lemma 7.34 . 154

7.11 Final remarks and open problems . 156

III Related problems 159

8 Presburger Arithmetic with algebraic scalar multiplications 160

8.1 Introduction . 160

8.2 Preliminaries . 164

8.3 Quadratic irrationals: Upper bound . 169

8.4 Quadratic irrationals: PSPACE-hardness . 172

8.5 Quadratic irrationals: General lower bound 180

8.6 Non-quadratic irrationals: Undecidability . 185

8.7 Final remarks and open problems . 196

9 Integer points in translated and expanded polyhedra 199

9.1 Introduction . 199

9.2 Proof of Theorem 9.3 . 204

9.3 Proof of Theorem 9.2 . 209

9.4 Applications . 212

9.5 Integer polytopes . 215

viii

9.6 Final remarks and open problems . 217

References . 219

ix

ACKNOWLEDGMENTS

First, I would like to thank my advisor, Igor Pak, for his guidance and support throughout

my PhD research period at UCLA. I have learnt a lot about mathematics and problem

solving from him after five years.

This thesis would not be possible without the emotional support from my parents and

my dear wife Quyen Phan. To them I owe the deepest gratitude for always reminding me of

my origin and sharing with me so much.

I also thank many friends at UCLA and elsewhere, including Dustan Levenstein, Bon-

soon Lin, John Susice, Quang-Nhat Le, Swee Hong Chan and Rupei Xu, with whom I have

shared a lot about math and life.

I am grateful to Iskander Aliev, Matthias Aschenbrenner, Sacha Barvinok, Tristram Bog-

art, Artëm Chernikov, Jesús De Loera, Fritz Eisenbrand, Lenny Fukshansky, John Goodrick,

Philipp Hieronymi, Robert Hildebrand, Ravi Kannan, Nathan Kaplan, Oleg Karpenkov,

Matthias Köppe, Jamie Pommersheim, Sinai Robins, Sacha Sherstov, Terry Tao, Kevin

Woods, and many others, for their very helpful opinions about this work, as well as many

valuable suggestions.

All the work in this thesis is are adapted from my earlier joint research papers:

• Chapter 2, 3, 4, 6, 7 and 9 are from the joint works [NP17c, NP17b, NP17a, NP17f,

NP17d] and [NP18] with Igor Pak, in that order.

• Chapter 5 is from the joint work [BGNW18] with Tristram Bogart, John Goodrick and

Kevin Woods.

• Chapter 8 is from the joint work [HNP18] Philipp Hieronymi and Igor Pak.

Compared to their original versions, some results and proofs here have been improved.

Lastly, part of this work was supported by the 2017–2018 Dissertation Year Fellowship

of UCLA. I also thank MSRI for their extraordinary hospitality in hosting the Discrete and

Topological Geometry research program in Fall 2018, where I was a participant.

x

VITA

2005–2008 Ly Tu Trong high school, Can Tho, Vietnam.

2008–2011 BSc in Mathematics,

Nanyang Technological University, Singapore.

2011–2013 Research & Teaching Assistant,

Nanyang Technology University, Singapore.

2013–2016 MSc in Mathematics,

University of California, Los Angeles.

2016–2018 PhD candidate in Mathematics,

University of California, Los Angeles.

xi

Part I

Presburger Arithmetic

1

CHAPTER 1

Background

The goal of this dissertation is to understand in detail the computational complexity of

Presburger Arithmetic (PA). This logic theory was started by Mojżesz Presburger in 1929,

and studied extensively later on by many other researchers, notably Skolem. Formally, PA

is the first order theory of the natural numbers with additions and the natural ordering,

denoted by PA = 〈N; +, =〉. One can show that PA is equivalent to 〈Z; +, ≤〉, i.e., the first
order theory on integers with addition and inequalities. The most important properties of

PA are its completeness and decidability ([Pre29]).

Example 1.1. Observe that any integer greater than 12 can be written as a non-negative

combination of 3 and 7. In PA, this simply reads ∀x ≥ 13 ∃y1, y2 ≥ 0 : x = 3y1 + 7y2.

Note that we can always express an equality by a pair of inequalities. As a first order

theory, PA also allows arbitrarily many ∀ and ∃ quantifiers. Being decidable, PA admits a

decision algorithm to decide the truth of any sentence in it. More generally, PA has quantifier

elimination, i.e., there is an algorithm to repeatedly eliminate all quantifiers from a given

PA sentence or formula. This raised the question: How effective can such an algorithm be,

measured with respect to the input length of a PA sentence?

General Complexity

Fischer and Rabin showed in 1974 that PA has very high complexity in the general case:

Theorem 1.2 ([FR74]). Any non-deterministic decision algorithm for PA runs in time at

least doubly exponential, i.e., Ω
(
22

cℓ)
, where ℓ is the length of the sentence Φ to be decided,

and c > 0 is a constant.

2

At the same time, a corresponding upper bound is known:

Theorem 1.3 ([Opp78]). There is a deterministic triply exponential quantifier elimination

algorithm for PA. In particular, PA sentences can be decided in deterministic time triply

exponential time, i.e., O
(
22

2dℓ)
, for some constant d > 0.

This algorithm was originally described by Cooper in [Coo72], and its complexity later

analyzed by Oppen [Opp78]. It eliminates all quantifiers from a PA sentence/formula, at

the cost of introducing extra congruence relations of the form x ≡ a (mod b) for a, b ∈ Z,

which are much easier to verify. Many subsequent improvements to this algorithm were

made, notably by Reddy and Loveland [RL78], who showed that the deterministic upper

bound drops to doubly exponential if one restricts the number of alternations in PA, i.e.,

the number of times quantifiers switch between ∀ and ∃ in a sentence. Correspondingly, a

nondeterministic exponential lower bound was shown in [Fü82] for restricted alternations

(see also [Sca84]).

In fact, completeness results are known for restricted alternations: For every k ≥ 1, the

class PAk+1 of sentences with k + 1 alternating quantifier blocks is complete for the k-th

level ΣEXP
k ∪ΠEXP

k of the Weak Exponential Hierarchy [Haa14]. For the class PA1, i.e., when

quantifiers are all ∃ or ∀, it is complete for NP ∪ coNP [BT76]. So overall, the complexity of

PA still remains intractable even when alternations are controlled.

Restricted number of variables

As we see from above, it makes sense to reduce the complexity of PA by further restricting

the number of variables and inequalities in its sentences. In this direction, progress has been

slow. The simplest sentences in PA are those coming from Integer Programming (IP), i.e.,

when all quantifiers are ∃, and the rest is a system (conjunction) of inequalities Ax ≤ b in n

variables x ∈ Zn. In 1983, Lenstra proved a pioneer result:

Theorem 1.4 ([Len83]). Fix the number n of variables. There is a polynomial time algorithm

to decide if ∃x ∈ Zn : Ax ≤ v, where A ∈ Zm×n and v ∈ Zm are given as input.

3

Hereafter, the sentence’s length is measured by the total binary length of all integer

coefficients and constants (in this case the entries of A and v). The polynomial degree of

this algorithm crucially depends on the dimension n. Geometrically, it says that given a

rational polyhedron P in fixed dimension Rn, an integer solution x ∈ P can be found in

polynomial time, or we can conclude that P ∩Zn = ∅. As a consequence, Scarpellini [Sca84]

showed the system Ax ≤ b in Theorem 1.4 can actually be replaced by a general Boolean

combination of linear inequalities in x. This means that existential PA in a fixed number of

variables is always polynomial time decidable.

In [Grä87, Grä88], Grädel considered PA sentences with at least two alternating quanti-

fiers and a fixed number of variables. He showed that the problem of deciding such sentences

lies in the Polynomial Hierarchy (PH). He also gave, for every level in PH, such a class of sen-

tences which is complete in it. Those results were later strengthened by Schöning in [Sch97].

They can be summed up as follows:

Theorem 1.5 ([Sch97]). Let Q1, . . . , Qk+1 ∈ {∀, ∃} be k+1 alternating quantifiers. Then:

i) For every fixed k ≥ 1, PA sentences of the form:

Q1 x1 ∈ Z . . . Qk xk ∈ Z Qk+1 y ∈ Z3 : Ψ(x1, . . . , xk,y)

are ΣP
k -complete if Q1 = ∃, and ΠP

k -complete if Q1 = ∀.

ii) 2-variable PA sentences ∃x ∀y : Ψ(x, y) are NP-complete; and similar ∀∃ sentences

are coNP-complete.

iii) 4-variable PA sentences ∃x ∀y ∃z1, z2 : Ψ(x, y, z1, z2) are ΣP
2 -complete.

Here the input Ψ is a Boolean combination of linear inequalities in the variables it

contains. So compared to the existential case, already ∀∃ sentences in two variables are

intractable. However, note that Ψ here contains both conjunctions and disjunctions of in-

equalities. If we restrict Ψ to only a system of inequalities, then an analogue of Theorem 1.4

for ∀∃ is in fact possible. It was a breakthrough when Kannan showed in 1990 that Para-

metric Integer Programming is polynomial in fixed dimensions:

4

Theorem 1.6 ([Kan90]). Fix n1 and n2. There is a polynomial time algorithm to decide

the sentence ∀x1 ∈ Zn1 ∃x2 ∈ Zn2 : Ax1 + Bx2 ≤ v, given A ∈ Zm×n1 , B ∈ Zm×n2 and

v ∈ Zm as input.

Compared to Theorem 1.4, this adds one more alternating quantifier to the sentence.

Note that the number m of inequalities is still unrestricted. The proofs of theorems 1.4

and 1.6 both rely on geometric ideas, namely the ellipsoid method. The set of integer points

in both problems lies in a polyhedron, whose convexity is of crucial importance. A natural

way to generalize Theorem 1.6 was also posed by Kannan in 1992:

Question 1.7 ([Kan92]). Fix n1, n1 and n3. Is there a polynomial time algorithm to decide,

given A ∈ Zm×n1 , B ∈ Zm×n2 , C ∈ Zm×n3 and v ∈ Zm, whether

∃x1 ∈ Zn1 ∀x2 ∈ Zn2 ∃x3 ∈ Zn3 : Ax1 +Bx2 + Cx3 ≤ v ? (1.1)

In Chapter 2, we prove that deciding (1.1) is NP-complete, thus giving a negative answer

to this question. For more alternating quantifiers, we also show that analogous sentences

are in fact complete for every level of PH. Thus, restricting PA sentences to systems of

inequalities does not improve their complexity beyond two alternating quantifiers. The

geometric intuition mentioned earlier with polyhedra is now completely powerless.

Restricted number of variables and inequalities

Short Presburger Arithmetic consists of the most restricted PA sentences that we will study,

whose numbers of alternations, variables and inequalities are all bounded. Woods proved in

his PhD thesis [Woo04] that:

Theorem 1.8 (Woods). Fix n1, n2 and m. Given Ψ(x1,x2) a Boolean combination of at

most m inequalities in the variables x1 ∈ Zn1 and x2 ∈ Zn2, then we can decide in polynomial

time whether ∀x1 ∈ Zn1 ∃x2 ∈ Zn2 : Ψ(x1,x2). Moreover, we can also count in polynomial

time the set
{
x1 ∈ Zn1 : ∃x2 ∈ Zn2 Ψ(x1,x2)

}
.

Note that this result also applies to ∃∀ sentences via a simple negation operation. One

should compare between theorems 1.6 and 1.8. In the former, the expression Ψ is a con-

junction of an arbitrary number of inequalities, whereas in the latter it could contain both

5

conjunctions and disjunctions of inequalities, though only in fixed number. One can see that

fixing m does restrict the geometric complexity of our formula quite severely. Indeed, now

the set {(x1,x2) ∈ Rn1+n2 : Ψ(x1,x2) = true} is determined by at most m halfspaces, which

means it is a union of at most a constant number of polyhedral regions.1 So one might

suspect that such short PA sentences, even with more than two alternating quantifiers, are

always polynomial time decidable. The following conjecture was our original motivation for

this dissertation:

Conjecture 1.9 (Barvinok–Woods). Fix k, n1, . . . , nk and m. There is a polynomial time

algorithm to decide short PA sentences of the form:

Q1x1 ∈ Zn1 . . . Qkxk ∈ Znk : Ψ(x1, . . . ,xk). (1.2)

Here Q1, . . . , Qk ∈ {∃, ∀} are k alternating quantifiers, and Ψ is a Boolean combination of

at most m linear inequalities in x1, . . . ,xk.

We emphasize that the input to (1.2) is just a fixed number of integer coefficients and

constants in Ψ. Conjecture 1.9 was proposed in [Woo04, Bar06b], and has remained open

since 2003. If true, it would in fact imply both theorems 1.4 and 1.6 as special cases.

In Chapter 3, we disprove Conjecture 1.9 by showing that short PA sentences do become

complete for every level of PH, with the first intractable case being NP-hard for k = 3.

Our proof relies on the arithmetics of continued fractions, which is rich enough to allow

embedding of classical NP-hard problems. Geometrically, we exploit the structure of the sail

of a rational cone C, which consists of the extremal integer point that lie inside C. Such

extremal integer points are very well understood in the two dimensional case. They can

in fact be obtained directly from the continued fraction expansion of C’s slope, via a very

simple linear recursion.

For the rest of Part I (chapters 4 and 5), we present two applications of our result in

Chapter 3. The first one concerns the VC-dimensions of PA formulas, which is certain

statistical measure of a logical formula’s expressiveness. The second one studies Parametric

1The number of such regions is at most O(mn1+n2).

6

Presburger Arithmetic, which is a variant of PA that allows two sort of variables. The

implications of our result are in the negative direction for both problems.

Prerequisite

We will be using basic concepts and notations from logic and computational complexity,

such as quantifier elimination, undecidability, halting problem, polynomial time reduction,

NP-completeness, the complexity classes P,NP,#P, etc., and the polynomial hierarchy. We

refer to the standard references [MM11, Pap94] for these. See [AB09] for a more modern

treatment of computational complexity, and [Aa16] for a recent survey on the topic.

7

CHAPTER 2

Complexity of Integer Programming with alternations

In this chapter, we answer Question 1.7 in the negative: Integer Programming with three

alternating quantifiers is NP-complete, even for at most six variables. This complements

earlier results by Lenstra and Kannan, which together say that Integer Programming with

at most two alternating quantifiers can be done in polynomial time for any fixed number

of variables. As a byproduct, we show that for two polytopes P,Q ⊂ R3, counting the

projections of integer points in Q\P under a linear map is #P-complete. This contrasts

the 2003 result by Barvinok and Woods, which allows counting in polynomial time the

projection of integer points in P and Q separately. This chapter is a version of the published

paper [NP17c].

2.1. Introduction

2.1.A. Integer Programming. In a pioneer paper [Len83], Lenstra showed that Integer

Programming in a bounded dimension can be solved in polynomial time (Theorem 1.4). The

next breakthrough, Parametric Integer Programming, was obtained by Kannan in [Kan90]:

Theorem 2.1 (Th. 1.6 restated). Fix n1 and n2. Given A ∈ Zm×n1, B ∈ Zm×n2 , v ∈ Zm

and a polyhedron P ⊆ Rn1, the sentence:

∀x1 ∈ P ∩ Zn1 ∃x2 ∈ Zn2 : Ax1 +Bx2 ≤ v. (2.1)

can be decided in polynomial time. Here P is described by another system Wx1 ≤ γ, with

W ∈ Zm′×n1 and γ ∈ Zm′

.

Until recently, this remained the most general result in the positive direction (see [Eis10]).

8

In [Kan92], Kannan asked if Theorem 2.1 can be extended to three alternating quantifiers

(Question 1.7). We give a negative answer to this, even with n1 = 1, n2 = 2, n3 = 3:

Theorem 2.2. Given A ∈ Zm×1, B ∈ Zm×2, C ∈ Zm×3, v ∈ Zm, a segment I ⊂ R1 and a

rectangle J ⊂ R2, then deciding the sentence:

∃x1 ∈ I ∩ Z1 ∀x2 ∈ J ∩ Z2 ∃x3 ∈ Z3 : Ax1 +Bx2 + Cx3 ≤ v (2.2)

is an NP-complete problem. Here I = [a, b] and J = [c, d]× [e, f] with a, b, c, d, e, f ∈ Z being

part of the input.

Let us emphasize that in both theorems 2.1 and 2.2, there is no bound on m, the number

of inequalities involved. Nevertheless, by an easy application of the Doignon–Bell–Scarf

theorem (§2.7.A), the sentence (2.1) is in fact polynomial time reducible to the case with a

fixed m. The same cannot be said about (2.2), which leaves us with the complexity of (2.2)

for a fixed m. This will become the focus of Chapter 3.

For now, recall Theorem 1.5 by Schöning, which says that deciding PA sentences with k+1

alternating quantifiers in a fixed number of variables is ΣP
k/Π

P
k -complete. For two quantifiers

∀∃, theorems 1.5-ii) and 2.1 point to drastically different directions. This is because PA sen-

tences in Theorem 1.5 allow both conjunction and disjunction of many inequalities, whereas

Integer Programming sentences contain only conjunctions. This flexibility of PA sentences

allows very effective reductions of classical hard decision problems such as QSAT. For some

time, it remains open whether such reductions can be carried out using only conjunctions.

Our Theorem 2.2 can actually be generalized to:

Theorem 2.3. Analogues of (2.2) in a fixed number of variables with k + 2 alternating

quantifiers are ΣP
k/Π

P
k -complete, depending on whether k is odd or even. Here the sentence

is allowed to contain only a system of inequalities.

We refer to Theorem 2.11 for the precise statement. This result says that for a bounded

number of variables, Integer Programming requires only one extra alternation to achieve the

same complexity as PA sentences. In other words, we are trading one extra quantifier for a

sentence that contains only conjunctions of inequalities.

9

On can also consider a “hybrid” version of (2.1) and Theorem 1.5-ii) with only two

alternating quantifiers ∃∀ and two disjunctions in the sentence. In Section 2.6, we show this

is still NP-complete to decide.

2.1.B. Projections of integer points in non-convex polytopes. For polytopes of ar-

bitrary dimensions, counting the number of integer points is classically #P-complete, even

for those with 0/1 vertices. In a fixed dimension n, Barvinok famously showed this can be

done in polynomial time:

Theorem 2.4 ([Bar93]). Fix n. Given a rational polyhedron P ⊆ Rn (possibly unbounded),

the number of integer points in P can be computed in polynomial time.

Here the polyhedron can be described either by its facets or by its vertices. This was

later generalized by Barvinok and Woods to count the number of projected integer points:

Theorem 2.5 ([BW03]). Fix m and n. Given a rational polytope Q ⊂ Rm and a linear map

T : Zm → Zn, the number of points in T (Q ∩ Zm) can be computed in polynomial time.

For a bounded set S ⊂ Rn, denote by |S| the cardinality of S∩Zn. Also denote by E1(S)

the projection of S ∩ Zn on the first coordinate, i.e.,

E1(S) := {x ∈ Z : ∃z ∈ Zn−1 s.t. (x, z) ∈ S}.

Now consider two polytopes P ⊂ Q ⊂ Rn. We clearly have |Q\P | = |Q|−|P |. So the number

of integer points in the complement Q\P can also be computed effectively by Theorem 2.4.

In the spirit of Theorem 2.5, we can ask whether the projections of integer points in Q\P
can also be counted efficiently. We prove the following result:

Theorem 2.6. Given two polytopes P ⊂ Q ⊂ R3, computing |E1(Q\P)| is #P-complete.

In other words, it is #P-complete to compute the size of the set

E1(Q\P) = {x ∈ Z : ∃z ∈ Z2 (x, z) ∈ Q\P}. (2.3)

Note that the corresponding decision problem |E1(Q\P)| ≥ 1 is equivalent to |Q\P | ≥ 1,

and thus can be decided in polynomial time by applying Theorem 2.4.

10

The contrast between Theorem 2.5 and our negative result can be explained as follows.

The proof Theorem 2.5 depends on the polytopal structure of P and exploits convexity in a

crucial way. By taking the complement Q\P , we no longer have a convex set. In other words,

we show that projection of the complement Q\P is complicated enough to allow encoding

of hard counting problems, even in R3 (see also §2.7.D).

P

PP

QQQ

Figure 2.1: Three examples of convex polygons P,Q ⊂ R2.

Remark 2.7. To understand Theorem 2.6, consider three examples of polygons P,Q ⊂ R2

as in Figure 2.1. Note that the sets of integer points of the vertical projections of P,Q and

P ∪ Q are the same in all three cases, but the sets number of integer points of the vertical

projections of Q\P are quite different.

2.1.C. Outline of the chapter. We begin with a geometric construction of certain poly-

topes based on Fibonacci numbers (Section 2.2). In Section 2.3 we use this construction to

prove Theorem 2.2 via a reduction of the Good Simultaneous Approximation (GSA)

problem in Number Theory, which is known to be NP-complete. The proof of Theorem 2.3

is via a reduction of QSAT (Section 2.4). The proof of Theorem 2.6 follows a similar route

via reduction of #GSA (Section 2.5). Then we show that a “hybrid” version of (2.2) and

Theorem 1.5-ii) with only two quantifiers and two disjunctions is still NP-complete to decide

(Section 2.6). We conclude the chapter with final remarks and open problems (Section 2.7).

2.2. Geometric constructions and properties

11

2.2.A. Fibonacci points. We consider the first 2d Fibonacci numbers :

F0 = 0, F1 = 1, F2 = 1, . . . , F2d−1.

From these, we construct d integer points:

φ1 = (F1, F0), φ2 = (F3, F2), . . . , φd = (F2d−1, F2d−2). (2.4)

Let

F = {φ1, . . . , φd} ⊂ Z2 and J = [1, F2d−1]× [0, F2d−2] ∩ Z2. (2.5)

We have F ⊂ J . Denote by C the curve consisting of d − 1 segments connecting φi to φi+1

for i = 1, . . . , i− 1.

We also define the following two polygons. Their properties will be mentioned later.

R1 =

{
y = (y1, y2) ∈ R2 : y1 ≥ 1, y2 ≤ F2d−2, y2F2d−1 − y1F2d−2 ≥ 1

}
, (2.6)

R2 =

{
y ∈ R2 : y1 ≤ F2d−1, y2 ≥ 0 and y2F2i − y1F2i−1 ≤ −2 for i = 1, . . . , d

}
. (2.7)

The following properties are straightforward from the above definitions:

(F1) The points φ1, . . . , φd are in convex position. The curve C connecting them is convex

(upwards). See Figure 2.2.

(F2) Each segment (φi φi+1) and each triangle ∆i = (0φi φi+1) has no interior integer points.

This can be deduced from the facts that two consecutive Fibonacci numbers are co-

prime, and also

FiFi+3 − Fi+1Fi+2 = (−1)i−1 for all i ≥ 0.

(F3) The set of integer points in J\F can be partitioned into two parts: those lying strictly

above the convex curve C, and those lying strictly below it.

(F4) The part of J\F lying above C is exactly R1 ∩ Z2. This can be seen as follows. The

line l connecting 0 and φd is defined by:

y2F2d−1 − y1F2d−2 = 0.

12

So every integer point y = (y1, y2) lying above l satisfies:

y2F2d−1 − y1F2d−2 ≥ 1.

By property (F2), there are no integer points y between C and l. The other two edges

of R1 come from J . See Figure 2.2.

(F5) The part of J\F lying below C is exactly R2 ∩ Z2. This can be seen as follows. The

line connecting φi and φi+1 is defined by

y2F2i − y1F2i−1 = −1.

So all integer points below that line satisfies:

y2F2i − y1F2i−1 ≤ −2.

This gives d − 1 faces for R2, one for each 1 ≤ i ≤ d − 1. The other two faces of R2

come from J . See Figure 2.2.

R1

R2

0

y2

y1

φd

φ1

. .
.

Figure 2.2: The points φ1, . . . , φd ∈ F form a convex curve C (blue).

2.2.B. The polytopes. Given α = (α1, . . . , αd) ∈ Qd and ε ∈ (0, 1
2
)∩Q, for each 1 ≤ i ≤ d,

we define a polygon:

Pi =
{
(x, w) ∈ R2 : 1 ≤ x ≤ N, αix− ε ≤ w ≤ αix+ ε

}
. (2.8)

13

Next, for each 1 ≤ i ≤ d, we define a new polygon

P ′
i =

{
(x, φi, w) : (x, w) ∈ Pi

}
⊂ R4. (2.9)

Finally, we define the convex hull:

P = conv(P ′
1, . . . , P

′
d) ⊂ R4. (2.10)

The following properties are straightforward from the above definitions:

(P1) Each Pi is a parallelogram with vertices
{
(1, αi ± ε), (N,αiN ± ε)

}
.

(P2) Each P ′
i is a parallelogram in R4 (i.e., a Minkowski sum of two intervals), with vertices

{
(1, φi, αi ± ε), (N, φi, αiN ± ε)

}
.

(P3) The set of all vertices from P ′
1, . . . , P

′
d are in convex position. Each P ′

i forms a 2-

dimensional face of P . This follows from (2.9) and (F1).

(P4) The polytope P has 4d vertices, which are all the vertices of P ′
1, . . . , P

′
d.

(P5) For every vertex (x,y, w) of P , we have y = φi ∈ F for some 1 ≤ i ≤ d. Conversely,

for every φi ∈ F , we have:

{
(x, w) ∈ R2 : (x, φi, w) ∈ P

}
= Pi.

We will be using these properties in the latter sections.

2.3. Proof of Theorem 2.2

2.3.A. For convenience, will refer to the variables in (2.2) as (x,y, z) instead of (x1,x2,x3).

By a box in Zn, we mean a set of integer points in [α1, β1]×· · ·× [αn, βn] for some αi, βi ∈ Z.

Theorem 2.2 can be restated as: Given a polyhedron U ⊂ R6 and two finite boxes I ⊂ Z,

J ⊂ Z2, deciding the sentence

∃x ∈ I ∀y ∈ J ∃z ∈ Z3 : (x,y, z) ∈ U (2.11)

14

is an NP-complete problem. In fact, we will prove this for a polytope U , i.e., a bounded

polyhedron.

For a vector α = (α1, . . . , αd) ∈ Qd and an integer x ∈ Z, we define

{{xα}} = max
1≤i≤d

{{qαi}}, (2.12)

where for each rational β ∈ Q, the quantity {{β}} is defined as:

{{β}} := min
n∈Z
|β − n| = min

{
β − ⌊β⌋, ⌈β⌉ − β

}
.

Consider the following problem in Computational Number Theory:

Good Simultaneous Approximation (GSA)

Input: A rational vector α = (α1, . . . , αd) ∈ Qd and N ∈ N, ε ∈ Q.

Decide: Is an integer x ∈ [1, N] such that {{xα}} ≤ ε?

Here we measure the input by the total binary lengths of the numerators and denominators

in the αi’s. Note that GSA is only non-trivial for ε < 1/2. We need the following result by

Lagarias:

Theorem 2.8 ([Lag85]). GSA is NP-complete.

Let us emphasize that in GSA, the number d is part of the input. If d is fixed instead,

then the problem can be decided in polynomial time (see [Lag85] and [GLS89, Ch. 5]). What

follows is a reduction of GSA to a sentence of the form (2.11). First, GSA can be expressed

as an Integer Programming problem:

∃ x, w1, . . . , wd ∈ Z : 1 ≤ x ≤ N, −ε ≤ αix− wi ≤ ε. (2.13)

The inequalities on wi can be expressed as (x, wi) ∈ Pi, where Pi was defined in (2.8). Letting

I = [1, N] ∩ Z, we see that GSA is equivalent to deciding:

∃x ∈ I :

d∧

i=1

(
∃w ∈ Z : (x, w) ∈ Pi

)
. (2.14)

15

Lemma 2.9. Let F = {φ1, . . . , φd} be as in (2.5) and P be as in (2.10). We have:

{{xα}} ≤ ε ⇐⇒ ∀y ∈ F ∃w ∈ Z : (x,y, w) ∈ P. (2.15)

Proof. Indeed, assume {{xα}} ≤ ε, i.e., x satisfies GSA. By (2.14), for every i = 1, . . . , d,

there exists wi ∈ Z with (x, wi) ∈ Pi. Now (P5) implies that (x, φi, wi) ∈ P . Since this holds
for every φi ∈ F , the RHS in (2.15) is satisfied. For the other direction, assume the RHS

in (2.15) holds. Then for every φi ∈ F , there exists wi ∈ Z with (x, φi, wi) ∈ P . By (P5),

we have (x, wi) ∈ Pi. By (2.14), x satisfies GSA, i.e., {{xα}} ≤ ε.

By the above lemma, GSA is equivalent to:

∃x ∈ I ∀y ∈ F ∃w ∈ Z : (x,y, w) ∈ P. (2.16)

Consider J from (2.5), which contains F . We can rewrite the above sentence as:

∃x ∈ I ∀y ∈ J
[
(y ∈ J\F) ∨ ∃w ∈ Z : (x,y, w) ∈ P

]
. (2.17)

Recall the polygons R1 and R2 defined in (2.6) and (2.7). By properties (F3), (F4) and (F5),

we can rewrite y ∈ J\F as (y ∈ R1) ∨ (y ∈ R2). Now, we can rewrite (2.17) as:

∃x ∈ I ∀y ∈ J
[
(y ∈ R1) ∨ (y ∈ R2) ∨ ∃w ∈ Z : (x,y, w) ∈ P

]
. (2.18)

Next, define two polytopes R′
1 and R′

2 as follows:

R′
i :=

{
(x,y, 0) ∈ R4 : 0 ≤ x ≤ N, y ∈ Ri

}
⊂ R4 for i = 1, 2. (2.19)

Polytopes R′
1 and R′

2 are defined in such a way so that for every x ∈ I and y ∈ J , we have

y ∈ Ri if and only if there exists w ∈ Z such that (x,y, w) ∈ R′
i.
1 Now, it is clear that (2.18)

is equivalent to:

∃x ∈ I ∀y ∈ J
[(2∨

i=1

∃w ∈ Z : (x,y, w) ∈ R′
i

)
∨
(
∃w ∈ Z : (x,y, w) ∈ P

)]
.

which is equivalent to:

∃x ∈ I ∀y ∈ J ∃w ∈ Z : (x,y, w) ∈ R′
1 ∪ R′

2 ∪ P. (2.20)

The difference between (2.20) and (2.11) is that we have three polytopes instead of just one.

1Such a w must automatically be 0 by the definition of R′
i.

16

2.3.B. The final step is two compress three polytopes R′
1, R

′
2 and P into one polytope.

Recall from (P4) that P has 4d vertices, which correspond to the vertices of all Pi for

1 ≤ i ≤ d. The vertices of R1 and R2 can be computed in polynomial time from systems (2.6)

and (2.7). From there we easily get the vertices of R′
1 and R

′
2. Since P,R

′
1 and R

′
2 are in the

fixed dimension 4, we can write down all their facets in polynomial time using their vertices.

So we can represent:

P =
{
(x,y, w) ∈ R4 : A1(x,y, w) ≤ b1

}
,

R′
1 =

{
(x,y, w) ∈ R4 : A2(x,y, w) ≤ b2

}
,

R′
2 =

{
(x,y, w) ∈ R4 : A3(x,y, w) ≤ b3

}
.

(2.21)

Here each Ai is a matrix of four columns, and Ai (x,y, w) denotes matrix–vector multiplica-

tion. The above three systems all have lengths polynomial in the input α, N and ε. Next,

we need the following lemma:

Lemma 2.10. Fix n and r. Given r polytopes R1, . . . , Rr ⊂ Rn described by r systems

Ri = {x ∈ Rn : Aix ≤ bi},

there is a polytope U ∈ Rn+ℓ, where ℓ = ⌈log2 r⌉, such that

x ∈
r⋃

i=1

Ri ∩ Zn ⇐⇒ ∃t ∈ Zℓ : (x, t) ∈ U ∩ Zn+ℓ. (2.22)

Furthermore, the system A(x, t) ≤ b that describes U can be found in polynomial time, given

Ai’s and bi’s as input.

Proof. Let ℓ = ⌈log2 r⌉, we have 2ℓ ≥ r. Pick t1, . . . , tr ∈ {0, 1}ℓ as r different vertices of the
ℓ-dimensional unit cube. Define

Uj = {(x, tj) ∈ Rn+ℓ : x ∈ Rj} for j = 1, . . . , r ,

and

U = conv(U1, . . . , Ur).

In other words, we form Uj by augmenting each Rj with ℓ coordinates of tj. Since t1, . . . , tr

are in convex position, so are the new polytopes U1, . . . , Uj. So the vertices of U are all the

17

vertices of all Uj . Note that for every t ∈ conv(t1, . . . , tr), we have t ∈ Zℓ if and only if t = tj

for some j. This implies that the only integer points in U are those in Uj ’s. In other words:

(x, t) ∈ U ∩ Zn+ℓ ⇐⇒ x ∈ Rj ∩ Zn and t = tj for some j = 1, . . . , r.

So we have (2.22).

For each Rj, its vertices can be computed in polynomial time from the system Aix ≤ bi.

From these, we easily get the vertices for each Uj . Thus, we can find all vertices of U in

polynomial time. Note that U is in a fixed dimension n+ℓ, since n and r are fixed. Therefore,

we can find in polynomial time all the facets of U using those vertices. This gives us a system

A(x, t) ≤ b of polynomial length that describes U .

Applying the above lemma for three polytopes R′
1, R

′
2 and P with n = 4 and r = 3, we

find a polytope U ⊂ R4+ℓ such that:

(x,y, w) ∈ (R′
1 ∪R′

2 ∪ P) ∩ Z4 ⇐⇒ ∃t ∈ Zℓ : (x,y, w, t) ∈ U ∩ Z4+ℓ. (2.23)

Here we have ℓ = ⌈log2 3⌉ = 2, which means t ∈ Z2 and U ⊂ R6. The lemma also allows us

to find a system A(x,y, w, t) ≤ b that describes U , which has size polynomial in the systems

in (2.21). Now, we can rewrite (2.20) as:

∃x ∈ I ∀y ∈ J ∃w ∈ Z : ∃t ∈ Z2 (x,y, w, t) ∈ U,

which is equivalent to

∃x ∈ I ∀y ∈ J ∃z ∈ Z3 : A(x,y, z) ≤ b.

Here z = (w, t) ∈ Z3. The final system A(x,y, z) ≤ b still has size polynomial in the original

input α, N and ε. Therefore, the original GSA problem is equivalent to (2.11). This implies

that (2.11) is NP-hard.

It remains to show that (2.11) is in NP. We argue that more general sentence (2.2) is

also in NP. From the results in [Grä87, Grä88], if (2.2) is true, there must be an x satisfying

it with log x at most polynomial in the input lengths of P,A and b. For such an x, we can

apply Theorem 2.1 to check the rest of the sentence, which has the form ∀y∃z, in polynomial

time. This shows that deciding (2.2) is in NP, and thus NP-complete. �

18

2.4. Proof of Theorem 2.3

Recall the definition of boxes from Section 2.3. In this section, we prove:

Theorem 2.11. Fix k ≥ 1. Given a polytope U ⊂ Rk+7 and finite boxes I1, . . . , Ik ⊂ Z,

J ⊂ Z2, K ⊂ Z5, then the problem of deciding:

Q1x1 ∈ I1 . . . Qkxk ∈ Ik ∀y ∈ J ∃z ∈ K : (x,y, z) ∈ U (2.24)

is ΣP
k complete if k is odd, and ΠP

k complete if k is even. Here Q1, . . . , Qk ∈ {∃, ∀} are k

alternating quantifiers with Qk = ∃.

For the proof, we work with the canonical problem Q3SAT. Let Ψ a Boolean expression

of the form:

Ψ(u1, . . . ,uk) =

n∧

i=1

(ai ∨ bi ∨ ci). (2.25)

Here each uj = (uj1, . . . , ujℓ) ∈ {true, false}ℓ is a tuple of ℓ Boolean variables, and each

ai, bi, ci is a literal in the set {ujs, ¬ujs : 1 ≤ j ≤ k, 1 ≤ s ≤ ℓ}. From Ψ, we construct a

sentence:

Q1u1 ∈ {true, false}ℓ . . . Qkuk ∈ {true, false}ℓ : Ψ(u1, . . . ,uk). (2.26)

Here Q1, Q2, . . . , Qk ∈ {∀, ∃} are k alternating quantifiers with Qk = ∃. The numbers ℓ and

n are part of the input.

Quantified 3-Satisfiability (Q3SAT)

Input: A Boolean expression Ψ of the form (2.25).

Decide: The truth of the sentence (2.26).

For clarity, we use the notation Q3SATk to emphasize problem (2.26) for a fixed k. It is

well-known that Q3SATk is Σ
P
k -complete k is odd and ΠP

k -complete if k is even. We proceed

to reduce (2.26) to (2.24). In fact, by representing each Boolean string uj ∈ {true, false}ℓ

as an integer xj ∈ [0, 2ℓ), we will only need to use I1 = I2 = · · · = Ik = [0, 2ℓ) ∩ Z.

19

For every string uj = (uj1, . . . , ujℓ) ∈ {true, false}ℓ , let xj ∈ [0, 2ℓ) be the corresponding

integer in binary. In other words, ujs is true or false respectively when the s-th binary digit

of xj is 1 or 0, or equivalently, when ⌊xj/2s−1⌋ is odd or even. Observe that t = ⌊xj/2s−1⌋
is the only integer that satisfies xj/2

s−1 − 1 < t ≤ xj/2
s−1. Now, each term ujs or ¬ujs can

be expressed in xj as follows:

ujs ⇐⇒ ∃w ∈ Z :

2w + 1 > xj/2

s−1 − 1

2w + 1 ≤ xj/2
s−1

 ,

¬ujs ⇐⇒ ∃w ∈ Z :

2w > xj/2

s−1 − 1

2w ≤ xj/2
s−1

 .

(2.27)

Let x = (x1, . . . , xk) ∈ [0, 2ℓ)k. Recall that each term ai, bi, ci in (2.25) is ujs or ¬ujs for
some j and s. So each clause ai ∨ bi ∨ ci can be expressed in x as:

ai ∨ bi ∨ ci ⇐⇒ ∃w ∈ Z :
(
Di(x, w) ≤ di

)
∨
(
Ei(x, w) ≤ ei

)
∨
(
Fi (x, w) ≤ f i

)
. (2.28)

Here the three systems Di(x, w) ≤ di, Ei(x, w) ≤ ei, Fi(x, w) ≤ f i are of the form (2.27).

Note that the strict inequalities in (2.27) can be sharpened without losing any integer solu-

tions (see Remark 2.14). We define the polytopes:

Ki =
{
(x, w) ∈ Rk+1 : x1, . . . , xk, w ∈ [0, 2ℓ), Di(x, w) ≤ di

}
,

Li =
{
(x, w) ∈ Rk+1 : x1, . . . , xk, w ∈ [0, 2ℓ), Ei(x, w) ≤ ei

}
,

Mi =
{
(x, w) ∈ Rk+1 : x1, . . . , xk, w ∈ [0, 2ℓ), Fi(x, w) ≤ f i

}
.

So the RHS in (2.28) can be rewritten as:

∃w ∈ Z : (x, w) ∈ Ki ∪ Li ∪Mi.

Let I1 = I2 = · · · = Ik = [0, 2ℓ) ∩ Z, we see that (2.26) is equivalent to:

Q1x1 ∈ I1 . . . Qkxk ∈ Ik :

n∧

i=1

(
∃w ∈ Z : (x, w) ∈ Ki ∪ Li ∪Mi

)
. (2.29)

For each i, we apply Lemma 2.10 (with n = k+1, r = 3) to the polytopes Ki, Li,Mi ⊂ Rk+1.

This gives us another polytope Gi ⊂ Rk+3 that satisfies:

(x, w) ∈ Ki ∪ Li ∪Mi ⇐⇒ ∃v ∈ Z2 : (x, w,v) ∈ Gi.

20

Substituting this into (2.29), we have an equivalent sentence:

Q1x1 ∈ I1 . . . Qkxk ∈ Ik :
n∧

i=1

(
∃w ∈ Z3 : (x,w) ∈ Gi

)
, (2.30)

where w = (w,v) ∈ Z3, and each Gi ⊂ Rk+3.

Notice that apart from the quantifiers Q1, . . . , Qk, (2.30) is a direct analogue of (2.14),

with Gi playing the role of Pi and (x,w) in place of (x, w). The proof now proceeds similarly

to the rest of Section 2.3 after (2.14). Along the proof, we need to define G′
i and G in similar

manners to (2.9) and (2.10). The variable y ∈ Z2 is again needed to define G′
i. F and J

from (2.5) are reused without change. This gives us G′
i, G ⊂ Rk+5. At the end of the proof,

we also need to apply Lemma 2.10 one more time to produce a single polytope U , just like

in (2.23). The dimension 4 in (2.23) is now k + 5. As a result, the final polytope U has

dimension k + 7. In the final form (2.24), we will have x ∈ Zk,y ∈ Z2 and z = (w, t) ∈ Z5.

We have converted (2.26) to an equivalent sentence (2.24) with polynomial size. This

shows that (2.24) is ΣP
k/Π

P
k -hard. For each tuple x = (x1, . . . , xk), we can check in poly-

nomial time whether ∀y ∈ J ∃z ∈ K : A(x,y, z) ≤ b by applying Theorem 2.1. This

shows the membership of (2.24) in ΣP
k/Π

P
k . We conclude that (2.24) is ΣP

k/Π
P
k -complete,

depending on the parity of k.

2.5. Proof of Theorem 2.6

2.5.A. Now we prove Theorem 2.6. We use the same construction as in the proof of

Theorem 2.2. Recall the definition of {{xα}} from Section 2.3. We reduce the following

counting problem to a problem of the form (2.3):

#Good Simultaneous Approximations (#GSA)

Input: A rational vector α = (α1, . . . , αd) ∈ Qd and N ∈ N, ε ∈ Q.

Output: The number of integers x ∈ [1, N] that satisfy {{xα}} ≤ ε.

The argument in [Lag85] is based on a parsimonious reduction. Namely, it gives a

bijection between solutions for #GSA and the following problem:

21

#Weak Partitions

Input: An integer vector a = (a1, . . . , ad) ∈ Zd.

Output: The number of y ∈ {−1, 0, 1}d for which a · y = 0.

It is well known and easy to see that #Weak Partitions is #P-complete. The de-

cision version Weak Partition was earlier shown by [vEB81] to be NP-complete with a

parsimonious reduction from Knapsack. Together with Lagarias’s reduction, we conclude:

Theorem 2.12. #GSA is #P-complete.

2.5.B. Now we proceed with the reduction of #GSA to (2.3).

Just like the decision version, #GSA is only non-trivial for ε < 1/2. Define:

Qi =
{
(x, w) ∈ R2 : 1 ≤ x ≤ N, αix+ ε < w < αix− ε+ 1

}
. (2.31)

Let I = [1, N] ∩ Z. We have:

Observation 2.13. An x ∈ I satisfies {{xα}} ≤ ε if and only if for every 1 ≤ i ≤ d, there

is no w ∈ Z such that (x, w) ∈ Qi.

Indeed, consider x ∈ I. By (2.13), we have {{xα}} ≤ ε if and only if for each i, there

exists wi ∈ Z with wi ∈ [αix − ε, αix + ε]. This interval of length 2ε is contained in

[αix− ε, αix− ε+1). The latter is a half-open unit interval, which always contains a unique

integer wi. So wi ∈ [αix − ε, αix + ε] if and only if wi /∈ (αix + ε, αix − ε + 1). In other

words, for each 1 ≤ i ≤ d, there should be no w ∈ Z with (x, w) ∈ Qi. The converse is also

straightforward.

Remark 2.14. Note that each Qi has two open edges. They can actually sharpened without

affecting the integer points in Qi. Indeed, we can multiply each inequality with the denom-

inators in αi and ε, which have polynomial length. Each resulting inequality is of the form

a < b, with a and b having integer values. This is equivalent to a ≤ b− 1. Therefore, we can

replace Qi with a (smaller) closed parallelogram containing the same integer points.

22

By the above observation, #GSA asks for:

N − #
{
x ∈ I : ∃1 ≤ i ≤ d ∃w ∈ Z (x, w) ∈ Qi

}
. (2.32)

We convert the union of Qi into a complement V \U of two polytopes U, V ⊂ R3.

2.5.C. Let T = 1 +N maxi αi. Pick d integers 0 < m1 < m2 < · · · < md so that

mi−1 +mi+1

2
+ 2T < mi for 2 ≤ i ≤ d− 1. (2.33)

We embed each parallelogram Qi into R3 as

Ri =
{
(x, y, w) ∈ R3 : (x, w −mi) ∈ Qi, y = i

}
. (2.34)

In other words, we translate Qi by mi in the direction w, and embed it into the plane y = i

inside R3 (see Figure 2.3). The following is obvious:

Observation 2.15. For each x ∈ I and 1 ≤ i ≤ d, there exists w ∈ Z with (x, w) ∈ Qi if

and only if there exists (y, w) ∈ Z2 with (x, y, w) ∈ Ri.

Denote by Ai, Bi, Ci and Di the vertices of Ri. Let Ki = (N, i, 0) and Li = (1, i, 0) for

each 1 ≤ i ≤ d. Define:

U = conv
{
Ai, Bi, Ki, Li : 1 ≤ i ≤ d

}
⊂ R3,

V = conv
{
Ci, Di, Ki, Li : 1 ≤ i ≤ d

}
⊂ R3.

(2.35)

Ki

Li

Ai

Bi

Ci

Di

Ri

x
y

w
R1

R2

Rd

Figure 2.3: The parallelograms Ri.

23

Since conv(Ai, Bi, Ki, Li) ⊂ conv(Ci, Di, Ki, Li) for each 1 ≤ i ≤ d, we have U ⊂ V . It is

also clear that:

Ri = conv(Ci, Di, Ki, Li)\conv(Ai, Bi, Ki, Li). (2.36)

Denote by {y = i} the plane y = i.

Observation 2.16. We have
(
U ∩ {y = i}

)
= conv(Ai, Bi, Ki, Li). Similarly, we have

(
V ∩ {y = i}

)
= conv(Ci, Di, Ki, Li).

Indeed, from (2.35), it is clear that conv(Ai, Bi, Ki, Li) lies in both U and the plane y = i.

On the other hand, if (x, i, w) ∈ U , it must be a convex combination of Aj , Bj, Kj, Lj for

1 ≤ j ≤ d. First, assume that

(x, i, w) ∈ conv
{
Aj, Bj , Kj, Lj : j 6= i

}
. (2.37)

From (2.31) and (2.34), the w-coordinates of Aj , Bj, Cj, Dj are within the range [mj , mj+T].

For Kj and Lj , their w-coordinates are 0. Therefore, by the convexity condition (2.33), any

point (x, y, w) as in (2.37) must have w < mi − T < mi. This implies that (x, i, w) ∈
conv

{
Ai, Bi, Ki, Li

}
, because the w-coordinates of Ai and Bj are at least mi. So we have

conv
{
Aj , Bj, Kj , Lj : j 6= i

}
∩ {y = i} ⊂ conv

{
Ai, Bi, Ki, Li

}
.

Adding Ai, Bi, Ci and Di to the LHS, we have

conv
{
Aj , Bj, Kj, Lj : 1 ≤ j ≤ d

}
∩ {y = i} = conv

{
Ai, Bi, Ki, Li

}
.

This proves the observation for U . The same argument works for V .

By Observation 2.16, for (x, y, w) ∈ Z3, we have (x, y, z) ∈ V \U if and only if

(x, y, w) ∈ conv(Ci, Di, Ki, Li)\conv(Ai, Bi, Ki, Li)

for some 1 ≤ i ≤ d. Combined with (2.36) and Observation 2.15, for every x ∈ I, we have:

∃(y, w) ∈ Z2 (x, y, w) ∈ V \Q ⇐⇒ ∃1 ≤ i ≤ d ∃w ∈ Z (x, w) ∈ Qi.

From (2.32), we conclude that #GSA is exactly:

N − #
{
x ∈ I : ∃(y, z) ∈ Z2 (x, y, w) ∈ V \U

}
= N − |E1(V \U)|.

Let P = U,Q = V we have Theorem 2.6.

24

2.6. Another hard decision problem

Our construction with Fibonacci points also yields the following completeness result with

only two quantifiers:

Theorem 2.17. Given three polytopes U1, U2, U3 ⊂ R4 and two boxes I ⊂ Z, K ⊂ Z3,

deciding the sentence:

∃x ∈ I ∀z ∈ K : (x, z) ∈ U1 ∪ U2 ∪ U3 (2.38)

is NP-complete.

In Theorem 1.5-ii), we needed many conjunctions and disjunctions in the expression Ψ

for NP-completeness. Here, the condition (x, z) ∈ U1 ∪U2 ∪U3 is a disjunction of only three

linear systems in four variables x, z1, z2, z3. So in this perspective, Theorem 2.17 can be

viewed as an intermediate result between theorems 1.5-ii) and 2.1.

Proof of Theorem 2.17. We again find a reduction of GSA. Let T = 1 +N maxi αi. Recall

Pi from (2.8). For every 1 ≤ i ≤ d, define two new polygons:

Li = {(x, w) ∈ R2 : 1 ≤ x ≤ N, −1 ≤ w ≤ αix+ ε− 1},

Mi = {(x, w) ∈ R2 : 1 ≤ x ≤ N, αix− ε ≤ w ≤ T}.

Observation 2.18. For every x ∈ [1, N] and 1 ≤ i ≤ d, we have:

∃w ∈ Z : (x, w) ∈ Pi ⇐⇒ ∀w ∈ [−1, T] ∩ Z : (x, w) ∈ Li ∪Mi. (2.39)

Indeed, by (2.8), we have ∃w ∈ Z : (x, w) ∈ Pi if and only if [αix − ε, αix + ε] contains

an integer point w. Also notice that [αix− ε, αix+ ε] ⊂ (αix+ ε− 1, αix+ ε] and

[−1, T] = [−1, αix+ ε− 1] ⊔ (αix+ ε− 1, αix+ ε] ⊔ (αix+ ε, T].

Since (αix+ ε− 1, αix+ ε] is a half-open unit interval, it contains a unique integer point w.

So w lies in [αix− ε, αix+ ε] if and only if

[−1, T] ∩ Z =
(
[−1, αix+ ε− 1] ⊔ [αix− ε, αix+ ε] ⊔ (αix+ ε, T]

)
∩ Z

=
(
[−1, αix+ ε− 1] ⊔ [αix− ε, T]

)
∩ Z.

25

This last condition is exactly the RHS in (2.39).

Recall the Fibonacci points F = {φ1, . . . , φd}. We construct L′
i,M

′
i similarly to (2.9)

and L,M similarly to (2.10) using the same Fibonacci points. As a direct analogy to (2.16),

GSA is equivalent to:

∃x ∈ I ∀y ∈ F ∀w ∈ [−1, T] ∩ Z : (x,y, w) ∈ L ∪M. (2.40)

Recall J from (2.5). Let K = J×
(
[−1, T]∩Z

)
, which is a box in Z3. Let z = (y, w) ∈ K.

Also recall R1 and R2 from (2.6) and (2.7). Define

U1 = [1, N]× R1 × [−1, T], U2 = conv
(
[1, N]×R2 × [−1, T], L

)
, U3 =M.

From properties (F3)–(F5), it is not hard to see that (2.40) is equivalent to:

∃x ∈ I ∀z ∈ K : (x, z) ∈ U1 ∪ U2 ∪ U3.

This completes the proof.

2.7. Final remarks

2.7.A. It is in fact sufficient to prove Theorem 2.1 for the case when m,m′ are also bounded.

In the system Ax1 + Bx2 ≤ v, we view x1 ∈ Zn1 as the parameters and x2 ∈ Zn2 as the

variables to be solved for. For a fixed n2 and m ≥ 2n2 , the Doignon–Bell–Scarf theorem

[Sch86, §16.5] implies that the system Ax1 + Bx2 ≤ v is solvable in x2 ∈ Zn2 if and only if

every subsystem A′x1 + B′x2 ≤ v′ is solvable in x2 ∈ Zn2 . Here (A′, B′, v′) is a subsystem

with 2n2 rows taken from (A,B, v). In other words, for each x1 ∈ Zn1 , we have:

∃x2 ∈ Zn2 Ax1 +Bx2 ≤ v ⇐⇒
∧

(A′,B′,v′)

(
∃x2 ∈ Zn2 A′x1 +B′x2 ≤ v′

)
.

The total number of subsystems (A′, B′, v′) is

(
m

2n2

)
, which is clearly polynomial in m.

Note that the conjunction over all subsystems (A′, B′, v′) commutes with the universal

26

quantifier ∀x1. Therefore:

∀x1 ∈ P ∩ Zn1 ∃x2 ∈ Zn2 Ax1 +Bx2 ≤ v

⇐⇒
∧

(A′,B′,v′)

(
∀x1 ∈ P ∩ Zn1 ∃x2 ∈ Zn2 A′x1 +B′x2 ≤ v′

)
.

Thus, it is equivalent to check each of the smaller subproblems, each of which has m = 2n2.

Recall that the number of facets in P is m′, which can still be large. However, given the

system Wx1 ≤ γ describing P , we can triangulate P into to a union of simplices P1⊔· · ·⊔Pk.

Since the dimension n1 is bounded, such a triangulation can be found in polynomial time

(see e.g. [DRS10]). Now for each subsystem (A′, B′, v′), we have:

∀x1 ∈ P ∩ Zn1 ∃x2 ∈ Zn2 A′x1 +B′x2 ≤ v′

⇐⇒
k∧

i=1

(
∀x1 ∈ Pi ∩ Zn1 ∃x2 ∈ Zn2 A′x1 +B′x2 ≤ v′

)
.

Each simplex Pi ⊂ Rn1 has n1 + 1 facets. Now each subsentence in the RHS has m = 2n2

and m′ = n1+1, both of which are fixed. Note that the total number of subsentences is still

polynomial, so it suffices to check each of them individually.

For three quantifiers ∃x1 ∀x2 ∃x3, this argument breaks down because the existential

quantifier ∃x1 no longer commutes with a long conjunction.

2.7.B. The GSA Problem plays an important role in both Number Theory and Integer

Programming, especially in connection to lattice reduction algorithms (see e.g. [GLS89]).

Let us mention that via a chain of parsimonious reductions one can show that #GSA is

also hard to approximate (cf. [ER09]). Note also that GSA has been recently used in a

somewhat related geometric context in [EH12].

2.7.C. By Lemma 2.10, we easily get the first part of the following result:

Proposition 2.19. Every set S = {p1, . . . , pr} ⊂ Z2 is a projection of integer points of some

convex polytope P ⊂ R2+d, where d ≤ ⌈log2 r⌉. Moreover, the bound d ≤ ⌈log2 r⌉ is tight.

Proof of tightness. Consider a set S = {p1, . . . , pr} of integer points in convex position and

with even coordinates. Assume there is a polytope P ⊂ R2+ℓ with ℓ < ⌈log2 r⌉ so that S

27

is exactly the projection of P ∩ Z2+ℓ on Z2. Then there are integer points q1, . . . , qr ∈ Zℓ

so that (pi, qi) ∈ P . Since r > 2ℓ, by the pigeonhole principle, we have qi − qj ∈ 2Zℓ for

some i 6= j. Then the midpoint of (pi, qi) and (pj, qj) is an integer point in Z2+ℓ, which also

lies in P by convexity. The projection of this midpoint on Z2 is (pi + pj)/2, which must lie

in S. However, the points in S are in convex positions and thus contain no midpoints, a

contradiction.

2.7.D. Let us give another motivation behind Theorem 2.6 and put it into context of our

other works. In this chapter, we bypass the short generating functions (short GFs) technology

developed by Barvinok and Woods to prove theorems 2.4 and 2.5 (see Chapter 6). Note,

however, that for X = Q\P as in the theorem, the corresponding short GF fX(t) is simply

the difference fQ(t)− fP (t), which can still be computed in polynomial time. Thus, if one

could efficiently present the projection of fX(t) on Z as a short GF of polynomial size, then

one would be able to compute |E1(Q\P)|, a contradiction. In other words, Theorem 2.6

is an extension of a result of Woods, which shows that computing projecting short GFs is

NP-hard (see Theorem 7.23). It is also an effective but weaker version of our main result in

Chapter 7, which deals with the size of short GFs of the projections rather than complexity

of their computation.

2.7.E. Dimension 3 in Theorem 2.6 is optimal. Indeed, assume P,Q ⊂ R2. Then one can

decompose Q\P = R1 ∪ · · · ∪Rr, where each Ri is a polygon, so that the projection E1(Ri)

onto the x-axis of each Ri intersects at most one other E1(Rj). This can easily be done

by drawing vertical lines through vertices of P , which together with ∂P will divide Q\P
into R1, . . . , Rr. By Theorem 2.5 (see also Theorem 6.14), we can find a generating function

gi(t) for each E1(Ri) in polynomial time. From Theorem 7.14, the union g(t) of all gi(t) can

also be found in polynomial time, because each of them intersects at most one another in

support. Evaluating g(1), we get the count for |E1(Q\P)|.

28

CHAPTER 3

Complexity of short Presburger Arithmetic

In this chapter, we answer Conjecture 1.9 in the negative: Deciding short Presburger sen-

tences with k+2 alternating quantifiers isΣP
k/Π

P
k -complete. Counting versions and restricted

system of inequalities are also analyzed. Applications are given for two natural problems

in Integer Optimization. As a byproduct of our proof, we are also able to sharpen the

dimensions in Theorem 1.5 by Schöning to best possible. We also discuss about the valid-

ity of Kannan’s Partition Theorem at the end. This chapter is a version of the published

paper [NP17b].

3.1. Introduction

3.1.A. Statements of results. To repeat the definition, for every fixed m, k, n1, . . . , nk,

we consider short Presburger sentences :

∃x1 ∈ Zn1 ∀x2 ∈ Zn2 . . . ∀/∃xk ∈ Znk : Φ
(
x1, . . . ,xk

)
, (Short-PAk)

where Φ(x1, . . . ,xk) is a Boolean combination of at most m linear inequalities in the form:

k∑

i=1

ni∑

j=1

aij xij ≤ b,

Here, the coefficients aij and constant term b are integers. In other words, everything is fixed

in (Short-PAk), except for the input aij and b in each inequality, encoded in binary. We also

call the quantifier-free Φ(x1, . . . ,xk) a short Presburger expression. Hereafter, we will simply

write ∃xi instead of ∃xi ∈ Zni, and similarly for ∀xi.

Recall Theorem 1.8, which says that short PA sentences with k ≤ 2 can be decided and

29

counted efficiently. For k = 3 alternating quantifiers, we have the first hard instance:

∃x1 ∀x2 ∃x3 : Φ(x1,x2,x3). (Short-PA3)

The corresponding counting problem is:

#
{
x1 : ∀x2 ∃x3 Φ(x1,x2,x3)

}
. (#Short-PA3)

Theorem 3.1. Deciding (Short-PA3) is NP-complete, even for Φ with at most 10 inequalities

in 5 variables x1 ∈ Z, x2 ∈ Z2, x3 ∈ Z2. Similarly, computing (#Short-PA3) is #P-complete.

For restricted systems of inequalities, we consider:

∃x1 ∈ R ∀x2 ∈ Q ∃x3 : Ax1 + Bx2 + Cx3 ≤ b, (GIP)

where R and Q are two given polyhedra, described by facets. Here x1 and x2 are restricted

to integer points in R and Q, respectively. The corresponding counting problem is:

#
{
x1 ∈ R : ∀x2 ∈ Q ∃x3 Ax1 + Bx2 + Cx3 ≤ b

}
. (#GIP)

Theorem 3.2. i) Deciding (GIP) is NP-complete, even when x1 ∈ Z, x2 ∈ Z2, x3 ∈ Z6,

the system Ax1 + Bx2 + Cx3 ≤ b has at most 24 inequalities, R is an interval and Q is a

triangle. Similarly, computing (#GIP) in this case is #P-complete.

ii) The same conclusions hold when x3 ∈ Z3, but the system Ax1 + Bx2 + Cx3 ≤ b has

at most 8400 inequalities.

Note that Theorem 3.2 is substantially strengthen Theorem 2.2, because this earlier result

imposed no bound on the length m of the linear system. So in the language of Chapter 2, our

new results say that at the level of three quantifiers, both Integer Programming and short

Presburger Arithmetic quickly saturate to the same level of complexity. As one can expect,

we need very different techniques compared to Chapter 2 in order to prove these statements.

The decision part of Theorem 3.1 can naturally be generalized to short Presburger sen-

tences of more than three quantifiers:

30

Theorem 3.3 (Main result). Fix k ≥ 1. Let Q1, . . . , Qk+2 ∈ {∀, ∃} be k + 2 alternating

quantifiers with Q1 = ∃. Deciding short Presburger sentences of the form

Q1z1 . . . Qkzk Qk+1zk+1 Qk+2zk+2 : Φ(z1, . . . , zk, zk+1, zk+2)

is ΣP
k -complete. Here the short Presburger expression Φ contains at most 10 inequalities in

k + 4 variables z1, . . . , zk ∈ Z and zk+1, zk+2 ∈ Z2. Similarly, when Q1 = ∀, deciding short

Presburger sentences as above is ΠP
k -complete.

3.1.B. Proof features. The proof of the above results uses a chain of reductions. We

start with the AP-Cover problem on covering intervals with arithmetic progressions. This

problem is NP-compete by a result of Stockmeyer and Meyer [SM73] (see Section 3.8). The

arithmetic progressions are encoded via continued fractions by a single rational number p/q.

We use the plane geometry of continued fractions and “lift” the construction to a Boolean

combination of polyhedra in dimension 5, proving Theorem 3.1. We then further lift the

construction to convex polytopes Q1 ⊂ R9 and Q2 ⊂ R6, which give proofs of the two parts in

Theorem 3.2. While both constructions are explicit, the first construction gives a description

of Q1 by its 24 facets, while the second gives a description of Q2 by its 40 vertices; the bound

of 8400 facets then comes from McMullen’s Upper bound theorem (Theorem 3.11). Finally,

we generalize the problem AP-Cover and the chain of reductions to k ≥ 3 quantifiers.

3.1.C. Applications. The first application of our construction is the following hardness

result on the bilevel optimization of a quadratic function over integer points in a polytope.

Theorem 3.4. Given a rational interval J ⊂ R, a rational polytope W ⊂ R5 and a quadratic

rational polynomial h : R6 → R, computing:

max
z∈J∩Z

min
w∈W∩Z5

h(z,w) (3.1)

is NP-hard. This holds even when W has at most 18 facets.

The second application is to the hardness of the Pareto optima. Assume we are given

polytope Q ⊂ Rn, and k functions f1, . . . , fk : Rn → R restricted to the domain Q ∩ Zn.

31

For a point x ∈ Q ∩ Zn, the corresponding outcome vector y = (f1(x), . . . , fk(x)) is called

a Pareto minimum, if there is no other point x̃ ∈ Q ∩ Zn and ỹ = (f1(x̃), . . . , fk(x̃)), such

that ỹ ≤ y coordinate-wise and ỹ 6= y. The goal is to minimize the value of an objective

function g : Rk → R over all Pareto minima y of (f1, . . . , fk) on Q.

Theorem 3.5. Given a rational polytope Q ⊂ R6, two rational linear functions f1, f2 :

R6 → R, a rational quadratic polynomial f3 : R6 → R, and rational linear objective function

g : R3 → R, computing the minimum of g over the Pareto minima of (f1, f2, f3) on Q is

NP-hard. Moreover, the corresponding 1/2-approximation problem is also NP-hard. This

holds even when Q has at most 38 facets.

Here by ε-approximation we mean approximating up to a multiplicative factor of ε. Both

theorems 3.4 and 3.5 still hold if the polytopes are described by their vertices instead of facets.

We prove these results in Section 3.7. See also §3.10.F and §3.10.G for some background and

open problems.

As another byproduct of main argument, we can also optimize all the dimensions in

Theorem 1.5 to best possible (all equal to 1). This is done in Corollary 3.17.

3.1.D. Kannan’s Partition Theorem. In [Kan90], Kannan introduced the technology of

test sets for an efficient solution of Parametric Integer Programming (PIP) (Theorem 3.18).

In that paper, he also gave the technical Kannan’s Partition Theorem (KPT). This result

claims that one can find in polynomial time a partition of the k-dimensional parameter space

P in PIP into polynomially many rational partially open polyhedra:

P = P1 ⊔ P2 ⊔ . . . ⊔ Pr , (3.2)

so that only a bounded number of tests need to be performed (see §3.9.A for a precise

statement of KPT).

In another earlier work [NP17e], we showed that KPT if valid would imply a polynomial

time decision algorithm for (Short-PAk) for every k, and in particular (GIP). This apparently

contradicts our negative results in theorems 3.1, 3.2, and 3.3, which strongly suggests that

32

KPT may actually be erroneous. In fact, at the time of writing [NP17e], the prevailing view

was that (Short-PAk) should always be in P (Conjecture 1.9). Now that we can show hardness

of (Short-PA3), our techniques here can be combined with some arguments in [NP17e] to

obtain the following quantitative result, which strongly contradicts KPT:

Theorem 3.6. Fix m,n and let k = 1. Let ℓ be the total binary length of the matrix

A ∈ Zm×n in KPT. Then for the number r of pieces in Kannan’s partition (◦), we must

have r > exp(εℓ) for some constant ε = ε(n,m) > 0.

Here k = 1 refers to the dimension of the parameter space W in (3.24). By this, we can

conclude that no polynomial size partition (3.2) exists as claimed by KPT. See Section 3.9

for a detailed presentation of Theorem 3.6 and its implications, §3.10.A for our point of view

on the matter, and §3.10.B for the gap in the original proof of KPT.

3.2. Basic properties of finite continued fractions

Every rational number α > 1 can be written in the form:

α = [a0; a1, . . . , an] = a0 +
1

a1 +
1

. . . +
1

an

,

where a0, . . . , an ∈ Z+. If an > 1, we have another representation:

α = [a0; a1, . . . , an − 1, 1] = a0 +
1

a1 +
1

. . . +
1

(an − 1) +
1

1

.

On the other hand, if an = 1, then we also have:

α = [a0; a1, . . . , an−1, 1] = [a0; a1, . . . , an−1 + 1].

33

It is well known that any rational α > 1 can be written as a continued fraction as above

in exactly two ways (see e.g. [Kar13, Khi64]), one with an odd number of terms and the

other one with an even number of terms.

If a continued fraction [a0; a1, . . . , an] evaluates to a rational value p/q, we identify it

with the integer point (q, p). We write:

(q, p) ↔ [a0; a1, . . . , an].

From now on, we will only consider continued fractions with an odd number of terms:

α = [a0; a1, . . . , a2m].

To facilitate later computations, we will relabel these 2m+ 1 terms as:

α = [a0; b0, a1, b1, . . . , am−1, bm−1, am].

The convergents of α are 2-dimensional integer vectors, defined as:

C0 = (1, 0) , D0 = (0, 1),

Ci = ai−1Di−1 + Ci−1 , for i = 1, . . . , m+ 1,

Di = bi−1Ci +Di−1 , for i = 1, . . . , m.

(3.3)

We call C0, D0, . . . , Cm, Dm, Cm+1 the convergents for α. If Ci = (qi, pi) and Di = (si, ri)

then we have the properties:

P1) p0 = 0, q0 = 1, r0 = 1, s0 = 0.

P2) pi = ai−1ri−1 + pi−1, qi = ai−1si−1 + qi−1.

P3) ri = bi−1pi + ri−1, si = bi−1qi + si−1.

P4) Ci+1 = (qi+1, pi+1)↔ [a0; b0, a1, b1, . . . , bi−1, ai].

P5) The quotients pi/qi form an increasing sequence, starting with p0/q0 = 0 and ending

with pm+1/qm+1 = α.

34

P6) Di+1 = (si+1, ri+1)↔ [a0; b0, a1, b1, . . . , ai, bi].

P7) The quotients ri/si form a decreasing sequence, starting with r0/s0 = ∞, and ending

with rm/sm = [a0; b0, a1, b1, . . . , am−1, bm−1].

C

C0

C1

C2

Cm+1

D0

D1

Dm

y1

y2

Figure 3.1: The curves C (bold) and D.

Denote by O the origin in Z2. The geometric properties of these convergents are:

G1) Each vector
−−→
OCi and

−−→
ODi is primitive in Z2, meaning gcd(pi, qi) = gcd(ri, si) = 1.

G2) Each segment CiCi+1 contains exactly ai + 1 integer points, since
−−−−→
CiCi+1 = ai

−−→
ODi.

G3) Each segment DiDi+1 contains exactly bi + 1 integer points, since
−−−−→
DiDi+1 = bi

−−−→
OCi+1.

G4) The curve C connecting C0, C1, . . . , Cm+1 is (strictly) convex upward (see Figure 3.1).

G5) The curve D connecting D0, D1, . . . , Dm is (strictly) convex downward.

G6) There are no interior integer points above C and below
−−−−→
OCm+1. In other words, C is

the upper envelope of all non-zero integer points between
−−→
OC0 and

−−−−→
OCm+1.

3.3. From arithmetic progressions to short PA

35

3.3.A. Covering with arithmetic progressions. For a triple (g, h, e) ∈ N3, denote by

AP(g, h, e) the arithmetic progression:

AP(g, h, e) = {g + je : 0 ≤ j ≤ h}.

We reduce the following classical NP-complete problem to (Short-PA3):

AP-Cover

Input: An interval J = [µ, ν] ⊂ Z and m triples (gi, hi, ei) for i = 1, . . . , m.

Decide: Is there z ∈ J such that z /∈ AP1 ∪ · · · ∪APm, where APi = AP(gi, hi, ei)?

The problem AP-Cover was shown to be NP-complete by Stockmeyer and Meyer

in [SM73]. A short proof of this is included in §3.8.A for completeness. We remark that the

inputs µ, ν, gi, hi, ei to the problem are in binary. We can assume that each hi ≥ 1, i.e., each

APi contains more than 1 integer. This is because we can always increase ν ← ν + 1 and

add the last integer ν + 1 to any progression APi that previously had only a single element.

Note that AP-Cover is also invariant under translation, so we can assume that µ, ν and

all gi, hi, ei are positive integers.

Next, let:

M = 1 + ν
m∏

i=1

gi(gi + hiei).

We have:

M > ν and M > max
i

(gi + hiei).

i.e., the interval [1,M − 1] contains J and all APi. Moreover, we have:

gcd(M, gi) = gcd(M, gi + hiei) = 1, i = 1, . . . , m. (3.4)

Note that M can be computed in polynomial time from the input of AP-Cover, and

logM = O

(
m∑

i=1

log gi + log hi + log ei

)
.

Let us construct a continued fraction

α = [a0; b0, a1, b1, . . . , a2m−2, b2m−2, a2m−1]

with the following properties:

36

(1) All ai, bj ∈ [1,M].

(2) For each 1 ≤ i < m, we have a2i = 1.

(3) For each 1 ≤ i ≤ m, we have a2i−1 = hi.

(4) For each 1 ≤ i ≤ m, if

C2i−1 := (q2i−1, p2i−1)↔ [a0; b0, . . . , a2i−2]

then we have p2i−1 ≡ gi (modM).

(5) For each 1 ≤ i ≤ m, if

C2i := (q2i, p2i)↔ [a0; b0, . . . , a2i−1]

then we have p2i ≡ gi + hiei (modM).

(6) For each 1 ≤ i ≤ m, the segment C2i−1C2i contains exactly hi + 1 integer points.

Moreover, the set

Ai := {y2 modM : (y1, y2) ∈ C2i−1C2i}

is exactly APi.

(7) For each 1 ≤ i < m, the segment C2iC2i+1 contains no integer points apart from the

two end points.

We construct α iteratively as follows. We say an integer vector Y = (y1, y2) is congruent

to z mod M , denoted Y ≡ z (mod M), if y2 ≡ z (mod M). As in (3.3), let C0 = (1, 0) and

D0 = (0, 1).

Step 1: Let a0 = g1. Then

C1 = a0D0 + C0 = (1, g1) and C1 ≡ g1 (modM).

Step 2: Take b0 so that

D1 = b0C1 +D0 = (b0, b0g1) + (0, 1) ≡ e1 (modM),

37

i.e.,

b0g1 + 1 ≡ e1 (modM).

We can solve for b0 mod M because gcd(M, g1) = 1 from (3.4). So there

exists b0 ∈ [1,M] s.t. D1 ≡ e1 (modM).

Step 3: Take a1 = h1. This implies

C2 = a1D1 + C1 ≡ h1e1 + g1 (modM).

By Property (G2), we also have exactly h1 + 1 integer points on C1C2.

Observation: After these steps, we have h1 + 1 integer points on C1C2. Every two such

consecutive points differ by
−−→
OD1. Reduced mod M , they give:

g1, g1 + e1, . . . , g1 + h1e1.

Thus, we have A1 = AP1. Conditions (1)–(7) hold so far.

Step 4: Take b1 so that D2 ≡ g2−(g1+h1e1) (modM). Since we have the recurrence

D2 = b1C2 +D1 ≡ b1(g1 + h1e1) + e1 (modM)

this is equivalent to solving

b1(g1 + h1e1) + e1 ≡ g2 − (g1 + h1e1) (modM).

Again we can solve for b1 mod M because gcd(M, g1 + h1e1) = 1 from (3.4).

So there exists b1 ∈ [1,M] s.t. D2 ≡ g2 − (g1 + h1e1) (modM).

Step 5: Take a2 = 1. This implies

C3 = a2D2 + C2 ≡ g2 − (g1 + h1e1) + g1 + h1e1

≡ g2 (modM).

This satisfies condition (4) for i = 2. Now we can start encoding AP2 with

C3 (modM).

38

Observation: One can see that b1 in Step 4 was appropriately set up to facilitate Step 5. It

is conceptually easier to start with Step 5 and retrace to get the appropriate

condition for b1. Taking a2 = 1 also implies that there are no other integer

points on C2C3 apart from the two endpoints.

Step 6: Take b2 so that D3 = b2C3 + D2 ≡ e2 (mod M). This is similar to Step 2.

Again we use condition (3.4).

Step 7: Take a3 = h2, which implies

C4 = a3D3 + C3 ≡ g2 + h2e2 (modM).

After this, we again get exactly h2+1 integer points on C3C4. Reduced mod

M , they give A2 = AP2. Note that conditions (1)–(7) still hold.

The rest proceeds similarly to Steps 4–7, for 2 ≤ j ≤ m− 1:

Step 4j: Take b2j−1 so that

D2j ≡ gj+1 − (gj + hjej) (modM).

Step 4j+1: Take a2j = 1, which implies

C2j+1 = D2j + C2j ≡ gj+1 (modM).

Step 4j+2: Take b2j so that D2j+1 ≡ ej+1 (modM).

Step 4j+3: Take a2j+1 = hj+1, which implies

C2j+2 ≡ gj+1 + hj+1ej+1 (modM).

The segment C2j+1C2j+2 contains exactly hj+1 + 1 integer points.

Observation: After these four steps, we get Aj+1 = APj+1. Conditions (1)–(7) hold

throughout.

39

All modular arithmetic mod M in the above procedure can be performed in polynomial

time. The last Step 4m− 1 gives:

C2m = (q2m, p2m) ↔ [a0; b0, a1, b1, . . . , a2m−1].

Observation 3.7. All terms ai and bj are in the range [1,M], so the final quotient p2m/q2m

can be computed in polynomial time using the recurrence (3.3). This implies that p2m and

q2m have polynomial binary lengths compared to the input µ, ν, gi, hi, ei of AP-Cover.

The curve C connecting C0, C1, . . . , C2m is shown in Figure 3.2.

O C0

C1

C2

C3

C4

C2m

Figure 3.2: The curve C.

Here each bold segment C2i−1C2i contains hi + 1 integer points. Each thin black segment

C2iC2i+1 contains no interior integer points. The dotted segment C0C1 contains g1+1 integer

points, the first g1 of which we will not need. Let C′ be C minus the first g1 integer points

on C0C1. For brevity, we also denote C2m = (q2m, p2m) = (q, p).

Remark 3.8. Note that we have ⌊p/q⌋ = a0 = g1.

3.3.B. Analysis of the construction. By condition (7), every integer point y = (y1, y2)

on C′ lies in one of the segments C1C2, C3C4, . . . , C2m−1C2m. Moreover, by condition (6),

for 1 ≤ i ≤ m we have:

APi =
{
z ∈ [0,M) : ∃y ∈ C2i−1C2i s.t. z ≡ y2 (modM)

}

40

Taking union over all i, for each z ∈ [0,M), we have:

z ∈ AP1 ∪ · · · ∪APm ⇐⇒ ∃y ∈ C′ z ≡ y2 (modM). (3.5)

So AP-Cover can be restated as:

∃z ∈ J ∀y ∈ C′ z 6≡ y2 (modM). (3.6)

Next, we express the condition y = (y1, y2) ∈ C′ in short Presburger Arithmetic. Let

v = (p,−q) and θ be the cone between
−−→
OC0 and

−−−→
OC2m, i.e.,

θ =
{
y ∈ R2 : y2 ≥ 0, v · y ≥ 0

}
.

For each y = (y1, y2) ∈ θ, denote by Py the parallelogram with two opposite vertices O and

y and sides parallel to
−−→
OC0 and

−−−→
OC2m (see Figure 3.3). We also require that horizontal edges

in Py are open, i.e.,

Py =

x ∈ R2 :

v · y ≥ v · x ≥ 0

y2 > x2 > 0

 . (3.7)

O

y

Py

p

q

y1

y2

C2m

Figure 3.3: The parallelogram Py.

Note that the upper and lower edges of Py are open (dotted). Here C2m = (q2m, p2m) = (q, p).

Lemma 3.9. For y ∈ Z2, we have y ∈ C′ if and only if v ∈ θ and Py contains no integer

points. In other words:

y ∈ C′ ⇐⇒ v · y ≥ 0 ∧ y2 ≥ g1 ∧ ∀x ¬

v · y ≥ v · x ≥ 0

y2 > x2 > 0

 . (3.8)

41

C

y

y′

x

x′
Py

O

D

Figure 3.4: y′ is the reflection of y across the midpoint of xx′.

Proof. First, assume y := (y1, y2) ∈ C′. Recall that C′ is C minus the first g1 integer points

on C0C1. Therefore, we have y2 ≥ g1. Since C sits inside θ, we also have y ∈ θ, which

implies v · y ≥ 0. Let R be the concave region above C and below
−−−→
OC2m. By property

(G6), R contains no interior integer points. Since y ∈ C, we have Py ⊂ R. Therefore, the

parallelogram Py in (3.7) contains no integer points. We conclude that y satisfies the RHS

in (3.8).

Conversely, assume y satisfies the RHS in (3.8) but y /∈ C′. The following argument is

illustrated in Figure 3.4. First, v ·y ≥ 0 ∧ y2 ≥ g1 implies y ∈ θ. Also, the parallelogram Py

contains no integer points. By property (G6), if y /∈ C′, it must lie strictly below C′. Let x

and x′ be the integer points on C that are immediately above and below y (see Figure 3.4).

In other words, x ∈ C is the integer point immediately above the intersection of C with

the upper edge of Py, and x′ ∈ C is the integer point immediately below the intersection of

C with the right edge of Py. Since Py contains no integer points, particularly those on C,
the points x and x′ must be adjacent on C, i.e., they form a segment on C.1 Now we draw

a parallelogram D with two opposite vertices x,x′ and edges parallel to those of Py (the

dashed bold parallelogram in Figure 3.4). It is clear that D lies inside θ and also contains

y. Take y′ to be the reflection of y across the midpoint of xx′. Since x,x′ and y are integer

points, so is y′. We also have y′ ∈ D ⊂ θ. Note also that y′ lies on the opposite side of C
compared to y. Therefore, we have y′ ∈ R, contradicting property (G6).

1Note that x and x′ are not necessarily two consecutive vertices Ci and Ci+1 of C. They could be two
consecutive points on some segment CiCi+1.

42

Remark 3.10. There is a subtle point about the existence of x′ in the above proof. It is

clear that x exists because y lies below C. However, if y lies too low, the right edge Py

might not intersect C. For example, in Figure 3.5, we have g1 = 1 and y lies on the line

y2 = 1. This this case, Py contains no integer points and its right edge does not intersect

C. Thus, we have no x′ and the geometric argument in Figure 3.4 does not work. However,

this can be easily fixed by requiring a0 = g1 ≥ 2, noting that AP-Cover is invariant under

a simultaneous translation of J and all APi.

C

C0

C1

C2m

y

Py

O
y1

y2

Figure 3.5: An exception.

To conclude, by combining (3.5) and (3.8) we have:

z ∈ J ∩ (AP1 ∪ · · · ∪ APm) ⇐⇒ z ∈ J ∧ ∃y ∀x
(
z ≡ y2 (modM)

∧ v · y ≥ 0 ∧ y2 ≥ g1 ∧ ¬
{
v · y ≥ v · x ≥ 0

y2 > x2 > 0

})
.

(3.9)

Here v = (p,−q).

3.4. Proof of Theorem 3.1

3.4.A. Decision. The variables z,y,x in the below sentences play the roles of x1,x2,x3 in

(Short-PA3), respectively. Recall that AP-Cover asks whether:

∃z ∈ J z /∈ AP1 ∪ · · · ∪APm

43

By negating (3.9), the above sentence equivalent to:

∃z ∈ J ∀y ∃x
(
z 6≡ y2 (modM) ∨ v · y < 0 ∨ y2 < g1 ∨

{
v · y ≥ v · x ≥ 0

y2 > x2 > 0

})
.

(3.10)

The condition z 6≡ y2 (modM) can be expressed as:

∃t 0 < z − y2 −Mt < M.

This existential quantifier ∃t can be absorbed into ∃x because they are connected by a

disjunction. The restricted quantifier ∃z ∈ J with J = [µ, ν] is just

∃z µ ≤ z ≤ ν.

Overall, we can rewrite (3.10) in prenex normal form:

∃z ∀y ∃x µ ≤ z ≤ ν ∧
(

0 < z − y2 −Mx1 < M ∨

∨ v · y < 0 ∨ y2 < g1 ∨
{
v · y ≥ v · x ≥ 0

y2 > x2 > 0

})
.

(3.11)

All strict inequalities with integer variables can be sharpened. For example y2 > x2 is

equivalent to y2 − 1 ≥ x2. This final form contains 5 variables and 10 inequalities.

In summary, we have reduced AP-Cover to (3.11). This shows that (3.11) is NP-hard

to decide, and so is (Short-PA3). We still need to check that (Short-PA3) lies in NP. By

Theorem 3.8 in [Grä88], if (Short-PA3) is true, there must be a satisfying x1 with binary

length bounded polynomially in the binary length of Φ. Given such a polynomial length

certificate x1, one can substitute it into (Short-PA3) and verify the rest of the sentence,

which has the form ∀x2 ∃x3 Ψ(x2,x3). Here Ψ is again a short Presburger expression. By

Theorem 1.8, this can be checked in polynomial time. Thus, the whole sentence (Short-PA3)

is in NP. This concludes the proof of the decision part. �

3.4.B. Counting. Notice that the above reduction from AP-Cover to (3.11) is parsimo-

nious. At the same time, by Remark 3.14, the reduction from 3SAT to AP-Cover given in

44

§3.8.A can also be made parsimonious, i.e., every satisfying assignment u for 3SAT corre-

sponds to a unique z ∈ J\(AP1∪· · ·∪APm) and vice versa. Since #3SAT is a #P-complete,

so is counting the number of z satisfying the negation of (3.9), which has the ∀∃ form. This

proves the counting part.

3.5. Proof of Theorem 3.3

This is straightforward from the k-AP-Cover problem in §3.8.B. Here we have two con-

ditions τ1z1 + · · · + τkzk ∈ J and τ1z1 + · · · + τkzk /∈ AP1 ∪ · · · ∪ APm. Again, we can use

a short formula ∀y ∃x Ψ(τ1z1 + · · · + τkzk,y,x) with y,x ∈ Z2 to express the condition

τ1z1 + · · ·+ τkzk /∈ AP1 ∪ · · · ∪APm, as similar to (3.10). This takes only 8 inequalities. We

also need 2 inequalities µ ≤ τ1z1 + · · ·+ τkzk ≤ ν to express J . The final sentence with the

quantifiers Qizi has k + 4 variables z1, . . . , zk ∈ Z, zk+1 = y ∈ Z2, zk+2 = x ∈ Z2 and 10

inequalities. �

3.6. Proof of Theorem 3.2

We will recast (3.11) into the form (GIP). For the two polytopes R and Q in (GIP), let

R = J = [µ, ν] and

Q =
{
y ∈ R2 : y2 ≥ g1, y1 ≤ q, v · y ≥ 0

}
, (3.12)

see Figure 3.6.

We can rewrite (3.11) as:

∃z ∈ R ∀y ∈ Q ∃x 0 < z − y2 −Mx1 < M ∨
{
v · y ≥ v · x ≥ 0

y2 > x2 > 0

}
. (3.13)

Here instead of letting y range over Z2, we can restrict y to Q because C′ ⊂ Q (see (3.6)).

To remind ourselves, the inequalities 0 < z− y2−Mx1 < M say that z 6≡ y2 (modM). The

45

O y1

y2

C′

C0

C1

C2m = (q, p)

g1

Q

Figure 3.6: The triangle Q (shaded).

remaining step is to covert the expression

1 ≤ z − y2 −Mx1 ≤M − 1 ∨

v · y ≥ v · x ≥ 0

y2 − 1 ≥ x2 ≥ 1

 (3.14)

into a single system. Here we sharpened all inequalities.

First, observe that for z ∈ R and y ∈ Q, there exists x satisfying (3.14) if and only if

there exists such an x within some bounded range. Indeed, both R and Q are bounded,

and (3.14) imply boundedness for x. Therefore, we can take an N large enough so that

−N ≤ z, y1, y2, x1, x2 ≤ N. (3.15)

For instance, N = (M + p+ q)3 suffices.

Now we convert (3.14) into a single system. This can be done with two slightly different

arguments, leading to parts i) and ii) separately. Both arguments are parsimonious, which

automatically imply the corresponding #P-complete statements for counting.

3.6.A. Proof of Part i). Applying the distributive law on (3.14), we get an equivalent

expression:

1 ≤ z − y2 −Mx1 ≤ M − 1

v · x ≤ v · y

 ∧

1 ≤ z − y2 −Mx1 ≤ M − 1

0 ≤ v · x

 ∧ . . . (3.16)

Here each [ab] stands for a disjunction a ∨ b of two terms. In total, there are four such

disjunctions.

46

Now we convert each of the above disjunctions into a conjunction. WLOG, consider the

first one in (3.16). By the bounds (3.15), it is equivalent to:

 1 ≤ z − y2 −Mx1 ≤ M − 1

0 ≤ v · y − v · x ≤ 2N(p+ q)

 . (3.17)

Let t1 = z − y2 −Mx1 and t2 = v · y − v · x. By (3.15), we always have

|t1| ≤ 2N +MN, |t2| ≤ 2N(p+ q).

Define two polygons in R2:

P1 =
{
(t1, t2) ∈ R2 : 1 ≤ t1 ≤M − 1, |t2| ≤ 2N(p+ q)

}
,

P2 =
{
(t1, t2) ∈ R2 : |t1| ≤ 2N +MN, 0 ≤ t2 ≤ 2N(p+ 1)

}
.

Then (3.17) can be rewritten as:

(t1, t2) ∈ P1 ∪ P2 . (3.18)

Next, define:

P ′
1 = (P1, 0), P ′

2 = (P2, 1) and P = conv(P ′
1, P

′
2).

In other words, we embed P1 into the plane t3 = 0 and P2 into the plane t3 = 1, all inside

R3. As 3-dimensional polytopes, the convex hull of P ′
1 and P ′

2 is another polytope P ⊂ R3.

It is easy to see that P has 6 facets, whose equations can be found from the vertices of P1

and P2. Also observe that for (t1, t2, t3) ∈ Z3, we have:

(t1, t2, t3) ∈ P ⇐⇒
(t1, t2) ∈ P1 , t3 = 0, or

(t1, t2) ∈ P2 , t3 = 1.

From this, we have:

(t1, t2) ∈ P1 ∪ P2 ⇐⇒ ∃t3 : (t1, t2, t3) ∈ P. (3.19)

Combined with (3.18), it implies that (3.17) is equivalent to:

∃t : (z − y2 −Mx1, py1 − qy2 − px1 + qx2, t) ∈ P.

47

The above condition is a linear system with 6 equations. Doing this for each disjunction

in (3.16), we get four new variables t ∈ Z4 and a combined system of 24 inequalities. Thus,

the original disjunction (3.14) is equivalent to a system:

∃t ∈ Z4 : Ax + By + Cz +Dt ≤ b.

The inner existential quantifiers ∃x ∈ Z2 and ∃t ∈ Z4 can be combined into ∃x ∈ Z6.

Substituting everything into (3.13), we obtain part i). �

3.6.B. Proof of Part ii). Another way to convert (3.14) into a system is to directly

interpret its two clauses and two separate polytopes. The same bounds (3.15) still apply.

We will need the following special case of the Upper Bound Theorem (see e.g. Theorem 8.23

and Exercise 0.9 in [Zie95]).

Theorem 3.11 (McMullen). A polytope P ⊂ Rd with n vertices has at most

f(d, n) :=

n− ⌈d/2⌉

n− d

 +

n− ⌊d/2⌋ − 1

n− d

 facets.

Similarly, a polytope Q ⊂ Rd with n facets has at most f(d, n) vertices.

The first polytope we consider is given by:

{
(x1, y2, z) ∈ R3 : 1 ≤ z − y2 −Mx1 ≤ M − 1, −N ≤ x1, y2, z ≤ N

}
.

This is a 3-dimensional polytope with 8 facets. Applying Theorem 3.11, we see that it has

at most 12 vertices. To interpret it as a polytope in z,y and x we need to form its direct

product with the interval −N ≤ y2 ≤ N also embed it in the hyperplane x2 = 0. This

produces a polytope P1 ⊂ R5 with 24 vertices.

The second polytope we consider is given by:

{
(x,y) ∈ R4 : v · y ≥ v · x ≥ 0, y2 − 1 ≥ x2 ≥ 1, y ∈ Q

}
.

As a 4-dimensional polytope it has only 8 vertices. These 8 vertices correspond to the cases

when y lies at one of the three vertices of Q. Two of these vertices give two degenerate

48

parallelograms Py, each of which is a segment with two vertices. The lower right vertex

of Q gives a non-degenerate parallelogram Py with four vertices. To interpret this as a 5-

dimensional polytope in z,y and x, we need to form its direct product with the polytope

R = [µ, ν] for z. This results in a polytope P2 ⊂ R5 with 16 vertices.

Altogether, we have two polytopes P1, P2 ⊂ R5 with 40 vertices in total. We reapply the

“lifting” trick in (3.19) to produce another polytope P ⊂ R6 with 40 vertices so that:

(z,y,x) ∈ P1 ∪ P2 ⇐⇒ ∃t : (z,y,x, t) ∈ P.

By Theorem 3.11, the resulting polytope P has at most

f(6, 40) =

(
37

34

)
+

(
36

34

)
= 8400

facets, which can all be found in polynomial time from the vertices. Therefore, the disjunc-

tion (3.14) is equivalent to a system:

∃t : Ax + By + Cz +Dt ≤ b

with at most 8400 inequalities. The existential quantifiers ∃t and ∃x ∈ Z2 can be combined

into ∃x ∈ Z3. Substituting all into (3.13), we obtain part ii). �

3.7. Bilevel optimization and Pareto optima

3.7.A. Proof of Theorem 3.4. First, we characterize the convex chains C and D from

Figure 3.1 using a quadratic function:

Lemma 3.12. Let α = p/q ∈ Q+. If u,v ∈ Z2 satisfy u2

u1
< α < v2

v1
and v2u1 − v1u2 = 1

then both u2

u1
and v2

v1
are “weak” convergents of α, i.e., u ∈ C and v ∈ D.

Proof. Assume u /∈ C, then u = (u1, u2) lies strictly below C. By the argument from

Lemma 3.9, the parallelogram Pu contains another point u′ = (u′1, u
′
2) ∈ Z2 with

u′
2

u′
1
< α.

Draw a line l parallel to ~v and passing through u. Since v2
v1
> α, Pu lies completely to the

left of l (See Figure 3.7). From this, we conclude that 1 = v2u1 − v1u2 > v2u
′
1 − v1u′2 > 0.

49

In other words, the triangle Ouv has larger area than that of Ou′v. This is impossible,

because v2u
′
1 − v1u′2 ∈ Z. Therefore, we must have u ∈ C. By the same argument, we have

v ∈ D.

y1

y2

O

y2 = αy1

u

v

u′

Pu

l

Figure 3.7: The points u and v.

Conversely, for any weak convergent u ∈ C, we can find v ∈ D with v2u1 − v1u2 = 1.

This comes from the fact that any two consecutive convergents pi
qi

and pi+1

qi+1
of α satisfy

pi+1qi − piqi+1 = (−1)i.

Proof of Theorem 3.4. We use the same reduction from AP-Cover as earlier. With the

same rational number α = p/q, let

Q =
{
(u1, u2) ∈ R2 : u2 ≥ g1, u1 ≤ q, pu1 − qu2 ≥ 0

}
,

P =
{
(v1, v2) ∈ R2 : v2 ≤ p− 1, v1 ≥ 0, pv1 − qv2 ≤ 0

}
.

Recall (3.6), where C′ is the part of the convex chain C lying inside Q. Now let w = (u,v, t),

W = Q× P × [0, T] and

h(z,w) = K(v2u1 − v1u2 − 1) + (u2 − z − tM)2.

Here T and K are two appropriately chosen constants. Specifically, let T = p/M so that

if z ≡ u2 (mod M) then there always exists t ∈ [0, T] with t = u2−z
M

. For K, we pick it

sufficiently large so that K ≫ (u2 − z − tM)2 for every u ∈ Q, z ∈ J and t ∈ [0, T]. Clearly

K = (2TM + p)3 suffices.

50

O y1

y2

C′

(p, q)

P

Q

Figure 3.8: P and Q.

With u ∈ Q∩Z2 and v ∈ P ∩Z2, we have v2u1−v1u2 ≥ 1. Furthermore, by Lemma 3.12,

equality happens if and only if u ∈ C′ and v ∈ D. For a fixed z ∈ J consider the w ∈ W
that minimizes h(z,w). Since K ≫ (z − tM − u2)2, the first term in h always dominate the

second one. So we must have v2u1 − v1u2 = 1 when h is minimized, which implies u ∈ C′.
Furthermore, among all y ∈ C′, u must be the one for which u2 mod M is closest to z, so

that the second term in h is minimized. Thus,

min
w∈W∩Z5

h(z,w) ≥ 0,

and equality holds if and only if there is some y ∈ C′ with z ≡ y2 (modM). Therefore,

max
z∈J∩Z

min
w∈W∩Z5

h(z,w) > 0

if and only if there exists some z ∈ J for which no y ∈ C′ satisfies z ≡ y2 (mod M). We

conclude that computing (3.1) is NP-hard, as it implies AP-Cover.

3.7.B. Proof of Theorem 3.5. First recall the definition of Pareto optima defined in

§3.1.C. To summarize §3.7.A, we showed that computing

max
z∈J∩Z

min
w∈W∩Z5

h(z,w) (3.20)

is NP-hard for I ⊂ R1 an interval, W ⊂ R5 a polytope with 18 facets and h : R6 → R a

quadratic function. Let Q = I ×W ⊂ R6, which has 38 facets. For x = (z,w) ∈ Q ∩Z6, let

f1(x) = z, f2(x) = −z and f3(x) = h(z,w).

51

Consider the set of Pareto minima of (f1, f2, f3) on Q. For convenience, we denote an

outcome vector y =
(
f1(x), f2(x), f3(x)

)
by y = f(x). Consider two points x = (z,w) and

x′ = (z,w′) in Q∩Z6. If h(z,w) < h(z,w′) then f1(x) = f1(x
′), f2(x) = f2(x

′), and f3(x) <

f3(x
′). Then y′ = f(x′) is not a Pareto minimum in this case. Therefore, all Pareto minima

must be of the form y = f(x), where x = (z,wmin) with h(z,wmin) = minw∈W∩Z5 h(z,w).

Furthermore, if x = (z,wmin) and x′ = (z′,w′
min) are two such points with z 6= z′, then

the outcome vectors y = f(x) and y′ = f(x′) are incomparable, simply because either

f1(x) < f1(x
′) and f2(x) > f2(x

′), or the other way around.

We conclude that the set Pareto minima of (f1, f2, f3) on Q is given as:

P =
{
y =

(
z, −z, h(z,wmin)

)
: z ∈ J ∩ Z, h(z,wmin) = min

w∈W∩Z5
h(z,w)

}
.

For y ∈ R3, let g(y) = −y3. Then minimizing g(y) over y ∈ P is the same as computing

the negated value of (3.20). This proves the first part of Theorem 3.5.

To show the hardness of approximating miny∈P g(y) within a multiplicative factor of 1/2,

recall from §3.7.A that the value of (3.20) determines the AP-Cover. To be precise, (3.20)

is equal to the largest squared distance of an integer z ∈ J from the union AP1 ∪ · · · ∪APm,

which is 0 if and only if J ∩ Z is entirely covered by these APs.

In Theorem 3.13, where we reduce 3SAT to AP-Cover. There, we pick the first ℓ

odd primes p1, p2, . . . , pℓ. We can modify this construction by also including p0 = 2, and

require that z ≡ 1 (mod 2). In other words, now we have J = [0, N), where N = p0p1 . . . pℓ,

and we add in an extra AP0 = {z ∈ Z : z ≡ 0 (mod 2)}. Then the final condition is

z ∈ J\(AP0∪AP1∪· · ·∪APm). So all even numbers in J are covered by AP0, which implies

that the largest squared distance of an z ∈ J to AP0 ∪ · · · ∪ APm is at most 1. Therefore,

the value of (3.20) is either 1 or 0. So getting a 1/2-approximation is equivalent to deciding

AP-Cover, and thus NP-hard. �

3.8. Covering with arithmetic progressions

3.8.A. NP-completeness of AP-Cover. Let us restate the problem:

52

AP-Cover

Input: An interval J = [µ, ν] ⊂ Z and m triples (gi, hi, ei) for i = 1, . . . , m.

Decide: Is there z ∈ J\(AP1 ∪ · · · ∪ APm), where APi = AP(gi, hi, ei)?

Theorem 3.13 ([SM73]). AP-Cover is NP-complete.

Proof. We reduce 3SAT to AP-Cover. Consider a 3-CNF Boolean formula:

Ψ(u) =

n∧

i=1

(ai ∨ bi ∨ ci) (3.21)

where u = (u1, . . . , uℓ) ∈ {true, false}ℓ are the Boolean variables, and each ai, bi, ci literals

from the set

{us, ¬us : 1 ≤ s ≤ ℓ}.

Deciding if there exists u satisfying Φ(u) is NP-complete.

Let p1, . . . , pℓ be the first ℓ odd primes. We have pℓ = O(ℓ log ℓ) by the Prime Number

Theorem (see [HW]), so p1, . . . , pℓ can all be found in time poly(ℓ). Let N := p1 · · · pℓ and
J := [0, N). We encode all the Boolean variables us by an integer variable z ∈ J such that:

us = true ⇐⇒ z 6≡ 0 (mod ps) , us = false ⇐⇒ z ≡ 0 (mod ps). (3.22)

Now for each clause ai ∨ bi ∨ ci, we consider its negation. Say ai ∨ bi ∨ ci = ur ∨¬us ∨ ut
for some 1 ≤ r, s, t ≤ ℓ. Then its negation is ¬ur ∧ us ∧ ¬ut. Now in the interval J , we

exclude all z for which:

z ≡ 0 (mod pr), z 6≡ 0 (mod ps), z ≡ 0 (mod pt). (3.23)

By Chinese Remainder Theorem, the set of such z ∈ J is periodic modulo prpspt. Thus,

they can be decomposed into a union of no more than prpspt APs, each lying inside J with

period prpspt. The first and last term of each such AP can also be found easily from (3.23).

Denote these APs by APi,1, . . . ,APi,mi
with mi < prpspt = O(ℓ3 log3 ℓ). Then we have

ai ∨ bi ∨ ci = true if and only if z /∈ APi,1 ∪ · · · ∪ APi,mi
. Therefore, by Chinese Remainder

Theorem, we have:

∃u ∈ {true, false}ℓ Ψ(u) = true ⇐⇒ ∃z ∈ J : z /∈
n⋃

i=1

mi⋃

i′=1

APi,i′.

53

The RHS is exactly AP-Cover. In total, we have m =
∑n

i=1mi < O(n ℓ3 log3 ℓ) APs.

Remark 3.14. Compared to the original proof in [SM73], our reduction here is not parsi-

monious, in the sense that each satisfying tuple u ∈ {true, false}ℓ can correspond to several

z ∈ J . This is because of condition (3.22), which says that z (mod ps) can be 1, 2, . . . , p− 1

in case us = true. To make it parsimonious, we simply need to exclude the cases when

z ≡ 2, 3, . . . , p− 1 (mod ps), i.e., for each ps, we require that z does not lie in (ps − 2) extra

progressions APs,t = {z ∈ J : z ≡ t (mod ps)} with 2 ≤ t ≤ ps − 1. In other words, the

parsimonious reduction should be:

z /∈
(n⋃

i=1

mi⋃

i′=1

APi,i′

)
∪
(ℓ⋃

s=1

ps−1⋃

t=2

APs,t

)
.

Our simplified non-parsimonious argument has the advantage that it is directly generalizable

to k quantifiers (see below).

Remark 3.15. In [GJ79, §A7], the problem AP-Cover is phrased differently under the

name Simultaneous Incongruences problem.

3.8.B. Generalization of AP-Cover to k quantifiers. We consider the following direct

generalization of AP-Cover.

k-AP-Cover

Input: The following elements:

• an intervals J = [µ, ν],

• k integers τ1, . . . , τk ∈ Z.

• APi = AP(gi, hi, ei), with 1 ≤ i ≤ m,

Decide: Q1z1 ∈ Z . . . Qkzk ∈ Z : τ1z1 + . . .+ τmzm ∈ J\(AP1 ∪ · · · ∪ APm).

Here Q1, . . . , Qk ∈ {∀, ∃} are k alternating quantifiers with Qk = ∃.

Theorem 3.16. k-AP-Cover is ΣP
k -complete for k odd and ΠP

k -complete for k even.

Proof. This is similar to Theorem 3.13’s proof, but instead of 3SAT we useQ3SAT in (2.26).

Now we need the first kℓ odd primes p11, . . . , p1ℓ, . . . , pk1, . . . , pkℓ. Here ℓ is the length of

54

each Boolean tuple uj ∈ {true, false}ℓ in (2.26). Again we have pjs = O(ℓ log ℓ) for each

such prime. We associate to each tuple uj an integer variable zj ∈ Z such that:

ujs = true ⇐⇒ zj 6≡ 0 (mod pjs) , ujs = false ⇐⇒ zj ≡ 0 (mod pjs) , 1 ≤ s ≤ ℓ.

By Chinese Remainder Theorem, we can pick τ1, . . . , τk such that:

τj ≡ 1 (mod pjs) and τj ≡ 0 (mod pj′s) for every 1 ≤ j 6= j′ ≤ k, 1 ≤ s ≤ ℓ.

Let z := τ1z1 + . . . τkzk. Then we have:

ujs = true ⇐⇒ z 6≡ 0 (mod pjs) , ujs = false ⇐⇒ z ≡ 0 (mod pjs).

Let N := τkNk and J := [0, N). Observe that by adding/subtracting from zk a suitable

multiple of Nk, we can guarantee that z ∈ J , meanwhile still keeping all the congruences

z mod pjs the same for 1 ≤ j ≤ k, 1 ≤ s ≤ ℓ. So since the last quantifier in k-AP-Cover is

∃zk, we can always assume that z ∈ J .

Now for each clause ai ∨ bi ∨ ci in the Q3SAT statement, we again consider its negation

¬ai ∨ ¬bi ∨ ¬ci. Then ai ∨ bi ∨ ci is not satisfied if and only if z ∈ APi,1 ∪ · · · ∪ APi,mi
,

where the progressions APi,i′ ⊂ [0, N) are chosen as in Theorem 3.13’s proof. The period

of each such APi,i′ is still a product of at most three primes among {pjs}1≤j≤k,1≤s≤ℓ, which

is at most O(ℓ3 log3 ℓ). Doing this for all clauses, the original Q3SAT sentence in (2.26) is

then equivalent to:

Q1z1 ∈ J1 . . . Qk zk ∈ Jk : τ1z1 + . . . τkzk ∈ J\
(

n⋃

i=1

mi⋃

i′=1

APi,i′

)
.

This is exactly k-AP-Cover with m =
∑n

i=1mi APs.

3.8.C. An improvement of Theorem 1.5. Here is an easy consequence of k-AP-Cover:

Corollary 3.17. For every fixed k, Theorem 1.5-i) still holds when all dimensions are 1. In

other words, deciding PA sentences of the form:

Q1z1 ∈ Z . . . Qk+1zk+1 ∈ Z : Ψ(z1, . . . , zk+1)

is ΣP
k/Π

P
k -complete. Here Ψ is a Boolean combination of arbitrarily many linear inequalities.

Furthermore, this still holds when the coefficients and constants of Ψ are encoded in unary.

55

Proof. Observe that in Theorem 3.16’s proof, the finite condition z ∈ J can be removed at the

cost of making all progressions APi’s infinite. So now we have a congruence z ≡ αi (mod βi)

instead of a finite progression APi for each 1 ≤ i ≤ m. The “infinite” k-AP-Cover sentence

simply reads:

Q1z1 ∈ Z . . . Qkzk ∈ Z :

m∧

i=1

τ1z1 + · · ·+ τkzk 6≡ αi (mod βi)

with Qk = ∃. All have to do is express each condition τ1z1 + · · · + τkzk 6≡ αi (mod βi) in

Presburger Arithmetic. This can be easily done with one extra variable zk+1 ∈ Z as:

m∧

i=1

τ1z1 + · · ·+ τkzk 6≡ αi (mod βi) ⇐⇒ ∀zk+1

m∧

i=1

(
τ1z1 + · · ·+ τkzk 6= αi + βizk+1

)
.

Here each inequality is a disjunction of two inequalities.

To see why unary input is also hard, we need to look again at Theorem 3.16’s proof.

There, we picked each APi so that its period at most O(ℓ3 log3 ℓ), where ℓ is the length of

the original Q3SAT sentence. So here each αi and βi is also at most O(ℓ3 log3 ℓ), which

means they can be input in unary. Also, each incongruence τ1z1 + · · ·+ τkzk 6≡ αi (mod βi)

can be written as:

(τ1 mod βi)z1 + · · ·+ (τk mod βk)zk 6≡ αi (mod βi).

Here each coefficient (τj mod βi) is again of order O(ℓ3 log3 ℓ), and can be input in unary.

3.9. On Kannan’s Partition Theorem

3.9.A. Validity of KPT. By Parametric Integer Programming (PIP), we mean the follow-

ing problem. Given an integer matrix A ∈ Zm×n and a k-dimensional polyhedron W ⊂ Rm,

is the following sentence true:

∀ b ∈ W ∃x ∈ Zn : Ax ≤ b. (3.24)

We think of b as a parameter varying over W . For every fixed b, this gives an Integer

Programming problem in fixed dimension n. Kannan proved that:

56

Theorem 3.18 ([Kan90]). For every fixed n, (3.24) can be solved in polynomial time.

Note the similarity between this and Theorem 2.1, which considered an “integer ver-

sion” of (3.24). Also in [Kan90], Kannan claimed the following much stronger result, which

implies both theorems 2.1 and 3.18. From here on, we use RA to denote rational affine

transformations. Also let Kb := {x ∈ Rn : Ax ≤ b} for every b ∈ W .

Theorem 3.19 (Kannan’s Partition Theorem). Fix n and k. Given a PIP problem, we can

find in polynomial time a partition

W = P1 ⊔ P2 ⊔ · · · ⊔ Pr, (3.25)

where each Pi is a rational copolyhedron2, so that the partition satisfies the following prop-

erties. For each Pi, we can find in polynomial time a finite set Ti = {(Sij , Tij)} of pairs of

RAs Tij : Rm → Rn and Sij : Zn → Zn, so that for every b ∈ Pi we have:

Kb ∩ Zn 6= ∅ ⇐⇒ ∃(Sij , Tij) ∈ Ti : Sij⌊Tijb⌋ ∈ Kb.

Furthermore, for each Pi, the set Ti contains at most n4n pairs (Sij , Tij). The number of all

Pi is r ≤ (mnℓ)kn
δn
, where ℓ is the binary length of A and δ is a universal constant.

KPT claims that in order to solve for an x ∈ Zn satisfying Ax ≤ b with b varying overW ,

we only need to preprocess the matrix A in polynomial time and obtain a polynomial number

of regions Pi. When queried with b ∈ Pi, we only need to check for a fixed number (n4n) of

candidates of the form x = Sij⌊Tijb⌋ to get an integer solution in Kb (if any exists).

Let us prove that KPT, if true, would imply far stronger statements for a PIP problems

that involves only a matrix of fixed length m. From now on, fix m,n and k. By KPT and

the observation mn ≤ ℓ, the number of regions Pi in (3.25) can be bounded as:

r ≤ (mnℓ)kn
δn ≤ ℓγ(n,k) . (3.26)

Here γ(n, k) is a constant which depends only on n and k. The following structural result is

an implication of KPT when the parameter space W is 1-dimensional, i.e. when k = 1 :

W = {f(y) ∈ Rm : y ∈ I} (3.27)

2A copolyhedron is a convex polyhedron with possibly some open facets.

57

where f : R1 → Rm is a RA, and I ⊂ R a bounded interval.

Lemma 3.20. Assume (3.26) holds. Given a PIP problem with a 1-dimensional parameter

space W (3.27), there exists a finite set T = {(Sj, Tj)} of pairs of RAs Tj : R1 → Rn and

Sj : Zn → Zn so that the following hold. For every y ∈ I ∩ Z and b = f(y) ∈ Rm, we have:

Kb ∩ Zn 6= ∅ ⇐⇒ ∃(Sj , Tj) ∈ T : Sj⌊Tjy⌋ ∈ Kb.

Furthermore, the set T contains at most c(n) pairs (Sj , Tj), where c(n) is a constant which

depends only on n.

Remark 3.21. The above lemma says that the bound (3.26) as implied by KPT would guar-

antee a small set of candidates for any “short” PIP problem Ax ≤ f(y) with 1-dimensional

parameters y. The number of candidates c(n) depends only on the dimension n.

Proof of Lemma 3.20. WLOG, assume I = [0, N) and A = (aij) ∈ Zm×n. Let

M = N
∏

ij

(|aij|+ 1)
∏

k

(|pkqk|+ 1), (3.28)

where pk/qk runs over all rational coefficients in f . Let J = [0,MN). Consider the following

PIP problem with one parameter y′ ∈ J and n + 2 integer variables x ∈ Zn, y1, y2 ∈ Z:

Ny1 + y2 = y′, 0 ≤ y1 < M, 0 ≤ y2 < N, Ax− f(y2) ≤ 0. (3.29)

Observe that when (3.29) is feasible, the values of y1 and y2 are uniquely determined. Indeed,

we should have y1 = ⌊y′/N⌋ and y2 = y′ − Ny1. So as y′ varies over J ∩ Z, the solutions

of (3.29) correspond bijectively with the solutions of the original PIP problem Ax ≤ f(y)

where y = ⌊y′/N⌋ ∈ I.

Clearly, (3.29) can be put into the form Bz ≤ g(y′) where z = (x, y1, y2) ∈ Zn+2 are

variables and g is an RA. Let b
′
= g(y′), then the problem takes the form Bz ≤ b

′
. Also let

W ′ = {b′ = g(y′) : y′ ∈ J}. Applying KPT to the PIP problem Bz ≤ b
′
with a 1-dimensional

parameter space W ′, we have a partition of W ′ into polynomially many intervals. Since

b
′
= g(y′) and g is an RA, this partition induces another partition on J (the space for y′)

into intervals:

J = J1 ⊔ · · · ⊔ Jr . (3.30)

58

By (3.26), the number r of all intervals in this partition is polynomial in the binary length

of the matrix B. From (3.28) and (3.29), it is clear that B has no more than 2mn entries,

each bounded by M . Therefore, we have:

r ≤
(
∑

ij

⌈log bij⌉
)γ

≤ (2mn logM)γ L M. (3.31)

Here γ = γ(n, k) is some constant degree guaranteed by KPT. Since rLM , some interval Ji

from (3.30) must contain an entire subinterval I ′ = [kN, (k+1)N) for some 0 ≤ k < M . For

simplicity, assume I ′ = [kN, (k + 1)N] ⊆ J1.

Also by KPT, for the interval J1, there is a set of candidates T1 = {(S1j, T1j)} of size at

most c(n) := (n+2)4(n+2) for the PIP problem Bz ≤ b
′
. For every y′ ∈ I ′ ⊆ J1, each solution

of (3.29) should have y1 = k and y2 = y′−Nk. By a translation y = y′−Nk, we can map I ′

back to I. Accordingly, we can modify each candidate (Sij, Tij) ∈ Ti to be a pair of RAs in

y. Clearly, they serve as candidates for the original PIP problem Ax ≤ f(y) with y ∈ I.

Lemma 3.20 can be easily boosted to a k-dimensional parameter space W for a fixed k:

W = {f(y) ∈ Rm : y ∈ R} (3.32)

with f : Rk → Rm an RA and R ⊂ Rk a rectangular box.

Lemma 3.22. Assume (3.26) holds. Given a PIP problem with a k-dimensional parameter

space W (3.32), there exists a finite set T = {(Sj , Tj)} of pairs of RAs Tj : Rk → Rn and

Sj : Zn → Zn so that the following hold. For every y ∈ R∩Zk and b = f(y) ∈ Rm, we have:

Kb ∩ Zn 6= ∅ ⇐⇒ ∃(Sj , Tj) ∈ T : Sj⌊Tjy⌋ ∈ Kb .

Furthermore, the set T contains at most c(n, k) pairs (Sj , Tj), where c(n, k) is a constant

which depends only on n and k.

Proof. WLOG, assume R = [0, r1)×. . .×[0, rk). We “flatten” the k-dimensional parameter y.

For every y = (y1, . . . , yk) ∈ R, let:

y′ = y1 + y2r1 + y3(r1r2) + . . .+ yk(r1 · · · rk−1) ∈ [0, r1 · · · rk). (3.33)

59

This RA maps the integer points in R bijectively to those in I = [0, r1 · · · rk). We rewrite

Ax ≤ f(y) as another PIP problem with a 1-dimensional parameter y′ ∈ I and n+k variables
x ∈ Zn, y ∈ Zk:

y′ = y1 + y2r1 + y3(r1r2) + . . .+ yk(r1 · · · rk−1),

0 ≤ yi < ri for 1 ≤ i ≤ k, Ax− f(y) ≤ 0.
(3.34)

Note that (3.34) has a solution if and only if the original PIP problem Ax ≤ f(y) has a

solution. Furthermore, in every solution of (3.34), the variables y are uniquely determined

by y′ via the RA (3.33). Applying Lemma 3.20, we get a set T ′ = {(S ′
j, T

′
j)} of at most

c(n, k) := (n + k + 2)4(n+k+2) candidates for (3.34), where T ′
j : R

1 → Rn+k and S ′
j : Z

n+k →
Zn+k are pairs of RAs. Using (3.33), we can re-express each pair (S ′

j, T
′
j) as a pair (Sj , Tj)

with Tj : Rk → Rn and Sj : Zn → Zn so that (3.34) has a solution if and only if x = Sj⌊Tjy⌋
satisfies Ax ≤ f(y) for some j. In other words, T = {(Sj, Tj)} is a finite set of at most

c(n, k) candidates for the original PIP problem Ax ≤ f(y).

Remark 3.23. Since the dimensions of A are fixed, each condition Sij⌊Tijy⌋ ∈ Kb can be

expressed as a short Boolean combination of linear inequalities, at the cost of introducing

a few extra ∃ or ∀ quantifiers. For example, a condition 1
2
+ ⌊y/5⌋ ≤ 3 for y ∈ Z can be

expressed as either

∃t

t ≤ y/5

t > y/5− 1

1
2
+ t ≤ 3

or ∀t

t > y/5

t ≤ y/5− 1

1
2
+ t ≤ 3

 . (3.35)

Here {·} is a conjunction and [·] is a disjunction.

Now we relax the parameter space W to an arbitrary k-dimensional polyhedron, i.e.,

W = {f(y) ∈ Rm : y ∈ Q} (3.36)

with f : Rk → Rm an RA and Q ⊂ Rk a polyhedron.

Corollary 3.24. Assume (3.26) holds. Then for every fixed m,n and k, there is a constant

d(m,n, k) so that the following holds. For a PIP problem with a k-dimensional parameter

60

space W (3.36), let:

Q′ =
{
y ∈ Q ∩ Zk : Ax ≤ f(y) has no solutions x ∈ Zn

}
.

If |Q′| > d(m,n, k), then it contains three distinct points y1,y2,y3 with y3 = (y1 + y2)/2.

Proof. Let R be a large enough box that contains Q. Applying Lemma 3.22 to the PIP

problem Ax ≤ f(y) with y ∈ R, we get a set of candidates T = {(Sj , Tj)} of size at most

c(n, k) so that:

Ax ≤ f(y) has no solutions ⇐⇒ ∀(Sj , Tj) ∈ T : Sj⌊Tjy⌋ 6≤ f(y).

By the argument in Remark 3.23, each condition Sj⌊Tjy⌋ 6≤ f(y) can be expressed by a

short Presburger formula ∃t Φj(y, t) with length bounded in m (fixed). Taking conjunction

over all such formulas for 1 ≤ j ≤ c(n, k), we have:

Ax ≤ f(y) has no solutions ⇐⇒ ∃ t̃ Φ(y, t̃).3 (3.37)

Here Φ is still a short Presburger expression in a bounded number of variables. Denote by

λ and µ the total number of variables and inequalities in Φ, respectively. Both of these are

constants in m,n and k. Let d = d(m,n, k) = 2λ+µ. The µ inequalities in Φ determine µ

hyperplanes in Rλ. These hyperplanes partition Rλ into polyhedral regions:

Rλ = W1 ⊔ · · · ⊔Wη,

with η ≤ 2µ. Observe that as (y, t̃) varies over a single region Wj , the value of Φ(y, t̃)

is always true or always false. Since |Q′| > d, we have at least d + 1 distinct pairs

(y1, t̃1), . . . , (yd+1, t̃d+1) for each of which Φ(yi, t̃i) = true. By the pigeon hole principle,

some region Wj contains at least 2λ + 1 of these pairs. Each such pair is a point in Zλ,

so at least two of them must have coordinates equal modulo 2 pairwise. Assume (y1, t̃1)

and (y2, t̃2) are two such two pairs. By convexity, (y1 + y2, t̃1 + t̃2)/2 is another integer

point in Wj . Since Φ is always true over Wj, this pair also satisfies Φ. By (3.37), the point

y3 = (y1 + y2)/2 also lies in Q′. We conclude that y1,y2,y3 ∈ Q′.

3Separate variables t for different Φj must be concatenated into t̃.

61

Theorem 3.25. The bound (3.26) as claimed by KPT does not hold in full generality. In

other words, even for k = 1 and fixed m,n, the number of pieces r in the partition (3.25)

must be at least exp(εℓ) for some constant ε = ε(m,n) > 0.

Proof. Assume (3.26) holds. Consider the following continued fraction of length (2κ + 1):

ακ = [2; 1, . . . , 1] = p/q,

where p = F2κ+3, q = F2κ+1 are the Fibonacci numbers. From Properties (G1)–(G6) in

Section 3.2, we see that the lower convex curve C for α connects κ + 2 integer points:

C0 = (0, 1), C1 = (2, 1), C2 = (5, 2), . . . , Cκ+1 = (p, q).4

Here Ci = (F2i+1, F2i−1) for 1 ≤ i ≤ s+1. Let C′ be the convex curve connecting C1, . . . , Cκ+1

(see Figure 3.1). Property (G2), for every 1 ≤ i ≤ κ, the segment CiCi+1 has exactly two

integer points, Ci and Ci+1. In other words, we have C′ ∩ Z2 = {C1, . . . , Cκ+1}.

Let Q be the triangle defined in (3.12). By Lemma 3.9, an integer point y = (y2, y1) ∈ Q
lies on C′ if and only if Py is integer point free, where Py was defined in (3.7).5 In other

words, we have:

Q′ =

y ∈ Q ∩ Z2 :

{
py1 − qy2 ≥ px1 − qx2 ≥ 0

y2 − 1 ≥ x2 ≥ 1

}
has no solutions x ∈ Z2

= C′ ∩ Z2 .

The above is a PIP problem with parameters y ∈ Q and variables x = (x1, x2) ∈ Z2.

Note that the system has fixed length m = 4. By Corollary 3.24, there exists a constant d,

so that if |C′ ∩ Z2| = κ + 1 > d then there are three distinct points y1,y2,y3 ∈ C′ ∩ Z2

with y3 = (y1 + y2)/2. However, by the previous paragraph, the only integer points on C′

are C1, . . . , Cκ+1, which are in convex position, see Property (G4). Thus, none among them

can be the midpoint of two others. We get a contradiction. Therefore, (3.26) cannot hold in

general.

4Recall that the vertical coordinate is put in the first position.

5We take the first term in α to be 2 because of Remark 3.10

62

Recall the PIP problem (3.29) with a 1-dimensional parameter y′, i.e., k = 1. From (3.26),

we deduced rLM in (3.31). This led to the observation that at least one interval I ′ must lie

in a single piece Ji. The chain of deductions continued from there through Lemma 3.22 and

Corollary 3.24 and led to the above contradiction. Therefore, we must have r > M , which

implies r ≥ 2εℓ for some constant ε = ε(m,n) > 0.

3.9.B. Implications. To summarize, Theorem 3.25 shows that a polynomial size decom-

position into polyhedral pieces as in (3.25) does not exist. If one is willing to sacrifice the

polyhedral structure of the pieces, then a polynomial size partition similar to (3.25) does in

fact exist [ES08] (see also [Eis10]):

Theorem 3.26 (Eisenbrand–Shmonin). Fix n and k. Let Ax ≤ b be a PIP problem with a

k-dimensional parameter space W . Then we can find in polynomial time a partition

W = S1 ⊔ S2 ⊔ . . . ⊔ Sr , (3.38)

where each Si is an integer projection of another polyhedron S ′
i ⊆ Rm+ℓ, defined as:

Si =
{
b ∈ Rm : ∃t ∈ Zℓ (b, t) ∈ S ′

i

}
.

Here ℓ = ℓ(n) is a constant that depends only on n. All polyhedra S ′
i can be found in

polynomial time. The partition (3.38) satisfies all other properties as claimed in KPT.

Note that the integer projection of a polyhedron defined in the theorem is not necessarily

a polyhedron as the following example shows.

Example 3.27. Consider the polytope S ′ =
{
(y2, y1) ∈ R2 : 0 ≤ y2 ≤ 1, 0 ≤ y1−3y2 ≤ 2

}
.

The integer projection of S ′ on the coordinate y1 is S = [0, 2] ∪ [3, 4] (see Figure 3.9).

We emphasize that theorems 1.8, 2.1 and 3.18 remain valid, because their proofs still

hold true if KPT is substituted by Theorem 3.26 (see [ES08]). Overall, the only discrepancy

between KPT and Theorem 3.26 is about the structures of the pieces in the partition. This

does not at all affect all known results about decision with two quantifiers or less. Also

63

y1

y2

O

1

2 3 4

S ′

Figure 3.9: A polytope S ′ (shaded) and is integer projection (bold).

worth mentioning is Theorem 2.5 by Barvinok and Woods for counting projections of integer

points in a polytope. This algorithm uses a weaker (valid) partitioning procedure also due

to Kannan [Kan92, Lem. 3.1]. However, as we pointed out in §3.1.D, for three quantifiers or

more, the structural discrepancy between KPT and Theorem 3.26 is of crucial importance.

3.10. Final remarks and open problems

3.10.A. Niels Bohr, the inventor of quantum theory, is quoted saying:

“It is the hallmark of any deep truth that its negation is also a deep truth.”

This roughly reflects our attitude towards KPT. A pioneer result at the time, it only slightly

overstated the truth compared to the Eisenbrand–Shmonin theorem (Theorem 3.26). In fact,

for many applications, including Kannan’s Theorem 2.1 and Barvinok–Woods algorithm

[BW03], Kannan’s weaker result in [Kan92] is sufficient.

Let us emphasize that, of course, it would be natural to have a partition into convex

(co)polyhedra rather than general semilinear sets, since convex polyhedra are much easier

to work with. The fact that it took nearly 30 years until KPT was disproved, shows both

the delicacy and the technical difficulty of the issue.

3.10.B. The gap in the proof of KPT (Theorem 3.1 in [Kan90]) could be traced to the

following lines:

“. . . for each (b, x) ∈ Si (with b ∈ P , x ∈ Zn), there is a unique y ∈ Zl so that (b, x, y)

belongs to S ′
i. In fact, each component of y is of the form F ′⌊Fx⌋, where F ′, F are

64

affine transformations. This is easily proved by induction on n, noting that (4.5) of

[8], the z is in fact forced to be ⌊α + 1− β⌋.”

Here [8] refers to the conference proceedings version of the paper [Kan92]. In equation (4.5)

of [Kan92], variable z is in fact forced to be ⌊α + 1 − β⌋. However, the quantity α in (4.5)

actually depends on b, which makes ⌊α + 1− β⌋ a function of b instead of a constant. This

implies that y in the above quoted paragraph could also depend on b. This technical error

was perhaps due to the unclear notation α, which does not reflect its dependence on b, or

due to the complicated cross referencing between [Kan90] and [Kan92].

3.10.C. There is a delicate difference between the treatment of (PIP) in §3.9.A versus

that in the Integer Programming literature (see e.g. [CL98, V+07, VW08]). In the latter,

the parameter space W is also partitioned into convex polyhedra Pi, and over each Pi the

number of solutions x is given by a quasi-polynomial pi(b) in b. However, since there are

no test sets, this does not allow us to solve (PIP) for all b. In other words, even though a

quasi-polynomial pi(b) is obtained, which evaluates to |Kb∩Zn|, there is no easy way to test

whether pi(b) 6= 0 for all b within Pi. In general, we prove in Chapter 7 that there are strong

obstacles in using (short) generating functions to decide feasibility of Presburger sentences.

3.10.D. Now that we have Theorem 3.1, one can ask if the dimension 5 is tight. Observe

that for three variables and three quantifiers, there is essentially a unique form of short

Presburger sentence:

∃z ∀y ∃x : Φ(x, y, z).

Despite Theorem 3.6, KPT actually holds for a PIP problem ax ≤ f(y, z) with a single

variable x, i.e., when n = 1. Therefore, this sentence can be decided by the approach

in [NP17e]. The only remaining special case of (Short-PA3) is

∃z ∀y ∃x : Φ(x, y, z), where x ∈ Z2, y, z ∈ Z.

It would be interesting to see if this case is also NP-complete.

65

Similarly, for sentences (GIP), one can ask if dimension 6 in Theorem 3.2-ii) can be

lowered. We believe it can be, at least for the counting part.

3.10.E. Motivated in part by the Hilbert’s tenth problem, Manders and Adleman [MA78]

(see also [GJ79, §A7.2]) proved the following classical result: feasibility over N of

ax2 + by = c

is NP-complete, given a, b, c ∈ Z. One can view our Theorem 3.2 as a related result, where

a single quadratic equation and two linear inequalities x, y ≥ 0 (over Z) are replaced with a

system of 24 linear inequalities.

3.10.F. Minimizing polynomial functions over integer points in a convex polytope is an

interesting problem of Integer Programming. Already for polynomials of degree 4 in two

variables this is known to be NP-hard [DHKW06], but for lower degree polynomials some

such problems can be solved in polynomial time [DHWZ16]. The survey paper [Köp12]

contains extensive background on various related problems. Curiously, the following natural

problem remains open:

Question 3.28. Let n be fixed. Given a polytope P ⊂ Rn and a rational quadratic function

f : Rn → R, can the optimization problem minx∈P∩Zn f(x) be solved in polynomial time?

The case n = 2 was resolved positively in [DW14]. Note that the case n = 3 with f

homogeneous is known to have an FPTAS [HWZ17].

3.10.G. Our Theorem 3.5 strongly contrasts with the positive results in [DHK09], which

require that all fi’s are linear. There, it is proved that optimizing over the Pareto minima

can be done in polynomial time when g is linear. Furthermore, if g is non-linear then an

FPTAS also exists. Here, we say that having even one fi quadratic is enough to make the

problem hard.

Note that in Theorem 3.5 we use three polynomial functions, two or which are linear. It

would be interesting to see if just two polynomial functions suffice for the hardness.

66

CHAPTER 4

VC-dimensions of Presburger formulas

We study VC-dimensions of short Presburger formulas, defined similarly to short Presburger

sentences in Chapter 3. We give both lower and upper bounds, which are tight up to a

polynomial factor in the binary length of the formula. This chapter is a version of the

preprint [NP17a].

4.1. Introduction

The notion of VC-dimension was introduced by Vapnik and Chervonenkis in [VC71]. Al-

though originally motivated by applications in probability and statistics, it was quickly

adapted to computer science, learning theory, combinatorics, logic and other areas. We

refer to [Vap98] for the extensive review of the subject, and to [Che16] for an accessible

introduction to combinatorial and logical aspects.

4.1.A. Definitions of VC-dimension and VC-density. Let X be a set and S ⊆ 2X be

a family of subsets of X . For a subset A ⊆ X , let S ∩ A := {S ∩ A : S ∈ S} be the family

of subsets of A cut out by S. We say A ⊆ X is shattered by S if S ∩ A = 2A, i.e., for every

subset B ⊆ A, there is S ∈ S with B = S∩A. The largest size |A| among all subsets A ⊆ X

shattered by S is called the VC-dimension of S, denoted by VC(S). If no such largest size

|A| exists, we write VC(S) =∞.

The shatter function πS is defined as follows:

πS(n) = max
{
|S ∩A| : A ⊆ X, |A| = n

}
,

67

The VC-density of S, denoted by vc(S) is defined as

inf
{
r ∈ R+ : limsupn→∞

πS(n)

nr
<∞

}
.

The classical theorem of Sauer and Shelah [Sa72, Sh72] states that

vc(S) ≤ VC(S).

In other words, πS(n) = O(nd) in case S has finite VC-dimension d. In general, VC-

density can be much smaller than VC-dimension, and also behaves a lot better under various

operations on S.

4.1.B. NIP theories and bounds on VC-dimension/density. It is of interest to dis-

tinguish the first-order theories in which VC-dimension and VC-density behave nicely. Let

L be a first-order language and M be an L-structure. Consider a partitioned L-formula

F (x; y) whose free variables are separated into two groups x ∈ Mm (objects) and y ∈ Mn

(parameters). For each parameter tuple y ∈Mn, let

Sy =
{
x ∈ Mm : M |= F (x; y)

}
.

Here M |= F (x; y) means F (x,y) evaluates to true in M . Associated to F is the family

SF =
{
Sy : y ∈ Mn

}
. We say that F is NIP, short for “F does not have the independence

property”, if SF has finite VC-dimension. The structure M is called NIP if every partitioned

L-formula F is NIP in M .

One prominent example of an NIP structure is our familiar Presburger Arithmetic. The

main result of this chapter are the lower and upper bounds on the VC-dimensions of PA

formulas. These are contrasted with the following notable bounds on the VC-density:

Theorem 4.1 ([A+16]). Given a PA formula F (x; y) with y ∈ Zn, vc(SF) ≤ n holds.

In other words, VC-density in the setting of PA can be bounded solely by the dimension

of the parameter variables y. It cannot grow very large when we vary the number of object

variables x, quantified variables or the description of F . This follows from a more general

68

result in [A+16], which says that every quasi-o-minimal structure satisfies a similar bound

on the VC-density. We refer to [A+16] for the precise statement of this result and for the

powerful techniques used to bound the VC-density.

Karpinski and Macintyre raised a natural question whether similar bounds would hold

for the VC-dimension. In [KM97], they gave upper bounds for the VC-dimension in some

o-minimal structures (PA is not one), which are polynomial in the parameter dimension n.

Later, they extended their arguments in [KM00] to obtain upper bounds on the VC-density,

this time linear in n. Also in [KM00], the authors claimed to have an effective bound on the

VC-dimensions of PA formulas. However, we cannot locate such an explicit bound in any

papers. To our knowledge, no effective upper bounds on the VC-dimensions of general PA

formulas exist in the literature.

4.1.C. Statements of results. For fixed k and t, denote by Short-PA(k, t) the family of

PA formulas with at most k variables (both free + quantified) and t linear inequalities.

When k and t are clear, a formula F ∈ Short-PA(k, t) is simply called a short PA formula

(see §3.1.A). Denote by ℓ(F) the length of F , which is essentially the total binary length of a

fixed number of integer coefficients and constants in its linear inequalities. Our main result

is a lower bound on the VC-dimensions of short Presburger formulas:

Theorem 4.2. For every d, there is a formula F (x; y) = ∃u ∀v Ψ(x, y,u,v) in the class

Short-PA(10, 18) with

ℓ(F) = O(d2) and VC(F) ≥ d.

Here x, y are singletons and u ∈ Z6,v ∈ Z2. The expression Ψ is quantifier-free, and can be

computed in probabilistic polynomial time in d.

So in contrast with VC-density, the VC-dimension of a PA formula F crucially depends

on the actual length ℓ(F). For the formulas in the theorem, we have:

VC(F) = Ω
(
ℓ(F)1/2

)
, and vc(F) ≤ 1,

where the last inequality follows from Theorem 4.1. Note that if one is allowed an unrestricted

number of inequalities in F , a similar lower bound to Theorem 4.2 can be easily established

69

by an elementary combinatorial argument. However, since the formula F is short, we can

only work with a few integer coefficients and constants.

The proof of Theorem 4.2 directly uses theAP-Cover construction from Chapter 3. The

probabilistic feature of Theorem 4.2 comes from picking a prime number roughly as large as

4d (explained in proof). By the Prime Number Theorem, this can be done in probabilistic

polynomial time in d. We can actually modify this to a deterministic algorithm with run-time

polynomial in d, at the cost of increasing ℓ(F):

Theorem 4.3. For every d, there is a formula F (x; y) = ∃u ∀v Ψ(x, y,u,v) in the class

Short-PA(10, 18) with

ℓ(F) = O(d3) and VC(F) ≥ d.

Here x, y are singletons and u ∈ Z6,v ∈ Z2. The expression Ψ is quantifier-free, and can be

computed in deterministic polynomial time in d.

We conclude with the following polynomial upper bound for the VC-dimensions of all

(not necessarily short) Presburger formulas in a fixed number of variables:

Theorem 4.4. For a PA formula F (x; y) with at most k variables (both free and quantified),

we have:

VC(F) = O
(
ℓ(F)c

)
,

where c and the O(·) constant depend only on k.

This upper bound implies that Theorem 4.2 is tight up to a polynomial factor. The

proof of Theorem 4.4 uses an algorithm from Chapter 6 for decomposing a semilinear set,

i.e., one defined by a PA formula, into polynomially many simpler pieces. Each such piece is

a polyhedron intersecting a periodic set, whose VC-dimension can be bounded by elementary

arguments.

We note that the bounded number of quantified variables is vital in Theorem 4.4.

In §4.3.C, we construct PA formulas F (x; y) with free singleton variables x, y and many

quantified variables, for which VC(F) grows doubly exponentially compared to ℓ(F).

70

4.2. Proofs

We start with Theorem 4.3, and then show how it can be modified to give Theorem 4.2.

Proof of Theorem 4.3. Let A = {1, 2, . . . , d} and S = 2A. Since S contains all of the

subsets of A, we have VC(S) = d. We order the sets in S lexicographically. In other words,

for S, S ′ ∈ S, we have S < S ′ if
∑

i∈S 2
i <

∑
i∈S′ 2i. Thus, the sets in S can be indexed as

S0 < S1 < · · · < S2d−1, where S0 = ∅, S1 = {1}, . . . , S2d−1 = A. Next, define:

T :=
⊔

0≤j<2d

{i+ dj : i ∈ Sj}. (4.1)

We show in Lemma 4.5 below that the set T is definable by a short PA formula GT (t) with

only 8 quantified variables and 18 inequalities. Using this, it is clear that the parametrized

formula

FT (x; y) := GT (x+ dy)

describes the family S (with y as the parameter), and thus has VC-dimension d. We remark

that GT has only 1 quantifier alternation (see below). �

Lemma 4.5. The set T is definable by a short PA formula GT (t) = ∃u ∀v Ψ(t,u,v) with

u ∈ Z6,v ∈ Z2 and Ψ a combination of 18 inequalities with length ℓ(Ψ) = O(d3).

Proof. Our strategy is to represent the set T as a union of arithmetic progressions (APs). In

Chapter 3, we gave a method to define any union of APs by a short PA formula of polynomial

length. For each 1 ≤ i ≤ d, let Ji = {j : 0 ≤ j < 2d, i ∈ Sj}. From (4.1), we have:

T =

d⊔

i=1

(i+ dJi). (4.2)

From the lexicographic ordering of the sets Sj, we can easily describe each set Ji as:

Ji = {m+ 2i−1 + 2in : 0 ≤ m < 2i−1, 0 ≤ n < 2d−i}. (4.3)

So each set Ji is not simply an AP, but the Minkowski sum of two APs. However, we can

easily modify each Ji into an AP by defining:

J ′
i = {2d(m+ 2i−1) + 2in : 0 ≤ m < 2i−1, 0 ≤ n < 2d−i}. (4.4)

71

It is clear that J ′
i is an AP that starts at 2d+i−1 and ends at 2d+i − 2i with step size 2i. Let

APi := i+ dJ ′
i and

T ′ =
d⊔

i=1

APi. (4.5)

This is a union of d arithmetic progressions. Using the construction from Sections 3.3, we

can define T ′ by a short PA formula:

t′ ∈ T ′ ⇐⇒ ∃w ∀v Φ
(
t′,w,v

)
,

where t′ ∈ Z, w,v ∈ Z2 and Φ is a Boolean combination of at most 10 inequalities. Recall

that this construction works by finding a single continued fraction α = [a0 ; b0, a1, b1, . . . , a2d−1]

whose successive convergents encode the starting and ending points of our AP1, . . . ,APd. For

each i, the first and last terms in APi are respectively βi = i+d2d+i−1 and γi = i+d(2d+i−2i),
which have binary lengths O(d). By Observation 3.7, each term ak and bk in α is at most the

product of these βi and γi. Since
∏d

i=1 βiγi has binary length O(d2), and so does each term

ak and bk. Therefore, the final continued fraction α is a rational number p/q with binary

length O(d3). This implies that ℓ(Φ) = O(d3) as well.

To get a formula for T , note that from (4.2), (4.3), (4.4) and (4.5), we have:

t ∈ T ⇐⇒ ∃ t′, i, r, s : t′ ∈ T ′, 1 ≤ i ≤ d, 0 ≤ s < 2d,

t′ = i+ d(2dr + s), t = i+ d(r + s).1

Here r and s respectively stand for m + 2i−1 and 2in in (4.3). Using ∃w ∀v Φ(t′,w,v) to

express t′ ∈ T ′, we get a formula GT (t) defining T with 8 quantified variables t′, i, r, s ∈ Z,

w,v ∈ Z2 and 18 inequalities. Note that t′, i, r, s and w are existential variables, so GT has

the form ∃u ∀v Ψ(t,u,v) with u ∈ Z6,v ∈ Z2 and Ψ quantifier-free.

Proof of Theorem 4.2. Note that the above construction of FT and GT is determin-

istic with run-time polynomial in d. For Theorem 4.2, only the existence of a short PA

formula with high VC-dimension is needed. In this case, our lower bound can be im-

proved to VC(F) ≥ c
√
ℓ(F), for some c > 0, as follows. Recall that βi = i + d2d+i−1

1Here each equality is a pair of inequalities.

72

and γi = i + d(2d+i − 2i) are the smallest and largest terms of APi in (4.5). Pick the

smallest prime p larger than max(γ1, . . . , γd) ≈ d4d. This prime p can substitute for the

number M in Section 3.3, which was (deterministically) chosen as 1 +
∏d

i=1 βiγi, so that

it is larger and coprime to all of them. The rest of the construction follows verbatim as

before. Note that log p = O(d) by Chebyshev’s theorem. So the final continued fraction

α = [a0 ; b0, a1, b1, . . . , a2d−1] has length O(d2), because now each term ak, bk has length at

most log p. This completes the proof. �

Proof of Theorem 4.4. Let F (x;y) be any PA formula with free variables x ∈ Zm,

y ∈ Zn and n′ other quantified variables, where m,n, n′ are fixed. In Theorem 6.17, we give

the following polynomial decomposition for the semilinear set defined by F :

ΣF :=
{
(x,y) ∈ Zm+n : F (x;y) = true

}
=

r⊔

j=1

Rj ∩ Tj . (4.6)

Here each Rj is a polyhedron in Rm+n, and each Tj ⊆ Zm+n is a periodic set, i.e., a union

of several cosets of some lattice Tj ⊆ Zm+n. In other words, the set defined by F is a union

of r pieces, each of which is a polyhedron intersecting a periodic set. Our decomposition is

algorithmic, in the sense that the pieces Rj and lattices Tj can be found in time O
(
ℓ(F)c

)
,

with c and O(·) depending only on m,n, n′. The algorithm describes each piece Rj by a

system of inequalities and each lattice Tj by a basis. Denote by ℓ(Rj) and ℓ(Tj) the total

binary lengths of these systems and basis vectors, respectively. These also satisfy:

r∑

j=1

ℓ(Rj) + ℓ(Tj) = O
(
ℓ(F)c

)
. (4.7)

Each Rj can be written as the intersection Hj1 ∩ · · · ∩ Hjfj , where each Hjk is a half-

space in Rm+n, and fj is the number of facets of Rj . Note that fj ≤ ℓ(Rj) = O
(
ℓ(F)c

)
. We

rewrite (4.6) as:

ΣF =

r⊔

j=1

Hj1 ∩ · · · ∩Hjfj ∩ Tj . (4.8)

Therefore, the set ΣF is a Boolean combination of f1 + · · · + fr half-spaces and r periodic

sets. In total, there are

f1 + · · ·+ fr + r = O
(
ℓ(F)c

)
(4.9)

73

of those basic sets.

For a set Γ ⊆ Rm+n and y ∈ Zn, denote by Γy the subset {x ∈ Zm : (x,y) ∈ Γ}
and by SΓ the family {Γy : y ∈ Zn}. For a half-space H ⊂ Rm+n, it is easy to see that

VC(SH) = 1. For each periodic set Tj with period lattice Tj, the family STj
has cardinality

at most det(Tj ∩ Zn) ≤ 2O(ℓ(Tj)). Thus, we have

VC(STj
) ≤ log |STj

| = O
(
ℓ(Tj)

)
. (4.10)

Let Γ1, . . . ,Γt ⊆ Zm+n be any t sets with VC(SΓi
) = di. By an application of the Sauer-

Shelah lemma ([Sa72, Sh72]), if Σ is any Boolean combination of Γ1, . . . ,Γt, then we can

bound VC(SΣ) as:

VC(SΣ) = O
(
(d1 + · · ·+ dt) log(d1 + · · ·+ dt)

)
.

Applying this to (4.8), we get VC(SΣF
) = O(ℓ log ℓ), where

ℓ =
r∑

j=1

(
VC(STj

) +

fj∑

j′=1

VC(SHjj′
)

)
≤

r∑

j=1

VC(STj
) + fj .

By (4.7), (4.9) and (4.10), we have ℓ = O
(
ℓ(F)c

)
. We conclude that VC(F) = O

(
ℓ(F)2c

)
.

�

4.3. Final remarks and open problems

4.3.A. The proof of Theorem 4.2 is almost completely deterministic except for finding a

small prime p larger than a given integer N . This problem is considered to be computation-

ally very difficult in the deterministic case, where only exponential algorithms are known

(see [LO87, TCH12]).

4.3.B. Our constructed short formula F is of the form ∃∀. It is interesting to see if similar

polynomial lower bounds are obtainable with existential short PA formulas. For such a

formula F (x;y) = ∃zΦ(x,y, z), the quantifier-free expression Φ(x,y, z) captures the set of

74

integer points Γ lying in a union of some polyhedra Pi’s. Note that the total number of

polyhedra and their facets should be bounded, since we are working with short formulas.

Therefore, F simply capture the pairs (x,y) in the projection of Γ along the z direction.

Denote this set by proj(Γ). By Theorem 1.8, proj(Γ) has a short generating function, and

can even be counted efficiently in polynomial time. In our construction, the set that yields

high VC-dimension is a union arithmetic progressions, which cannot be counted efficiently

unless P = NP (Theorem 3.13). This difference indicates that proj(Γ) has a much simpler

combinatorial structure, and may not possess high enough VC-dimension.

4.3.C. One can ask about the VC-dimension of a general PA formula with no restriction

on the number of variables, quantifier alternations or atoms. By the famous Theorem 1.2 of

Fischer and Rabin, PA has decision complexity at least doubly exponential in the general

setting. For every ℓ > 0, they constructed a formula Prodℓ(a, b, c) of length O(ℓ) so that for

every triple

0 ≤ a, b, c < 22
2ℓ

,

we have Prodℓ(a, b, c) = true if and only if ab = c. Using this “partial multiplication”

relation, one can easily construct a formula Fℓ(x; y) of length O(ℓ) and VC-dimension at

least 22
ℓ
. This can be done by constructing a set similar to T in (4.1) with d replaced by 22

ℓ

using Prodℓ. We leave the details to the reader.

Regarding upper bound, by Theorem 1.3 of Oppen, any general PA formula F of length

ℓ is equivalent to a quantifier-free formula G of length 22
2cℓ

, where c > 0 is a universal

constant. This implies that VC(G), and thus VC(F), is at most triply exponential in ℓ(F).

We conjecture that a doubly exponential upper bound on VC(F) holds in the general setting.

It is unlikely that such an upper bound could be established by straightforward quantifier

elimination, which generally results in triply exponential blow up (see [Wei97, Thm 3.1]).

75

CHAPTER 5

Parametric Presburger Arithmetic

We consider k-parametric Presburger Arithmetic, which allows multiplication by k parame-

ters t = (t1, . . . , tk). A formula in this language defines a parametric set St ⊆ Zd as t varies

over Zk, and we examine the cardinality |St| as a function of t. For k = 1, i.e., a single param-

eter t, it is known that |St| always has a nice eventual quasi-polynomial form, which implies

that |St| is a polynomial-time computable function of t. Our main result (Theorem 5.10)

says that such a nice expression is likely impossible with k ≥ 2: Assuming P 6= NP, we

construct a 2-parametric set St1,t2 such that |St1,t2 | is not polynomial-time computable on

input (t1, t2). In contrast, for any k-parametric set St ⊆ Zd defined in a similar language

without the ordering relation, we show in Theorem 5.24 that |St| is always polynomial-time

computable in t, and in fact can be represented using gcd and similar functions. This chapter

is a version of the preprint [BGNW18].

5.1. Introduction

5.1.A. Formulations and examples. We study the difficulty of counting points in para-

metric sets of the form

St = {x ∈ Zd : Q1y1 Q2y2 . . . Qmym Ψt(x,y)}. (5.1)

Here x = (x1, . . . , xd) are the free variables, y = (y1, . . . , ym) are the quantified variables and

t = (t1, . . . , tk) are the parameters, all ranging over Z; Qi ∈ {∀, ∃} are the quantifiers; and

Ψt(x,y) is a Boolean combination, in disjunctive normal form, of linear inequalities in x,y

76

with coefficients in Z[t]. That is,

Ψt(x,y) =
[
A1(t) · (x,y)T ≤ b1(t)

]
∨ . . . ∨

[
Aℓ(t) · (x,y)T ≤ bℓ(t)

]
, (5.2)

where each Ai(t) is a ri × (d +m) matrix, each bi(t) is a length ri column vector, all with

entries in Z[t], and the concatenation (x,y) of the x and y variables is treated as a row

vector. If there are k parameters t1, . . . , tk, we say that the family of sets {St : t ∈ Zk} is a
k-parametric Presburger family. A general expression of the type

Φt(x) = Q1y1 Q2y2 . . . Qmym Ψt(x,y) (5.3)

with Ψt(x,y) as in (5.1) is called a formula in k-parametric Presburger Arithmetic (often

abbreviated as k-parametric PA). Classic Presburger Arithmetic corresponds to k = 0. Below

is the main question addressed in this.

Question 5.1. Given a k-parametric Presburger family defined by St = {x ∈ Zd : Φt(x)},
under what conditions on Φt is the counting function |St| a “nice” function of t?

Of course, “nice” is a vague qualifier, so let’s start with some nice examples. We will assume

that the parameters ti are nonnegative in the following examples, which simplifies the number

of cases:

Example 5.2. If we define St1,t2 = {x ∈ Z : x ≥ 0 ∧ t1x ≤ t2}, then

|St1,t2 | = ⌊t2/t1⌋ + 1.

Example 5.3. The set St1,t2 =
{
(x1, x2) ∈ Z2 : x1, x2 ≥ 0 ∧ t1x1 + t2x2 = t1t2

}
consists

of the integer points on a line segment with endpoints (t2, 0) and (0, t1), and so

|St1,t2 | = gcd(t1, t2) + 1.

Example 5.4. If St1,t2 = {(x1, x2) ∈ Z2 : x1, x2 ≥ 0 ∧ x1 + x2 = t1 ∧ 2x1 + x2 ≤ t2},
then the equality forces x2 = t1 − x1 (which is only valid if x1 ≤ t1) and substituting into

77

the inequality shows that

|St1,t2 | = |{x1 ∈ Z : 0 ≤ x1 ≤ min(t1, t2 − t1)}|

=

t1 + 1 if 2t1 ≤ t2,

t2 − t1 + 1 if t1 ≤ t2 < 2t1,

0 if t2 < t1.

Example 5.5. If S =
{
x ∈ N : ∀y, z ∈ N x 6= (t2 + 2)y + (3t)z

}
, then we have:

|S| =
{ ∞ if 3 ∤ t or 2 | t
(t2 + 1)(3t− 1)/2 otherwise

.

We are seeing many types of “nice” functions in these examples, and the question is now

how to generalize. In fact, Example 5.5 generalizes to any family in 1-parametric PA by the

result in [BWG17], as described below.

5.1.B. 1-parametric Presburger Arithmetic. In the case of a single parameter t, our

perspective means studying families {St : t ∈ Z} of subsets of Zd of the form

St = {x ∈ Zd : Q1y1 Q2y2 . . . Qmym Ψt(x,y)}, (5.4)

where Ψt(x,y) is exactly as in (5.2) except that the entries of the Ai’s and the bi’s come

from the univariate polynomial ring Z[t]. The study of such 1-parametric PA families was

proposed by Woods in [Woo14]. These families were further analyzed in [BWG17], in which

the main result is that they exhibit quasi-polynomial behavior:

Definition 5.6. A function g : Z→ Z is a quasi-polynomial if there exists a period m and

polynomials f0, . . . , fm−1 ∈ Q[t] such that

g(t) = fi(t), for t ≡ i mod m.

We allow special cases when some fi(t) = ∞. A function g : Z → Z is an eventual quasi-

polynomial, abbreviated EQP, if it agrees with a quasi-polynomial for sufficiently large |t|.

Example 5.5 is a family where |St| is an EQP.

78

Theorem 5.7 ([BWG17]). Let {St : t ∈ Z} be a 1-parametric PA family. There exists an

EQP g : Z → N such that g(t) = |St|. The set of t such that St has finite cardinality is

eventually periodic.

Remark 5.8. In [BWG17], the parameter t takes values in N instead of Z. However, one

can see that the same proofs and conclusions also hold when t ranges over Z.

Note that any fixed EQP is a polynomial-time computable function, so we easily get:

Corollary 5.9 ([BWG17]). Let St be any fixed 1-parametric PA family. Then there are

polynomial time algorithms to: i) check if |St| =∞, ii) compute |St| if |St| <∞.

There are several other forms of quasi-polynomial behavior that 1-parametric PA families

exhibit (such as possessing EQP Skolem functions; see [BWG17]). Here we focus on the

cardinality, |St|. We hope the reader agrees that EQPs are relatively “nice” functions.

5.1.C. Statements of results. Abusing the notation, we also denote a parametric PA

family {St : t ∈ Zk} just by St when the dimension k is clear.

Theorem 5.10. Assume P 6= NP. Then there exists a 2-parametric ∃∀ PA family St1,t2

for which |St1,t2 | is always finite but cannot be expressed as a polynomial time computable

function in t1 and t2.

Here, by an ∃∀ PA family, we mean St1,t2 is of the form (5.1) where the quantifiers are

∃ . . .∃∀ . . .∀. We also remark that technically, only the weaker assumption #P 6= FP is

needed. Two consequences of this result are:

Corollary 5.11. There is a 2-parametric PA family St1,t2 such that the set of (t1, t2) ∈ Z2

for which |St1,t2 | is positive cannot be described using polynomial-time relations in t1, t2.

Corollary 5.12. Any extension of 2-parametric PA with only polynomial-time computable

predicates cannot have full quantifier elimination.

79

5.1.D. Structure of the chapter. We will present what amount to two different proofs

of Theorem 5.10 in the following two sections. In each case, we leverage the main result of

Chapter 3, which gives a “hard” 3-parametric ∃∀ PA formula, and then show how this can be

reduced to a 2-parametric ∃∀ PA formula. For the first reduction presented in Section 5.2, we

use a trick due to Glivický and Pudlák [GP17] to encode multiplication with three different

parameters by multiplications with only two parameters. This reduction has the advantage of

not increasing the number of free variables in the formula. Next, in Section 5.3 we present a

more general counting-reduction technique which is less ad hoc and reduces any k-parametric

PA formula to a 2-parametric PA formula with the same number of quantifier alternations;

the idea here is a little more transparent than in Section 5.2, but it has the disadvantage

of introducing many more new free and quantified variables to the formula, so we consider

that it is interesting to present both reductions.

In Section 5.4 we consider a variant of Question 5.1 in which there is no order relation

in our language; that is, we can only express linear equations but not linear inequalities.

Quantifier-free formulas in this language define finite unions of lattice translates. This set-

ting was studied in detail from a model-theoretic perspective by van den Dries and Holly

[vdDH92], and we apply their results to show that, in contrast to Theorem 5.10, the count-

ing functions in the unordered setting can be computed in polynomial time, regardless of

the number of parameters and of quantifier alternations. Indeed, these functions can be

expressed using gcd and related functions.

Finally, in Section 5.5 we discuss the optimality of Theorem 5.10 by explaining what

happens when we weaken or modify some of the hypotheses.

5.2. Proof of Theorem 5.10 and its corollaries

Recall from Chapter 3 that a short PA sentence is a sentence in classical PA whose numbers

of alternations, variables and linear inequalities are all bounded. We proved in Theorem 3.1

that ∃∀∃ short PA sentences of at most 5 variables and 10 inequalities are NP-complete to

80

decide by reducing the NP-complete problem AP-Cover to them.

Recall the statement of AP-Cover from §3.3.A. It asks whether there is some integer

in a given interval J = [µ, ν], which is not covered by several given arithmetic progressions

APi = AP(gi, hi, ei). The problem is clearly invariant under a translation of both J and

the APi’s, so we can assume µ = 1. Also without affecting the complexity, we can assume

that g1 = ν, h1 = 1 and e1 = 0, i.e., AP1 = {ν}. The main argument in §3.3.A constructs

an integer M and a rational number p/q such that the convergents1 of p/q encode
⋃n

i=1APi

modulo M . A nice feature of p/q is that ⌊p/q⌋ = g1 (Remark 3.8), which combined with

our choice of g1 = ν implies that [µ, ν] = [1, p/q]. The formula in (3.9) can be rewritten

equivalently as:

Φp,q,M(z) := 1 ≤ z ≤ p/q ∧ ∃y y2 ≡ z (modM) ∧ ⌊p/q⌋ ≤ y2 < p ∧ qy2 < py1 ∧

∧ ∀x ¬

py1 − qy2 ≥ px1 − qx2 ≥ 0

y2 > x2 > 0

 , (5.5)

which satisfies the property:

{z ∈ Z : Φp,q,M(z) = true} = [µ, ν] ∩
(n⋃

i=1

APi

)
. (5.6)

So the original AP-Cover problem is not satisfied if and only if |Sp,q,M | = |[µ, ν]| = ⌊p/q⌋.
We emphasize that p, q,M can be computed in polynomial time from µ, ν, gi, hi, ei.

From here, a hardness result for 3-parameter PA immediately follows.

Proposition 5.13. Assume P 6= NP. There exists a 3-parametric ∃∀ PA family Sp,q,M

such that |Sp,q,M | is always finite but cannot be expressed as a polynomial-time computable

function in p, q, and M .

Proof. We can clear the integer denominators in (5.5) by cross multiplications. The condition

y2 ≡ z (modM)

can be expressed with existential quantifiers. Thus we obtain a 3-parametric ∃∀ PA formula

Φp,q,M , which defines a family Sp,q,M . The set of satisfying values z is finite by 1 ≤ z ≤ p/q.

1See Section 3.2 for basic concepts of continued fractions

81

Now assume |Sp,q,M | is a polynomial-time computable function f(p, q,M). Then given any

AP-Cover instance, we can compute p, q,M in polynomial time from the APi’s, and then

evaluate f(p, q,M) in polynomial time to check whether f(p, q,M) = ⌊p/q⌋. This contradicts
P 6= NP.

It remains to reduce the three parameters p, q,M to two. To do this, we will adapt a trick

of Glivický and Pudlák [GP17]. Their context is slightly different from ours in that they

use nonstandard integers rather than parameters that range over Z, and that their results

involve computability rather than complexity. However their key idea and its proof apply in

our context. The two parameters that will be involved are

t1 = pM, t2 = pqM2 +M. (5.7)

For convenience, we will assume for the rest of this section that all the parameters in our

formulas (t1, t2, p, q, and M) only take nonnegative integer values. Although in other parts

of this chapter the parameters are assumed to range over Z, this restriction does not affect

the hardness results we are proving here.

Proposition 5.14 ([GP17] §3.2). For 0 ≤ j < p, the three multiplications j 7→ pMj, j 7→
qMj, j 7→Mj can be defined by using just two multiplications j 7→ t1j and j 7→ t2j.

Proof. By definition, we have t1j = pMj for all j, so it remains to define the multiplications

by qMj and Mj for 0 ≤ j < p. By the division algorithm, for every j ≥ 0 we can uniquely

write

(pqM2 +M)j = (pM)r + s, where 0 ≤ r and 0 ≤ s < pM.

If 0 ≤ j < p, then s = Mj (mod pM) = Mj and we can then solve to obtain r = qMj.

Thus for 0 ≤ j < p, the formula

Divt1,t2(j, r, s) := (t2j = t1r + s) ∧ 0 ≤ r ∧ 0 ≤ s < t1

is satisfied by the triple (j, qMj,Mj). Furthermore, for such j this formula cannot be satisfied

by any other values of the second and third arguments.

82

We now prove some additional capabilities of the parameters t1 = pM , t2 = pqM2 +M

that will be required in order to transform the entire formula (5.5) into a formula in t1 and

t2 alone.

Lemma 5.15. The congruence relation modulo M is definable using just the multiplications

by t1 and t2.

Proof. Consider the formula

Cong-Mt1,t2(b, c, w1, w2) := (b− c− t1w1 − t2w2 = 0).

Since gcd(t1, t2) =M , the condition b ≡ c (modM) is expressed as:

∃w1, w2 Cong-Mt1,t2(b, c, w1, w2).

Lemma 5.16. The constant p is definable using just the multiplications by t1 and t2.

Proof. Since t2/t1 = qM + 1/p, p is the smallest positive integer v such that t1|t2v. Since

t2p/t1 = t2/M = pqM + 1, we can express that a pair of variables u, v satisfy (u, v) =

(pqM + 1, p) by the formula

Equal-pt1,t2(v, u) := u > 0 ∧ t2v = t1u ∧ (∀v′, u′ 0 < v′ < v → t2v
′ 6= t1u

′).

Lemma 5.17. Suppose p, q, and M are positive integers such that p/q /∈ Z. If t1 = pM and

t2 = pqM2 +M then ⌊t21/t2⌋ = ⌊p/q⌋.

Proof. First, we have

t21/t2 = p2M2/(pqM2 +M) = p/(q + 1/pM) < p/q,

so ⌊t21/t2⌋ ≤ ⌊p/q⌋. On the other hand, since p/q /∈ Z we have:

p ≥ ⌊p/q⌋q + 1 > ⌊p/q⌋q + ⌊p/q⌋/pM = ⌊p/q⌋(q + 1/pM).

This means t21/t2 = p/(q + 1/pM) > ⌊p/q⌋, and thus ⌊t21/t2⌋ = ⌊p/q⌋.
83

Proof. Theorem 5.10 In order to apply Proposition 5.14, we must first multiply by M every

inequality in (5.5) that involves multiplication by p or q. This works because multiplications

by p, q, and M appear separately in (5.5). After doing so and clearing some denominators,

we obtain the equivalent formula:

Φ′
p,q,M(z) = ∃y1, y2 : 0 < z ≤ p/q (5.8)

∧ y2 ≡ z (mod pM) (5.9)

∧ p/q < y2 + 1 ≤ p (5.10)

∧ qMy2 < pMy1 (5.11)

∧ ∀x1, x2 ¬

pMy1 − qMy2 ≥ pMx1 − qMx2 ≥ 0

y2 > x2 > 0

 . (5.12)

Here (5.10) is equivalent to ⌊p/q⌋ ≤ y2 < p in (5.5) because y2 ∈ Z. Now consider the

formula:

Ψt1,t2(z) = ∃y1, y2, w1, w2, u, v, r, s : 0 < t2z ≤ t21 (5.13)

∧ Cong-Mt1,t2(y2, z, w1, w2) (5.14)

∧ Equal-pt1,t2(u, v) ∧ t21 < t2(y2 + 1) ≤ t2v (5.15)

∧ Divt1,t2(y2, r, s) ∧ r < t1y1 (5.16)

∧ ∀x1, x2
(
0 < x2 < y2 ∧ Divt1,t2(x2, r

′, s′)
)
→ ¬

(
0 ≤ t1x1 − r′ ≤ t1y1 − r

)
. (5.17)

It only remains to show that Φ′
p,q,M(z) and Ψt1,t2(z) are equivalent. We have:

• (5.8) ↔ (5.13) This follows by rounding down both equations to the nearest integer

and applying Lemma 5.17.

• (5.9)↔ (5.14) This is Lemma 5.15.

• (5.10)↔ (5.15) We can again apply Lemma 5.17 to replace p/q in (5.10) by t21/t2, since

every other quantity in 5.10 is an integer. By Lemma 5.16, the formula Equal-pt1,t2(v, u)

fixes the value of v to be p, so we can now replace p by v to obtain 5.15.

• (5.10) → [(5.11) ↔ (5.16)] By (5.10), we have 0 ≤ y2 < p, so by Proposition 5.14, the

condition Divt1,t2(y2, r, s) fixes the value of r to be qMy2. Here we modify (5.11) by replacing

84

qMy2 by r and pMy1 by t1y1 to obtain (5.16).

• (5.11)→ [(5.12)↔ (5.17)] Using (5.16) which we have already shown to be equivalent

to (5.11), we can replace qMy2 by r. Using the definition of t1, we can also replace pMy1 by

ty1 and pMx1 by t1x1. So (5.12) is equivalent to

∀x1, x2 ¬

ty1 − r ≥ t1x1 − qMx2 ≥ 0

y2 > x2 > 0

 ,

or in another form

∀x1, x2 0 < x2 < y2 → ¬[ty1 − r ≥ t1x1 − qMx2 ≥ 0].

Since the hypothesis x2 < y2 along with y2 < p from (5.10) implies x2 < p, we can (by

Proposition 5.14) insert the condition Divt1,t2(x2, r
′, s′) into the hypothesis to fix r′ equal to

qMx2. Accordingly substituting in r′ for qMx2, we obtain (5.17).

So Φp,q,M ,Φ
′
p,q,M and Ψt1,t2 are all equivalent. Note that since all variables are integers,

all strict inequalities can be sharpened, e.g., x2 < y2 is just x2 + 1 ≤ y2. This finishes the

proof of Theorem 5.10.

Proof of corollaries 5.11 and 5.12. The formula Ψ′
t1,t2

(z) := (0 < z ≤ t21/t2) ∧ ¬Ψt1,t2(z) is

satisfied only by those z ∈ [µ, ν]\
⋃n

i=1APi (see (5.6)). This formula defines a 2-parametric

family St1,t2 . So the condition |St1,t2 | > 0, which is equivalent to AP-Cover, cannot be

expressed using polynomial-time relations in t1 and t2. Similarly, any expansion of parametric

PA with polynomial-time predicates cannot have full quantifier elimination. For otherwise

we can apply it to the sentence ∃z Ψ′
t1,t2

(z) and get an equivalent Boolean combination of

polynomial-time relations in t1, t2.

5.3. Counting-universality of 2-parametric PA

Consider a k-parametric PA formula:

Φu(x) = Q1y1 Q2y2 . . . Qmym Θu(x,y). (5.18)

85

Here u ∈ Zk are the k scalar parameters, x ∈ Zd are the free variables, y = (y1, . . . , ym) ∈ Zm

are the quantified variables, Q1, . . . Qm ∈ {∀, ∃} are the quantifiers, and Θu(x,y) is a Boolean

combination of linear inequalities in x,y with coefficients and constants from Z[u]. This

formula defines a parametric family Su.

Definition 5.18. We say that a k1-parametric family Su counting-reduces to an k2-parametric

family S ′
t if there exists f = (f1, . . . , fk2) : Zk1 → Zk2 with fi ∈ Z[u] such that for every

u ∈ Zk1 we have:

|Su| =∞ ⇒ |S ′
f(u)| =∞ and |Su| <∞⇒ |Su| = |S ′

f(u)|.

Theorem 5.19. Every k-parametric PA family Su counting-reduces to another 2-parametric

PA family Fs,t with the same number of alternations. In other words, 2-parametric PA

families are counting-universal.

First we prove the following lemma.

Lemma 5.20. For every formula Φu of the form (5.18), there exist µ, µ′, ν1, . . . , νm ∈ Z[u]

such that for every value u ∈ Zk we have:

i) |Su| =∞ if and only if:

∃x
[
µ(u) ≤ ‖x‖∞ ≤ µ′(u) ∧

(
Q1

(
|y1| ≤ ν1(u)

)
. . . Qm

(
|ym| ≤ νm(u)

)
Θu(x,y)

)]

ii) If |Su| <∞ then for every x ∈ Zd:

Su(x) = true ⇐⇒ ‖x‖∞ ≤ µ(u) ∧
(
Q1

(
|y1| ≤ ν1(u)

)
. . . Qm

(
|ym| ≤ νm(u)

)
Θu(x,y)

)
.

Here ‖ · ‖∞ is the ℓ∞–norm. So µ(u) ≤ ‖x‖∞ stands for
∨d

i=1

(
xi ≤ −µ(u) ∨ µ(u) ≤ xi

)

and ‖x‖∞ ≤ µ′(u) stands for
∧d

i=1

(
− µ′(u) ≤ xi ≤ µ′(u)

)
. Each restricted quantifier

Qi

(
|yi| ≤ νi(u)

)
means exits/for all yi in the interval [−νi(u), νi(u)].2

2Here we understand that µ, µ′, νi have positive values for all u ∈ Zk.

86

Proof. Consider a usual, non-parametrized PA formula:

Φ(x) = Q1y1 Q2y2 . . . Qmym Θ(x,y), x ∈ Zn,

which defines some set S ⊆ Zn. Recall Cooper’s quantifier elimination procedure for Pres-

burger Arithmetic (see [Opp78]). Applying it to Φ(x), we obtain an equivalent quantifier-

free formula Φ′(x), which may contain some extra divisibility predicates. By Theorem 2

of [Opp78], after eliminating all m quantifiers from Φ, we obtain the following bounds:

c′ ≤ c4
m

, s′ ≤ s(4c)
4m

, a′ ≤ a4
m

s(4c)
4m

,

where:

• c is the number of distinct integers that appeared as coefficients or divisors in Φ,

• s is the largest absolute value of all integers that appeared in Φ (coefficients + divisors

+ constants),

• a is the total number of atomic formulas in Φ (inequalities + divisibilities),

and c′, s′, a′ are the corresponding quantities for Φ′. Now assume c,m and n are fixed. Then

we have:

c′ ≤ const, s′ ≤ sconst, a′ ≤ aconstsconst,

where const = const(c,m) is fixed. So in this case Φ′ has at most a fixed number of coefficients

and divisors.

Denote by D the common multiple of all divisors in Φ′. We have D ≤ sconst. Let

L = 〈De1, . . . , Den〉 be the lattice of Zn consisting of x ∈ Zn whose coordinates are all

divisible by D. Fix some particular coset C of L and restrict x to C. Then in Φ′(x), all

divisor predicates have fixed values (either true or false) as x varies over C. So over C, the

formula Φ′(x) is just a Boolean combination of linear inequalities in x, which represents a

disjoint union of some rational polyhedra in Rn. Each such polyhedron P can be described

by a system of fixed length, because there are only at most c′ different coefficients for the x

87

variables. The integers in the system are also bounded by sconst. We consider P ∩C. By the

fundamental theorem of Integer Programming3 (see [Sch86, Th. 16.4 and Th. 7.1]), we have:

P ∩C = conv(v1, . . . , vp) + Z+〈w1, . . . , wq〉

for some vi, wj ∈ Zn with ‖vi‖∞, ‖wj‖∞ < sconst
′

. Here const′ = const′(c,m, n) is fixed. From

this, it is easy to see that there is const′′ = const′′(c,m, n) such that for every polyhedron P

in the disjoint union, we have:

|P ∩C| =∞ ⇐⇒ there is x ∈ P ∩C with sconst
′′

< ‖x‖∞ < s2const
′′

,

|P ∩C| <∞ =⇒ P ∩C ⊆ [−sconst′′ , sconst′′]n.

Since this holds for every coset C of L, we conclude that there is const0 = const0(c,m, n)

such that:

|S| =∞ ⇐⇒ ∃ x with sconst0 < ‖x‖∞ < s2const0 and Φ′(x) = true (5.19)

|S| <∞ =⇒ ∀ x
(
Φ′(x) = true → ‖x‖∞ ≤ sconst0

)
. (5.20)

This gives us a bound for x. Now for every x with ‖x‖∞ ≤ sconst0 , by the same argument,

it is enough to decide the (substituted) sentence Φ(x) over those y1 with |y1| ≤ sconst1 . In

other words, for every such value for x, we may replace Q1y1 by Q1

(
|y1| ≤ sconst1

)
in Φ(x)

to obtain a new formula Φ1(x), which is equivalent to the original formula Φ(x). Working

inwards, we can likewise bound |y2| by sconst2 , |y3| by sconst3 , etc. Therefore, in case |S| <∞,

the whole formula Φ is equivalent to one with bounded quantifiers on all yi. Also by (5.19),

we have |S| =∞ if and only if some sconst0 < ‖x‖∞ < s2const0 satisfies it. For x in this range,

we can again bound y1, y2, etc., accordingly by some other powers of s. Note that we can

bound each yi by a common larger power of s for both cases (5.19) and (5.20).

In a k-parametric PA formula Φu(x), we consider m,n and c to be fixed. Since all

coefficients and constants of Φu are in Z[u], we can bound s by some polynomial in u. Thus,

every sconst is also bounded by some polynomial in u. This proves Lemma 5.20.

3We are rescaling L to Z before applying this bound.

88

Remark 5.21. In the above application of Cooper’s elimination, if only m,n are fixed but

not c, then we no longer have the bound s′ ≤ sconst. Instead, we would have c′, log s′ ≤
poly(c, log s). A bound of this type is important for showing that the decision problem

for classical PA with a bounded number of variables falls within the Polynomial Hierarchy

(see e.g. [Grä87, Grä88]). However, it would not be strong enough for our argument, which

crucially needs log s′ = O(log s).

From Lemma 5.20, it is easy to see that Su counting-reduces to the family S̃u defined by

the following formula Φ̃u(x, x̃):

Φ̃u(x, x̃) :=
[
x̃ = 0 ∧

(
Q1

(
|y1| ≤ ν1(u)

)
. . . Qm

(
|ym| ≤ νm(u)

)
Θu(x,y) ∧ ‖x‖∞ ≤ µ(u)

)]

∨
[
x̃ ≥ 0 ∧

(
Q1

(
|y1| ≤ ν1(u)

)
. . . Qm

(
|ym| ≤ νm(u)

)
Θu(x,y) ∧ µ(u) ≤ ‖x‖∞ ≤ µ′(u)

)]
.

Here the bounds on ‖x‖∞ can be placed after the quantifiers Qi without affecting the mean-

ing. The dummy variable x̃ is used to make sure that |S̃u| =∞ in the second case.

Proof of Theorem 5.19. We show that S̃u counting-reduces to a 2-parameter family Fs,t,

defined by a new formula Ψs,t. First, we list all the different scalar terms that appear in Φ̃u,

either as coefficients or constants (including all µ, µ′, νi) as δ0(u), . . . , δr(u). Now suppose

we need to multiply some z ∈ N by δ0(u), . . . , δr(u) and also know that

− t/2 < δ0(u)z, . . . , δr(u)z < t/2 (5.21)

for some t ∈ Z. The following base-t concatenation, which is similar to (5.7), can be used.

Essentially, we encode the “multi”-product (δ0(u)z, . . . , δr(u)z) as a single product:

δ0(u)z + t δ1(u)z + . . . + tr δr(u)z = (δ0(u) + t δ1(u) + · · ·+ trδr(u)) z.

In other words, if s = δ0(u) + t δ1(u) + · · ·+ trδr(u) and the formula

Divs,t(z, z0, . . . , zr) := (sz = z0 + t z1 + · · ·+ trzr) ∧ (t/2 < z0, . . . , zr < −t/2)

is true, then we must have z0 = δ0(u)z, . . . , zr = δr(u)z. Indeed, by subtracting we have

z0 − δ0(u)z ≡ 0 (mod t), so z0 = δ0(u)z because −t/2 < z0, δ0(u)z < t/2. The same

argument applies to other zi.

89

Observe that in Φ̃u, all variables x and y are bounded by polynomials in u. Hence, we

can pick η(u) ∈ Z[u] so that for every value u ∈ Zk, the condition (5.21) is always satisfied

when t = η(u) and z is either the constant 1 or any of the possible values of the x,y variables.

Our reduction map f : Zk → Z2 can now be defined by letting

t = η(u); s = δ0(u) + t δ1(u) + · · ·+ trδr(u).

Now we can define Ψs,t(x, x̃) from Φ̃u(x, x̃) using (m+ d+ 1)(r + 1) extra variables:

w = (wij)1≤i≤d, 0≤j≤r, w
′ = (w′

ij)1≤i≤m, 0≤j≤r and v = (vj)0≤j≤r.

Assuming the last quantifier Qm in Φ̃u is ∃, we insert

∃w,w′,v Divs,t(1, v0, . . . , vr) ∧
d∧

i=1

Divs,t(xi, wi0, . . . , wir)

∧
m∧

i=1

Divs,t(yi, w
′
i0, . . . , w

′
ir)

(⋆)

right before Θu(x,y), i.e., replace Θu(x,y) by (⋆) ∧Θu(x,y). Then in Φ̃u we replace every

term δj(u) xi by wij, every term δj(u)yi by w
′
ij and every term δj(u) by vj. Now Φ̃u becomes

the desired Ψs,t. In case Qm = ∀, we insert:

∀w,w′,v ¬Divs,t(1, v0, . . . , vr) ∨
d∨

i=1

¬Divs,t(xi, wi0, . . . , wir)

∨
m∨

i=1

¬Divs,t(yi, w
′
i0, . . . , w

′
ir)

(⋆⋆)

right before Θu(x,y), i.e., replace Θu(x,y) by (⋆⋆) ∨ Θu(x,y). Again, replace every term

δj(u) xi by wij, every term δj(u)yi by w
′
ij and every term δj(u) by vj . This gives Ψs,t.

Note that Ψs,t still has the disjunctive form
[
. . .
]
∨
[
. . .
]
with each disjunct containing

m alternations Q1 . . . Qm. This formula is equivalent to a formula in prenex normal form

with m quantifier alternations, so we are done.

Remark 5.22. In case Su is defined by a quantifier-free formula, i.e., m = 0, we only need

to insert (⋆), without the ∃ quantifiers, before Θu(x,y). This is because Divs,t(z, z0, . . . , zr)

90

uniquely determines z0, . . . , zr in z. So in this case Su also counting-reduces to a quantifier-

free Fs,t, although the latter has many more free variables. Thus, the study of integer point

counting functions on k-parametric polyhedra reduces to the case of 2-parametric polyhedra

in higher dimensions.

5.4. Counting in parametric unordered PA

In this section, we consider the reduct of multi-parametric Presburger Arithmetic to the

language without ordering, so that basic quantifier-free formulas are equivalent to Boolean

combinations of equations of the form f1(t)x1+ . . .+ fn(t) = g(t), where t = (t1, . . . , tk) is a

tuple of parameters and f1, . . . , fm, g ∈ Z[t]. As always, we are allowed to quantify over the

variables xi but not over the parameters t. Note that if there is no parameter t, this would

correspond to studying the first-order logic of the additive group (Z; +). More precisely:

Definition 5.23. A k-parametric unordered PA family is a collection

{St : t = (t1, . . . , tk) ∈ Zk}

of subsets of Zd which can be defined by an equation of the form

St = {x ∈ Zd : Q1y1 Q2y2 . . . Qmym Θt(x,y)},

where the Qi ∈ {∀, ∃} are quantifiers for variables yi ranging over Z and Θt(x,y) is a Boolean

combination of linear equations with coefficients in Z[t].

For example,

x1 = 0 ∧ ∃y1, y2 (y1t1 + y2t2 = 1)

defines a 2-parametric unordered PA family {St ⊆ Z : t ∈ Z2} such that St = {0} if

gcd(t1, t2) = 1 and St = ∅ otherwise.

Theorem 5.24. Suppose that St ⊆ Zd is a k-parametric unordered PA family. Then:

(1) There is a polynomial-time algorithm to decide whether St is nonempty.

91

(2) There is a polynomial-time algorithm on input t which decides whether or not St is

finite or infinite.

(3) There is a polynomial-time computable function g : Zk → N such that whenever St is

finite, g(t) = |St|.

In fact, the proof of Theorem 5.24 will show that the decision algorithms for (1) and (2)

rely upon only a few basic, concrete number-theoretic operations on t, such as gcd and a

couple of related functions.

To prove Theorem 5.24, we need to recall some notation from [vdDH92]. To eliminate

quantifiers, they work in a two-sorted language L2 in which variables xi and parameters

in t are assigned to objects of distinct domains, called the group sort and the ring sort,

respectively. For our purposes, the group sort and the ring sort are two disjoint

copies of Z. The variables xi and yi will always range over values in the group sort, and the

parameters ti will always range over values in the scalar sort. In other words, we can think of

the parameters t1, . . . , tk as “typed variables” ranging over a domain of possible parameter

values in the scalar sort (a copy of Z), and x1, x2, . . . as variables of a distinct type ranging

over values in the group sort (which is a different copy of Z), and the parameters ti act upon

the group sort by scalar multiplication.

The language L2 consists of the following nonlogical symbols (in addition to equality):

• Within the scalar sort, constant symbols for 0 and 1, a unary operation − for negation,

ring operations + and ·, and four additional binary operations g, α, β, and γ (whose

interpretation is explained below);

• Within the group sort, a constant symbol for 0, a unary operation − for negation, and

a symbol + for addition;

• A binary operation · such that s · x is a value in the group sort whenever s is a value

in the scalar sort and x is a value in the group sort, denoting multiplication by s in

the usual sense; and

92

• A binary relation symbol | to be interpreted such that whenever s is in the scalar sort

and x is in the group sort,

s|x ⇐⇒ ∃y (s · y = x) .

The binary operations g, α, β, and γ between values in the scalar sort are interpreted so that

g(r, s) = gcd(r, s) and the following axioms hold for all values r, s in the scalar sort:

r = γ(r, s) · g(r, s),

1 = α(r, s) · γ(r, s) + β(r, s) · γ(s, r).

For distinction, we will denote the variable tuple by x, and the parameter tuple by t. We

will use the following fact, proved in [vdDH92]:

Theorem 5.25. Any formula ϕt(x) in k-parametric unordered Presburger Arithmetic is

logically equivalent to a quantifier-free L2-formula ψ(x, t): that is, with the natural interpre-

tations of the symbols from L2 given above, then we have

ϕt(x)↔ ψ(x, t) for every x ∈ Zd and t ∈ Zk,

where ψ(x, t) is a Boolean combination of equations s1(x, t) = s2(x, t) and divisibility rela-

tions s3(t)|s1(x, t), where s1(x, t), s2(x, t), and s3(t) are L2-terms, i.e. expressions built up

using only the operations in L2 and the displayed parameters and variables.

Proof of Theorem 5.24: Say ϕt(x) defines a k-parametric unordered PA family in Zd.

Note that (1) follows almost immediately from quantifier elimination: by Theorem 5.25,

the formula ∃xϕt(x) is equivalent to a quantifier-free L2-formula ψ(t) in only the scalar

sort of t, which is a Boolean combination of equations and divisibility relations | in the k

parameters using ring operations and the functions g, α, β, and γ, but all of these operations

are polynomial-time computable.

For (2), let us assume (by Theorem 5.25) that ϕt(x) is a quantifier-free L2-formula, and

that ϕt(x) is in disjunctive normal form:

ϕt(x) =

m∨

i=1

θi(x, t),

93

where each θi(x, t) is a conjunction of literals.4

Claim 5.26. For any fixed value of t ∈ Zk and 1 ≤ i ≤ m, if Si := {x ∈ Zd : θi(x, t) = true},
then |Si| is either 0, 1, or ∞.

Proof of claim. By rearranging terms, we may assume that all atomic L2-formulas in θi(x, t)

have the form

(A) r | s(x, t) or (B) s(x, t) = 0.

where s(x, t) = r0 +
∑d

i=1 ri · xi and r0, r1, . . . , rn, and r are terms in the scalar sort. The

terms r and ri may involve the parameters t and the operations g, α, β, γ, but the details of

this are irrelevant since t has a fixed value.

Write

θi(x, t) = θA(x, t) ∧ θB(x, t)

where θA(x, t) is the conjunctions of all literals of type (A) and θB(x, t) is the conjunction

of all literals of type (B).

First we consider the atomic formulas of type (A). Each one defines some coset of a finite-

index subgroup of Zd, and so the negation of such a formula defines a finite union of cosets

of finite-index subgroups. Since the intersection of finitely many finite-index subgroups is of

finite index, there is a single subgroup H ≤ Zd such that [Zd : H] <∞ and θA(x, t) defines

a Boolean combination of cosets of H .

Now consider the atomic formulas of type (B). We decompose θB(x, t) further as

θB(x, t) = θ+B(x, t) ∧ θ−B(x, t)

where θ+B(x, t) is the conjunction of all positive (non-negated) atomic formulas of type (B)

and θ−B(x, t) is the conjunction of all negative literals of type (B). Note that the set of

solutions to θ+B(x, t) is of the form (~v + S) ∩ Zd where S is a vector subspace of Rd and

~v ∈ Zd.

4A literal is an atomic L2-formula, i.e. one containing no logical operations ∧ , ∨ or ¬, or the negation
of an atomic formula.

94

Finally, suppose that there are at least two distinct elements x1, x2 ∈ Zd in Si, and to

finish the proof of the Claim we will show that Si has infinitely many elements. In particular,

both x1 and x2 are solutions to θA(x, t), so there are cosets C1, C2 of H such that x1 ∈ C1,

x2 ∈ C2, and any element x ∈ C1 ∪ C2 satisfies θA(x, t). Let L ⊆ Rd be the line passing

through x1 and x2, and observe that since x1 and x2 satisfy θ+B(x, t) (which defines the

intersection of an affine subspace with Zd), any other element of L ∩ Zd will also satisfy

θ+B(x, t).

For any j ∈ Z, let x(j) := x1 + j · (x2 − x1) and

X := {j ∈ Z : x(j) satisfies θi(x, t)}.

Since H is a finite-index subgroup of Zd, adding successive copies of the element (x2 − x1)
to x1 causes the x(j) to cycle through cosets of H , and the set of j for which θA(x(j), t)

is true is infinite (and periodic). As observed in the previous paragraph, every x(j) lies on

the line L, and hence θ+B(x(j), t) is always true, and we need only worry about the truth

of θ−B(x(j), t). Now θ−B(x(j), t) is true whenever x(j) avoids every one of a finite number

of affine subspaces A1, . . . , Aℓ of Rd, but given that L is a line which contains some points

satisfying the formula θ−B(x, t), each Ai can only intersect L in at most one point. Therefore

X is infinite, as we wanted.

The Claim shows that we can define the set of values of the parameter t for which any

given θi(x, t) has infinitely many solutions (for x) by the formula

∃x1, x2
(
x1 6= x2 ∧ θi(x1, t) ∧ θi(x2, t)

)
,

and as before this is equivalent to a quantifier-free L2-formula ψi(t) whose truth can be

decided by a polynomial-time algorithm in t. Finally, our original formula
∨m

i=1 θi(x, t) has

infinitely many solutions just in case any one of the formulas θi(x, t) does, establishing (2).

By the argument above, for any k-parametric unordered PA family St, there is a finite

partition Zk = X1 ∪ . . . ∪Xℓ which is definable by quantifier-free L2-formulas in t and such

that |St| is constant as t varies over any of the sets Xi. Since deciding whether t ∈ Xi is

polynomial-time decidable, this establishes (3). �

95

5.5. Summary of complexity results

To conclude, we summarize the complexity results which suggest that Theorem 5.10 may be

the best we could hope for: weakening or changing various assumptions results in problems

which can be resolved in polynomial time, or else (with unrestricted multiplication) have no

algorithmic solutions at all.

Recall that Theorem 5.10 states that, if P 6= NP, then there is a ∃∀ parametric PA family

St with two parameters t = (t1, t2) such that |St| cannot be computed in polynomial time

given t as input.

However:

• If we allow only a single parameter t ∈ N (or t ∈ Z), then for any PA family St, we can

compute |St| in polynomial, by Corollary 5.9.

• If St is a k-parametric PA family defined by an ∃ or ∀ formula, then Theorem 1.8

implies that there is a polynomial time algorithm to evaluate |St|, for any finite number k of

parameters. If St is defined by a quantifier-free formula, then a polynomial-time algorithm

was earlier given in Theorem 2.4.

• If St is any k-parametric PA family defined by a formula with no inequalities (only

equations), as in Section 5.4, then |St| can be evaluated in polynomial time, regardless of

the number of quantifier alternations in the defining formula or the number of parameters.

• In k-parametric PA formulas, we allow a restricted version of multiplication: the non-

quantified parameters in t can be multiplied by terms containing the variables x and y,

but no multiplication between the x and y variables is allowed. Permitting unrestricted

multiplication amongst the x and y variables in a parametric PA formula would obviously

be bad, since the full first-order theory of (N,+, ·) is undecidable (by theorems of Church

and Turing – see, e.g., [Chu36]). In fact, the Matiyasevich-Robinson-Davis-Putnam theorem

[Dav73] states that there is a single multivariate polynomial p(t, x1, . . . , xd) such that if

96

Φt(x1, . . . , xd) is the formula expressing

p(t, x1, . . . , xd) = 0,

then the set of t ∈ N for which Φt(x1, . . . , xd) defines a nonempty subset of Zd is not

computable (much less in polynomial time). Note that here we have only a single parameter

t, no quantifiers in the formula Φt, and mere equations rather than inequalities.

• On the other hand, if we allow no multiplication, even by parameters (cf. Example 5.4),

then |St| will be computable in polynomial time; in fact, it has a nice form as a piecewise-

defined quasi-polynomial [Woo15].

97

Part II

Short generating functions

98

CHAPTER 6

A strengthening of the Barvinok–Woods theorem

We extend the Barvinok–Woods algorithm for enumeration of integer points in projections of

polytopes to unbounded polyhedra. For this, we obtain a new structural result on projections

of semilinear subsets of the integer lattice. We extend the results to general formulas in

Presburger Arithmetic. We also give an application to the k-feasibility problem. This chapter

is a version of the published paper [NP17f].

6.1. Introduction

6.1.A. Statements of results. Barvinok famously showed in [Bar93] that the number of

integer points in a possibly unbounded polyhedron of a fixed dimension n can be computed

in polynomial time:

Theorem 6.1 (Th. 2.4 restated). Let n ∈ N be fixed. Given a (possibly unbounded) rational

polyhedron P = {x ∈ Rn : Ax ≤ b}, there is a polynomial time algorithm to write:

∑

x∈P∩Zn

tx =

M∑

i=1

ci t
ai

(1− tbi1) . . . (1− tbin)
, (>)

where ci ∈ Q, ai, bij ∈ Zn, bij 6= 0 for all i and j. Furthermore, the total binary length of all

ci, ai and bij in the RHS is polynomial in the input length of A and b.

The RHS expression in (>) called a short generating function (short GF), which fully

enumerates the integer points in P . By taking limit t→ 1 in (>), one can count the number

of integer points P if it’s finite, or conclude that |P ∩ Zn| = ∞. Hence, it also implies

99

Lenstra’s result on Integer Programming (Theorem 1.4).1

Barvinok’s algorithm was extended to count projections of integer points in polytopes

by Barvinok and Woods [BW03] (Theorem 6.14). This theorem in turns implies Kannan’s

result on Parametric Integer Programming (2.1). Even though this result has found many

other applications, there is a major technical drawback: on the enumeration level, it only

applies to polytopes, i.e., bounded polyhedra. The main result of this chapter is an extension

of the Barvinok–Woods algorithm to the unbounded case:

Theorem 6.2. Let m,n ∈ N be fixed dimensions. Given a (possibly unbounded) polyhedron

Q = {x ∈ Rm : Ax ≤ b} and an integer linear transformation T : Rm → Rn which satisfies

T (Q) ⊆ Rn
+, let g(t) be the generating function for T (Q ∩ Zm), i.e.,

g(t) =
∑

y ∈ T (Q∩Zm)

ty .

Then there is a polynomial time algorithm to compute g(t) in the form of a short GF (>).

Here by an integer linear transformation we mean that the linear map T is presented by

a matrix T ∈ Zn×m. To illustrate our theorem, consider:

Example 6.3. Let Q = {(x, y, z) ∈ R3
+ : x = 2y + 5z} and T be the projection from Z3

onto the first coordinate Z1. Then T (Q ∩ Z3) has a short GF:

1

(1− t2)(1− t5) −
t10

(1− t2)(1− t5) = 1 + t2 + t4 + t5 + t7 + . . .

To prove Theorem 6.2, our main tool is a structural result describing projections of semi-

linear sets, i.e., sets definable by formulas in Presburger Arithmetic. Geometrically, such

a set is always a disjoint union of intersections of polyhedra and lattice cosets (see Defini-

tion 6.6). We first prove that the image of a semilinear set under a linear transformation

is also semilinear, and give bound on the complexity of the projection (Theorem 6.8). This

is done purely by geometric arguments, without resorting to classical results on quantifier

elimination for Presburger Arithmetic. Combined with the Barvinok–Woods theorem, this

1Though the run-time cost of Lenstra’s algorithm is lower.

100

gives the extension to unbounded polyhedra (Theorem 6.2). Our geometric argument can in

fact be generalized to arbitrary formulas in Presburger Arithmetic (Theorem 6.17 and 6.19).

We illustrate the power of our generalizations in the case of the k-feasibility problem (Sec-

tion 6.5).

6.1.B. Connections and applications. After Lenstra’s algorithm (Theorem 1.4), many

other methods for fast Integer Programming in fixed dimensions have been found (see [Eis03,

FT87]). Kannan’s algorithm (Theorem 2.1) for Parametric Integer Programming was also

strengthened in [ES08]. Barvinok’s algorithm (Theorem 6.1) has been simplified and im-

proved in [DK97, KV08]. Both this and Barvinok–Woods’ algorithm (Theorem 6.14) have

been implemented and used for practical computation [DHTY04, Köp07, V+07].

Let us emphasize two main reasons to study unbounded polyhedra:

(1) Working with short GFs of integer points in unbounded polyhedra allows to compute to

various integral sums and valuations over convex polyhedra. We refer to [B+12, Bar08, BV07]

for many examples and further references.

(2) In the context of Parametric Integer Programming (2.1), the higher dimensional poly-

hedron Q = {(x1,x2) ∈ Rn1+n2 : Ax1 + Bx2 ≤ v} could be unbounded. One would like to

count the projections of points in Q ∩ Zn1+n2 which fall within a lower dimensional poly-

tope P ⊂ Rn1. To apply the Barvinok–Woods algorithm, one needs to intersect Q with

a big enough box B ⊂ Rn1+n2 , and then project it. When P varies, the Barvinok–Woods

algorithm needs to be called multiple times for different boxes, depending on the size of P .

Our approach allows one to call the Barvinok–Woods algorithm only once to project the

entire set Q ∩ Zn1+n2 (unbounded), and then call a more economical algorithm to compute

its intersection with P . See Section 6.5 for an explicit example.

In conclusion, let us mention that semilinear sets are well studied subjects in both com-

puter science and logic. The fact that the category of semilinear sets are closed under taking

projections is not new. Ginsburg and Spanier [GS64] showed that semilinear sets are exactly

those sets definable in Presburger Arithmetic, which are closed under Boolean operations

101

and projections. Woods [Woo15] also characterized semilinear sets as exactly those sets with

rational generating functions, which also implies closedness under Boolean operations and

projections. In this chapter, we prove the structural result on projections of semilinear sets

by a direct argument, without using tools from logic (e.g. quantifier elimination). By doing

so, we obtain effective polynomial bounds for the number of polyhedral pieces and the facet

complexity of each piece in the projection.

6.2. Structure of a projection

6.2.A. Semilinear sets and their projections. In this section, we assume all dimensions

m,n, etc., are fixed. We emphasize that all lattices mentioned are of full rank. All inputs

are in binary.

Definition 6.4. Given a set X ⊆ Rn+1, the projection of X onto Rn, denoted by proj(X),

is defined as

proj(X) := {(x2, . . . , xn) : (x1, x2, . . . , xn+1) ∈ X} ⊆ Rn.

For any y ∈ proj(X), denote by proj−1(y) ⊆ X the preimage of y in X .

Definition 6.5. Let L ⊆ Zn be a full-rank lattice. A pattern L with period L is a union of

finitely many (integer) cosets of L. For any other lattice L′, if L can be expressed as a finite

union of cosets of L′, then we also call L′ a period of L.

Given a rational polyhedron Q and a pattern L, the set Q ∩ L is called a patterned

polyhedron. When the pattern L is not emphasized, we simply call Q a patterned polyhedron

with period L.

Definition 6.6. A semilinear set X is a set of the form

X =

k⊔

i=1

Qi ∩Li , (6.1)

where each Qi ∩ Li is a patterned polyhedron with period Li, and the polyhedra Qi are

102

pairwise disjoint. The period length ψ(X) of X is defined as

ψ(X) =

k∑

i=1

ℓ(Qi) + ℓ(Li).

Note that ψ(X) does not depend on the number of cosets in each Li. Define

η(X) :=

k∑

i=1

η(Qi),

where each η(Qi) is the number of facets of the polyhedron Qi.

Remark 6.7. In Theoretical CS literature, semilinear sets are often explicitly presented

as a finite union of linear sets. Each linear set is a translated semigroup generated by a

finite set of vectors in Zn. This explicit representation by generators makes operations like

projections easy to compute, while structural properties harder to establish (see e.g. [CH16]

and the references therein). The equivalence of the two representations is proved in [GS64].

Our main structural result is the following theorem.

Theorem 6.8. Let m ∈ N be fixed. Let X ⊆ Zm be a semilinear set of the form (6.1). Let

T : Rm → Rn be a linear map satisfying T (Zm) ⊆ Zn. Then T (X) is also a semilinear set,

and there exists a decomposition

T (X) =
r⊔

j=1

Rj ∩ Tj , (6.2)

where each Rj ∩ Tj is a patterned polyhedron in Rn with period Tj ⊆ Zn. The polyhedra Rj

and lattices Tj can be found in time poly(ψ(X)). Moreover,

r = η(X)O(m!) and η(Rj) = η(X)O(m!), 1 ≤ j ≤ r.

Remark 6.9. The above result describes all pieces Rj and periods Tj in polynomial time.

However, it does not explicitly describe the patterns Tj . The latter is actually an NP-hard

problem (see Remark 6.20).

Remark 6.10. In the special case when X is just one polyhedron Q ∩ Zm, the first piece

R1 ∩ T1 in (6.2) has a simple structure. Theorem 1.7 in [AOW14] identifies and describes

103

R1 ∩ T1 as R1 = T (Q)γ and T1 = T (Zm). Here T (Q)γ is the γ-inscribed polyhedron inside

T (Q) (see [AOW14, Def. 1.6]). However, their result does not characterize the remaining

pieces Rj∩Tj in the projection T (X). Thus, Theorem 6.8 can also be seen as a generalization

of the result in [AOW14] to semilinear sets, with a complete description of the projection.

For the proof of Theorem 6.8, we need a technical lemma:

Lemma 6.11. Let n ∈ N be fixed. Consider a patterned polyhedron (Q ∩ L) ⊆ Rn+1 with

period L. There exists a decomposition

proj(Q ∩ L) =

r⊔

j=0

Rj ∩ Tj , (6.3)

where each Rj ∩ Tj is a patterned polyhedron in Rn with period Tj ⊆ Zn. The polyhedra Rj

and lattices Tj can be found in time poly(ℓ(Q) + ℓ(L)). Moreover,

r = O
(
η(Q)2

)
and η(Rj) = O

(
η(Q)2

)
, for all 0 ≤ j ≤ r.

We postpone the proof of the lemma until §6.2.C.

6.2.B. Proof of Theorem 6.8. We begin with the following definitions and notation.

Definition 6.12. A copolyhedron P ⊆ Rd is a polyhedron with possibly some open facets.

If P is a rational copolyhedron, we denote by ⌊P ⌋ the (closed) polyhedron obtained from

P by sharpening each open facet (ax < b) of P to (ax ≤ b − 1), after scaling a and b to

integers. Clearly, we have P ∩ Zd = ⌊P ⌋ ∩ Zd.

WLOG, we can assume n ≤ m and the linear map T : Rm → Rn has rank(T) = n. Also

denote by T the integer matrix in Zn×m representing this linear map. We can rearrange the

coordinates in Rm so that the first n columns in T form a non-singular minor.

Recall that X has the form (6.1) with each Qi ∩Li having period Li. For each i, define

the polyhedron

Q̂i :=
{
(x,y) : y = Tx and x ∈ Qi

}
⊆ Rm+n. (6.4)

104

Consider the pattern Ui = Li ⊕ Zn ⊆ Zm+n with period Ui = Li ⊕ Zn. Then Q̂i ∩ Ui is a

patterned polyhedron in Rm+n with period Ui. Define the projection S : Rm+n → Rn with

S(x,y) = y. By (6.4), we have:

T (Qi ∩ Li) = S(Q̂i ∩Ui) and T (X) = S

(
r⊔

i=1

Q̂i ∩Ui

)
=

r⋃

i=1

S(Q̂i ∩Ui),

We can represent S = Sm ◦ · · · ◦ S1, where each Si : Rm+n−i+1 → Rm+n−i is a projection

along the xi coordinate.

Let H ⊂ Rm+n be the subspace defined by y = Tx. First, we show that the initial n

projections F = Sn ◦ · · · ◦ S1 are injective on H . Indeed, assume (x,y), (x′,y′) are two

points in H with F (x,y) = F (x′,y′). Since F projects along the first n coordinates of x and

x′, we have (xn+1, . . . , xm, y) = (x′n+1, . . . , x
′
m, y

′). Thus, y = y′, which implies Tx = Tx′.

Let B ∈ Zn×n be the first n columns in T , which forms a non-singular minor as assumed

earlier. Since Tx = Tx′ and (xn+1, . . . , xm) = (x′n+1, . . . , x
′
m), we have B (x1, . . . , xn) =

B (x′1, . . . , x
′
n). This implies (x1, . . . , xn) = (x′1, . . . , x

′
n). We conclude that (x,y) = (x′,y′),

and F is injective on H .

By (6.4), we have Q̂i ∩Ui ⊆ H for every i. Because F : Rm+n → Rm is injective on H ,

the semilinear structure of
(⊔

Q̂i ∩Ui

)
is preserved by F . For convenience, we also denote

by
(⊔

Q̂i ∩Ui

)
the semilinear set after applying F , which is now a subset of Zm. Now we

repeatedly apply Lemma 6.11 to the remaining projections Sm ◦ · · · ◦ Sn+1. Starting with

the projection Sn+1 applied on each piece Qi ∩Ui ⊆ Zm, we get:

Sn+1(Q̂i ∩Ui) =

ri⊔

j=0

Rij ∩ Tij for 1 ≤ i ≤ k, 1 ≤ j ≤ ri , (6.5)

where each Rij ∩ Tij is a patterned polyhedron in Zm−1 with period Tij . Note that two

polyhedra Rij and Ri′j′ can be overlapping if i 6= i′. However, we can refine all Rij into

polynomially many disjoint copolyhedra P1, . . . , Pe ⊆ Rm−1 , so that

k⋃

i=1

ri⋃

j=1

Rij =

e⊔

d=1

Pd . (6.6)

For each Pd, there is a patternWd with periodWd ⊆ Zm−1 which fits with those Tij for which

Pd ⊆ Rij . The (full-rank) periodWd can simply be taken as the intersection of polynomially

105

many (full-rank) periods Tij for which Pd ⊆ Rij . Taking intersections of lattices in a fixed

dimension can be done in polynomial time using Hermite Normal Form (see [KB79]). We

also round each Pd to ⌊Pd⌋ (see Definition 6.12). From (6.5) and (6.6) we have:

Sn+1

(k⊔

i=1

Q̂i ∩Ui

)
=

k⋃

i=1

Sn+1(Q̂i ∩Ui) =

e⊔

d=1

⌊Pd⌋ ∩Wd .

The above RHS is a semilinear set in Zm−1. A similar argument applies to Sm ◦ · · · ◦ Sn+2.

In the end, we have a semilinear decomposition for T (X) ⊆ Zn, as in (6.2).

Using Lemma 6.11, we can bound the number of polyhedra ri in (6.5), and also the

number of facets η(Rij) for each Rij. It is well known that any q hyperplanes in Rm partition

the space into at most O(qm) polyhedral regions. This gives us a polynomial bound on e,

the number of refined pieces in (6.6). By a careful analysis, after m projections, the total

number r of pieces in the final decomposition (6.2) is at most η(X)O(m!). Each piece Rj also

has at most η(X)O(m!) facets. �

6.2.C. Proof of Lemma 6.11. The proof is by induction on n. The case n = 0 is trivial.

For the rest of the proof, assume n ≥ 1.

Let L ⊆ Zn+1 be a full-rank pattern with period L as in the lemma. Then, the projection

of L onto Zn is another pattern L
′ with full-rank period L′ = proj(L).2 Since L is of full

rank, we can define

γ = min{x ∈ Z+ : (x, 0, . . . , 0) ∈ L}. (6.7)

Let R = proj(Q). Assume Q is described by the system Ax ≤ b. Recall the Fourier–

Motzkin elimination method (see [Sch86, §12.2]), which gives the facets of R from those of Q.

First, rewrite and group the inequalities in Ax ≤ b into

A1y + b1 ≤ x1, x1 ≤ A2y + b2 and A3y ≤ b3, (6.8)

where y = (x2, . . . , xn+1) ∈ Rn. Then R is described by a system Cy ≤ d, which consists of

(A3y ≤ b3) and (a1y + b1 ≤ a2y + b2) for every possible pair of rows a1y + b1 and a2y + b2

2Here a basis for L′ can be computed in polynomial time by applying Hermite Normal Form to a basis
of L, whose first coordinates x1 should be set to 0.

106

from the first two systems in (6.8).

In case one of the two systems A1y + b1 ≤ x1 and x1 ≤ A2y + b2 is empty, then R is

simply described by A3y ≤ b3. Also in this case, the preimage proj−1(y) of every point

y ∈ R is infinite. By the argument in Lemma 6.13 below, we have a simple description

proj(Q ∩ L) = R ∩ L
′, which finishes the proof. So now assume that the two systems

A1y + b1 ≤ x1 and x1 ≤ A2y + b2 are both non-empty. Then we can decompose

R =
r⊔

j=1

Pj, (6.9)

where each Pj is a copolyhedron, so that over each Pj , the largest entry in the vector A1y+b1

is aj1y + bj1 and the smallest entry in the vector A2y + b2 is aj2y + bj2. Thus, for every

y ∈ Pj , we have proj−1(y) = [αj(y), βj(y)], where αj(y) = aj1y+ bj1 and βj(y) = aj2y+ bj2

are affine rational functions. Let m = η(Q). Note that the system Cy ≤ d describing R

contains at most O(m2) inequalities, i.e., η(R) = O(m2). Also, we have r = O(m2) and

η(Pj) = O(m) for 1 ≤ j ≤ r.

For each y ∈ R, the preimage proj−1(y) ⊆ Q is a segment in the direction x1. Denote by

|proj−1(y)| the Euclidean length of this segment. Now we refine the decomposition (6.9) to

R = R0 ⊔R1 ⊔ · · · ⊔Rr , where (6.10)

a) Each Rj is a copolyhedron in Rn, with η(Rj) = O(m2) and r = O(m2).

b) For every y ∈ R0, we have the length |proj−1(y)| ≥ γ.

c) For every y ∈ Rj (1 ≤ j ≤ r), we have the length |proj−1(y)| < γ. Furthermore, we

have proj−1(y) = [αj(y), βj(y)], where αj and βj are affine rational functions in y.

This refinement can be obtained as follows. First, define

R0 = proj[Q ∩ (Q + γv1)] ⊆ R,

where v1 = (1, 0, . . . , 0). The facets of R0 can be found from those of Q ∩ (Q + γv1) again

by Fourier–Motzkin elimination, and also η(R0) = O(m2). Observe that |proj−1(y)| ≥ γ if

107

and only if y ∈ R0. Define Rj := Pj\R0 for 1 ≤ j ≤ r. Recall that for every y ∈ Pj , we have

proj−1(y) = [αj(y), βj(y)]. Therefore,

Rj = Pj\R0 = {y ∈ Pj : |proj−1(y)| < γ} = {y ∈ Pj : αj(y) + γ > βj(y)}.

It is clear that each Rj is a copolyhedron satisfying condition c). Moreover, for each 1 ≤
j ≤ r, we have η(Rj) ≤ η(Pj) + 1 = O(m). By (6.9), we can decompose:

R = R0 ⊔ (R\R0) = R0 ⊔
r⊔

j=1

(Pj\R0) =

r⊔

j=0

Rj .

This decomposition satisfies all conditions a)–c) and proves (6.10). Note also that by con-

verting each Rj to ⌊Rj⌋, we do not lose any integer points in R. Let us show that the part

of proj(Q ∩L) within R0 has a simple pattern:

Lemma 6.13. proj(Q ∩ L) ∩ R0 = R0 ∩ L
′.

Proof. Recall that proj(L) = L
′, which implies LHS ⊆ RHS. On the other hand, for every

y ∈ L
′, there exists x ∈ L such that y = proj(x). If y ∈ R0∩L′, we also have |proj−1(y)| ≥ γ

by condition b), with γ defined in (6.7). The point x and the segment proj−1(y) lie on the

same vertical line. Therefore, since |proj−1(y)| ≥ γ, we can find another x′ such that

x′ ∈ proj−1(y) ⊆ Q and also x′−x ∈ L. Since L has period L, we have x′ ∈ L. This implies

x′ ∈ Q∩L, and y ∈ proj(Q∩L). Therefore we have RHS ⊆ LHS, and the lemma holds.

It remains to show that proj(Q∩L)∩Rj also has a pattern for every j > 0. By condition

c), every such Rj has a “thin” preimage. Let Qj = proj−1(Rj) ⊆ Q. If dim(Rj) < n, we

have dim(Qj) < n + 1. In this case we can apply the inductive hypothesis. Otherwise,

assume dim(Rj) = n. For convenience, we refer to Rj and Qj as just R and Q. We can write

R = R′ +D, where R′ ⊆ R is a polytope and D is the recession cone of R.

Consider y ∈ R, v ∈ D and λ > 0. Since y+ λv ∈ R, from c) we have proj−1(y+ λv) =

[α(y + λv), β(y+ λv)]. Denote by α̃ and β̃ the linear parts of the affine maps α and β. By

a property of affine maps, we have:

proj−1(y + λv) = [α(y + λv), β(y+ λv)] = [α(y) + λα̃(v), β(y) + λβ̃(v)]. (6.11)

108

Therefore,

|proj−1(y + λv)| = β(y)− α(y) + λ
(
β̃ − α̃

)
(v).

Since (y + λv) ∈ R, by c) we have:

0 ≤ |proj−1(y + λv)| = β(y)− α(y) + λ
(
β̃ − α̃

)
(v) < γ.

Because λ > 0 is arbitrary, we must have
(
β̃ − α̃

)
(v) = 0. This holds for all v ∈ D. We

conclude that β̃ − α̃ vanishes on the whole subspace H := span(D), i.e., for any v ∈ H we

have α̃(v) = β̃(v). Thus, we can rewrite (6.11) as

proj−1(y + λv) = [α(y), β(y)] + λα̃(v) = proj−1(y) + λα̃(v). (6.12)

Define C := α̃(D) and G := α̃(H). Note that span(C) = G, because span(D) = H .

Recall that R = R′ +D with R′ a polytope. In (6.12), we let y vary over R′, λ vary over R+

and v vary over D. The LHS becomes Q = proj−1(R). The RHS becomes proj−1(R′) + C.

Therefore, we have Q = proj−1(R′) +C. Since proj−1(R′) is a polytope, we conclude that C

is the recession cone for Q.

Because proj−1(y) = [α(y), β(y)] for every y ∈ R, the last n coordinates in α(y) and

β(y) are equal to y. This also holds for α̃(y) and β̃(y), i.e., proj(α̃(y)) = proj(α̃(y)) = y.

This implies proj(G) = H , because G = α̃(H). In other words, α̃ is the inverse map for proj

on G. In Figure 6.1, we illustrate R and Q = proj−1(R), with R′ and proj−1(R′) shown in

blue. The cones C and D span G and H , respectively.

R

D,H

Q
C,G

proj α̃

Figure 6.1: R and Q.

109

Recall that Q ∩ L is a patterned polyhedron with period L, and proj(Q) = R. Define

S := L ∩G and T := proj(S) ⊂ proj(G) = H.

Since L is full-rank, we have rank(S) = dim(G). Since α̃ and proj are inverse maps, we have

S = α̃(T). We claim that proj(Q∩L) ⊂ R is a patterned polyhedron with period T . Indeed,
consider any two points y1,y2 ∈ R with y2 − y1 ∈ T . Assume that y1 ∈ proj(Q ∩ L), i.e.,

there exists x1 ∈ Q∩L with proj(x1) = y1. We show that y2 ∈ proj(Q∩L). First, we have

proj−1(y1) = [α(y1), β(y1)] and proj−1(y2) = [α(y2), β(y2)]. Let v = y2 − y1 ∈ T ⊂ H .

Since y2 = y1 + v, we can apply (6.12) with λ = 1 and get:

[α(y2), β(y2)] = proj−1(y2) = proj−1(y1 + v) = [α(y1), β(y1)] + α̃(v). (6.13)

Thus, we have α(y1)−β(y1) = α(y2)−β(y2). In other words, the points α(y1), β(y1), α(y2)

and β(y2) form a parallelogram inside Q. Since proj(x1) = y1, we have:

x1 ∈ proj−1(y1) = [α(y1), β(y1)] ⊆ Q.

So x1 lies on the edge [α(y1), β(y1)] of the parallelogram mentioned above. Therefore, we

can find another point x2 lying on the other edge [α(y2), β(y2)] = proj−1(y2) with

x2 − x1 = α(y2)− α(y1) = α̃(y2 − y1) = α̃(v) ∈ α̃(T) = S.

This x2 satisfies proj(x2) = y2. Recall that x1 ∈ L, with L having period L. Since

x2 − x1 ∈ S ⊂ L, we have x2 ∈ L. This implies x2 ∈ Q ∩L and y2 ∈ proj(Q ∩L).

So we have established that proj(Q ∩ L) ⊂ R is a patterned polyhedron with period T .
Note that

rank(T) = rank(S) = dim(G) = dim(H) = dim(D).

If dim(D) = n then T is full-rank. If dim(D) < n, recall that R = R′ + D where R′ is

a polytope, and span(D) = H . Let H⊥ be the complement subspace to H in Rn, and R⊥

be the projection of R′ onto H⊥. Since R⊥ is bounded, we can take a large enough lattice

T ⊥ ⊂ H⊥ such that there are no two points z1 6= z2 ∈ R⊥ with z1 − z2 ∈ T ⊥. Now the

lattice T ⊥ ⊕ T is full-rank, which can be taken as a period for proj(Q ∩L).

110

To summarize, for every piece Rj and Qj = proj−1(Rj), 1 ≤ j ≤ r, the projection

proj(Qj ∩ L) ⊂ Rj has period Tj . Thus proj(Qj ∩ L) is a patterned polyhedron. This

completes the proof. �

6.3. Finding short GF for unbounded projection

6.3.A. The Barvinok–Woods algorithm. In this section, we are again assuming that

dimensions m and n are fixed. We recall the Barvinok–Woods algorithm from [BW03], which

finds in polynomial time a short GF for the projection of integer points in a polytope:

Theorem 6.14 (Th. 2.5 restated). Let m,n ∈ N be fixed dimensions. Given a rational

polytope Q = {x ∈ Rm : Ax ≤ b}, and a linear transformation T : Rm → Rn represented

as a matrix T ∈ Zn×m, there is a polynomial time algorithm to compute a short GF for

T (Q ∩ Zm) as:

g(t) =
∑

y ∈ T (Q∩Zm)

ty =
M∑

i=1

ci t
ai

(1− tbi1) . . . (1− tbis)
, (6.14)

where ci = pi/qi ∈ Q, ai, bij ∈ Zn, bij 6= 0 for all i, j, and s is a constant depending only

on m. Furthermore, the short GF g(t) has length ℓ(g) = poly(ℓ(Q) + ℓ(T)), where

ℓ(g) =
∑

i

⌈log2 |pi qi|+ 1⌉ +
∑

i,j

⌈log2 aij + 1⌉ +
∑

i,j,k

⌈log2 bij k + 1⌉. (6.15)

Clearly, our main result Theorem 6.2 is an extension of Theorem 6.14. The proof of

Theorem 6.2 is based on Theorem 6.8 and uses the following standard result:

Proposition 6.15 (see e.g. [Mei93]). Let n ∈ N be fixed. Let R = {x ∈ Rn : Cx ≤ d} be a

possibly unbounded polyhedron. There is a decomposition

R =
t⊔

k=1

Rk ⊕Dk , (6.16)

where each Rk is a copolytope, and each Dk is a simple cone. Each part Rk ⊕Dk is a direct

sum, with Rk and Dk affinely independent. All Rk and Dk can be found in time poly(ℓ(R)).

Before proving Theorem 6.2, we make an important remark:

111

Remark 6.16. The extra condition T (Q) ⊆ Rn
+ in Theorem 6.2 is to make sure that the

power series
∑

ty of T (Q ∩ Zm) converges on a non-empty open domain to the computed

short GF. In general, without the condition T (Q) ⊆ Rn
+, we can still make sense of the

infinite GF (see §6.6.C).

6.3.B. Proof of Theorem 6.2. WLOG, we can assume dim(Q) = m and dim(T (Q)) = n.

Clearly, the set X = Q ∩ Zm is a semilinear set, and we want to find a short GF for T (X).

First, we argue that for any bounded polytope P ⊂ Rn, a short GF for T (X)∩P can be

found in time poly(ℓ(Q) + ℓ(P)). Assume P is given by a system Cy ≤ d. For any v ∈ P ,
we have v ∈ T (X) if and only if the following system has a solution x ∈ Zm:

{
Ax ≤ b

T (x) = v
. (6.17)

By a well known bound on Integer Programming solutions (see [Sch86, Cor. 17.1b]), it is

equivalent to find such a solution x with binary length at most polynomial in the binary

length of the system (6.17). The parameter v lies in P , which is bounded. Therefore, we

can find a number N with logN = poly(ℓ(P) + ℓ(Q)), such that (6.17) is equivalent to:

Ax ≤ b

C T (x) ≤ d

−N ≤ x ≤ N

.

This system describes a polytope Q̂ ⊂ Rm. Applying Theorem 6.14 to Q̂, we obtain a short

GF g(t) for T (Q̂ ∩ Zm) = T (X) ∩ P .

Now we are back to finding a short GF for the entire projection T (X). Applying Theo-

rem 6.8 to X , we have a decomposition:

T (X) =
r⊔

j=1

Rj ∩ Tj . (6.18)

We proceed to find a short GF gj for each patterned polyhedron Rj ∩Tj with period Tj .
For convenience, we refer to Rj , Tj, Tj , gj simply as R, T , T and g. By Proposition 6.15,

112

we can decompose

R =

tj⊔

i=1

Ri ⊕Di and R ∩ T =

tj⊔

i=1

(Ri ⊕Di) ∩ T . (6.19)

Recall from Theorem 6.8 that T has full rank. Let di = dim(Di) and v1i , . . . , v
di
i be the

generating rays of the (simple) cone Di. For each vti, we can find a nt ∈ Z+ such that

wt
i = ntv

t
i ∈ T . Let Pi and Ti be the parallelepiped and lattice spanned by w1

i , . . . , w
di
i ,

respectively. We have Di = Pi + Ti and therefore

Ri ⊕Di = Ri ⊕ (Pi + Ti) = (Ri ⊕ Pi) + Ti. (6.20)

Each Ri ⊕ Pi is a copolytope. Note that Theorem 6.14 is stated for (closed) polytopes. We

round each Ri ⊕ Pi to ⌊Ri ⊕ Pi⌋, where ⌊.⌋ was described in Definition 6.12. By the earlier

argument, we can find a short GF hi(t) for T (X)∩ (Ri⊕Pi) = (Ri⊕Pi)∩T . Since Ti ⊆ T ,
the pattern T also has period Ti. By (6.20), the short GF fi(t) for (Ri ⊕Di) ∩ T is:

fi(t) =
∑

y∈(Ri⊕Di)∩T

ty =

(
∑

y∈(Ri⊕Pi)∩T

ty

)
·
(
∑

y∈Ti

ty

)
= hi(t)

di∏

t=1

1

1− tw
t
i

. (6.21)

By (6.19), we obtain

g(t) =
∑

y∈R∩T

ty =
∑

1≤ i≤ tj

fi(t). (6.22)

In summary, we obtained a short GF gj(t) for each piece Rj ∩ Tj (1 ≤ j ≤ r). Summing

over all j in (6.18), we get a short GF for T (X), as desired. �

6.4. Generalization to Presburger formulas

Now we employ Theorem 6.8 to analyze the structure of general semilinear sets, i.e., those

definable by formulas in Presburger Arithmetic (PA). Recall that such formulas have the

form:

F =
{
x1 ∈ Zn1 : Q2x2 ∈ Zn2 . . . Qkxk ∈ Znk Φ(x1, . . . ,xk)

}
, (∗)

where Φ is a Boolean combination of linear inequalities in the form:

k∑

i=1

ni∑

j=1

aij xij ≤ b,

113

Here, Q2, . . . , Qk ∈ {∀, ∃} are quantifiers, and aij , b ∈ Z. The length ℓ(F) of F is the total

binary length of its symbols, coefficients aij and constants b.

By a classical result of Ginsburg and Spanier [GS64], semilinear sets (Definition 6.6) are

exactly those definable in PA, i.e., representable by some PA formula F of the form (∗).
Below is our main result for this section, which generalizes Theorem 6.8. Roughly speaking,

it allows us to compute in polynomial time the “periods” of a semilinear set when represented

as a PA formula. We fix k ∈ Z+ and the dimensions n = (n1, . . . , nk) ∈ Zk
+. Denote by

PAk,n the class of PA formulas (∗).

Theorem 6.17. Fix k and n = (n1, . . . , nk). Given a formula F ∈ PAk,n, there exists a

decomposition

F =

r⊔

j=1

Rj ∩ Tj ,

where each Rj ∩Tj is a patterned polyhedron in Rn1 with period Tj ⊆ Zn1. The polyhedra Rj

and lattices Tj can be found in time poly(ℓ(F)).

Proof. Hereafter, we abbreviate xi ∈ Zni to just xi. Consider any F ∈ PAk,n:

F = {x1 : Q2x2 . . . Qkxk Φ(x1, . . . ,xk)}.

Let x = (x1, . . . ,xk) and n = n1 + . . . + nk. First, we show that X = {x ∈ Zn : Φ(x)}
is semilinear, i.e., satisfies Definition 6.6. Recall that Φ is quantifier-free, i.e., a Boolean

combination of linear inequalities. We need the following very useful result about quantifier-

free PA expressions:

Proposition 6.18 ([Woo04, Prop. 5.2.2]). Fix n. Let Φ(x) be a Boolean combination of

linear inequalities in integer variables x = (x1, . . . , xn). Then we have:

Φ(x) = true ⇐⇒
r∨

i=1

x ∈ Pi ∩ Zn,

where P1, . . . , Pr ⊆ Rn are disjoint polyhedra and r ≤ poly(ℓ(Φ)). The system defining each

Pi can be computed in time poly(ℓ(Φ)).

114

Using this, we can rewrite Φ in a disjunctive normal form of polynomial length:

Φ(x) = A1x ≤ b1 ∨ . . . ∨ Arx ≤ br.

Here, each Aix ≤ bi is a system of inequalities, describing a polyhedron Pi ⊆ Rn. Moreover,

all polyhedra P1, . . . , Pr are pairwise disjoint, and
∑r

i=1 ℓ(Pi) = poly(ℓ(F)). In other words,

the setX consists of integer points in a disjoint union of r polyhedra. Thus, X is a semilinear

set with ψ(X) = poly(ℓ(F)), in the notation of Definition 6.6.

The proof goes by recursive construction of sets X(k), X(k−1), . . . , X(1). Let X(k) := X .

If Qk = ∃, we consider the set

X(k−1) :=
{
(x1, . . . ,xk−1) : ∃xk Φ(x)

}
=
{
(x1, . . . ,xk−1) : ∃xk [x ∈ X(k)]

}
.

This set X(k−1) is obtained from X(k) by projecting along the last variable xk, i.e., the last nk

coordinates in x. By Theorem 6.8, we can find in polynomial time a decomposition of the

form (6.2) for X(k−1). Moreover, we have ψ(X(k−1)) = poly(ψ(X(k))).

Similarly, if Qk = ∀, we consider

X(k−1) :=
{
(x1, . . . ,xk−1) : ∀xk Φ(x)

}
= ¬

{
(x1, . . . ,xk−1) : ∃xk [x ∈ ¬X(k)]

}
.

Here ¬ denotes the complement of a set. Observe that the complement ¬X of a semi-

linear set X is also semilinear, and ψ(¬X) = poly(ψ(X)). Indeed, assume that X has a

decomposition

X =

p⊔

i=1

Pi ∩Li .

Recall that the polyhedral pieces Pi are pairwise disjoint, but do not necessarily cover Rn.

Let us prove that the complement
(
Rn\

⊔p
i=1 Pi

)
can also be partitioned into polyno-

mially many pairwise disjoint polyhedra. Indeed, we can represent
⊔p

i=1 Pi by a Boolean

expression of linear inequalities in x. Therefore, the complement can also be represented by

a Boolean expression. By Proposition 6.18 mentioned above, we can rewrite the complement

as a disjoint union of polynomially many polyhedra P ′
1, . . . , P

′
q. From here, we obtain the

decomposition:

¬X =

p⊔

i=1

Pi ∩ L
′
i ⊔

q⊔

j=1

P ′
j ∩ Zn ,

115

where L′
i is the complement of Li, with the same period Li. Therefore, we have ψ(¬X(k)) =

poly(ψ(X(k))). Applying Theorem 6.8, we can obtain X(k−1) by projecting ¬X(k).

Applying the above argument recursively for quantifiers Qk−1, . . . , Q2, we obtain a poly-

nomial length decomposition for the semilinear set

X(1) = {x1 : Q2x2 . . . Qkxk Φ(x)} = F.

This completes the proof.

Theorem 6.19. Fix k and n = (n1, . . . , nk). Given a formula F ∈ PAk,n and a positive

integer M , denote by fM (t) the partial GF

fM(t) :=
∑

x∈F∩[−M,M]n1

tx. (6.23)

Suppose there is an oracle computing fM(t) as a short GF (>) in time µ(F,M). Then there

is an integer N = N(F) with logN = poly(ℓ(F)), such that the GF f(t) =
∑

x∈F tx for the

entire set F can be computed as a short GF in time poly(µ(F,N)). The integer N = N(F)

can be computed in time poly(ℓ(F)).

In other words, Theorem 6.19 says that the full GF f(t) can be computed in polynomial

time from the partial GF fN(t) for a suitable N .

Proof. Let n = n1. By Theorem 6.17, we have a decomposition

F =
r⊔

j=1

Rj ∩ Tj .

We proceed similarly to the proof of Theorem 6.2. Denote Rj and Tj by R and T respectively,

for convenience. We have the decomposition (6.19) for R and R ∩ T , which leads to (6.20).

Eventually, we can compute a short GF g(t) for R ∩ T using (6.21) and (6.22). The only

difference is that the GF hi for each patterned polytope (Ri⊕Pi)∩F , which was (Ri⊕Pi)∩T
in (6.21), cannot be obtained from Theorem 6.14, since F is no longer the result of a single

projection on a polyhedron.

116

Recall that each Ri⊕Pi is a polytope, with facets of total length poly(ℓ(F)). Therefore,

the vertices of Ri⊕Pi can be found in polynomial time given F . This holds for all 1 ≤ i ≤ tj

and all 1 ≤ j ≤ r. Thus, we can find a positive integer N = N(F), for which

logN = poly(ℓ(F)) and Ri ⊕ Pi ⊆ [−N,N]n for all 1 ≤ i ≤ tj .

Given the partial GF fN(t), the GF hi(t) for each (Ri⊕Pi)∩F can be computed as follows.

Theorem 6.1 allows us to compute in polynomial time a short GF

gi(t) =
∑

x∈(Ri⊕Pi)∩Zn

tx

for each polytope Ri ⊕ Pi. Theorem 7.14 allows us to compute in polynomial time a short

GF for the intersection of two finite sets, given their short GFs as input. Since (Ri⊕Pi)∩F
is the intersection of (Ri ⊕ Pi) ∩ Zn and F ∩ [−N,N]n, we can compute

hi(t) =
∑

x∈(Ri⊕Pi)∩F

tx =

(
∑

x∈(Ri⊕Pi)∩Zn

tx

)
⋆

(
∑

x∈F∩[−N,N]n

tx

)
= gi(t) ⋆ fN(t).

in time poly(µ(F,N)). Here ⋆ is the Hadamard product of two power series (see Defini-

tion 7.9). The short GF fN(t) is obtained by a single call to the oracle in time µ(F,N).

This completes the proof.

Remark 6.20. We emphasize that Theorem 6.19 does not directly compute the GF f(t)

in polynomial time, for a general F . It only claims that f(t) can be computed in time

poly
(
µ(F,N)

)
given the oracle. In fact, computing f(t) directly from F is an NP-hard

problem, even for F ∈ PA2,(1,1) (Theorem 7.23).

6.5. The k-feasibility problem

We present an application of Theorem 6.19. Let n, d and k be fixed integers and A ∈ Zd×n.

In [ADL16], the authors defined a set Sg≥k(A) ∈ Zd of k-feasible vectors as

Sg≥k(A) = {y ∈ Zd : ∃x1, . . . ,xk ∈ Nn, y = Axj , xi 6= xj if i 6= j, 1 ≤ i, j ≤ k}. (6.24)

117

In other words, Sg≥k(A) consists of vectors that are representable in at least k different ways

as a non-negative combination of columns of A. In addition to some results about Sg≥k(A),

the authors also gave an algorithm to compute a short GF for Sg≥k(A) within a finite box:

Theorem 6.21 ([ADL16, Th. 5]). Fix n, d and k. Let A ∈ Zd×n, and let N be a positive

integer. Let

fN (t) =
∑

x ∈ Sg≥k(A)∩[−N,N]d

tx

be the partial GF for Sg≥k(A) within the box [−N,N]d. Then there is a polynomial time

algorithm to compute fN(t) as a short GF.

Using Theorem 6.19, we can extend Theorem 6.21 as follows:

Theorem 6.22. Fix n, d and k. Then there is a polynomial time algorithm to compute

f(t) =
∑

x∈ Sg≥k(A)

tx

for the entire set Sg≥k(A), as a short GF.

Proof. From the definition (6.24), we see that Sg≥k(A) is a PA formula in the variables y and

x1, . . . ,xk with only an existential quantifiers. Indeed, each condition y = Axj is a system

of 2d inequalities. Each condition xi 6= xj is a disjunction of 2n inequalities (xit < xjt)

or (xit > xjt) for 1 ≤ t ≤ n. Therefore, we have Sg≥k(A) ∈ PAk+1,n, where n = (d, n, . . . , n).

Applying Theorem 6.19, we can compute in polynomial time a short GF f(t) for Sg≥k(A)

given the partial short GF fN (t). Finally, Theorem 6.21 allows us to compute fN(t) in

polynomial time.

Theorem 6.21 was stated in [ADL16] for fixed n and k, but arbitrary d. The follow-

ing result is a straightforward consequence of the previous theorem and an argument by

P. van Emde Boas described in [Len83, §4].

Theorem 6.23. Fix n and k, but let d be arbitrary. Then there is a polynomial time

algorithm to compute

f(t) =
∑

x∈ Sg≥k(A)

tx

118

for the entire set Sg≥k(A), as a short GF.

Proof. This can be easily reduced to the case when d is also fixed. Indeed, let LA ⊆ Zd be the

lattice generated by the n columns of A ∈ Zd×n. We have rank(LA) = rank(A) ≤ n. Hence,

we can find a d × d unimodular matrix U so that UA is non-zero only in the first n rows.

Let B ∈ Zn×n be the first n rows of UA, and LB be the lattice generated by the columns

of B. Observe that LB and LA are isomorphic. Therefore, the set of k-representable vectors

in LA are in bijection with those in LB. Now we apply Theorem 6.22 to get a short GF

g(t) for Sg≥k(B). Finally, the GF for Sg≥k(A) is easily obtained from g(t) by a variable

substitution via U−1.

6.6. Final remarks

6.6.A. To summarize, we extended the Barvinok–Woods algorithm to compute short GFs

for projections of polyhedra. The result fills a gap in the literature on parametric Integer

Programming which remained open since 2003. We also proved a structural result on the

projection of semilinear sets by a direct argument. Let us emphasize that we get effective

polynomial bounds for the number of polyhedral pieces and the facet complexity of each

piece in the projection, but not on the complexity of the pattern within each piece.

6.6.B. The study of semilinear sets has numerous applications in computer science, such as

analysis of number decision diagrams (see [Ler05]), and context-free languages (see [Par66]).

We refer to [Gi66] for background on semilinear sets with their connections to Presburger

Arithmetic, and to [CH16] for most recent developments.

6.6.C. Without the extra condition T (Q) ⊆ Rn
+ in Theorem 6.2 we can still treat the GF

of T (Q ∩ Zm) as formal power series. In some cases, this power series might not converge

under numerical substitutions. For example, if Q = Rm and T projects Zm onto Z, then

119

every y ∈ Z lies in T (Q ∩ Zm). In this case, we have

∑

y∈T (Q∩Zm)

ty = . . .+ t−2 + t−1 + 1 + t+ t2 + . . . ,

which is not convergent for any non-zero t. However, when T (Q) has a pointed characteristic

cone, for example T (Q) ⊆ Rn
+, then the power series converges on a non-empty open domain.

For any t in that domain, the power series converges to the computed rational function g(t).

For the general case when T (Q) could possibly contain infinite lines, we can resort to the

theory of valuations (see [Bar08, BP99]) to make sense of the GF. Alternatively, one can

always decompose any such Q into a finite union of at most n + 1 polyhedra Qi, each of

which projects within a pointed cone in Rn. Then the GF for the projection of Q ∩ Zm can

be thought of as a formal sum of at most n + 1 short GFs, each with its own domain of

convergence and a rational representation gi(t).

6.6.D. Our generalization of the Barvinok–Woods theorem also simplifies many existing

proofs in the literature when one needs to compute a short generating function for un-

bounded sets. See for example the computation of Hilbert series in [BW03, Sec. 7.3] and the

computation of optimal points for Integer Programming in [HS07, Lem. 3.3].

120

CHAPTER 7

Complexity of short generating functions

We give complexity analysis for the class of short generating functions (short GFs). Assuming

#P 6⊆FP/poly, we show that this class is not closed under taking many intersections, unions

or projections of GFs, in the sense that these operations can increase the binary length of

coefficients of GFs by a super-polynomial factor. We also prove that truncated theta functions

are hard in this class. This chapter is a version of the published paper [NP17d].

7.1. Introduction

7.1.A. Combinatorics and complexity of GFs. A univariate short generating function

(short GF) is a rational generating function written in the form

f(t) =

M∑

i=1

ci t
ai

(1− tbi1) · · · (1− tbiki) , (∗)

where ci = pi/qi ∈ Q, ai, bij ∈ Z and bij 6= 0 for all i, j. The index(f) := max{k1, . . . , kM} is
the maximum number of terms in the denominators. This is always assumed to be bounded

by some constant. The length ℓ(f) is defined as the total binary length of all constants

ai, ci and bij in (∗). Of course, the same rational generating function f can have many

presentations as a short GF.1

In this chapter we study of complexity of short GFs with bounded index and polynomial

lengths. For a finite set S ⊂ N, denote by fS(t) =
∑

n∈S t
n the GF of S. We are interested

in deciding if it is possible to write fS as a short GF with polynomial length for a variety of

1We also caution the reader that in general, the word short in “short GF” only means that the GF is
given in the form (∗). It does not necessarily mean the GF has polynomial length.

121

sets S coming from Combinatorics, Number Theory and Discrete Geometry. Showing that

some sets do not have short GFs of polynomial lengths turns out to be a surprisingly difficult

problem. We are also interested in operations on short GFs and how they affect the short

GFs’ lengths.

Our approach is motivated by ideas from the study of integer points in convex polyhedra

in fixed dimension (see §7.11.A). All such polyhedra turn out to have (multivariate) short GFs

of polynomial lengths (see Barvinok’s Theorem 7.20 and Chapter 6). We refer to [Bar06b,

Bar08] for a thorough review of past and recent work on short GFs in Discrete Geometry,

and to Section 7.11 for connections to Arithmetic Combinatorics and other areas.

7.1.B. Squares. Define the truncated theta function to be the GF over squares ≤ 2r :

ϑr(t) =

2r/2∑

n=0

tn
2

.

Conjecture 7.1 (=Conjecture 7.56). For every fixed k ≥ 1, the truncated theta function

ϑr(t) cannot be written a short GF of length poly(r) and index(ϑr) ≤ k.

The following result is the most surprising in this chapter:

Theorem 7.2 (=Theorem 7.58). If #P 6⊆ FP/poly, then Conjecture 7.1 holds.

To put this in plain words, if truncated theta functions can be represented as short GFs

of polynomial lengths and bounded index, then any #P counting problem (e.g. number of

Hamiltonian cycles) can be solved with polynomial size Boolean circuits. See §7.11.E for

more on the complexity assumption, and Section 7.8 for the related results on primes.

7.1.C. One variable operations. Recall that we only consider GFs of finite sets. We

define operations on GFs based on their supports. For example, taking the union of two

GFs f(t) and g(t) means finding another GF h(t) with supp(h) = supp(f) ∪ supp(g). We

can similarly define other Boolean operations.

Short GFs are known to be very versatile and useful in applications. Notably, given a

bounded number of short GFs, it is known how to perform all Boolean operations on in

122

polynomial time (Theorem 7.14). The result is again a short GF with polynomial length.

However, when the number of short GFs is large, no such polynomial time procedures are

known. The following result gives a strong evidence against such possibility:

Theorem 7.3 (=Theorem 7.52). If #P 6⊆ FP/poly, then taking intersection/union of many

short GFs does not preserve polynomiality in length.

This says taking union of many short GFs is hard structurally. It should be compared

to an earlier result by Woods, which says that taking union of many short GFs is hard

algorithmically, assuming P 6= NP (see Theorem 7.23 and the following remark).

Next, define the Minkowski sum f ⊕ g of two GFs f(t) and g(t), to be the GF h(t) with

supp(h) = supp(f)⊕ supp(g) = {a+ b | a ∈ supp(f), b ∈ supp(g)}.

Theorem 7.4 (=Theorem 7.55). If #P 6⊆ FP/poly, then taking Minkowski sum of two

short GFs does not preserve polynomiality in length.

Giving precise formulations of these results requires some effort, see Section 7.7. Let

us mention that in both theorems we can substitute the complexity assumptions with Con-

jecture 7.1. These results show strong limitations of the “short GF technology” from a

geometric point of view (see §7.11.A). Below we give further evidence of this phenomenon.

7.1.D. Projections. For multivariate short GFs, taking projections is a key operation.

Projection is crucial for applications such as Integer Programming (see Section 6.1), and

theoretical considerations such as Presburger Arithmetic (see Section 6.4). In a crucial

development, Barvinok and Woods [BW03] showed that given a polytope P in bounded

dimension, the projections of its integer points on some subspace have a short GF of poly-

nomial length, which can also be computed in polynomial time (Theorem 6.14). This result

exploited the polytopal structure of P and its convexity in a crucial way. Unfortunately,

these are also the reasons that prevent their result to apply on a non-geometric level. In

other words, the algorithm by Barvinok and Woods cannot produce a short GF for the

projections if the input is presented only as short GF, without a polytope associated to it.

123

An important negative result by Woods in fact shows that given only a multivariate short

GF f(t), computing its projection is NP-hard (see Theorem 7.23 and the Remark 7.24). The

following theorem is the central result of the chapter. Roughly speaking, it both weakens

the assumptions and strengthens the conclusions of Woods’s theorem.

Theorem 7.5 (=Corollary 7.48). If #P 6⊆ FP/poly, then taking projection of a short GF

does not preserve polynomiality in length.

This says that in general not only we cannot compute the projection of a short GF in

polynomial time, any short GF that represents the projection must have a super-polynomial

length. In other words, the barriers of using the “short GF technology” in this case are

structural rather than algorithmic.

The next result can be viewed as a refinement of the previous theorem, giving a precise

characterization of complexity of projections.

Theorem 7.6 (=Theorem 7.46). Repeated projections of short GFs can encode every lan-

guage in the non-uniform polynomial hierarchy PH/poly. In fact, they form a hierarchy that

coincides with PH/poly.

We postpone the precise formulations of these results, especially of Theorem 7.6 where

the technicalities are unavoidable. Let us also mention Proposition 7.49 which can be viewed

as a partial converse of Theorem 7.5.2

7.1.E. Structure of the chapter. Our results are largely self-contained and require little

more than a few technical lemmas from [BP99], which are all stated in Section 7.2 and can

be treated as black boxes. We do however employ a fair amount of definitions and notations

(Section 7.2).

Our Section 7.3 is the key as it describes the connection between languages and short GFs.

From this point on, the reader can proceed to the development of the short GF hierarchy,

2By itself, Conjecture 7.1 does not necessarily imply that #P 6⊆ FP/poly, so a stronger assumption is
used in Proposition 7.49.

124

culminating in the proofs of theorems 7.5 and 7.6 (sections 7.4–7.6). Alternatively, modulo

a few definitions in earlier section, the reader proceed directly to the proof of theorems 7.3

and 7.4 in Section 7.7. Similarly, the reader can also proceed to study complexity of squares

and primes (Section 7.8). In Section 7.9 we investigate more technical questions on relative

complexity of short GFs, and in Section 7.10 we give a proof of a technical Lemma 7.34. We

conclude with final remarks and open problems in Section 7.11.

7.2. Preliminaries on short GFs

7.2.A. Polynomial time operations. A power series f(t) =
∑
αxt

x is called a GF if

each coefficient αx is either 0 or 1. When needed, we will write f(t) =
∑

tx to emphasize

that f is a GF.

Definition 7.7. The support of an n-variable GF g(t) =
∑

tx is defined as:

supp(g) := {x ∈ Zn : [tx]g(t) = 1}.

Here [tx] denotes the coefficient of the monomial tx in g(t).

Definition 7.8. Given a multi-variable GF f(t,u) =
∑

txuy with x ∈ Zm,y ∈ Zn, the

x-projection g = projx(f) is the unique GF g(t) =
∑

tx with support satisfying

supp(g) = {x ∈ Zm : ∃ y ∈ Zn (x,y) ∈ supp(f)}.

If f satisfies the extra property that for every x ∈ Zm there is at most one y ∈ Zn such that

(x,y) ∈ supp(f), then projx(f) is called the x-specialization of f , denoted by specx(f).

Definition 7.9. Consider two power series f(t) =
∑
αxt

x and g(t) =
∑
βxt

x. The

Hadamard product of f and g, denoted by f ⋆ g, is another GF h(t) =
∑
γxt

x with

γx = αx βx for every x.

If f and g are GFs then the above condition is equivalent to supp(h) = supp(f) ∩ supp(g).

125

Definition 7.10. For a rational function in n variables t = (t1, . . . , tn) of the form

f(t) =
M∑

i=1

ci t
ai

(1− tbi1) · · · (1− tbiki)
, (>)

the length ℓ(f) of f is defined as

ℓ(f) =
∑

i

⌈log2 |pi qi|+ 1⌉ +
∑

i,j

⌈log2 aij + 1⌉ +
∑

i,j,m

⌈log2 bijm + 1⌉,

where ci = pi/qi ∈ Q, ai, bij ∈ Zn, bij 6= 0 and ta = ta11 · · · tann if a = (a1, . . . , an) ∈ Zn.

Definition 7.11. For a power series f(t) =
∑
αxt

x given in the form (>), the index of f

is defined as

index(f) = max{ki : i = 1, . . . ,M},

where ki is the number of factors in the denominator of the i-th summand.

Definition 7.12. For every number of variables n and integer s, we define two classes:

GFn,s =
{
GFs g(t) given in the form (>) with indg ≤ s

}
(7.1)

and

GF ∗
n,s =

{
power series g(t) given in the form (>) with indg ≤ s

}
. (7.2)

Members of GFn,s are called short GFs, while those of GF ∗
n,s are called short power series.

We recall the following important results from [BP99] (see also [BW03]):

Theorem 7.13 ([BP99]). Fix a class GFm,s. Given a short GF f(t) ∈ GFm,s of finite

support. We can compute in time poly(ℓ(f)) the following:

1) The norm N = max{|x| : x ∈ supp(f)},3

2) The cardinality M = |supp(f)|, which is equal to f(1),

3) The substitution q(u) = f(t(u)), where t is substituted by monomials in some other

variables u = (u1, . . . , un). Furthermore, we have q(u) ∈ GF ∗
n,s.

3Here |x| can be any polyhedral norm on x, including |x|∞ and |x|1.
126

Theorem 7.14 ([BP99]). Fix two classes GFm,s1 and GFm,s2. Given f(t) ∈ GFm,s1 and

g(t) ∈ GFm,s2 of finite supports, we can compute in time poly(ℓ(f) + ℓ(g)) the following:

1) A short GF h(t) with supp(h) = supp(f) ∩ supp(g), i.e., h(t) = f(t) ⋆ g(t),

2) A short GF k(t) with supp(k) = supp(f) ∪ supp(g).

3) A short GF p(t) with supp(p) = supp(f)\supp(g).

Moreover, we have h, k, p ∈ GFm,s1+s2.

Remark 7.15. In fact, a more general version of Theorem 7.14 part 1) was shown in [BP99],

which also allows taking f ⋆ g for short power series.

The following is the reason why we emphasized the bounded dimension n and index s in

Definition 7.12.

Proposition 7.16. Fix n and s. Given a short power series f(t) =
∑
βxt

x in GFn,s and a

vector a0 ∈ Zn, the coefficient βa0 can be computed in time poly(ℓ(f) + ℓ(a0)).

Proof. We let g(t) = ta0 and define h(t) = f(t) ⋆ g(t). Clearly, we have h(t) = βa0 t
a0 , which

implies βa0 = h(1). Applying Theorem 7.14, we can compute h(t) (see also Remark 7.15).

By Theorem 7.13, we can compute h(1). All can be done in time poly(ℓ(f) + ℓ(a0)).

Remark 7.17. A similar result for n and s unbounded is unlikely to hold, considering the

fact that Knapsack is NP-complete. An instance of Knapsack asks if an equation a = bx

is solvable, where x = (x1, . . . , xn) ∈ N are variables, and a ∈ N, b ∈ Nn are given as input.

This is equivalent to checking if [ta]f 6= 0, where:

f(t) =
1

(1− tb1) · · · (1− tbn) .

Here n is not bounded. Note that Knapsack has a polynomial time algorithm if a and b

are given in unary. In our case, short GFs are encoded in binary.

If f is a short GF, Proposition 7.16 allows us to decide in polynomial time whether

a0 ∈ supp(f). Now one may ask whether is it still easy to decide if a point a0 lies in a

projection of f . The answer is still positive:

127

Proposition 7.18. Fix m,n and s. Given a short GF f(t,u) =
∑

txuy ∈ GFm+n,s of finite

support and a vector a0 ∈ Zm, checking whether a0 ∈ supp(projx(f)) can be done in time

poly(ℓ(f) + ℓ(a0)). Here x ∈ Zm,y ∈ Zn.

Proof. Let g(t) = f(t, 1). Clearly, we have a0 ∈ supp(projx(f)) if and only if the coefficient

of ta0 in g(t) is non-zero. By Theorem 7.13, we can compute g in time poly(ℓ(f)). By

Proposition 7.16, we can compute [ta0]g in time poly(ℓ(g) + ℓ(a0)) ≤ poly(ℓ(f) + ℓ(a0)).

7.2.B. Short GFs and Presburger formulas. We summarize known results relating

short GFs to Presburger formulas. Recall the definition of PA formulas from Section 6.4.

Definition 7.19. For a set S ⊆ Zn, denote by F(S; t) the GF

F(S; t) :=
∑

x∈S

tx.

Theorem 6.1 by Barvinok can be restated as:

Theorem 7.20 ([Bar93]). Fix n. Let P ⊆ Rn be a rational polyhedron described by Ax ≤ b.

Then we can compute in time poly(ℓ(Q)) a short GF f(t) = F(P ∩ Zn; t) with f ∈ GFn,n.

A generalization of this to all quantifier-free PA formulas is:

Theorem 7.21 ([Woo04, Prop. 5.3.1]). Fix n. Let G = {x ∈ Zn : Φ(x)} be quantifier-free

PA formula, with Φ a Boolean combination of linear inequalities in x. Then we can compute

in time poly(ℓ(Φ)) a short GF g(t) = F(G; t) with g ∈ GFn,n.

Proof. By Proposition 6.18, we can rewrite Φ as a disjoint union of polyhedra P1, . . . , Pr

with r ≤ poly(ℓ(Φ)). The system defining each Pi can be computed in polynomial time.

Applying Theorem 7.20, we get a short GF fi ∈ GFn,n of polynomial length for each Pi.

Summing up all fi, we get a short GF g ∈ GFn,n of length poly(ℓ(Φ)) for G.

Next, we consider PA formulas with quantifiers. In the simplest case, an existential

formula F encodes the projection of integer points in a polyhedron.

128

Theorem 7.22 (Th. 6.2 restated). Fix m,n ∈ N. Let Q ⊆ Rm be a rational polyhedron

given by a system Ax ≤ b, and T : Zm → Zn a linear map. Consider the PA formula

G =
{
y ∈ Zn : ∃x ∈ Zm (x ∈ Q) ∧ (y = Tx)

}
.

Then we can compute in time poly(ℓ(Q) + ℓ(T)) a short GF g(t) = F(G; t). Furthermore,

we have g ∈ GFn,s, where s = s(m) is a constant.

However, for general ∃ PA formulas, finding short GFs becomes hard:

Theorem 7.23 ([Woo04, Th. 5.3.2]). Let Φ(x, y) be a quantifier-free Boolean combination

of linear inequalities in x and y (singletons). Let F = {y ∈ Z : ∃x ∈ Z Φ(x, y)}. Then

computing a short GF for F is NP-hard.

Remark 7.24. By Theorem 7.21, we still can find a short GF of length poly(ℓ(Φ)) for

Φ(x, y). So this result says that projecting a short GF is hard algorithmically. This should

be compared to our Theorem 7.5, which says that projecting short GF is hard structurally.

Actually, by Proposition 6.18, we can also decompose Φ(x, y) into a union of polynomially

many polygons Pi ⊆ R2. By Theorem 7.22, the projection of integer points in each Pi on x

has a short GF, which can be found in polynomial time. So taking union of these short GFs

is again hard algorithmically. This should be compared to Theorem 7.3.

7.3. Short GFs and the class P/poly

7.3.A. Encoding languages in P/poly as short GFs. For technical reasons regarding

the convergence of GFs under numerical evaluation, we consider only GFs with support in

Nn from this section onwards. Theorem 7.14 still applies to short GFs supported on Nn.

Definition 7.25. For every language L ∈ {0, 1}∗, and every r > 0, we denote by Lr the

segment

Lr :=
{
x̃ ∈ {0, 1}r : x̃ ∈ L}. (7.3)

For x̃ ∈ Lr, let x be the corresponding integer with binary representation x̃. We will also

use Lr to denote the set of all such x with x̃ ∈ Lr.

129

Lemma 7.26. For every language L ∈ P/poly, and every r > 0, the segment Lr can be

characterized in PA as:

x̃ ∈ Lr ⇐⇒ x ∈ [0, 2r) ∧
[
∃y ∈ [0, 2p) ∀z ∈ [0, 2q)3 : Φr(x, y, z)

]
, (7.4)

where Φr is a quantifier-free PA expression in x, y ∈ N and z ∈ N3. Moreover, we have

p, q, ℓ(Φr) ≤ polyL(r).
4 If in addition L ∈ P, then there is an algorithm to compute p, q and

Φr in time polyL(r).

Proof. By definition of the class P/poly, there is a Boolean circuit Cr such that:

Lr = {x̃ ∈ {0, 1}r : Cr(x̃) = true}.

Here the circuit Cr has r input gates, and as many as p ≤ polyL(r) non-input gates, each

with in-degree at most two. We encode the values of the non-input gates as a Boolean

string ỹ ∈ {0, 1}p. Let x̃ = (x1, . . . , xr) and ỹ = (y1, . . . , yp). By a standard reduction

(see e.g. [MM11, Pap94]), we can encode the computation of Cr by a Boolean formula F in

3-Conjunctive Normal Form. Explicitly, we have:

Lr = {x̃ ∈ {0, 1}r : ∃ỹ ∈ {0, 1}p F (x̃, ỹ) = true}, (7.5)

where

F (x̃, ỹ) =
∧

k

(ak ∨ bk ∨ ck). (7.6)

Here each ak, bk, ck is a literal in the set {xi,¬xi, yj,¬yj : 1 ≤ i ≤ r, 1 ≤ j ≤ p}.

Let x ∈ [0, 2r) and y ∈ [0, 2p) be the integers corresponding to x̃ and ỹ, respectively.

Every literal xi corresponds to the i-th digit in x being 1, and ¬xi corresponds that digit

being 0.5 In other words, xi is true or false respectively when ⌊x/2i−1⌋ is odd or even.

The same applies to yi and y. Observe that t = ⌊x/2i−1⌋ is the only integer that satisfies

x/2i−1 − 1 < t ≤ x/2i−1. Let q = max(r, p) ≤ poly(r). Each term xi or ¬xi can be coded

with an extra ∃z quantifier as follows:

4We denote by ℓ(Φr) the total length of all symbols Φr, written in binary. The notation polyL(r) denotes
a polynomial in r, with the polynomial degree depending on the language L.

5The least significant digit in x corresponds to x0 in x̃.

130

xi ⇐⇒ ∃z ∈ [0, 2q) :

2z + 1 > x/2i−1 − 1

2z + 1 ≤ x/2i−1

 ,

¬xi ⇐⇒ ∃z ∈ [0, 2q) :

2z > x/2i−1 − 1

2z ≤ x/2i−1

 .

(7.7)

Here {·} denotes a system (conjunction) of inequalities. Analogously, each yj or ¬yj can be

coded using ∃z. Note that the two strict inequalities in (7.7) can be sharpened by multiplying

both sides with 2i−1 to make all coefficients integer, and add 1 to the RHS.

Now we show how to code (7.6) using ∀z with z ∈ N3. For each clause (ak ∨ bk ∨ ck), we
consider its negation (¬ak∧¬bk∧¬ck). Each term ¬ak,¬bk,¬ck is still one of xi,¬xi, yi,¬yi.
By (7.7), we have

(¬ak ∧ ¬bk ∧ ¬ck) ⇐⇒ ∃z ∈ [0, 2q)3 : Φk(x, y, z),

where z ∈ N3, and Φk is a conjunction of 6 inequalities. Taking negation, we have:

(ak ∨ bk ∨ ck) ⇐⇒ ∀z ∈ [0, 2q)3 : ¬Φk(x, y, z),

⇐⇒ ∀z ∈ [0, 2q)3 : Ψk(x, y, z),

where Ψk is a disjunction of 6 inequalities. Taking conjunction over all k in (7.6), we have:

F (x̃, ỹ) ⇐⇒ ∀z ∈ [0, 2q)3 : Φr(x, y, z), (7.8)

where

Φr(x, y, z) =
∧

k

Ψk(x, y, z). (7.9)

Substituting (7.8) into (7.5), we have (7.4). If we assume in addition that L ∈ P, then the

circuit Cr can be built from a Turing Machine in time polyL(r), so the expression Φr can

also be found in time polyL(r). This completes the proof.

Recall that for a set S ⊆ Zn we defined F(S; t) :=
∑

x∈S t
x.

Definition 7.27. Given f(t) = F(S; t), where S is a subset of a finite box B ⊂ Nn. The

finite complement B\f is F(B\S; t).
131

Definition 7.28. Given f1(t) = F(S1; t), . . . , fk(t) = F(Sk; t) with S1, . . . , Sk ⊆ Nn, the

intersection f1 ∩ · · · ∩ fk is F(S1 ∩ · · · ∩ Sk; t). The union f1 ∪ · · · ∪ fk is F(S1 ∪ · · · ∪ Sk; t).

Theorem 7.29. For every language L ∈ P/poly and r > 0, there exist a finite box Br and

short GF fr(t, u,v) ∈ GF5,5 with supp(fr) ⊆ Br, so that

F(Lr; t) = specx(Br\projx,y(fr)) (7.10)

and ℓ(Br), ℓ(fr) ≤ polyL(r).
6 Furthermore, there exists pr,1, . . . , pr,kr ∈ GF2,s of finite

supports, with kr ≤ polyL(r) and ℓ(pr,i) ≤ polyL(r), so that:

projx,y(fr) = pr,1 ∪ · · · ∪ pr,kr . (7.11)

Here GF2,s is some fixed class that does not depend on L. If we assume in addition that

L ∈ P, then there is also an algorithm to compute Br, fr and each pr,i in time polyL(r).

Proof. For the notations proj, spec,∪ and \, we refer back to definitions 7.8, 7.27 and 7.28.

By the previous lemma, there is a PA expression Φr satisfying (7.4). First, define

Br = {(x, y) : x ∈ [0, 2r), y ∈ [0, 2p)},

Dr = {(x, y, z) : x ∈ [0, 2r), y ∈ [0, 2p), z ∈ [0, 2q)3},

where r, p and q are from (7.4). Define:

fr(t, u,v) =
∑

(x,y,z)∈Dr

¬Φr(x,y,z)

tx uy vz. (7.12)

Recall that Φr is a quantifier-free PA expression with length polyL(r). Applying Theo-

rem 7.21 to ¬Φr, we can write fr as a short GF in GF5,5 of finite support, which has length

ℓ(fr) ≤ poly(ℓ(Φr)) ≤ polyL(r). For the rest of the proof, we always assume (x, y, z) ∈ Dr.

We will simply write ∃z instead of ∃z ∈ [0, 2q)3. Projecting fr on (x, y), we have:

projx,y(fr) =
∑

(x,y) :∃z¬Φr(x,y,z)

txuy. (7.13)

6Here ℓ(Br) denotes the total bit length of all sides in Br, written in binary.

132

Taking the complement of projx,y(fr), which lies within the box Br, we have:

Br\projx,y(fr) =
∑

(x,y) : ∀zΦr(x,y,z)

tx uy. (7.14)

Recall that in the proof of Lemma 7.26, the variable y describes the values of non-input

gates in the circuit Cr, with input gates coming from x. Since the values of non-input gates

are uniquely determined by the input gates, for every x that satisfies Cr we have a unique

y. Substituting u← 1, the RHS in (7.14) becomes F(Lr; t). We obtain (7.10).

We proceed to show (7.11). Since ¬Φr is quantifier-free with 5 variables, we can apply

Proposition 6.18 on it and get:

¬Φr(x, y, z) ⇐⇒
kr∨

i=1

(x, y, z) ∈ Pr,i ∩ N5,

where Pr,1, . . . , Pr,kr ⊆ R5 are disjoint polytopes (in the box Dr) and kr ≤ poly(ℓ(Φr)) ≤
polyL(r). Each polytope Pr,i also satisfies ℓ(Pr,i) ≤ poly(r). Therefore:

∃z ¬Φr(x, y, z) ⇐⇒
kr∨

i=1

∃z
[
(x, y, z) ∈ Pr,i ∩ N5

]
. (7.15)

Combined with (7.13), we see that (x, y) ∈ supp(projx,y(fr)) if and only if it lies in the

projection of some Pr,i∩N5. By Theorem 7.22, for each i, we can find a short GF pr,i ∈ GF2,s

for the projection of Pr,i ∩ N5. In other words, we have pr,i ∈ GF2,s that satisfies:

supp(pr,i) = {(x, y) : ∃z (x, y, z) ∈ Pr,i ∩ N5}.

Here s is an absolute constant because each Pr,i has (fixed) dimension 5. We also have

ℓ(pr,i) ≤ poly(ℓ(Pr,i)) ≤ poly(r). The union of all short GFs pr,i contains exactly all (x, y)

satisfying (7.15). From (7.13) and (7.15), we have:

projx,y(fr) = pr,1 ∪ · · · ∪ pr,kr .

This proves (7.11) and completes the proof.

Example 7.30. Since Squares and Primes are both in P, we can represent all squares or

primes up to 2r in the form (7.10), with fr and Br computable in time poly(r).

133

Remark 7.31. Even though specx(Br\projx,y(fr)) may seem complicated, the specialization

and complement are “inexpensive operations”, which can be performed in polynomial time

by theorems 7.13 and 7.14. The main complexity resides in taking the projection of f .

Remark 7.32. The same representation (7.10) applies to every language L in the complexity

class UP/poly. Such a language is characterized as follows. For every r, there is a non-

deterministic polynomial-time Turing machine that accepts only x ∈ Lr, each with a unique

accepting path. Given L ∈ UP/poly, we can obtain (7.10) by the same argument as above.

In fact, (7.10) is an equivalent characterization of the class UP/poly. Indeed, assume Lr can

be represented as (7.10). Given fr, for any x ∈ Lr there should be a unique certificate y such

that (x, y) ∈ Br\projx,y(fr), which is checkable in polynomial time by Proposition 7.18.

7.3.B. Compressing short GFs of finite supports. We describe a technical tool which

will be useful later. This section can be skipped at first reading.

Definition 7.33. Consider N = 2r and a vector x = (x1, . . . , xd) ∈ Nn with xi ∈ [0, N) for

all 1 ≤ i ≤ d. We define the τN map on x as:

τN (x) = x1 +Nx2 + · · ·+Nn−1xd ∈ [0, Nn).

For an array of vectors x = (x1, . . . ,xn) with xi ∈ [0, N)ni , we define:

τN (x) = (τN (x1), . . . , τN(xk)) ∈ [0, Nn1)× · · · × [0, Nnk).

Finally, for a set S ⊆ [0, N)n1 × · · · × [0, N)nk , we define τN(S) = {τN (x) : x ∈ S}.

The following technical tool allows us to reduce the number of variables in a short GF of

finite support.

Lemma 7.34. Fix k, s and n1, . . . , nk ∈ N. Let n = n1 + . . .+ nk.

a) Compressing: Given a short GF g(t) =
∑

tx1
1 . . . txk

k of finite support in the class

GFn,s , there exist an N = 2r with supp(g) ⊆ [0, N)n1 × · · · × [0, N)nk and a short GF

f(u) =
∑
uz11 . . . uzkk in the class GFk,s so that

supp(f) = τN (supp(g)) ⊆ [0, Nn1)× · · · × [0, Nnk). (7.16)

134

Both f and N can be computed in time poly(ℓ(g)) with ℓ(f), logN ≤ poly(ℓ(g)).

b) Decompressing: Conversely, given f(u) =
∑
uz11 . . . uzkk ∈ GFk,s and N = 2r such that

supp(f) ⊆ [0, Nn1)× · · · × [0, Nnk),

there exists g(t) =
∑

tx1
1 . . . txk

k ∈ GFn,n+s with supp(g) ⊆ [0, N)n1 × · · · × [0, N)nk which

satisfies (7.16). The short GF g can be computed in time poly(ℓ(f) + logN).

Proof for the lemma is technical and is postponed until Section 7.10. We note that the

compression map τN in Definition 7.33 is similar to that used in the polynomial identity

testing algorithm of Klivans and Spielman [KS01]. Using Lemma 7.34, we can reduce the

number of variables of fr in (7.10) down to three.

Corollary 7.35. For every language L ∈ P/poly and r > 0, there exist a finite box Br and

short GF fr(t, u, v) ∈ GF3,5 with supp(fr) ⊆ Br, so that (7.10) holds. The rest is identical

to Theorem 7.29.

Proof. We have (7.10) with fr(t, u,v) =
∑
txuyvz ∈ GF5,5 a short GF of finite support

in five variables (t, u, v1, v2, v3). Using part a) of Lemma 7.34, we can compress z into a

single-variable w, leaving both x and y unchanged. In other words, txuyvz becomes txuyvw.

Note that projx,y is not affected by compression. This gives us a short GF f̃r ∈ GF3,5 with

projx,y(f̃r) = projx,y(fr) and ℓ(f̃r) ≤ poly(ℓ(fr)) ≤ poly(r).

So we can substitute f̃r for fr in (7.10).

7.4. Short GFs and the hierarchy PH/poly

The non-uniform polynomial hierarchy PH/poly starts with P/poly = ΣP
0/poly = ΠP

0/poly at

the 0th level. For k > 0, a language L is in ΣP
k/poly if for every r > 0, there is a circuit Cr

of size polyL(r) so that for every string x̃ of length r we have:

x̃ ∈ Lr ⇐⇒ ∃ỹ1 ∀ỹ2 . . . Qkỹk : Cr(x, y1, . . . , yk) = 1.

135

Here Q1, . . . , Qk are k alternating quantifiers with Q1 = ∃, and ỹ1, . . . , ỹk are binary strings

of length polynomial in r. For ΠP
k/poly the alternating quantifiers are reversed (Q1 = ∀).

We have a the following analogue to Lemma 7.26 for each level in PH/poly:

Lemma 7.36. For every language L ∈ ΣP
k/poly and r > 0, there exists a quantifier-free PA

expression in k + 4 variables x ∈ N, y ∈ Nk, z ∈ N3, so that x̃ ∈ Lr if and only if:

x ∈ [0, 2r) ∧
[
Q1y1 ∈ [0, 2p1) . . . Qkyk ∈ [0, 2pk) Qk+1z ∈ [0, 2q)3 : Φr(x,y, z)

]
. (7.17)

Here Q1, . . . , Qk+1 are k + 1 alternating quantifiers with Q1 = ∃. Moreover, we have

p1, . . . , pk, q, ℓ(Φr) ≤ polyL(r). For the case L ∈ ΠP
k/poly, the quantifiers Qi are reversed.

Proof. For simplicity, we prove the claim for L ∈ ΣP
1 = NP/poly. The higher levels ΣP

k/poly

and ΠP
k/poly can be argued similarly. Since L ∈ NP/poly, for each r, there is a circuit Cr of

size polyL(r) such that

x̃ ∈ Lr ⇐⇒ ∃ c̃ ∈ {0, 1}s : Cr(x̃, c̃) = 1, (7.18)

where s ≤ polyL(r) is the certificate length. The circuit Cr also has p non-input gates with

p ≤ polyL(r). Let p′ = s + p. Note that the certificate gates c̃ ∈ {0, 1}s and the non-input

gates ỹ ∈ {0, 1}p can be coded by a single integer y ∈ [0, 2p
′

). The argument now proceeds

similarly to Lemma 7.4 with p′ in place of p.

Remark 7.37. In [Grä88, Lem. 5.2], Grädel gave a similar representation to (7.17). In his

representation, each string x̃ = (x1, . . . , xr) ∈ {0, 1}r is not simply mapped to its binary

integer value, but to:

x = px1
1 . . . pxr

r q1−x1
1 . . . q1−xr

r ,

where p1, . . . , pr, q1, . . . , qr are the first 2r prime numbers.

Definition 7.38. Let f =
∑

txuy = F(S; t,u), where S is a subset of a finite box I × J .
The anti-projection projx(f) is F (I; t) − projx(f), where the projection projx(f) is from

Definition 7.8. The box I × J is always specified before taking the anti-projection.

136

Theorem 7.39. For every language L ∈ ΣP
k/poly and r > 0, there exists a short GF

fr ∈ GFk+2,k+4 of the form fr(t, u1, . . . , uk, v) =
∑
txuy11 . . . uykk v

z such that

F(Lr; t) = projx

(
projx,y1

(
projx,y1,y2(· · · (fr) · · ·)

))
, (7.19)

where the k alternating projections and anti-projections are taken in a finite box

Br = [0, 2r)× [0, 2p1)× · · · × [0, 2pk)× [0, 2q).

Moreover, we have p1, . . . , pk, q, ℓ(fr) ≤ polyL(r). For L ∈ ΠP
k/poly, the projections and

anti-projections are reversed.

Proof. By Lemma 7.36, we can represent Lr in the form (7.17). Applying the same argu-

ment in Theorem 7.29, we get fr(t, u1, . . . , uk,v) =
∑
txuy11 . . . uykk vz ∈ GFk+4,k+4 that sat-

isfy (7.19). Applying Lemma 7.34 a), we can compress the last three variables vz = vz11 v
z2
2 v

z3
3

into just one variable vw without affecting the projections (see the proof of Corollary 7.35).

This reduces fr to a short GF in GFk+2,k+4.

Remark 7.40. If in addition L ∈ PH, then both Φr and fr in Lemma 7.36 and Theorem 7.39

can be computed in time polyL(r). Indeed, if L ∈ PH, the circuit Cr for Lr in Lemma 7.36’s

proof can be automatically generated by some polynomial time Turing Machine M . We can

convert Cr to Φr in polynomial time, which allows us to find fr.

As a consequence, we obtain the following result.

Corollary 7.41. Assume we are given a0 ∈ N, a short GF f(t, u, v) =
∑
txuyvz ∈ GF3,5,

and a finite box B ⊂ N3 with supp(f) ⊆ B. Then deciding whether a0 ∈ supp(h) is NP-

complete, where h = projx(projx,y(f)). Here the projection and anti-projection are taken

within B.

Proof. If a0 ∈ supp(h), there exists some b0 so that (a0, b0) lies in the support of projx,y(f).

Since projx,y(f) is taken within B, which is bounded, both a0 and b0 must have polynomial

lengths. Given such a certificate b0, we can verify if (a0, b0) lies in the support of projx,y(f)

137

in polynomial time, by applying Proposition 7.18. Taking a negation, we can also check

whether (a0, b0) lies in the anti-projection projx,y(f). This shows the problem is in NP.

The problem is also NP-hard. Indeed, let L be an NP language. Applying Theorem 7.39

for the case L ∈ NP, we have F(Lr; t) = projx
(
projx,y(fr)

)
, where fr is supported inside

a box Br. By Remark 7.40, we can compute fr and Br in polynomial time. So checking

x ∈ Lr is equivalent to checking x ∈ supp(hr), where hr = projx(Br\projx,y(fr)).

Remark 7.42. Compared to Proposition 7.18, we see that it is no longer easy to check for

membership after taking two separate projections on a short GF.

7.5. A hierarchy of generating functions

We introduce a hierarchy GH of languages expressible as projections of generating functions.

First, we define the lowest level G = ΣG
0 = ΠG

0 .

Definition 7.43. For a language L ∈ {0, 1}∗, we say that L ∈ G if there is an s > 0 so that

for every r > 0, we can represent F(Lr; t) = fr(t) where fr ∈ GF1,s and ℓ(fr) ≤ polyL(r).

In other words, every segment Lr can be represented as a short GF of polynomial length in

some fixed class GF1,s.

We define higher classes ΣG
k and ΠG

k by taking repeated projections/anti-projections.

Definition 7.44. For a language L ∈ {0, 1}∗, we say that L ∈ ΣG
k if there is an s > 0 so

that for every r > 0, we can represent:

F(Lr; t) = projx

(
projx,y1

(
projx,y1,y2(· · · (fr) · · ·)

))
, (7.20)

where fr(t, u1, . . . , uk) =
∑
txuy11 . . . uykk ∈ GFk+1,s is supported inside a finite box Br, with

both ℓ(Br), ℓ(fr) ≤ polyL(r). The k alternating projections/anti-projections are taken within

Br. The classΠ
G
k is defined similarly, with the projections/anti-projections in (7.20) reversed.

Alternatively, L ∈ ΠG
k if and only if the complement language ¬L is in ΣG

k .

Definition 7.45. GH is the union of all ΣG
k and ΠG

k for all k ≥ 0.

138

We list some properties of GH:

• ΣG
k , Π

G
k ⊆ ΣG

k+1 ∩ΠG
k+1 for all k ≥ 0.

• G, ΣG
1 , Π

G
1 ⊆ P/poly (propositions 7.16 and 7.18).

• P/poly ⊆ UΠG
1 , the subclass of ΣG

2 with only specx and projx,y (Theorem 7.29).

• In fact, UΠG
1 = UP/poly (Remark 7.32).

• ΣP
k/poly ⊆ ΣG

k+1, Π
P
k/poly ⊆ ΠG

k+1 for all k ≥ 1 (Theorem 7.39).

The last property can actually be strengthened to:

Theorem 7.46. ΣP
k/poly = ΣG

k+1 and ΠP
k/poly = ΠG

k+1 for every k ≥ 1. So GH = PH/poly,

i.e., GH is exactly the non-uniform version of PH.

Proof. Theorem 7.39 already showed inclusion in one direction. For the other direction,

assume L ∈ ΣG
k+1. From Definition 7.44, for every r > 0, we have:

F(Lr; t) = projx

(
projx,y1

(
projx,y1,y2(· · · (fr) · · ·)

))
,

where fr is a short GF of length polyL(r) in some fixed class GFk+2,s. Here we are taking

k + 1 alternating projections and anti-projections on fr(x, y1, . . . , yk+1) =
∑
txuy11 . . . u

yk+1

k+1

within some finite box Br. Note that by Proposition 7.18, we can check in polynomial time

if (x, y1, . . . , yk) lies in the inner most projection/anti-projection. So given fr as an advice

string, we can decide if x ∈ Lr by calling a ΣP
k oracle for the remaining k projections/anti-

projections. This implies L ∈ ΣP
k/poly. The case L ∈ ΠG

k+1 is similar.

7.6. Short GFs have long projections

7.6.A. Proof of Theorem 7.5.

Theorem 7.47. If #P 6⊆ FP/poly, then G (P/poly.

139

Proof. We saw in Section 7.5 that G ⊆ P/poly. Now we show P/poly is strictly larger

than G. Let #L be an #P-complete problem (e.g. #3SAT), which is outside of FP/poly by

the assumption #P 6⊆ FP/poly. Associated to #L is a polynomial time Turing machine M .

Given x̃ ∈ {0, 1}r, #L asks for the number of certificates c̃ ∈ {0, 1}r that satisfyM(x̃, c̃) = 1.

Define a language:

M = {(x̃, c̃) : length(x̃) = length(c̃) and M(x̃, c̃) = 1}.7 (7.21)

Since M runs in polynomial time, we also haveM∈ P/poly. We show thatM /∈ G.

Assume the contrary, i.e., M ∈ G. Then there is a fixed s so that for every r > 0, we

haveMr = supp(fr), where fr ∈ GF1,s and ℓ(fr) ≤ poly(r). Let x, c ∈ [0, 2r) be the integers

corresponding to x̃, c̃ ∈ {0, 1}r. Then the concatenated string (x̃, c̃) corresponds to x+ 2rc.

We assumed that there is an f2r ∈ GF1,s such that

ℓ(f2r) ≤ poly(r) and
∑

(x̃,c̃)∈M2r

tx+2rc = f2r(t).

Given x̃ ∈ {0, 1}r, we must compute the number of c̃ ∈ {0, 1}r which satisfy (x̃, c̃) ∈ M2r.

Define

gx(t) =
∑

0≤c<2r

tx+2rc = tx
1− t22r

1− t2r . (7.22)

We have ℓ(gx) ≤ poly(r). We also have f2r ∈ GF1,s and gx ∈ GF1,1. Therefore, by Theo-

rem 7.14, the short GF hx = f2r ⋆ gx can be computed in time poly(ℓ(f2r)+ℓ(gx)) ≤ poly(r).

The number of certificates c̃ for x̃ is simply hx(1). This substitution can be computed in

time poly(r) by Theorem 7.13.

To summarize, the short GF f2r gives us a polynomial size circuit to solve #L for all

inputs x̃ ∈ {0, 1}r in time poly(r). We conclude that #L ∈ FP/poly, a contradiction.

Now we can formulate Theorem 7.5 in precise terms:

Corollary 7.48. If #P 6⊆ FP/poly, then GH does not collapse to its 0th level G. In other

words, there is a sequence
{
fr
}
r>0

in some fixed class GF2,s with ℓ(fr) ≤ poly(r) so that for

every d, projx(fr) cannot be written as a short GF hr ∈ GF1,d with ℓ(hr) ≤ poly(r).

7In general, the instance x̃ and certificate c̃ can have different lengths. However, the Turing Machine M

can always be modified to accept only c̃ and x̃ of equal lengths.

140

Proof. Recall that G ⊆ P/poly ⊆ GH (Section 7.5). Now this follows from Theorem 7.47.

7.6.B. A partial converse. One can ask if the above argument in the proof above can be

reversed, i.e., if #P ⊆ FP/poly, does it imply that GH collapses to G? We present below a

weaker result.

Recall from Section 7.5 that UΠG
1 the subclass of ΣG

2 that uses only specx and projx,y.

In other words, L ∈ UΠG
1 if for every r > 0, we have F(Lr; t) = specx(projx,y(fr)) for some

fr in some fixed class GF3,s with ℓ(fr) ≤ polyL(r). We also know that UΠG
1 = UP/poly.

Proposition 7.49. If #P ⊆ FP/poly, then GH collapses to UΠG
1 .

Proof. Since GH = PH/poly and UΠG
1 = UP/poly, it equivalent to show PH/poly = UP/poly.

In fact, we have a stronger collapse, namely PH/poly = P/poly. This follows easily from

Toda’s theorem, which says that PH ⊆ P#SAT. Replacing the #SAT oracle by polynomial

size circuits, we have PH ⊆ PP/poly = P/poly. Taking the non-uniform version of PH, we still

have PH/poly ⊆ P/poly.

Remark 7.50. The proposition implies that proving GH does not collapse to between its 1st

and 2nd levels is at least as hard as showing #P 6⊆ FP/poly. However, there might still be

hope of showing that GH does not collapse to its 0th level G, e.g., by proving Conjecture 7.1.

Remark 7.51. We do not claim that Proposition 7.49 is a new collapse result assuming

#P ⊆ FP/poly. Here we are only putting things in the context of short GFs. Observe that

#P ⊆ FP/poly implies NP ⊆ P/poly. In turn, NP ⊆ P/poly implies PH = SP
2 (see [Cai07]),

which is the strongest collapse currently known, assuming NP ⊆ P/poly. Note that the

classical Karp–Lipton theorem says that NP ⊆ P/poly implies PH = ΣP
2 , which is weaker

because SP
2 ⊆ ΣP

2 ∩ΠP
2 .

7.7. Intersections, unions and Minkowski sums

7.7.A. Proof of Theorem 7.3. Below is the precise statement of Theorem 7.3.

141

Theorem 7.52. Assume #P 6⊆ FP/poly. Then there is an s > 0 and a family of finite

subsets
{
Sr

}
r>0

with each Sr = {pr,1, . . . , pr,kr} ⊂ GF1,s so than the following hold:

a) The total length of all pr,i in Sr is poly(r).

b) For every fixed d, the intersection/union of all pr,i in Sr cannot be written as a short

GF hr ∈ GF2,d with ℓ(hr) ≤ poly(r).

Proof. By Theorem 7.47, there exists a language L ∈ P/poly which is outside of G. By

Theorem 7.29, for every r > 0, we can represent:

F(Lr; t) = specx(Br\projx,y(fr)) and projx,y(fr) = pr,1 ∪ · · · ∪ pr,kr ,

where fr ∈ GF5,5, pr,i ∈ GF2,s and ℓ(Br), ℓ(fr),
∑
ℓ(pr,i) ≤ poly(r). Here s is some universal

constant.

Let Sr = {pr,1, . . . , pr,kr}. This family
{
Sr

}
satisfies condition a). We show that the

union of pr,i cannot be written as a short GF of length poly(r). Indeed, assume there is d

for which we can write projx,y(fr) = pr,1 ∪ · · · ∪ pr,kr as hr ∈ GF2,d with ℓ(hr) ≤ poly(r). By

Theorem 7.14, the complement Br\hr can be written as a short GF gr ∈ GF2,2d of length

poly(r). Taking the specialization specx(gr), we still have a short GF in GF2,2d of length

poly(r), which represents Lr. Since this holds for all r > 0, we have L ∈ G, a contradiction.

So the family
{
Sr

}
also satisfies b).

Note that each pr,i still has two variables x, y. By Lemma 7.34 part a), we can compress

each pr,i into a single variable short GF p̃r,i ∈ GF1,s of polynomial length. Then the new

subsets S̃r = {p̃r,1, . . . , p̃r,kr} ⊂ GF1,s still satisfy condition a). We show they still satisfy

condition b). Indeed, note that compressing/decompression preserves intersection and union.

So if p̃r,i has a polynomial length union then Lemma 7.34 part b) allows us the decompress

it into a polynomial length union of pr,i. This completes the proof for the case of union. The

case of intersection follows by taking complements of pr,i.

7.7.B. Proof of Theorem 7.4.

142

Definition 7.53. Given two GFs a = F(S1; t) and b = F(S2; t) with S1, S2 ⊆ Nn, the

Minkowski sum a⊕ b is F(S1⊕S2; t), where S1⊕S2 is the usual Minkowski sum of two point

sets.

Example 7.54. Given b = (b1, . . . , bn) ∈ Nn, the semigroup N〈b1, . . . , bn〉 consists of all

non-negative integer combinations of the bj ’s. Its generating function is given by:

fb(t) =
1

1− tb1 ⊕ . . . ⊕ 1

1− tbn .

Given such b ∈ Nn and a ∈ N, the Knapsack problem asks if a ∈ supp(fb).

Below is the precise statement of Theorem 7.4.

Theorem 7.55. Assume #P 6⊆ FP/poly. Then there is an s > 0 and two sequences

{ar}r>0, {br}r>0 ⊂ GF1,s such that

a) ℓ(ar) + ℓ(br) ≤ poly(r).

b) For every fixed d, the Minkowski sum ar ⊕ br cannot be written as a short GF hr in

GF1,d of length ℓ(hr) ≤ poly(r).

Proof. By Theorem 7.52, there exists an s > 0, and for each r a subset

Sr = {pr,1, . . . , pr,kr} ⊂ GF1,s with
∑

ℓ(pr,i) ≤ poly(r)

with the following property. For every fixed d, the union hr = pr,i ∪ · · · ∪ pr,kr cannot be

written as a short GF of length poly(r) in GF1,d. Define

ar(t, u) =

kr∑

i=1

pr,i(t)u
i ∈ GF2,s. (7.23)

and

br(t, u) =
kr−1∑

i=0

t0ui =
1− ukr
1− u ∈ GF1,1 ⊂ GF2,s. (7.24)

Since
∑
ℓ(pr,i) ≤ poly(r), we also have ℓ(ar) + ℓ(br) ≤ poly(r).

Consider the terms txukr in the Minkowski sum ar⊕ br. From (7.23) and (7.24), we have:

{
x : (x, kr) ∈ supp(ar ⊕ br)

}
=

kr⋃

i=1

supp(pr,i) = supp(hr).

143

In other words, we have [ukr](ar ⊕ br)(t, u) = hr(t). Define

gr(t, u) =
∑

x∈N

txukr =
ukr

1− t .

Taking the intersection of gr with ar ⊕ br, we get:

[
(ar ⊕ br) ⋆ gr

]
(t, u) = ukr hr(t). (7.25)

Now assume there is d so that ar ⊕ br can be written as cr ∈ GF2,d with ℓ(cr) ≤ poly(r).

By Theorem 7.14, we can compute hr by taking the Hadamard product cr ⋆gr and substitute

u← 1 in (7.25). This would imply that hr is a short GF of length poly(r) in the fixed class

GF1,d+1, which contradicts our first statement on hr.

So the two sequences {ar}r>0 and {br}r>0 ⊂ GF2,s do not have Minkowski sums of

polynomial lengths. Note that each ar and br still has two variables. By Lemma 7.34

part a), we can compress ar, br into single variable short GFs ãr, b̃r ∈ GF1,s. Note that

compressing/decompression preserves Minkowski sum. So ãr ⊕ b̃r does not have polynomial

length, because otherwise we can decompress it to get ar ⊕ br of polynomial length.

7.8. Squares, primes, and short GFs

7.8.A. Short GFs and squares. Recall the definition of the class G from Section 7.5. We

present a candidate for a language L ∈ P/poly which is outside of G. Let Squares be the

language consisting of all square numbers written in binary. Then

Squaresr = {k2 : k2 < 2r}.8

Conjecture 7.56. Squares is not in G.

In other words, the conjecture says that for every fixed s, the segment Squaresr cannot

be represented as supp(gr) for a short GF gr ∈ GF1,s of length ℓ(gr) ≤ poly(r). Note that this

8Strictly speaking, some numbers in Squaresr have less than r digits. However, we can always pad them
with enough zeroes form a set of strings of the same length.

144

conjecture is free of complexity assumptions. If true, Conjecture 7.56 shows unconditionally

that G (P/poly, which implies G (GH. We already know from Example 7.30 and Section 7.5

that Squares ∈ UΠG
1 ⊆ GH. So Squares should be a candidate that separates G from UΠG

1

according to this conjecture.

We begin with the following attractive result.

Theorem 7.57. If Conjecture 7.56 is false, then Integer Factoring ∈ P/poly.

Proof. We build on an argument in Section 6 of [Bar06b]. Assume there is an s > 0 so that

for every N = 2r, we can write F
(
Squaresr; t

)
= gr(t), where gr(t) is a short GF in GF1,s

with ℓ(g) ≤ poly(r). Consider:

hr(t) = gr(t)
4 =

(
∑

n2<N

tn
2

)4

=
∑

k≥0

ar(k)t
k ,

where

ar(k) = #
{
(n1, n2, n3, n4) : n

2
i < N,

∑
n2
i = k

}
.

In particular, if k < N , then ar(k) is the number of ways to write k as a sum of four squares.

Since gr ∈ GF1,s, we have hr = g4r ∈ GF1,4s and also ℓ(h) ≤ poly(ℓ(g)) ≤ poly(r).

Applying Proposition 7.16, each coefficient ar(k) can be computed in time poly(r). By

Jacobi’s formula (see e.g. [HW]), we also have:

ar(k) = 8
∑

4∤d, d|k

d for k < N .

Here d is a divisor of k which is not a multiple of 4. From this, we can compute in time

poly(r) the sum of divisors σ(k) for every k < N = 2r. By a standard argument (see

e.g. [BMS86]), given σ(k), we can factor k in probabilistic polynomial time.

Theorem 7.58. If Conjecture 7.56 is false, then #P ⊆ FP/poly.

Proof of Theorem 7.58. In [MA78], it is proved that the following problem is NP-complete:

Given α, β, γ ∈ N, decide whether there exists x ∈ N such that

0 ≤ x ≤ γ and x2 ≡ α (mod β). (7.26)

145

The argument in [MA78] actually gave bijection between the set of Boolean strings satisfying

a 3SAT formula and the set of x satisfying (7.26). Here α, β and γ can be computed in

polynomial time from the 3SAT formula. Since counting the number of 3SAT solutions is

#P-complete, so is counting the number of solutions for (7.26).

Now assume Conjecture 7.56 fails, then Squares ∈ G. This means there is an s > 0

so that for every r > 0 we can write F
(
Squaresr; t

)
= gr(t) for some gr ∈ GF1,s with

ℓ(gr) ≤ poly(r). Given α, β, γ ∈ N, we define:

h(t) =

γ2∑

i=0

ti =
1− tγ2+1

1− t and k(t) =
∑

x≡α (mod β)

tx =
tα

1− tβ .

Let r = 2⌈log γ⌉. The number of solutions for (7.26) can be counted by taking gr ⋆ h ⋆ k and

evaluate at t = 1, which are polynomial time operations by theorems 7.13 and 7.14. So the

above #P-complete problem can be solved by polynomial size circuits, which are provided

by the gr for different r. This implies #P ⊆ FP/poly.

By Theorem 7.29, we can represent Squaresr as specx(Br\projy(fr)) for some short GF

fr of length poly(r). Conjecture 7.56 says that it is not possible to do so without using

projections.

In the domain of PA formulas, by Lemma 7.26, we can represent Squaresr with a ∃∀ PA
formula of length poly(r). A similar question can be asked: Are both quantifiers necessary?

The following result shows that two alternating quantifiers ∃∀ are necessary in Lemma 7.26,

already in the case of Squares:

Proposition 7.59. Squaresr cannot be represented by an ∃ PA formula of length poly(r)

in a fixed number of variables.

Proof. By APk we mean a k-term arithmetic progression. It is well known that Squares

does not contain any non-trivial AP4. This was suggested by Fermat in 1640 and proved

by Euler in 1780 (see e.g. [Weil84, p. 115]). Also, the cardinality of Squaresr is super-

polynomial in r. With these two observations, this proposition follows directly from the

next theorem when k = 4.

146

Theorem 7.60. For every fixed n and k, there exists a polynomial P so that the following

holds. If an ∃ PA formula

{x : ∃y ∈ Zn Φ(x,y)} (7.27)

determines a set of cardinality at least P (ℓ(Φ)), then it must contain a non-trivial APk.

Proof. By Proposition 6.18, we know that there is a constant c = c(n) > 0 so that any

quantifier-free expression Φ in n variables describes a disjoint union ofm polyhedra P1, . . . , Pm

in Rn+1 with m < ℓ(Φ)c. So the formula (7.27) can be rewritten as:

S =
{
x ∈ Z : ∃y ∈ Zn

m∨

i=1

(x,y) ∈ Pi

}
. (7.28)

Let q(t) = kn+1tc. Assume that |S| ≥ q
(
ℓ(Φ)

)
> kn+1m. Select any (kn+1m + 1) different

integers from S. By the pigeonhole principle, one of the polyhedra, say P1, contains in its

projection at least kn+1+1 of these integers. Denote those integers in the projection of P1 by

x1, . . . , xs, where s = kn+1 + 1. For every such xi, there exists yi ∈ Zn so that (xi,yi) ∈ P1.

So we have:

(x1,y1), . . . , (xs,ys) ∈ P1 ∩ Zn+1.

By the pigeonhole principle, two different pairs (xi,yi) and (xj,yj) have coordinates equal

mod k pairwise. Since P1 is convex, we also have

(λxi + (1− λ)xj , λyi + (1− λ)yj) ∈ P1 ∩ Zn+1 , where λ ∈
{

1
k
, . . . , k−1

k

}
.

The above points project to λxi + (1− λ)xj . By (7.28), we get a non-trivial APk+1:

(
xi,

k−1
k
xi +

1
k
xj , . . . ,

1
k
xj +

k−1
k
xi, xj

)
,

a contradiction.

Remark 7.61. Proposition 7.59 combined with Lemma 7.26 implies that there is a sequence

of PA formulas {x : ∃y ∀z Φr(x, y, z)} of length poly(r) for which there are no equivalent PA

formulas {x : ∃yΨr(x, y)} of length poly(r). So the formulas {(x, y) : ∀z Φr(x, y, z)} have
no equivalent quantifier-free formulas in x and y of length poly(r). Therefore, quantifier

elimination in PA necessarily increases the length of formulas by a super-polynomial factor,

even in a bounded number of variables (x, y ∈ N, z ∈ N3).

147

Remark 7.62. From Squares, one can easily create another a language L ∈ P which Lr be

represented neither by ∀ nor by ∃ PA formulas of length poly(r). For r odd, we let L contain

all squares between 2r and 2r+1. For r even, we let L contain all non-squares between 2r and

2r+1. It is clear that L ∈ P. The above argument shows that Lr cannot be represented by

∃ PA formulas of length poly(r) when r is odd. Under a negation, the same argument also

works for ∀ PA formulas when r is even. We denote this language by Squares′.

7.8.B. Short GFs and arithmetic progressions. Generalizing the above observation on

sets with no arithmetic progressions, we suggest another conjecture on short GFs. Again,

by APk we mean a k-term arithmetic progression.

Definition 7.63. Fix c > 0 and k ≥ 3. A short GF g is said to have the (c, k)-property if

either |supp(g)| < ℓ(g)c or supp(g) contains an APk.

Conjecture 7.64. For every s and k, there exists c > 0 so that every short GF g(t) ∈ GF1,s

has the (c, k)-property.

Proposition 7.65. Conjecture 7.64 implies Conjecture 7.56.

Proof. Assume Conjecture 7.64 holds but Conjecture 7.56 fails, i.e., Squares ∈ G. So

there is an s > 0 such that Squaresr can be represented as supp(gr) with gr ∈ GF1,s and

ℓ(gr) ≤ poly(r). Conjecture 7.64 applied to s and k = 4 gives us a c > 0 so that all g ∈ GF1,s

have the (c, 4)-property. We have supp(gr) = |Squaresr| ≫ rc. So if r is large enough, gr

contains an AP4. This contradicts the fact that Squares is AP4 free.

7.8.C. Short GFs and primes. In a similar manner, we ask if primes can be represented

by short GFs of polynomial length. Let Primes be the language consisting of all primes

written in binary. Then

Primesr = {p prime : p < 2r}.

Conjecture 7.66. Primes is not in G.

In other words, the conjecture says that for every fixed s, the segment Primesr cannot be

148

represented as supp(gr) for a short GF gr ∈ GF1,s of length ℓ(gr) ≤ poly(r). This conjecture,

if true, would also show G (P/poly unconditionally.

Proposition 7.67. Let π(n) be the number of primes between 1 and n. If Conjecture 7.66

is false then π(n) can be computed by circuits of size poly(logn).

Proof. Assume Conjecture 7.66 is false, i.e., there is an s > 0 so that for every r > 0 we

have F
(
Primesr; t

)
= gr(t), where gr ∈ GF1,s and ℓ(gr) ≤ poly(r). Given n < 2r, we have:

F
(
Primesr ∩ [0, n]; t

)
= gr(t) ⋆

1− tn+1

1− t = hn(t).

By Theorem 7.14, we can compute hn in time poly(r). Substituting t← 1, we get π(n).

Remark 7.68. In [LO87], using strong analytic tools, Lagarias and Odlyzko gave an algo-

rithm to compute π(n) in time O(n1/2+ε), which is exponential in log n. If Conjecture 7.66 is

false, then for each r, a far better poly(r) algorithm exists for computing π(n) for all n < 2r.

7.9. Relative complexity of short GFs

7.9.A. PA complexity classes. We again revisit the relation between short GFs and PA

formulas. The most basic PA formulas are quantifier-free, i.e., Boolean combinations of

linear inequalities.

Definition 7.69. The class ΣPA
0 = ΠPA

0 consists of languages definable by quantifier-free PA

formulas of polynomial lengths. In other words, a language L is in ΣPA
0 if for every r > 0,

there is a quantifier-free PA expression Φr(x) of length ℓ(Φ) ≤ polyL(r) so that:

x ∈ Lr ⇐⇒ Φr(x).

By Proposition 6.18, L ∈ ΣPA
0 if and only if every initial segment Lr is a union of

polynomially many intervals in N. By Theorem 7.21, we have ΣPA
0 ⊂ G.

Example 7.70. The language Even of even integers is not in ΣPA
0 . However, Even ∈ G,

because:
∑

x∈Evenr

tx = t0 + t2 + · · ·+ t2
r−2 =

1− t2r

1− t2 .

149

So we conclude that ΣPA
0 (G.

Definition 7.71. The class ΣPA
1 consists of languages definable by ∃ PA formulas of poly-

nomial lengths. In other words, L ∈ ΣPA
1 if there is an n so that for every r > 0, we can

represent

x ∈ Lr ⇐⇒ ∃y ∈ Nn Φr(x,y),

where Φr(x,y) is a quantifier-free PA expression of length ℓ(Φr) = polyL(r). The class Π
PA
1 is

defined similarly, but with ∀ PA formulas. In other words, L ∈ ΠPA
1 if and only if ¬L ∈ ΣPA

1 .

Conjecture 7.72. G ⊆ ΣPA
1 ∩ΠPA

1 .

To rephrase, this conjecture says that for every fixed s, there is an n = n(s) so that every

g ∈ GF1,s of finite support has an ∃ PA formula representation:

G = {x : ∃y ∈ Nn Φ(x,y)}, F(G; t) = g(t) and ℓ(Φ) ≤ poly(ℓ(g)). (7.29)

Note that it would be enough to show G ⊆ ΣPA
1 , because G is closed under taking complement

of short GFs.

Proposition 7.73. Conjecture 7.72 implies Conjecture 7.64, which implies Conjecture 7.56.

Proof. Assume Conjecture 7.72 holds. Then for every fixed s, we have n = n(s) for which

every g ∈ GF1,s has an ∃ PA formula representation (7.29). The last condition means

there is a constant d = d(s) such that ℓ(Φ) < ℓ(g)d. By Theorem 7.60, there exists γ =

γ(n, k) > 0 so that G contains an APk whenever |G| > ℓ(Φ)γ . So if |supp(g)| ≥ ℓ(g)γd then

|G| = |supp(g)| ≥ ℓ(g)γd > ℓ(Φ)γ , which implies that G contains an APk. So c = γd satisfies

Conjecture 7.64, which should depend only on s and k. By Proposition 7.65, Conjecture 7.64

implies Conjecture 7.56.

Figure 7.1 illustrates the relative relations between short GFs and PA formulas if Con-

jecture 7.72 holds. Here Squares′ is the language defined in Remark 7.62.

One can of course define analogues of ΣPA
1 and ΠPA

1 with more alternating quantifiers.

But it turns out that ΣPA
k+1 = ΣG

k+1 = ΣP
k/poly for every k ≥ 1. This was implicit in

150

ΣPA
1 ΠPA

1G

P/poly

Squares′

Figure 7.1: Short GFs vs. PA formulas.

Lemma 7.36 and theorems 7.39, 7.46. For the sake of completeness, we call the hierarchy of

all classes ΣPA
k and ΠPA

k as GPA. Obviously GPA = GH = PH/poly.

7.9.B. Complexity classes diagram. The following diagram summarizes various com-

plexity classes that appeared in this chapter and their relationships. An arrow X → Y

indicates X ⊆ Y . Known strict subset relations are decorated with 6=. Dashed arrows and

segments denotes conjectural relationships.

GPA GH PH/poly

ΣPA
3 ΣG

3 ΣP
2/poly

ΣPA
2 ΣG

2 ΣP
1/poly

UΠG
1 UP/poly

P/poly ∋ Squares

ΣG
1

ΣPA
1

G

ΣPA
0

= =

= =

= =

=

6∋

6∋?

6=

?

6=

6=

151

ΣPA
k+1 = ΣG

k+1 = ΣP
k/poly, k ≥ 1: sections 7.5, 7.9. Squares

?

/∈ G: Conjecture 7.56.

UΠG
1 = UP/poly: Remark 7.32. Squares /∈ ΣPA

1 : Proposition 7.59.

ΣG
1 ⊆ P/poly: Proposition 7.18. ΣPA

0 (ΣPA
1 (ΣPA

2 : Remark 7.61.

ΣPA
0 (G

?

⊆ ΣPA
1 : Section 7.9.

7.10. Proof of Lemma 7.34

Let x = (x1, . . . ,xk) be the array of multi-variables of dimension n1, . . . , nk. We first prove

the result when k = 1, i.e., when x = x1, g(t) =
∑

tx1
1 and f(u) =

∑
uz11 . For convenience,

we denote t1, x1, u1, z1 by t, x, u and z respectively. Also denote by n the dimension of the

multi-variable x. So g(t) =
∑

tx and

τN (x) = x1 +Nx2 + · · ·+Nn−1xn.

Part a). Assume we are given g ∈ GFn,s. By Theorem 7.13, we can find the norm N of g

in time poly(ℓ(g)). By rounding N to the next power of 2, we still have logN ≤ poly(ℓ(g))

and supp(g) ⊆ [0, N)n. Let N = 2r. We define f(u) be the specialization of g(t) under the

following substitutions:

t1 ← u, t2 ← uN , . . . , tn ← uN
n−1

,

so that

tx = ux1+Nx2+...+Nn−1xn = uτN (x).

Clearly, we have:

supp(f) = τN (supp(g)).

By Theorem 7.13, polynomial substitutions can be performed in polynomial time and gives

f as a short GF in GF1,s with ℓ(f) ≤ poly(ℓ(g)). This proves part a).

Part b). Given two power series A(t) =
∑
αxt

x ∈ GFn,p , B(t) =
∑
βxt

x ∈ GF1,q and a

linear map τ : Zn → Z, we define their τ -Hadamard product as

C(t) = A(t) ⋆τ B(t) :=
∑

αxβτ(x)t
x . (7.30)

152

Now assume f(u) =
∑
uz ∈ GF1,s, N = 2r, and supp(f) ⊆ [0, N)n. From the above

definition, it is clear that such a g(t) satisfying (7.16) can be obtained as:

g(t) = a(t) ⋆τN f(t), (7.31)

where

a(t) =
∑

x∈[0,N)n

tx =
1− tN1
1− t1

· · · 1− t
N
n

1− tn
.

with a ∈ GFn,n and ℓ(a) ≤ poly(logN).

Here the map τN is from Definition 7.33. So it is enough to show that the τ -Hadamard

product of two short GFs is a short GF of polynomial length. The proof follows Barvinok’s

argument in [Bar06b] (see also lemmas 3.4 and 3.6 in [BW03]). First, notice that the τ -

Hadamard product is bilinear in A(t) and B(t). Therefore, we only need to show that C(t)

is a short GF when A(t) and B(t) have only 1 term each, i.e., when:

A(t) =
ta∏p

i=1(1− tbi)
and B(t) =

tc∏q
j=1(1− tdj)

. (7.32)

Consider an (unbounded) polyhedron P ⊂ Rp+q with coordinates (ζ1, . . . , ζp, ξ1, . . . , ξq),

defined as:

P :=

ζ1, . . . , ζp, ξ1, . . . , ξq ≥ 0

τ(a+ ζ1b1 + · · ·+ ζpbp) = c+ ξ1d1 + · · ·+ ξqdq

 . (7.33)

By Theorem 7.20, we can write a short GF for P ∩ Zp+q:

D(w,v) :=
∑

(ζ,ξ)∈P

wζvξ =
∑

(ζ,ξ)∈P

(w1)
ζ1 . . . (wp)

ζp(v1)
ξ1 . . . (vq)

ξq . (7.34)

Furthermore, we have D ∈ GFp+q,p+q . By (7.32), the expansions of A(t) and B(t) are:

A(t) =
∑

ζ≥0

ta+ζ1b1+···+ζpbp and B(t) =
∑

ξ≥0

tc+ξ1d1+···+ξqdq . (7.35)

We substitute:

w1 ← tb1 , . . . , wp ← tbp , v1 ← 1, . . . , vq ← 1.

By (7.33), (7.34) and (7.35), we get:

taD(tb1 , . . . , tbp, 1, . . . , 1) =
∑

(ζ,ξ)∈P

ta+ζ1b1+···+ζpbp = A(t) ⋆τ B(t) = C(t).

153

By Theorem 7.13, substitution can be done in polynomial time, and results in a short GF

C(t) of index at most p+ q. Hence, we have C(t) ∈ GFn,p+q and ℓ(C) ≤ poly(ℓ(A) + ℓ(B)).

Note that by taking the τ -Hadamard product, the index of C is increased to p + q. This

pushes the index of g in (7.31) to n + s. So we do not get back exactly the index s for g.

But n+ s is still a constant, and g is still a short GF in a fixed class GFn,n+s.

This completes the proof for the case k = 1. The general case can be handled similarly.

7.11. Final remarks and open problems

7.11.A. As we mentioned in the introduction, much of this work is motivated by Barvinok’s

program implicit in his writing. Specifically, we were inspired by the following quote:

“It seems hard to prove that a particular finite, but large, set S ⊂ Zd does not

admit a short rational generating function: if a particular candidate expression

for fS(x) is not short, one can argue that we have not searched hard enough

and that there is another, better candidate.” [Bar06b]

In fact, the work in this chapter originally began as a followup to Chapter 6 and [NP17e],

aiming to explain why the technology of short GFs was unable to directly derive Theorem 7.22

from Theorem 7.20 without additional use of geometric tools. Our theorems 7.3 and 7.5 are

strong versions of this claim.

Let us also recall the main results in chapters 2 and 3, which generally say that we

(algorithmically) cannot take projection of integer points in a polytope P ⊂ Zn, followed by

an anti-projection. This implies that the short GF which contains the projections of P ∩Zn

cannot be easily projected again after we take its complement.

7.11.B. In notations of the introduction, a short GF fS(t) of a set S ⊂ N can be viewed

as a presentation of S by an alternating sum of generalized (k-dimensional) arithmetic pro-

gressions. As such, there are many connections between short GFs and Arithmetic Combi-

natorics, which are yet to be explored (cf. [TV06]). For example, when k = 1, taking the

154

positive part of these arithmetic progressions corresponds to variants of Erdős’s covering

systems which received much attention in recent years (see [Guy04, Hou15]).

Conjecture 7.1 has an especially classical feel with its claim that squares and (generalized)

arithmetic progression are incompatible. There are of course both classical and recent works

on squares in arithmetic progressions, but no known results seem strong enough to apply in

this case (see [BGP92, Sze74, Weil84]).

7.11.C. There are two ways to think of the results in this chapters. First and foremost,

they provide a very strong evidence in favor of non-polynomiality of projections and other

operations with short GFs. In the opposite direction, the apparent connection to arithmetic

progressions and a plethora of both analytic and combinatorial tools for working with them

suggest a possibility of some lower bounds.

We would like to caution the reader. Initially we were rather optimistic about removing

complexity assumptions in Theorem 7.5 by finding a direct proof of Conjecture 7.56 or some

other similar lower bound. However, Proposition 7.49 and Remark 7.50 seem to suggest

that this might be rather difficult. A sufficiently strong argument that shows G (GH could

potentially show UP/poly = UΠG
1 (GH, which implies #P 6⊆ FP/poly, an important open

problem (see §7.11.E below).

On the other hand, the two lowest level G and ΣG
1 in GH seems to behave quite differently

from higher ones. So an elementary approach to prove G (GH is not completely ruled out.

7.11.D. The idea of Section 7.9 is to characterize all short GFs. Roughly, Conjecture 7.72

says that every short GF is the projection of a union of polynomially many polyhedra of

bounded dimension. This can viewed as a converse of Theorem 7.22.

Conjecture 7.72 is possibly a wishful thinking. Unfortunately, its validity is hard to

judge since we have so few explicit constructions of short GFs other than projections of

integer points in polyhedra. If true, Proposition 7.73 implies Conjecture 7.1 and removes

the complexity assumptions from all theorems in the introduction. Moreover, it implies

exponential lower bounds on the length of short GF for squares, projections and other

155

theorems in the introduction.9 These are the same bounds the exponential time hypothesis

(ETH) implies.

7.11.E. It is worth comparing theorems 7.57 and 7.58 from the computational complexity

point of view. Technically speaking, these two results are not comparable. However, one

offers a much stronger evidence supporting Conjecture 7.56 than the other.

Recall that Integer Factoring is in NP ∩ coNP. The experts seem to be split on

whether Integer Factoring is in P or not. In fact, we do not even know if it is in P/poly.

Nor do we know of any collapse result if Integer Factoring is indeed in P/poly. So

overall, Theorem 7.57 gives a rather weak evidence for Conjecture 7.56.

On the other hand, #P oracles are very powerful by Toda’s theorem, and thus very

unlikely to be in FP/poly. As mentioned in Remark 7.51, #P ⊆ FP/poly would lead to a

collapse of PH the second level. In other words, Theorem 7.58 gives a very strong evidence

in favor of Conjecture 7.56.

9In the chain of reductions, the exponential factor appears in the proof of Proposition 7.65.

156

Part III

Related problems

157

CHAPTER 8

Presburger Arithmetic with algebraic scalar

multiplications

We consider the theory Sα = (R, <,+,Z, x 7→ αx), which is an extension of classical Pres-

burger Arithmetic. It is know that Sα is decidable for quadratic α, and undecidable for

non-quadratic irrationals. We study complexity of deciding sentences in Sα. When α is

quadratic and the sentence has k alternating quantifier blocks, we prove both lower and

upper bounds, as towers of height (k − 3) and k, respectively. We also show that for α

non-quadratic, already k = 4 alternating quantifier blocks suffice for undecidability. This

chapter is a version of the preprint [HNP18].

8.1. Introduction

8.1.A. Statements of results. Let α be a fixed irrational number. The reader can always

assume that α is algebraic, although some of the results below also hold in full generality.

Let Sα = (R, <,+,Z, x 7→ αx). This is a first order theory over the reals, with a

predicate for the integers, which also allows addition and scalar multiplication by α. This is

an extension of Presburger Arithmetic. It is still decidable when α is quadratic [Hie16], but

undecidable otherwise [HTy14] (see §8.1.B).

An integer sentence in Sα, is a sentence whose quantified variables are constrained to

integer values. Such sentences have the form:

S = Q1x1 ∈ Zn1 . . . Qkxk ∈ Znk Φ(x1, . . . ,xk), (8.1)

where Q1, . . . , Qk ∈ {∀, ∃} are k alternating quantifiers, and Φ is a Boolean combination of

158

linear inequalities of the form
k∑

i=1

ni∑

j=1

γij xij ≤ δ

with coefficients γij and constant term δ in Z[α]. As the number k of alternating quantifier

blocks and the dimensions (n1, . . . , nk) increase, such sentences become harder to decide,

and determining exactly how hard is an important problem in computational complexity.

The number α ∈ Q is given by its minimal polynomial p(x) ∈ Z[x] of degree d, with a

small enough rational interval to single out a unique root. We say that α ∈ Q is quadratic

if d = 2. Each element γ ∈ Z[α] is represented in the form γ = c0 + c1α + . . . + cd−1α
d−1,

where c0, . . . , cd−1 ∈ Z. For example, α =
√
2 is quadratic, is given by {α2 − 2 = 0, α > 0},

so that Z[
√
2] = {a+ b

√
2, a, b ∈ Z}.

For γ ∈ Z[α], the encoding length ℓ(γ) is the total bit length of ci’s defined above.

Similarly, the encoding length ℓ(S) is defined to be the total bit length of all symbols in S,

with integer coefficients and constants represented in binary. In the following results, the

constants K,C vary from one context to another.

Theorem 8.1. Let α ∈ Q be a quadratic irrational number, and let k ≥ 1. An integer

sentence S in Sα with k alternating quantifier blocks can be decided in time at most

K 22
. .

.
2C ℓ(S)

(
tower of height k

)
.

Here the constants K, C > 0 depend only on α.

In the opposite direction, we have the following lower bound:

Theorem 8.2. Let α ∈ Q be a quadratic irrational number, and let k ≥ 4. Then, deciding

integer sentences in Sα with k alternating quantifier blocks and at most c k variables and

inequalities requires space at least:

K 22
. .

.
2C ℓ(S)

(
tower of height k − 3

)
,

Here the constants c, K, C > 0 only depend on α.

159

Theorem 8.3. Let α ∈ Q be a quadratic irrational number. Then, deciding ∃6∀4∃11 integer

sentences in Sα with at most K inequalities is PSPACE-hard, where the constant K depends

only on α. Furthermore, for α =
√
2, one can take K = 106.

On the other hand, for non-quadratic irrationals, we have:

Theorem 8.4. Let α ∈ Q be a non-quadratic irrational number. Then ∃K∀K∃K∀K integer

sentences in Sα are undecidable, where K = 20000.

Theorems 8.3 and 8.2 should be compared to our previous theorems 3.1 and 3.3 in the

setting of PA. The the sudden jump from polynomial hierarchy in PA to super-exponential

complexity in Sα is due to the power of irrational quadratics. Specifically, any irrational

quadratic α has an infinite periodic continued fraction. From here, we can work with Os-

trowski representations of integers in base α, and code string relations such as shifts, suf-

fix/prefix and subset, which were not all possible in PA. Such operations are rich enough

to encode arbitrary automata computation, and in fact Turing Machine computation in

bounded space.

8.1.B. Decidability background. Hieronymi and Tychonievich showed in [HTy14] that

if an expansion of (R, <) can define a discrete set D ⊆ R≥0 and also satisfies a certain

reasonable denseness condition, then it can actually define every subset of Dn for every n.

As an application, they proved the following result:

Theorem 8.5 ([HTy14]). For any α, β, γ ∈ R that are Q-linearly independent, the structure

(R, <,+, αZ, βZ, γZ) defines multiplication, and thus its theory is undecidable.

Since 1, α, α2 are Q-linearly independent for a non-quadratic α, the theory of Sα is un-

decidable for such α. Indeed, a careful analysis of their work shows that this result can be

further specialized to give undecidability of integer sentences in Sα:

Corollary 8.6 ([HTy14]). For any non-quadratic α, integer sentences (8.1) of Sα are un-

decidable.

160

Neither Corollary 8.6 nor an upper bound on k in (8.1) needed for undecidability was

stated explicitly in [HTy14], but both can be obtained by careful analysis of the proof. In

Theorem 8.4, we not only give a proof of Corollary 8.6, but also explicitly quantify this

result by showing that 4 alternating quantifier blocks are enough for undecidability. While

our argument is based on the ideas in [HTy14], substantial extra work is necessary to reduce

the number of alternations to 4 from the upper bound implicit in the proof of Theorem 8.5.

When α is quadratic, Hieronymi proved the following surprising result:

Theorem 8.7 ([Hie15, Hie16]). For α quadratic, integer sentences (8.1) of Sα are decidable.

More generally, the structure Sα defines a model of Monadic Second Order Logic (MSO),

and vice versa.

By this result for α quadratic, to decide integer sentences (8.1), one can translate them

into corresponding sentences in MSO and then decide the latter. Thus, upper and lower

complexity bounds for decision in MSO can theoretically be transferred to Sα. However, an
efficient direct translation between Sα and MSO was not described in [Hie15, Hie16]. Ideally,

one would like to translate a sentence from Sα to MSO, and vice versa, with as few extra

alternations as possible. In theorems 8.1 and 8.2, we explicitly quantify this translation.

8.1.C. Proofs outline. The most powerful feature of Sα is that we can talk about Os-

trowski representation of integers, which will be used as the main encoding tool. We first

obtain the upper bound in Theorem 8.1 by directly translating (8.1) into the language of

automata using Ostrowski encoding. Next, we show the lower bound for three alternating

quantifiers (Theorem 8.3) by a general argument on the Halting Problem with polynomial

space constraint, again using Ostrowski encoding.

We generalize the above argument to get lower bound for any k ≥ 3 alternating quantifier

blocks (Theorem 8.2). This is done by first translating sentences from the weak Second Order

Monadic logic (WMSO) to Sα sentences with only one extra alternation, and then invoke

a known tower lower bound for WMSO. Overall, the chapter make transitions between Sα,
finite automata and WMSO, all of which are different incarnations of the same logic theory.

161

Finally in the proof of Theorem 8.4, we can again use the expressibility of Ostrowski

representation to reduce the upper bound of the number of alternating quantifier blocks

needed for undecidability in Sα for non-quadratic α. The use of Ostrowski representations

allows us to replace more general arguments from [HTy14] by explicit computations, and

thereby reduce the quantifier-complexity of certain integer sentences in Sα.

8.2. Preliminaries

8.2.A. Continued fractions and Ostrowski representation. Let α = [a0; a1, a2, . . .]

be any irrational, with ai ∈ Z+. The convergents of α follow the recurrence relation:

(p−1, q−1) = (1, 0); (p0, q0) = (a0, 1);

pn = anpn−1 + pn−2, qn = anqn−1 + qn−2 for n ≥ 1.
(8.2)

This can be written as:
pn pn−1

qn qn−1

 = Γ0 . . .Γn (8.3)

where Γi =

ai 1

1 0

. Let βn = αqn − pn. They have the properties:

βn > 0 if 2|n, βn < 0 if 2 ∤ n. (8.4)

β0 > −β1 > β2 > −β3 > . . . (8.5)

− βn = an+2βn+1 + an+4βn+3 + an+6βn+5 + . . . ∀n ∈ N. (8.6)

These can be easily proved using (8.2). We refer to [RS92] for the basics of continued

fractions.

Fact 8.8. Each X ∈ N has a unique α-Ostrowski representation:

X =

N∑

n=0

bn+1qn. (8.7)

where 0 ≤ b1 < a1, 0 ≤ bn+1 ≤ an+1 and bn = 0 whenever bn+1 = an+1.

162

Proof. See [RS92, Ch. II-§4].

From now on, when α and X are clear from the context, we refer to (8.7) simply as the

Ostrowski representation of X . We also denote the coefficient bn+1 by [qn]. Denote by

Ost(X) the set of qn with [qn] > 0.

We set ζα := [a1; a2, . . .], so that ζα = 1
α−a0

= 1
α−⌊α⌋

. Let Iα :=
[
− 1

ζα,1
, 1 − 1

ζα,1

)
. Define

fα : N → [0, 1] to be the function that maps X to αX − U , where U is the unique natural

number such that αX − U ∈ Iα. In other words:

fα(X) = αX − U ⇐⇒ − 1

ζα
≤ αX − U < 1− 1

ζα
. (8.8)

Define gα(X) = U , so that αX = fα(X) + gα(X).

Fact 8.9. Let βn = αqn − pn. We have:

fα(X) =
∑

n=0

bn+1βn and gα(X) =
∑

n=0

bn+1pn, (8.9)

where the coefficients bn are from (8.7). Also fα(N) = {fα(X) : X ∈ N} is a dense subset

of the interval [− 1
ζα
, 1− 1

ζα
).

Proof. See [RS92, Th. 1 on p. 25] and [RS92, Th. 1 on p. 33].

8.2.B. Periodic continued fractions. An irrational α is a quadratic if and only if it has

a periodic continued fraction α = [a0; a1, . . . , am, b0, b1, . . . , bκ−1]. Let β = [b0; b1, . . . , bκ−1].

It is clear that β = (cα + d)/(eα + f) for some c, d, e, f ∈ Z. Therefore, sentences in the

theory (R, <,+,Z, x→ αx) can be expressed in (R, <,+,Z, x→ βx) and vice versa. Thus,

for our complexity purposes, we can always assume that our quadratic irrational α is purely

periodic, i.e.,

α = [a0; a1, . . . , aκ−1] (8.10)

with the minimum period a0, . . . , aκ−1.

Fact 8.10. Let i ∈ N. There exist ci, di ∈ Z such that for every n ∈ N with κ|n, we have:

(pn+i, qn+i) = ci(pn, qn) + di(pn+1, qn+1).

The coefficients ci, di can be computed in time poly(i).

163

Proof. By (8.3), we have:

pn+i+1 pn+i

qn+i+1 qn+i

 = Γ0 . . . Γn+1 Γn+2 . . .Γn+i+1 =

pn+1 pn

qn+1 qn

 Γn+2 . . .Γn+i+1

Since Γκ+t = Γt for every t ∈ N and κ|n, we have Γn+2 . . .Γn+i+1 = Γ2 . . .Γi+1. Let

Γ2 . . . Γi+1 =

d

′
i di

c′i ci

 (8.11)

we have
pn+i+1 pn+i

qn+i+1 qn+i

 =

pn+1 pn

qn+1 qn

d

′
i di

c′i ci

So (pn+i, qn+i) = ci(pn, qn) + di(pn+1, qn+1) and ci, di only depend on i. Note that ci, di can

be computed in time poly(i) by (8.11).

Remark 8.11. For i = 0, we have c0 = 1, d0 = 0. For i = 1, we have c1 = 0, d1 = 1.

By (8.11), if we let γi(v, v
′) := civ + div

′ then they follow the recurrence:

γ0(v, v
′) = v, γ1(v, v

′) = v′, γi(v, v
′) = aiγi−1(v, v

′) + γi−2(v, v
′), (8.12)

as similar to (8.2).

Fact 8.12. There are fixed µ, ν, µ′, ν ′ ∈ Q such that

pn = µqn + µ′qn+κ, qn = νpn + ν ′pn+κ

for every n ∈ N.

Proof. Again from (8.3), for every n ≥ 0:

pn
qn

 = Γ0 Γ1 . . . Γn

1

0

 .

Since Γi+κ = Γi, we have:

pn+κ

qn+κ

 = (Γ0 . . .Γκ−1) (Γκ . . .Γn+κ)

1

0

 = (Γ0 . . .Γκ−1) (Γ0 . . .Γn)

1

0

= (Γ0 . . .Γκ−1)

pn
qn

 =

pκ−2 pκ−1

qκ−2 qκ−1

pn
qn

 .

Note that pκ−1, qκ−1, pκ−1, qκ−2 are constants. From here we easily get µ, ν, µ′ and ν ′.

164

8.2.C. Logical formulas for working with Ostrowski representation. Let α be any

irrational, not just quadratic. The convergents {pn/qn} can be characterized by the best

approximation property. Namely, u/v with v > 1 is a convergent pn/qn if and only if

∀w, z (0 < z < v)→ |w − αz| > |u− αv|. (8.13)

From this, we have (u, v) = (pn, qn) and (u′, v′) = (pn+1, qn+1) if and only if they satisfy

C∀(u, v, u
′, v′) := 1 < v < v′ ∧ ∀w, z

(
0 < z < v′ →

|w − αz| ≥ |u− αv| > |u′ − αv′|
)
.

(8.14)

Note that C∀ is a ∀-formula. More generally, consider the formula:

C∀(u0, v0, . . . , uk, vk) := 1 < v0 < v1 < · · · < vk ∧

∀w, z
k∧

i=0

(
0 < z < vi+1 → |w − αz| ≥ |ui − αvi| > |ui+1 − αvi+1|

)
.

(8.15)

Then C∀ is true if and only if (u0, v0) = (pn, qn), . . . , (uk, vk) = (pn+k, qn+k) for some n with

qn > 1, i.e., k + 1 consecutive convergents of α.

Remark 8.13. Hereafter, we assume C∀(u, v, u
′, v′) = true, i.e., (u, v) = (pn, qn) and

(u′, v′) = (pn+1, qn+1) for some n ∈ N.

Define the following quantifier-free relations:

After(u, v, u′, v′, Z, Z ′) :=
(
−αv + u < αZ − Z ′ < −αv′ + u′

)

∨
(
−αv′ + u′ < αZ − Z ′ < −αv + u

)
.

(8.16)

Ãfter(u, v, u′, v′, Z, Z ′) :=
(
−αv + u− αv′ + u′ < αZ − Z ′ < −αv′ + u′

)

∨
(
−αv′ + u′ < αZ − Z ′ < −αv + u− αv′ + u′

)
.

(8.17)

Fact 8.14. We have:

• Ost(Z) ⊂ {qn+1, qn+2, . . . } if and only if After(u, v, u′, v′, Z, Z ′) holds for some Z ′.

• Ost(Z) ⊂ {qn+1, qn+2, . . . } and [qn+1] < an+2 if and only if Ãfter(u, v, u′, v′, Z, Z ′) holds

for some Z ′.

165

Also Z ′ is uniquely determined by Z if After or Ãfter holds.

Proof. (Similar to lemmas 4.6, 4.7 and 4.8 in [Hie16])

i) Assume n is odd. If Ost(Z) ⊂ {qn+1, qn+2, . . . }, then its Ostrowski representation is

Z =
∑N

k=n+1 bk+1qk for some N ≥ n + 1. From Fact 8.9, we have fα(Z) =
∑N

k=n+1 bk+1βk.

By (8.4), we have βk > 0 if k is odd and βk < 0 if k is even. Combined with bk+1 ≤ ak+1, we

have:

an+3βn+2 + an+5βn+4 + . . . < fα(Z) =
N∑

k=n+1

bk+1βk < an+2βn+1 + an+4βn+3 + . . .

By (8.6), this can be written as −βn+1 < fα(Z) < −βn. By (8.8), we have fα(Z) =

αZ − Z ′, where Z ′ ∈ N is unique such that aZ − Z ′ ∈ Iα. Also note that βn = αv − u

and βn+1 = αv′ − u′. So the above inequalities can be written as −αv′ + u′ < αZ − Z ′ <

−αv + u. When n is even, the inequalities reverse to −αv + u < αZ − Z ′ < −αv′ + u′.

Thus Ost(Z) ⊂ {qn+1, qn+2, . . . } implies After(u, v, u′, v′, Z, Z ′). The converse direction can

be proved similarly, using (8.5) and (8.6).

ii) The only difference here is that [qn+1] = bn+2 can be at most an+2− 1. Details are left

to the reader.

The relation v ∈ Ost(X), meaning that v = qn appears in Ost(X), is ∃-definable:

∃Z1, Z2, Z3 (v ≤ Z1 < v′) ∧ Ãfter(u, v, u′, v′, Z2, Z3) ∧ X = Z1 + Z2. (8.18)

and also ∀-definable:

∀Z1, Z2, Z3

[
(Z1 < v) ∧ After(u, v, u′, v′, Z2, Z3)

]
→ Z1 + Z2 6= X. (8.19)

To see this, note that v /∈ Ost(X) if and only if X = Z1+Z2 for some Z1, Z2 with Ost(Z1) ⊆
{q0, q1, . . . , qn−1} and Ost(Z2) ⊂ {qn+1, qn+2, . . . }.

We will need one more quantifier-free formula:

Compatible(u, v, u′, v′, X, Z, Z ′) := X <v′ ∧ After(u, v, u′, v′, Z, Z ′)

∧
(
X ≥ v → Ãfter(u, v, u′, v′, Z, Z ′)

)
.
(8.20)

This is satisfied if and only if

166

• Ost(X) ⊆ {q0, . . . , qn} (by X < v′),

• Ost(Z) ⊂ {qn+1, qn+2, . . . } (by After),

• If qn ∈ Ost(X), then [qn+1] in Ost(Z) is strictly less than an+2 (by Ãfter).

In other words, Compatible is satisfied if and only if Ost(X) and Ost(Z) can be directly

concatenated at the point v = qn to form Ost(X + Z) (see (8.7)).

8.3. Quadratic irrationals: Upper bound

In this section we prove Theorem 8.1. It should be emphasized that the tower height in

Theorem 8.1 only depends on the number of alternating quantifiers, but not on the number

of variables in the sentence S. First, we consider the case of a quantifier-free formula.

Proposition 8.15. Let F (x) be a quantifier-free (integer) formula in Sα, i.e., a Boolean

combination of linear inequalities in x ∈ Zn with coefficients/constants in Z[α]. Then there

is an automaton of size 2δ ℓ(F) recognizing the set of solutions of F . The constant δ only

depends on α.

Proof. Each variable x in F takes value over Z, but can be replaced by x1 − x2 for two

variables x1, x2 ∈ N. So we can assume that all variables take values over N. Recall that

coefficients/constants in Z[α] are given in the form cα + d with c, d ∈ Z. So now each

inequality in F can be reorganized into the form:

ay + αb z ≤ c t + αdw.

Here a, b, c, d are tuples coefficients in N, and y, z, t,w are subtuples of x. Now, for each

homogeneous term ay, we add in an additional variable u = ay and replace each appearance

of ay in the inequalities by u. By doing so, we introduce extra variables, but still keep the

length ℓ(F) linear. Now our formula splits into two parts. The first part consists of integer

linear equalities:

u = ay. (∗)
167

The second part consists of inequalities of the form:

u+ αv ≤ w + αz. (∗∗)

We encode integer variables by their Ostrowski representations, and build an automaton

that recognizes the solutions of F . In other words, each x ∈ N is encoded by the string

x̂ = b1 b2 . . . , where the bn’s are from (8.7). Here only a finite number of bn’s are nonzero,

so x̂ is a finite string. Since an’s are periodic (8.10) and bn ≤ an, we are working with a finite

alphabet.

First, by the result in [HTe18], integer addition in Ostrowski representation is recognizable

by a finite automaton. In other words, the function (x̂, ŷ) 7→ x̂+ y is regular. Now we

rewrite each equality u = ay into single additions, using the doubling trick. For example,

the equality u = 5y + 2z is equivalent to the following system:

y1 = y + y , y2 = y1 + y1 , y3 = y2 + y , z1 = z + z , u = y3 + z1 .

Again, we are introducing additional variables while keeping ℓ(F) linear. Each single addition

x = y + z is recognizable by a finite automaton. Taking product of all such automata, one

for each addition, we get a single automaton of size 2γ ℓ(F) that recognizes the first part (∗).
Here γ is some constant dependent on α.

Now we build an automaton for each inequality (∗∗), and later take their product au-

tomaton. Recall fα and gα from (8.8) and Fact 8.9. We have αx = fα(x) + gα(x) for every

x ∈ Z. Here gα(x) ∈ Z and fα(x) always lies in the unit length interval Iα. For u, v, w, z ∈ N,

we have u+ αv < w + αz if and only if:

u+ gα(v) < w + gα(z), or u+ gα(v) = w + gα(z), fα(v) < gα(z).
1

So the proof is done if we can show that for input u, v ∈ N:

i) The relation u < v is recognizable by a finite automaton.

ii) The relation fα(u) < fα(v) is recognizable by a finite automaton.

1The case of a sharp inequality can be handled similarly.

168

iii) The function gα : Z→ Z is recognizable by a finite automaton.

Tasks i) and ii) are straightforward from basic properties of Ostrowski representation. We

have x < y if and only if x̂ is lexicographically smaller than ŷ when read from right to left.

Also if x̂ = b1 b2 . . . and ŷ = b′1 b
′
2 . . . and n is the smallest index where bn 6= b′n, then:

n odd : bn < b′n if and only if fα(x) < fα(y),

n even : bn < b′n if and only if fα(x) > fα(y).

(see [Hie16, Fact 2.13]). We have iii) left to show.

Lemma 8.16. The function gα : Z→ Z is recognizable by a finite automaton with Ostrowski

encoding.

Proof of Lemma 8.16. We can assume that α is purely periodic, with minimum period κ

(see §8.2.B). Also from Fact 8.12, there are fixed µ, µ′ ∈ Q such that

pn = µqn + µ′qn+κ for every n ≥ 0.

For x ∈ N with Ostrowski representation x =
∑N

n=0 bn+1qn we define:

Shift(x) :=

N∑

n=0

bn+1qn+κ.

In other words, if x̂ = b1 b2 . . . then ̂Shift(x) = 0κ b1 b2 So x 7→ Shift(x) is clearly

recognizable by a finite automaton. By Fact 8.9:

gα(x) =
∑

n=0

bn+1pn =
∑

n=0

bn+1(µqn + µ′qn+κ) = µ x+ µ′ Shift(x).

Since gα(x) is a linear combination of x and Shift(x) and linear equations are regular

([HTe18]), we have an automaton for gα : Z→ Z.2

2By clearing denominators in µ, µ′ and building automata for single additions.

169

Proof of Theorem 8.1. Given the sentence (8.1), by negation, we can assume Q1 = ∃. First,
we build an automaton A of size 2δ ℓ(F) to recognize the quantifier-free part Φ(x1, . . . ,xk).

3

Then we apply the power set construction (see e.g. [HUM06, §2.3.5]) to successively eliminate

the quantifiers Qkxk, . . . , Q2x2. This blows up the size of A by at most k−1 exponentiations.

Thus, the resulting automaton A′ has size at most a tower of height k in δ ℓ(F). Now we still

have the outer quantifier Q1 = ∃ remaining, i.e., we still need to decide if A′ has a solution.

This is doable by a simple reachability argument, which runs in linear time relative to the

size of A′.

8.4. Quadratic irrationals: PSPACE-hardness

In this section we prove Theorem 8.3. We will first show the lower bound for a general

quadratic irrational α (Theorem 8.17), and then specialize to α =
√
2 (Corollary 8.19). By

a short sentence, we mean one with an integer sentence in Sα with a bounded number of

variables, quantifiers and atoms (inequalities).

Theorem 8.17. Let α be a fixed quadratic irrational and Sα = (R, <,+,Z, x→ αx). Then

deciding short ∃∀∃ sentences in the theory Sα is PSPACE-hard.

The most important property for any quadratic irrational α is the periodicity of its

continued fraction. Before proving Theorem 8.17, we construct in §8.4.A some explicit

formulas in Sα to deal with the Ostrowski representation of an integer, in this case exploiting

the periodicity of α. Then we recall the definitions of Turing machine computations in

Subsection 8.4.B. The proof of Theorem 8.17 is in Subsection 8.4.C, which translates Turing

machine computations into Ostrowski representations of integers. An explicit bound on the

number of variables and inequalities for the constructed short sentences are given in §8.4.D,

where we also treat the case α =
√
2.

3Actually, we first need to make Qk = ∃ so that additional variables in the proof of Lemma 8.15 can be
inserted after Qk. After that we make Q1 = ∃ . Apply negations whenever necessary.

170

8.4.A. Ostrowski representation for quadratic irrationals. We only need to consider

a purely periodic α with minimum period κ (see §8.2.B). Let K = lcm(2, κ).

We can define the set of convergents (pn, qn) for which K|n. Recall γi from Remark 8.11

(also see Fact 8.10). Now define the formula:

DK
∀ (u, v, u

′, v′) := 1 < v < v′ ∧ 0 < αv − u ∧ ∀w, z
κ+1∧

i=0

(
0 < z < γi+1(v, v

′)

→ |w − αz| ≥ |γi(u, u′)− αγi(v, v′)| > |γi+1(u, u
′)− αγi+1(v, v

′)|
)
.

(8.21)

We claim that DK
∀ is satisfied if and only if (u, v) = (ptK , qtK) and (u′, v′) = (ptK+1, qtK+1)

for some t > 0. First, the condition ∀w, z
[
0 < z < γi+1(v, v

′)→ . . .
]
implies that the pairs

(
γi(u, u

′), γi(v, v
′)
)
0≤i≤κ+1

are κ+2 consecutive convergents (see (8.13) and (8.14)). In other

words, there is an n > 0 such that:

(
γi(u, u

′), γi(v, v
′)
)
= (pn+i, qn+i), 0 ≤ i ≤ κ+ 1.

Also by Remark 8.11, we have
(
γ0(u, u

′), γ0(v, v
′)
)
= (u, v) and

(
γ1(u, u

′), γ1(v, v
′)
)
= (u′, v′).

So (u, v) = (pn, qn) and (u′, v′) = (pn+1, qn+1). Then by (8.12):

(
γ2(u, u

′), γ2(v, v
′)
)
= (a2u

′ + u, a2v
′ + v) = (a2pn+1 + pn, a2qn+1 + qn).

must be the next convergent (pn+2, qn+2). Combined with (8.2), we have

pn+2 = an+2pn+1 + pn = a2pn+1 + pn,

which implies an+2 = a2. Similarly, we have an+i = ai for all 2 ≤ i ≤ κ + 1. Since κ is the

minimum period of α, we must have κ|n. Also because 0 < αv − u = αqn − pn, we have

2|n (see (8.4)). Therefore, DK
∀ (u, v, u

′, v′) = true if and only if there is some t ≥ 1 such that

(u, v) = (ptK , qtK) and (u′, v′) = (ptK+1, qtK+1). In prenex normal form, DK
∀ is a ∀2-formula.

Next, we can also define the set of convergents qn for which M |n, where M is a large

multiple of K to be specified later. To do this, we take a large enough prime P and define:

DM
∀ (u, v, u′, v′) := DK

∀ (u, v, u
′, v′) ∧ v ≡ q0 (mod P) ∧ v′ ≡ q1 (mod P). (8.22)

171

Let M > 0 be the least multiple of K such that (qM , qM+1) ≡ (q0, q1) (mod P). Then

DM
∀ (u, v, u′, v′) = true if and only if there is a t ≥ 1 such that (u, v) = (ptM , qtM). If P is

large then M should also be large. Note that congruences can be expressed by ∀ with one

extra variable4. So DM
∀ is a ∀3-formula in prenex normal form.

Remark 8.18. The multiple M = mK exists because we have:

pmK+1 pmK

qmK+1 qmK

 = Γ0 . . . ΓmK+1 = Γ0 Γ1 (Γ2 . . . ΓK−1 Γ0 Γ1)

m

and the matrix Γ2 . . .ΓK−1Γ0Γ1 is invertible mod P . So there is a smallest m > 0 such that:

pmK+1 pmK

qmK+1 qmK

 ≡ Γ0Γ1 =

p0 p1

q0 q1

 (mod P).

Also by the recurrence (8.2), we have (pmK+i, qmK+i) ≡ (pi, qi) (mod P) for ever i.

Recall from (8.7) that every T ∈ N has a unique Ostrowski representation:

T =

N∑

n=0

bn+1qn,

with 0 ≤ b1 < a1, 0 ≤ bn+1 ≤ an+1 and bn = 0 if bn+1 = an+1. We denoted [qn] := bn+1. For

the rest of the proof, we only consider numbers T that satisfy:

[qn] if 2 ∤ n,

[qn] = 0, 1 if 2|n.
(8.23)

This is guaranteed by the following formula:

ZeroOne∀∃(T) := ∀u, v, u′, v′ C∀(u, v, u
′, v′) → ∃Z1, Z2, Z3

(
0 > αv − u→

[
Z1 < v ∧ After(u, v, u′, v′, Z2, Z3) ∧ T = Z1 + Z2

])
(8.24)

(
0 < αv − u→

[
Z1 < 2v ∧ Compatible(u, v, u′, v′, Z1, Z2, Z3) ∧ T = Z1 + Z2

])
.

Here After and Compatible were defined earlier. Note that ZeroOne∀∃ is a ∀4∃3-formula.

4We have x1 ≡ x2 (mod P) if and only if ∀w x1 − x2 − Pw = 0 ∨ |x1 − x2 − Pw| ≥ P .

172

For two natural numbers T and X , the formula:

Pref∀∃(X, T) := ∀u, v, u′, v′
(
C∀(u, v, u

′, v′) ∧ v ≤ X ∧ X < v′
)
→

∃Z,Z ′ Compatible(u, v, u′, v′, X, Z, Z ′) ∧ T = X + Z.
(8.25)

is true exactly when Ost(X) forms a prefix of Ost(T) if viewed as 0/1 strings. Note that

Pref∀∃ is a ∀4∃2-formula in prenex normal form.

8.4.B. Turing machines. Consider any PSPACE-complete language L ⊂ {0, 1}∗ and a

1-tape Turing Machine M that can decide it. This means that given an input x ∈ {0, 1}∗

on its tape T ,M will run in space poly(|x|) and output 1 if x ∈ L and 0 otherwise. More

precisely, we have T = x0 . . . at the beginning, and T = 10 . . . or T = 00 . . . at the end.

WLOG, we can also assumeM has a unique halting state H.

In [NW06], a small universal 1-tape Turing machine U = (Q,Σ, σ1, δ, q1, q2), with |Q| = 8

states and |Σ| = 4 tape symbols.5 Using U , we can simulate M in polynomial time and

space. More precisely, supposeM is a PSPACE-complete TM as describe above and x is an

input toM. Then we can encodeM and x in polynomial time as a string 〈Mx〉 ∈ Σ∗. Upon

input 〈Mx〉, U simulatesM on x, and halts with one of the two possible configurations:

U(〈Mx〉) = “yes” if M(x) = 1, U(〈Mx〉) = “no” if M(x) = 0. (8.26)

Here “yes” and “no” are the final state-tape configurations of U , which correspond toM’s

final configurations (H, 10 . . .) and (H, 00 . . .), respectively. By the encoding in [NW06],

these final “yes”/“no” configurations of U have lengths O(|M|), which are constant when

we fix M. Furthermore, the computation U(〈Mx〉) takes time/space polynomial in the

time/space of the computationM(x).6 SinceM(x) runs in space poly(|x|), so does U upon

input 〈Mx〉.

Consider the simulation U(〈Mx〉). Denote by Ti ∈ Σλ−1 the contents of U ’s tape on step

i-th. Here λ = poly(|x|) is a polynomial bound on the tape length. Also denote by si ∈ Q

5Q – states, Σ – tape symbols, σ1 ∈ Σ – blank symbol, δ : Q×Σ→ Q×Σ×{L,R} – transitions, q1 ∈ Q

– start state, q2 ∈ Q – unique halt state.

6It actually takes linear space and quadratic time.

173

the state of U on step i-th. The i-th head position of U is some number 1 ≤ πi ≤ λ− 1.

Altogether, for step i, we can encode the tape content Ti, the state si and the tape head

position πi by the string:

T ′
i = [×,×][×, Ti(1)] . . . [×, Ti(πi−1)] [si, Ti(πi)] [×, Ti(πi+1)] . . . [×, Ti(λ−1)]. (8.27)

Here × is a special marker symbol and Ti(j) ∈ Σ is the j-th symbol of Ti. The marker block

[×,×] is at the beginning of each T ′
i , which is distinct from the other λ − 1 blocks in T ′

i .

Note that T ′
i has in total λ blocks. Now we concatenate T ′

i over all steps 1 ≤ i ≤ ρ, where

ρ is the terminating step of the simulation. Let

T = T ′
1 . . . T ′

ρ .

We call T the transcript of U on input 〈Mx〉, denoted by T = U(〈Mx〉). The last segment

in T ′
ρ contains the “yes” configuration if and only ifM(x) = 1. In total, T has λρ blocks.

Denote by B = {[×,×]}∪ ({×}×Σ)∪ (Q×Σ) the set of all possible blocks in T , with
|B| = 37. Let Bt ∈ B be the t-th block in T . By the transition rules of U , the block Bt+λ

should only depend on Bt−1, Bt and Bt+1. Thus, there is a function f : B3 → B such that:

Bt+λ = f(Bt−1, Bt, Bt+1) for every 0 ≤ t < λ(ρ− 1).

Note that for the separator block [×,×], we should have f(B, [×,×], B′) = 0 for all B,B′.

8.4.C. Proof of Theorem 8.17. Recall the formulas DK
∀ , D

M
∀ , ZeroOne∀∃, Pref∀∃ from

§8.4.A. We encode the transcript T by a number T ∈ N satisfying (8.23). To be precise, first

we view B as a set of 37 distinct strings in {0, 1}6, each containing at least one 1. Then we

pick a large enough prime P in DM
∀ so that M > 10. Recall the notation [qn] in (8.23). If

Bt ∈ B is the t-th block in T , then we should have:

[qtM][qtM+2] . . . [qtM+10] = Bt and [qtM+12] . . . [q(t+1)M−2] = 0 . . . 0. (8.28)

For the rest of the proof, we view Ost(T) as a binary string, and use Bt to denote its t-th

block.

174

Let (u, v) = (ptM , qtM) and (u′, v′) = (ptM+1, qtM+1) for some t ≥ 1. For every triple

B,B′, B′′ ∈ B, we will construct a formula ReadB,B′,B′′

∃ (u, v, u′, v′, T) to check if the three

blocks Bt−1, Bt, Bt+1 in T match with B,B′, B′′ in the sense of (8.28). We will also construct

a formula NextB,B′,B′

∃ (u, v, u′, v′, T) to check if the block Bt+λ in T agrees with the transition

function f , i.e., Bt+λ = f(B,B′B′′). For the rest of the proof, the meaning of ci, di, a, b will

change depending on the context.

• Constructing NextB,B′,B′

∃ : Let r1 = λM and r2 = (λ + 1)M . Then the block Bt+λ

correspond to those [qtM+i] with r1 ≤ i < r2. By Fact 8.10, we can write each convergent

(ptM+i, qtM+i) with r1 − 1 ≤ i ≤ r2 as a linear combination ci(u, v) + di(u
′, v′). Here the

coefficients ci, di ∈ Z are independent of t, but do depend on λ. They can be computed

explicitly in time poly(λ). Let B̃ = f(B,B′, B′′). Then we sum up all qtM+r1+2j for every

0 ≤ j < 6 such that the j-th bit in B̃ is ’1’. This sum can be expressed as av + bv′ for some

a, b ∈ Z computable in time poly(λ). Note that ci, di and a, b depend on λ and also the triple

B,B′, B′′. Then Bt+λ = B̃ if and only if we can uniquely write T = W1 + (av + bv′) +W2,

where W1 < qtM+r1−1 and Ost(W2) ⊂ {qn : n ≥ tM + r2}. Let Z1 = W1 + (av + bv′) and

Z2 =W2. They satisfy:

i) 0 ≤ Z1 − (av + bv′) < qtM+r1−1 ,

ii) Ost(Z2) ⊂
{
qn : n ≥ tM + r2

}
.

Then the formula we want is:

NextB,B′B′′

∃ (u, v, u′, v′, T) := ∃Z1, Z2, Z3 i) ∧ ii) ∧ T = Z1 + Z2. (8.29)

Here i) is written directly as linear inequalities in v, v′ and Z1. By (8.16), we can express

ii) as After(ptM+r2−1, qtM+r2−1, ptM+r2 , qtM+r2, Z2, Z3), which is again linear inequalities in

u, v, u′, v′ and Z2, Z3.

• Constructing ReadB,B′,B′

∃ : Note that the blocks Bt−1BtBt+1 in T correspond to [qn]

with (t−1)M ≤ n < (t+2)M . So we just need to express (ptM+i, qtM+i) for−M−1 ≤ i ≤ 2M

as linear combinations ci(u, v)+ di(u
′, v′). Then we sum up all qtM+i that should correspond

to the ’1’ bits in B,B′, B′′, which is again some linear combination av + bv′. This time the

175

coefficients ci, di, a, b do not depend on λ and can be computed in constant time. Now we

have Bt−1BtBt+1 = BB′B′′ if and only if we can uniquely write T = Z1 + Z2, where Z1 and

Z2 satisfy two conditions i’-ii’) similar to i-ii) above. The formula we want is:

ReadB,B′,B′′

∃ (u, v, u′, v′, T) := ∃Z1, Z2, Z3 i’) ∧ ii’) ∧ T = Z1 + Z2. (8.30)

Again i’-ii’) can be expressed as linear inequalities in u, v, u′, v′ and Z1, Z2, Z3.

So a single transition of T from B,B′, B′′ to f(B,B′, B′′) can be written as:

TranB,B′,B′′

∃ (u, v, u′, v′, T) := ReadB,B′,B′′

∃ (u, v, u′, v′, T)

∧ NextB,B′,B′′

∃ (u, v, u′, v′, T).
(8.31)

Note that Tran∃ is an ∃6-formula. To ensure that T obeys the transition rule f : B3 → B

every where, we simply require:

∀u, v, u′, v′
(
DM

∀ (u, v, u′, v′) ∧ cv+ dv′ ≤ T
)
→

∨

B,B′,B′′∈B

TranB,B′,B′′

∃ (u, v, u′, v′, T). (8.32)

Here we write q(t+λ)M = cv + dv′, with c, d computable in poly(λ) time. DM
∀ (u, v, u′, v′)

means v = qtM is the beginning of some block Bt, and q(t+λ)M = cv + dv′ is the beginning of

the block Bt+λ, should it not exceed T .

We need one last formula to say that T ends in the “yes” configuration (see (8.26)).

Recall that “yes” has fixed length. Assume “yes” starts at v = qtM . Then just like before,

we can sum up all qtM+i that correspond to ’1’ bits in “yes”. This sum can be written

as av + bv′, with a, b ∈ Z explicit constants independent of λ. Also observe that qtM−1 =

qtM+1 − a1qtM = v′ − a1v. So the formula:

E∃∀(T) := ∃u, v, u′, v′, Z DM
∀ (u, v, u′, v′) ∧ Z < v′ − a1v ∧ T = Z + av + bv′ (8.33)

is true if and only if T ends in “yes”. Note that E∃∀ is a ∃5∀3-formula.

Finally, given x ∈ {0, 1}ℓ, we can easily construct in time poly(ℓ) the content of the

first segment T ′
1 in T (see (8.27)). Again, T ′

1 is the starting configuration of the simulation

U(〈Mx〉), which is basically just 〈Mx〉. Then we compute in time poly(ℓ) the X ∈ N

176

whose Ostrowski representation corresponds to T ′
1 . We also compute the tape length bound

λ = poly(ℓ) to be used in Tran∃. Now construct the sentence:

∃T ZeroOne∀∃(T) ∧ Pref∀∃(T,X) ∧ E∃∀(T) ∧
[
∀u, v, u′, v′

(
DM

∀ (u, v, u′, v′) ∧ cv + dv′ ≤ T
)
→

∨

B,B′,B′′∈B

TranB,B′,B′′

∃ (u, v, u′, v′, T)

]
.

(8.34)

Here ZeroOne∀∃(T) ensures condition (8.23), Pref∀∃(X, T) ensures that X is a prefix of T ,

E∃∀(T) says that T ends in “yes”, and the rest says that T follows the transition rules

(see (8.32)). So (8.34) is an ∃∀∃-sentence with total length poly(ℓ), which is satisfied if and

only if X ∈ L. This proves Theorem 8.17.

8.4.D. Analysis of the construction. We bound the number of variables in (8.34). Con-

sider the last term [∀u, v . . .]. First, there are ∀4 variables u, v, u′, v′. Each TranB,B′,B′′

∃ is

an ∃6-formula, which also commutes with the big disjunction. Also ¬DM
∀ is an ∃3-formula,

which can be merged with the ∃6 part.7 Overall, the last term is of the form ∀4∃6.

Next, recall that ZeroOne∀∃, Pref∀∃ in §8.4.A are of the forms ∀4∃3 and ∀4∃2 and

respectively. Since we are taking their conjunctions with the last term ∀4∃6, their outer ∀4

variables can be merged. However, their ∃ variables need to be concatenated. Overall, we

have ∀4∃11 for ZeroOne∀∃, Pref∀∃ and the last term. The term E∃∀ is ∃5∀3. Merging its

∀3 variables with the other three terms, we have ∃5∀4∃11. Lastly, we add in ∃T and get a

∃6∀4∃11 sentence.

The number of inequalities in all constructed formulas is bounded in the table below.

Overall, the number of inequalities in (8.34) is at most:

34 + 26 + 14 + 10(κ+ 2) + 12 + 10(κ+ 2) + 16|B|3 = 810534 + 20(κ+ 2).

Corollary 8.19. For α =
√
2 deciding ∃6∀4∃11 sentences with at most 106 inequalities in

Sα is PSPACE-hard.

Proof. Note that
√
2 + 1 = [2; 2, . . .] has minimum period κ = 1.

7We need to rewrite every implication “a→ b” as “¬a ∨ b”.

177

x = y 2

|x| ≥ |y|, |x| > |y| 4

After, Ãfter 4

Compatible 10

C∀ 12

ZeroOne∀∃ 34

Pref∀∃ 26

Read∃ 8

Next∃ 8

Tran∃ 16

DK
∀ 3 + 10(κ+ 2)

DM
∀ 11 + 10(κ+ 2)

E∃∀ 14 + 10(κ+ 2)

8.5. Quadratic irrationals: General lower bound

In this section we prove Theorem 8.2. Let us recall Monadic Second Order logic

MSO = (N,P(N), sN,∈), where P(N) is the (monadic) predicate for subsets of N, and sN is

the successor function n → n + 1. Its weak variant is WMSO = (N,Pfin(N), sN,∈), which
only quantifies over finite subsets of N. We refer to [GTW] for the equivalence between

WMSO and the theory of automata equipped with quantifiers. First, we prove a similar

lower bound for WMSO:

Theorem 8.20. Deciding a sentence S in WMSO with k + 2 alternating quantifiers and

O(k) variables requires space at least:

ρ 2 . .
.
2 ηℓ(S)

.

Here the tower has height k, and ρ, η are absolute constants.

The proof is similar to that of Theorem 8.17. Recall that in NextB,B′B′′

∃ , if v = qtM and

178

v′ = qtM+1 then the shifted convergent q(t+λ)M can be written as cv+dv′, with c, d ∈ Z having

lengths poly(λ). The resulting sentence (8.34) has length poly(λ), and is PSPACE-complete

to decide. To prove a tower lower bound, we need to construct a shift map

Sk : qtM 7→ q(t+g(λ))M ,

so that g(λ) is a tower of height (k − 2) in λ. Here the formula Sk is allowed to have length

poly(λ) and at most k − 2 alternating quantifiers. The following construction is classical.

It was first used in [Mey75] to prove that WMSO has non-elementary decision complexity,

and was later improved on in [Sto74]. An expository version is given in [GTW, Ch. 13]. For

completeness, we reproduce it below in the setting of WMSO with some improvements on

the number of alternating quantifiers. Afterwards, we translate it back to Sα.

We think of each subset X ∈ Pfin(N) as a binary string of finite length. The relation

n ∈ X simply means that the n-th bit in X is 1. Let

g0(λ) = λ and gk+1(λ) = gk(λ) 2
gk(λ), k ≥ 0.

The idea of the construction is as follows. We will iteratively define formulas Fk(x, y, A, C)

such that Fk+1 is true if and only if:

y = x+ gk+1(λ),

A = 0x|100 . . .0|100 . . . 0|100 . . .0|100 . . . 0| . . . |100 . . . 0|10∗ ,

C = 0x|000 . . .0|100 . . . 0|010 . . .0|110 . . . 0| . . . |111 . . . 1|00∗ .

Here A,C have 2gk(λ) blocks, each of length gk(λ). The blocks in C represent the integers

0, 1, . . . , 2gk(λ) − 1 in binary. The blocks in A mark the beginning of the blocks in C. The

first ’1’ in A is at position x and the last ’1’ in A is at position y.8 In total, the difference

y − x is gk(λ)2
gk(λ) = gk+1(λ). First, we can define the basic quantifier-free case:

F0(x, y, A, C) := Singleton(x) ∧ Singleton(y) ∧ y = x+ λ.9

8Position indexing starts at 0.

9Here x+ λ represents λ iterations of the successor function sN.

179

For this case A and C do not matter. Now recall the carry rule for addition by 1 in binary.

If X = x0x1 . . . in binary then Y = X + 1 = y0y1 . . . satisfies:

x0 = ¬y0 (the least significant digit always switches)

xi = 1, yi = 0→ xi+1 = ¬yi+1 (carry rule)

xi+1 = yi+1 otherwise.

In the context of WMSO, these rules can be summarized as:

0 ∈ X ↔ 0 /∈ Y ; (8.35)

i ∈ X ∧ i /∈ Y ↔ (i+ 1 ∈ X ↔ i+ 1 /∈ Y). (8.36)

Observe that if we apply these rules on blocks of length gk(λ), starting with 0 . . . 0, we get:

00 . . . 0|10 . . .0|01 . . . 0| . . . |11 . . . 1|00 . . . 0|10 . . . 0| . . .

So the blocks do cycle back to 0 . . . 0 eventually. This needs to be taken care of in the

definition of Fk+1, because we want each block of C to be unique. We define:

Fk+1(x, y, A, C) := Singleton(x) ∧ Singleton(y) ∧ x < y ∧ (8.37)

∀z, w, t, D,E
([

Fk(z, w,D,E) ∧ Singleton(t)
]
→

[
z = x ∨ z = y → z ∈ A, z /∈ C; z < x ∨ y < z → z /∈ A, z /∈ C; (8.38)

x = z, z < t < w → t /∈ A, t /∈ C; x ≤ z < w ≤ y → (z ∈ A↔ w ∈ A); (8.39)

z ∈ A, w < y → (z ∈ C ↔ w /∈ C) (8.40)

x ≤ z < w < y, z + 1 /∈ A →
(
z ∈ C, w /∈ C ↔ (z + 1 ∈ C ↔ w + 1 /∈ C)

)
; (8.41)

x ≤ z < w < y, z + 1 ∈ A → (z ∈ C → w ∈ C); (8.42)

w = y, z ≤ t < w → t ∈ C
])

. (8.43)

For readability, we use ∧ , and ; interchangeably to denote conjunctions. Lines (8.38)

and (8.39) set up the first block in A and C, and say that A and C are all empty outside

the range [x, y]. Line (8.40) expresses the increment rule (8.35) for every two consecutive

blocks in C. Here w and z represent two corresponding digits in two consecutive blocks.

180

Line (8.41) expresses the carry rule (8.36). Line (8.42) ensures that the blocks in C do not

cycle back to 0 . . . 0, because their last digits cannot decrease from 1 down to 0. Line (8.43)

ensures that the last block is 1 . . . 1.

By induction, it is easy to see that Fk has k alternating quantifier blocks, starting with

∀. It is also clear that Fk+1 has 5 more variables (x, y, A, C, t) than Fk. Therefore, Fk has

at most 5(k + 1) variables. We can also bound their lengths:

ℓ(F0) = O(λ) and ℓ(Fk+1) = ℓ(Fk) +O(1) = O(λ+ k).

Here ℓ(F0) = O(λ) instead of O(1) because we needed to iterate the successor function sN λ

times to represent y = x+ λ.

Proof of Theorem 8.20. Consider the following decidable problem: Given a Turing machine

M and an input string X , does M halt on X within space gk(|M| + |X|). By a basic

diagonalization argument, this problem requires space at least gk(|M|+ |X|) to decide. By

the same construction as in Theorem 8.34, we can write down a sentence S with length

O(|M|+ |X|) so that S = true if and only ifM halts on x within space gk(|M|+ |X|). Here
λ = Ω(|M|+ |X|). The last part [∀u, v, u′, v′ . . .] in (8.34) should be replaced by:

∀x, y, A, C Fk(x, y, A, C)→ transition rules . . .

Here x and y are bits in the transcript T = U(〈MX〉), with y = x+ gk(λ).
10 The resulting

sentence S has the form ∃ . . .∀ . . .¬Fk ∨ . . . Since Fk has k alternating quantifier blocks, S

has k+2 alternating quantifier blocks. The length ℓ(S) is roughly the input length |M|+ |X|
plus ℓ(Fk), which is also O(|M|+ |X|).

Proof of Theorem 8.2. We can easily translate the WMSO formula Fk(x, y, A, C) with k

alternating quantifier blocks to a Sα formula Sk with (k + 1) alternating quantifier blocks.

To do this, we replace each singleton variable in (8.37), say x, by a separate quadruple

(ux, vx, u
′
x, v

′
x), where (ux, vx) = (pxM , qxM) and (u′x, v

′
x) = (pxM+1, qxM+1). The Singleton(x)

predicate is replaced by DM
∀ (ux, vx, u

′
x, v

′
x), and similarly for other singleton variables. Each

10U is the universal TM used to emulateM(X).

181

set variable, e.g. A,C, is replaced by an integer variable. The relation ∈ is now ∃/∀-definable
in Sα (see (8.18) and (8.19)). Recall from Fact 8.10 that if v = qtM and v′ = qtM+1 then

q(t+1)M = cv + dv′ for some constants c, d ∈ Z independent of t. We replace every x + 1

term in (8.37) is replaced by cvx + dv′x. Also q(t+λ)M = cλv + dλv
′ for some cλ, dλ ∈ Z with

log(cλ), log(dλ) = O(λ). So the relation y = x + λ in F0 is replaced by vy = cλvx + dλv
′
x.

Observe that S0 has just O(1) atoms (inequalities), instead of O(λ) atoms like F0. By

induction, Sk has O(k) inequalities and variables. The total length ℓ(Sk) (including symbols

and integer coefficients) is still O(k + λ).

Because of the DM
∀ predicate, S0 now has ∀ quantifiers. For k > 0, we can merge the ∀

quantifiers in DM
∀ predicates with the ∀z, w, t, . . . quantifiers in (8.37) (of course replaced

by quadruples). Because ∈ is ∃/∀-definable in Sα, the body of the sentence Sk+1, consisting

of Boolean combinations in ∈//∈, can be written using only ∀ quantifiers. These extra

∀ quantifiers can again be merged into the ∀z, w, t part. This means Sk+1 has only one

more quantifier block than Sk. So Sk(ux, vx, u
′
x, v

′
x, uy, vy, u

′
y, v

′
y, A, C) has (k+1) alternating

quantifier blocks.

Now we are back to encoding Turing machine computations. In (8.34), we replace the

last part [∀u, v, u′, v′ . . .] by:

∀ux, vx, u′x, v′x, uy, vy, u′y, v′y, A, C
(
Sk(ux, vx, u

′
x, v

′
x, uy, vy, u

′
y, v

′
y, A, C) = true ∧ vy ≤ τ

)

→ transition rules . . .

In these transition rules, ReadB,B′,B′′

∃ is kept as before with ux, vx, u
′
x, v

′
x, but NextB,B′,B′′

∃

can be rewritten using the shifted convergents uy, vy, u
′
y, v

′
y. Altogether, this expresses

the transition rule for each jump y = x + gk(λ). The resulting sentence S has the form

∃ . . .∀ . . .¬Sk ∨ . . . Since Sk has k+ 1 alternating quantifier blocks, S has k+3 alternating

quantifier blocks. The number of variables and inequalities used is just O(k).

182

8.6. Non-quadratic irrationals: Undecidability

8.6.A. Further tools. Now we are working with two different irrationals α and β. Denote

by pn/qn and p′n/q
′
nthe n-th convergent of α and β, respectively. Let Ostα := {qn : n ∈ N}

and Ostβ := {q′n : n ∈ N}. For X ∈ N, denote by Ostα(X) the set of qn with non-zero

coefficients in the α-Ostrowski representation of X . Then Ostβ(X) is defined accordingly for

the β-Ostrowski representation of X . All earlier notations can be easily adapted to α and

β separately. For brevity, we define the remaining functions and notations just for α. The

corresponding versions for β are defined accordingly, with obvious relabelings.

For X ∈ N and d ∈ Ostα, if
∑∞

n=0 bn+1qn is the α-Ostrowski representation of X , then we

define

X
∣∣α
d

:=
∑

n∈N, qn≤d

bn+1qn. (8.44)

Fact 8.21. Let X ∈ N. Then there is an interval I around fα(X) and d ∈ Ostα such that

for all Y ∈ N

fα(Y) ∈ I =⇒ Y
∣∣α
d
= X.

Proof. Let
∑m

n=0 bn+1qn be the α-Ostrowski representation of X . Without loss of generality,

we may assume that αqm − pm > 0. Then set

Z2 = X + qm+2 and Z1 = X + qm+3.

Since αqm+2 − pm+2 > 0 and αqm+3 − pm+3 < 0, we get from Fact 8.9 that

fα(Z1) < fα(X) < fα(Z2).

Now it follows easily from [Hie16, Fact 2.13] and Fact 8.9 that for all Y ∈ N

fα(Z1) < fα(Y) < fα(Z2) =⇒ Y
∣∣α
qm

= X,

as desired.

Fact 8.22. Let X ∈ N and let J be an open interval around fα(X). Then there is d ∈ Ostα

such that for all Y ∈ N

Y
∣∣α
d
= X =⇒ fα(Y) ∈ J.

183

Proof. Let
∑m

n=0 bn+1qn be the α-Ostrowski representation of X . Let n ∈ N be such that

• n > m+ 1,

• αqn − pn > 0 and

•
(
fα(X) + (αqn+1 − pn+1), fα(X) + (αqn − pn)

)
⊆ J .

Let Y ∈ N be such that Y
∣∣α
qn+2

= X . It is left to show that fα(Y) ∈ J . By Fact 8.9 and

[Hie16, Fact 2.13] we get that

fα(X) + (αqn+1 − pn+1) = fα(X + qn+1) < fα(Y) < fα(X + qn) = fα(X) + (αqn − pn).

Thus fα(Y) ∈ J .

8.6.B. Uniform definition of all finite subsets of N2. Let α, β be two positive irrational

numbers such that 1, α, β are Q-linearly independent. The goal of this section is to produce

a predicate Member ⊆ N6 such that for every set S ⊆ N2 there is X ∈ N4 such that for all

(s, t) ∈ N2,

(s, t) ∈ S ⇐⇒Member(X, s, t).

The Q-linear independence of 1, α, β is necessary as the existence of such an relation implies

the undecidability of the theory. The failure of our argument in the case of Q-linear depen-

dence of 1, α, β can be traced back to the fact that the following lemma fails when 1, α, β

are Q-linearly dependent.

Here after, we let X = (X1, X2), Y = (Y1, Y2) and Z = (Z1, Z2).

Lemma 8.23. Let X, Y ∈ N2. Then

|fα(X1)− fβ(X2)| = |fα(Y1)− fβ(Y2)| =⇒ X = Y .

Proof. Then there are U1, U2, V1, V2 ∈ N such that

∣∣αX1 − U1 + βX2 − U2

∣∣ =
∣∣αY1 − V1 + βY2 − V2

∣∣.

By Q-linear independence of 1, α, β, we get that X1 = Y1 and X2 = Y2.

184

Definition 8.24. Define g : N4 → R to be the function that maps (X, Y) to

∣∣fα(X2)− fα(X1)− |fα(Y2)− fβ(Y1)|
∣∣.

Definition 8.25. Define Best ⊆ N × N × N2 × N to be the set containing all (d, e,X, Y1)

for which there is a Y2 ∈ N such that

• Y1 ≤ d, Y2 ≤ e,

• g(X, Y) < g(X,Z) for all Z ∈ N≤d × N≤e with Z 6= Y .

Observe that for given (d, e,X) ∈ N × N × N2 there is at most one Y1 ∈ N≤d such that

Best(d, e,X, Y1) holds. We will later see in Lemma 8.27 that for given d ∈ N we can take

e ∈ N large enough such that for all X1 ∈ N and Y1 ≤ d the set

{X2 ∈ N : Best(d, e,X1, X2, Y)}

is cofinal in N.

Lemma 8.26. Best is ∃∀-definable.

Proof. Observe that Best(d, e,X, Y1) holds if and only if

∃Y2, U1, U2, V1, V2 ∀Z1, Z2,W1,W2 Y1 ≤ d ∧ Y2 ≤ e ∧

fα(X1) = αX1 − U1 ∧ fα(X2) = αX2 − U2 ∧ fα(Y1) = αY1 − V1 ∧ fβ(Y2) = βY2 − V2 ∧
[(
Z1 ≤ d ∧ Z2 ≤ e ∧ fα(Z1) = αZ1 −W1 ∧ fβ(Z2) = βZ2 −W2

∧ (Z1, Z2) 6= (Y1, Y2)
)
→
∣∣(αX2 − U2)− (αX1 − U1)− |(βY2 − V2)− (αY1 − V1)|

∣∣

<
∣∣(αX2 − U2)− (αX1 − U1)− |(βZ2 −W2)− (αZ1 −W1)|

∣∣
]
.

This implies the result.

The following lemma is crucial in what follows. It essentially says that for every subinterval

of Iα ∩ Iβ and every d ∈ Ostα, we can recover (Ostα)≤d just using parameters from this

interval and Ostβ. This should be compared to condition (ii) in [HTy14, Th. A].

Lemma 8.27. Let d ∈ Ostα, e0 ∈ Ostβ, X ∈ N2 and s ∈ N be such that

185

1. fα(X1), fα(X2) ∈ Iβ,

2. fα(X1) < fα(X2),

3. s ≤ d.

Then there is e ∈ Ostβ and an open interval J ⊆
(
fα(X1), fα(X2)

)
such that e ≥ e0 and for

all Z ∈ N

fα(Z) ∈ J =⇒ Best(d, e,X1, Z, s).

Proof. Let e ∈ Ostβ be large enough such that for every w1 ∈ N≤d there is w2 ∈ N≤e such

that

fα(w1) ∈ Iβ =⇒ |fα(w1)− fβ(w2)| < fα(X2)− fα(X1).

The existence of such an e follows from the finiteness of N≤d and the density of fβ(N) in Iβ.

Let w ∈ N≤e be such that

|fα(s)− fβ(w)| < fα(X2)− fα(X1).

By Lemma 8.23 we can find an ε > 0 such that for all (w1, w2) ∈ N≤d×N≤e with (w1, w2) 6=
(s, w)

∣∣|fα(w1)− fβ(w2)| − |fα(s)− fβ(w)|
∣∣ > ε.

Set

δ := fα(X1) + |fα(s)− fβ(w)|.

Set J := (δ − ε
2
, δ + ε

2
). Let Z ∈ N be such that fα(Z) ∈ J . It is left to show that

Best(d, e,X1, Z, s) holds. We have that for all (w1, w2) ∈ N≤d × N≤e with (w1, w2) 6= (s, w)

g(X1, Z, w1, w2) =
∣∣fα(Z)− fα(X1)− |fα(w1)− fβ(w2)|

∣∣

=
∣∣fα(Z)− δ + |fα(s)− fβ(w)| − |fα(w1)− fβ(w2)|

∣∣

≥
∣∣∣|fα(Z)− δ| −

∣∣|fα(s)− fβ(w)| − |fα(w1)− fβ(w2)|
∣∣
∣∣∣ > ε

2
.

Moreover,

g(X1, Z, s, w) =
∣∣fα(Z)− fα(X1)− |fα(s)− fβ(w)|

∣∣ ≤
∣∣fα(Z)− δ

∣∣ ≤ ε

2
.

Thus Best(d, e,X1, Z, s) holds, as desired.

186

Lemma 8.28. Let d ∈ Ostα, s ∈ N, X ∈ N2 be such that

1. fα(X1), fα(X2) ∈ Iβ,

2. fα(X1) < fα(X2),

3. s ≤ d.

Then there are e1 ∈ Ostβ, e2 ∈ Ostα, Y ∈ N such that

(i) fα(X1) < fα(Y) < fα(X2),

(ii) d < e1 < e2

(iii) for all Z ∈ N

Z
∣∣α
e2
= Y =⇒ Best(d, e1, X1, Z, s).

Proof. By Lemma 8.27 there is an open interval J ⊆
(
fα(X1), fα(X2)

)
and e1 ∈ Ostβ such

that e1 > d and for all Z ∈ N

fα(Z) ∈ J =⇒ Best(d, e1, X1, Z, s).

Take Y ∈ N such that fα(Y) ∈ J . By Fact 8.22 we can find e2 ∈ Ostα arbitrarily large such

that fα(Z) ∈ J for all Z ∈ N with Z
∣∣α
e2
= Y . The statement of the Lemma follows.

Definition 8.29. Define Admissible ⊆ Ost4α ×Ost2β × N6 to be the set of all tuples

(d1, d2, d3, d4, e1, e2, X1, X2, X3, X4, s, t) ∈ Ost4α ×Ost2β × N6

such that

• d1, d2, d3 are consecutive elements of Ostα(X1),

• d4 ∈ Ostα(X3) and d1 ≤ d4 < d2,

• e1, e2 ∈ Ostβ(X2) and d1 ≤ e1 < d2 ≤ e2 < d3

• Best(d1, e1, X4

∣∣α
d1
, X4, s)

187

• Best(d2, e2, X4

∣∣α
d2
, X4, t)

Define Member ⊆ N6 to be the set of all tuples (X1, X2, X3, X4, s, t) ∈ N6 such that there

exist d1, d2, d3, d4 ∈ Ostα, e1, e2 ∈ Ostβ with

Admissible(d1, d2, d3, d4, e1, e2, X1, X2, X3, X4, s, t).

Theorem 8.30. Let S ⊆ N2 be finite. Then there are X1, X2, X3, X4 ∈ N such that for all

s, t ∈ N

(s, t) ∈ S ⇔Member(X1, X2, X3, X4, s, t).

Proof. Let S ⊆ N2 be finite. Let c1, . . . , c2n ∈ N be such that

S = {(c1, c2), . . . , (c2n−1, c2n)}.

Recall that the convergents of α and β are {pn/qn} and {p′n/q′n}, respectively. We will

construct two strictly increasing sequences (ki)i=0,...,2n, (li)i=1,...,2n of non-consecutive natural

numbers and another sequence (Wi)i=0,...,2n of natural numbers such that for all i = 0, . . . , 2n

(1) Wj = Wi

∣∣α
qkj

for all j ≤ i, and fα(Wi) ∈ Iβ ,

(2) qki > max{c1, . . . , c2n},

and furthermore if i ≥ 1, then

(3) qki−1
< q′li < qki ,

(4) for all Z ∈ N

Z
∣∣α
qki

= Wi =⇒ Best(qki−1
, q′li,Wi−1, Z, ci).

We construct these sequences recursively. For i = 0, pick k0 ∈ N such that

qk0 > max{c1, . . . , c2n}.

Pick W0 ∈ N such that W0 = W0

∣∣α
qk0

and fα(W0) ∈ Iβ . Now suppose that i > 0 and that

we already constructed k0, k1, . . . , ki−1, l1, . . . , li−1 and W1, . . . ,Wi−1 such that the above

188

conditions (1)-(4) hold for j = 1, . . . , i − 1. We now have to find ki, li and Wi that (1)-(4)

also hold for i. We do so by applying Lemma 8.28. By Fact 8.21 we can take T ∈ N such

that

(a) fα(T) > fα(Wi−1), T
∣∣α
qki−1

=Wi−1, fα(T) ∈ Iβ and

(b) for all Z ∈ N,
(
fα(Wi−1) < fα(Z) < fα(T) =⇒ Z

∣∣α
qki−1

=Wi−1

)
.

We now apply Lemma 8.28 with X1 := Wi−1, X2 := T, d := qki−1
and s := ci−1. We obtain

e1 ∈ Ostβ, e2 ∈ Ostα and Y ∈ N such that d < e1 < e2, fα(Wi−1) < fα(Y) < fα(T) and for

all Z ∈ N

Z
∣∣α
e2
= Y =⇒ Best(qki−1

, e1,Wi−1, Z, ci−1).

If necessary, we increase e2 such that Y
∣∣α
e2

= Y . Choose ki such that qki = e2, choose li

such that q′li = e1. Set Wi := Y . It is immediate that (2)-(4) hold for i = 1, . . . , n. For (1),

observe that since fα(Wi−1) < fα(Y) < fα(T), we deduce from (b) that

Wi

∣∣α
qki−1

= Y
∣∣α
qki−1

=Wi−1.

Since (1) holds for j = 1, . . . , i− 1, we get that for j < i− 1

Wi

∣∣α
qkj

=Wi

∣∣α
qkj

=Wj .

Thus (1) holds for i.

We have constructed (ki)i=0,...,2n, (li)i=1,...,2n and (Wi)i=0,...,2n satisfying (1)-(4) for each i =

0, 1, . . . , 2n. We now define (Z1, Z2, Z3, Z4) ∈ N4 by

Z1 :=

2n∑

i=0

qki , Z2 :=

2n∑

i=1

q′li

Z3 :=
n∑

i=0

qk2i , Z4 := W2n.

Observe that we require the sequences (ki)i=0,...,2n and (li)i=1,...,2n to be increasing sequences

of non-consecutive natural numbers. Therefore the above description of Z1, Z2 and Z3 im-

189

mediately gives us the α-Ostrowski representations of Z1 and Z3 and the β-Ostrowski rep-

resentation of Z2. In particular,

Ostα(Z1) = {qki : i = 0, . . . , n}, Ostβ(Z2) = {q′li : i = 1, . . . , n},

Ostα(Z3) = {qki : i = 0, . . . , n, i even}.
(8.45)

It is now left to prove that for all s, t ∈ N

(s, t) ∈ S ⇐⇒Member(Z1, Z2, Z3, Z4, s, t).

“⇒”: Let (s, t) ∈ S. Let i ∈ {1, . . . , 2n} be such that (s, t) = (ci, ci+1). Observe that i is

odd. We show that

Admissible(qki−1
, qki , qki+1

, qki−1
, qli , qli+1

, Z1, Z2, Z3, Z4, ci, ci+1) (8.46)

holds. By (8.45) and the fact that i− 1 is even, we have that

qki−1
, qki, qki+1

∈ Ostα(Z1), q
′
li
, q′li+1

∈ Ostβ(Z2), qki−1
∈ Ostα(Z3).

Trivially, qki−1
≤ qki−1

< qki . By (3) qki−1
< q′li < qki < q′li+1

< qki+1
. Now observe that by (1)

Z4

∣∣α
qki−1

=W2n

∣∣α
qki−1

= Wi−1,

Z4

∣∣α
qki

=W2n

∣∣α
qki

=Wi,

Z4

∣∣α
qki+1

=W2n

∣∣α
qki+1

=Wi+1.

Thus by (4)

Best(qki−1
, q′li , Z4

∣∣α
qki−1

, Z4, ci) ∧ Best(qki, q
′
li+1

, Z4

∣∣α
qki
, Z4, ci+1).

Thus (8.46) holds.

“⇐”: Suppose that Member(Z1, Z2, Z3, Z4, s, t) holds. Let d1, d2, d3, d4 ∈ Ostα, e1, e2 ∈
Ostβ be such that

Admissible(d1, d2, d3, d4, e1, e2, Z1, Z2, Z3, Z4, s, t) (8.47)

190

holds. Then d1, d2, d3 are consecutive elements of Ostα(Z1). Thus there is i ∈ {1, . . . , 2n−1}
such that

d1 := qki−1
, d2 := qki, d3 := qki+1

.

Since d4 ∈ Ostα(Z3) and d1 ≤ d4 < d2, it follows that d4 = d1 = qki−1
and that i is odd.

Since e1, e2 ∈ Ostβ(Z2) and

d1 = qki−1
≤ e1 < d2 = qki ≤ e2 ≤ d3 = qki+1

,

we get from (3) that e1 = q′li and e2 = q′li+1
. Thus by (8.47)

Best(qki−1
, q′li , Z4

∣∣α
qki−1

, Z4, s) ∧ Best(qki , q
′
li+1

, Z4

∣∣α
qki
, Z4, t).

By (4) we get that s = ci and t = ci+1. Since i is odd, (s, t) = (ci, ci+1) ∈ S.

8.6.C. ∃∀-Definability of Admissible and Member. ForAdmissible (Definition 8.29),

we replace each variable di, which earlier represented some convergent qn ∈ Ostα, by a 6-tuple

di = (u−i , v
−
i , ui, vi, u

+
i , v

+
i) such that:

(u−i , v
−
i , ui, vi, u

+
i , v

+
i) = (pn−1, qn−1, pn, qn, pn+1, qn+1) for some n. (8.48)

We require C∀,α(u
−
i , v

−
i , ui, vi, u

+
i , v

+
i) = true to guarantee (8.48). Here vi takes the earlier

role of di. Similarly, we replace each ei in Admissible by a 6-tuple ei and also require

that C∀,β(ei) = true. Here C∀,α and C∀,β are from (8.15), with the extra subscript α or

β indicating which irrational is being considered. These C∀,α and C∀,β conditions can be

combined into a ∀2-part. Altogether, the new Admissible has 42 variables.

Recall that Best is ∃5∀4-definable (Lemma 8.26). The relation Y = X
∣∣α
d
from (8.44) is

∃2-definable:

Y = X
∣∣α
d

:= Y < v+ ∧ ∃Z,Z ′ Compatible(u, v, u+, v+, Y, Z, Z ′) ∧ Y + Z = X.

Here Compatible is from (8.20).

The relation d ∈ Ostα(X), meaning v appears in Ostα(X), is ∃3-definable (see (8.18)). The

same holds for e ∈ Ostβ(X) (just replace α by β).

191

The relation

Consec∃ (d1, d2, X) := v1 < v2 ∧ d1 ∈ Ostα(X) ∧ d2 ∈ Ostα(X) ∧

∃Y1, Y2 Y1 = X
∣∣α
d1
∧ Y2 = X

∣∣α
d2
∧ After(u−2 , v

−
2 , ui, vi, Y2 − Y1)

means v1 < v2 appear consecutively in Ostα(X). This is ∃12-definable.

It is now easy to see that Admissible ∃∀-definable, and so is Member. A direct count

reveals that Admissible is at most ∃50∀10, and Member is at most ∃100∀10.

8.6.D. Undecidability.

Theorem 8.31. The ∃∀∃∀-fragment is undecidable.

Proof. Here we follow an argument given in the proof of Thomas [Tho12, Th. 16.5]. Consider

U = (Q,Σ, σ1, δ, q1, q2) a universal 1-tape Turing machine with 8 states and 4 symbols, as

given in [NW06]. Here Q = {q1, . . . , q8} are the states, Σ = {σ1, . . . , σ4} are the tape

symbols, σ1 is the blank symbol, q1 is the start state and q2 is the unique halt state. Also,

δ : [8]× [4] → [8]× [4] × {±1} is the transition function. In other words, we have δ(i, j) =

(i′, j′, d) if upon state qi and symbol σj , the machine changes to state qi′, writes symbol σj′

and moves left (d = −1) or right (d = 1). Given an input x ∈ Σ∗, we will now produce an

∃∀∃∀-sentence ϕx such that ϕx holds if and only if U(x) halts.

We will now use sets A1, . . . , A8 ⊆ N2 and B1, . . . B4 ⊆ N2 to code the computation on

U(x). The Ai’s code the current state of the Turing machine. That is, for (s, t) ∈ N2, we

have (s, t) ∈ Ai if and only if at step s-th of the computation, U is in state qi and its head

over the t-th cell of the tape. The Bj’s code which symbols are written on the tape at a given

step of the computation. We have (s, t) ∈ Bj if and only if at step s-th of the computation,

the symbol σj is written on t-th cell of the tape. The computation U(x) then halts if and

only if there are A1, . . . , A8 ⊆ N2 and B1, . . . B4 ⊆ N2 such that:

a) Ai’s are pairwise disjoint; Bj ’s are pairwise disjoint.

b) (0, 0) ∈ A1, i.e., the computation starts in the initial state.

192

c) There exists some (u, v) ∈ A2, i.e., the computation eventually halts.

d) For each s ∈ N, there is at most one t ∈ N such that (s, t) ∈ ∪iAi, i.e., at each step of

the computation, U can only be in exactly one state.

e) If x = x0 . . . xn ∈ Σ∗, then for every 0 ≤ t ≤ n, we have xt = σj ⇐⇒ (0, t) ∈ Bj, i.e.,

the first rows of the Bj ’s code the input string x.

f) Whenever (s, t) ∈ Bj ,

f1) if (s, t) /∈ Ai for all i ∈ [8], then (s + 1, t) ∈ Bj . That is, if the current head

position is not at t, then the t-th symbol does not change.

f2) if (s, t) ∈ Ai for some i ∈ [8] and δ(i, j) = (δ1ij , δ
2
ij, δ

3
ij) ∈ [8] × [4] × {±1}, then

(s + 1, t) ∈ Bδ2ij
and (s + 1, t + δ3ij) ∈ Aδ1ij

. That is, if the head position is at t,

and the state is i, then a transition rule is applied.

We use the predicate Member to code membership (s, t) ∈ Ai, Bj. By Theorem 8.30,

there should exist tuples Xi = (Xi1, . . . , Xi4), Yj = (Yj1, . . . , Yj4) ∈ N4 that represent Ai

and Bj. In other words, we have

(s, t) ∈ Ai ⇐⇒ Member(Xi, s, t) , (s, t) ∈ Bj ⇐⇒ Member(Yj , s, t).

For the input condition e), there exist Zj = (Zj1, . . . , Zj4) ∈ N4 so that

xt = σj ⇐⇒ Member(Zj, 0, t) ∀ 0 ≤ t ≤ n.

Note that Zj can be explicitly constructed from the input x (see Theorem 8.30’s proof).

Now the sentence φx that encodes halting of U(x) is:

193

ϕx := ∃X1, . . . ,X8, Y1, . . . ,Y4 ∈ N4, u, v ∈ N ∀s, t, t′ ∈ N
∧

i 6=i′

¬
(
Member(Xi, s, t) ∧ Member(Xi′ , s, t)

)

∧
∧

j 6=j′

¬
(
Member(Yj, s, t) ∧ Member(Yj′, s, t)

)

∧Member(X1, 0, 0) ∧ Member(X2, u, v)

∧
[(∨

i

Member(Xi, s, t)
)
∧
(∨

i

Member(Xi, s, t
′)
)
→ t = t′

]

∧
∧

j

(
Member(Zj, 0, t)→Member(Yj, 0, t)

)

∧
∧

j

(
Member(Yj , s, t)→

[∧

i

¬Member(Xi, s, t) ∧ Member(Yj , s+ 1, t)
]

∨
∨

i

[
Member(Xi, s, t) ∧ Member(Yδ2ij

, s+ 1, t) ∧ Member(Xδ1ij
, s+ 1, t+ δ3ij)

])
.

Since Member is ∃∀-definable, the sentence φx is ∃∀∃∀. Whether U(x) halts or not is

undecidable, so is φx. A direct count shows that Member appears at most 200 times in

φx. From the last estimate in §8.6.C, we see that φx is at most a ∃k∀k∃k∀k sentence, where

k = 20000. This completes the proof.

8.7. Final remarks and open problems

8.7.A. Comparing theorems 8.34 and 8.3, we see a big complexity jump by going from

one to three alternating quantifier blocks, even the field is quadratic. The interesting open

questions are the complexity of deciding (8.1) when k = 2, 3 with α non-quadratic. We make

the following conjecture:

Conjecture 8.32. For α non-quadratic and k = 3, integer sentences (8.1) are undecidable.

Similarly, when α is quadratic we make the following conjecture:

Conjecture 8.33. For α quadratic and k = 2, deciding integer sentences (8.1) with and a

fixed number of variables and inequalities is NP-hard.

194

We note that for α =
√
5, ∃∀-sentences in Sα can already express non-trivial questions,

such as the following: Given a, b ∈ Z, decide whether there is a Fibonacci number Fn con-

gruent to a modulo b? Note that the sequence {Fn mod b} is periodic with period O(b),

called the Pisano period. These periods were introduced by Lagrange and heavily studied in

number theory (see e.g. [Sil11, §29]), but the question above is likely computationally hard.

8.7.B. Khachiyan and Porkolab proved in [KP00] the following positive result on Integer

Programming with irrational polyhedra:

Theorem 8.34 ([KP00]). Let K = Q be the field of algebraic numbers. For every fixed

n, sentences of the form ∃y ∈ Zn : Ay ≤ b with A ∈ Km×n, b ∈ Km can be decided in

polynomial time. Here the system Ay ≤ b in the theorem can involve arbitrary algebraic

irrationals.

Note that the system Ay ≤ b in the theorem can involve arbitrary algebraic irrationals.

This is a rare positive result on irrational polyhedra. In fact, for a non-quadratic α, this

gives the only positive result on Sα that we know of (cf. §8.7.B). This result very much

contrasts Theorem 8.6. The reason for polynomial decidability here is that it only considers

∃-sentences. More generally, Khachiyan and Porkolab showed that Integer Programming is

polynomial time for convex semialgebraic sets in fixed dimension:

Theorem 8.35 ([KP00]). Let k,m, n1, . . . , nm be fixed. Consider a first order formula F (y)

over the reals of the form:

y ∈ Rk : Q1x1 ∈ Rn1 . . . Qmxm ∈ Rnm P (y,x1, . . . ,xm),

where P (y,x1, . . . ,xw) is a Boolean combination of equalities/inequalities of the form

gi(y,x1, . . . ,xw) ∗i 0

with ∗i ∈ {>,<,=} and gi ∈ Z[y,x1, . . . ,xw]. Suppose that SF := {y ∈ Rn : F (y) = true}
is a convex set. Then we can either decide in polynomial time that SF ∩Zk = ∅, or produce

in polynomial time some y ∈ SF ∩ Zk.

195

This immediately implies Theorem 8.34. Here there is no restriction on the number of

gi’s and their degrees. The coefficients of gi’s are encoded in binary.

Note that convexity is crucially important in the theorem. In [MA78], it is shown that

given a, b, c ∈ Z, deciding ∃y ∈ N2 : ay21+by2+c = 0 is NP-complete. Here the semialgebraic

set
{
y ∈ R2 : 0 ≤ ay21 + by2 + c < 1

}

is not necessarily convex.

196

CHAPTER 9

Integer points in translated and expanded polyhedra

We prove that the problem of minimizing the number of integer points in parallel translations

of a rational convex polytope in R6 is NP-hard. We apply this result to show that given a

rational convex polytope P ⊂ R6, finding the largest integer t s.t. the expansion tP contains

fewer than k integer points is also NP-hard. We also consider the Ehrhart quasi-polynomial

of a rational polytope, which counts the number of integer points in its expansions, and show

that it can have arbitrarily bad fluctuations. This chapter is a version of the preprint [NP18].

9.1. Introduction

9.1.A. Translation of polytopes. We first state a more general problem, which was con-

sidered by Eisenbrand and Hähnle in [EH12].

Integer Point Minimization (IPM)

Input: A ∈ Qm×n, a rational polyhedron W ⊆ Rm, k ∈ N.

Decide: ∃b ∈ W s.t. #{x ∈ Zn : Ax ≤ b} ≤ k?

Here, the polytope Pb := {x ∈ Rn : Ax ≤ b} is called a parametric polytope with b being

the parameters varying over W . The problem asks whether we can find such a b ∈ W so

that |Pb|, its number of integer points, is at most k. Such polytopes were introduced by

Kannan [Kan90], who gave a polynomial time algorithm for IPM with k = 0 and n bounded

(Theorem 3.18). For larger fixed values k, Aliev, De Loera and Louveaux [ADL16] proved

that IPM is also polynomial time by employing the short generating functions technique

by Barvinok and Woods [BW03] (see Chapter 7). The following problem is an especially

197

attractive special case:

Polytope Translation

Input: A ∈ Qm×n, b ∈ Qm, ~v ∈ Qn, and k ∈ N.

Decide: ∃λ, 0 ≤ λ ≤ 1 s.t. #{x ∈ Zn : A(x− λ~v) ≤ b} ≤ k?

In terms of parametric polytopes, this asks for a translation λ~v of the original polytope P

so that P + λ~v it has at most k integer points. Polytope Translation is a special case

of the Integer Point Minimization problem, when W is 1-dimensional.

Eisenbrand and Hähnle proved that the Polytope Translation is NP-hard for n = 2

and m unbounded:

Theorem 9.1 ([EH12]). Given a rational m-gon Q ⊂ R2, minimizing |Q+ λ~e1| over λ ∈ R

is NP-hard.

Here and everywhere below, |P | denotes the number of integer points in a polytope P ,

and ~e1 = (1, 0, . . .) is the standard first coordinate vector. We prove a similar result for

n = 6 with a fixed number m of vertices.

Theorem 9.2. Given a rational polytope P ⊂ R6 with at most 64 vertices, minimizing

|P + λ~e1| over λ ∈ R is NP-hard.

This resolves a problem by Eisenbrand.1 Since the dimension is fixed, the number of

facets of P is at most an explicit constant. An integer version of this is:

Theorem 9.3. Given a rational polytope P ⊂ R6 with at most 60 vertices and an integer

N ∈ N, minimizing |P + t~e1/N | over t ∈ Z is NP-hard.

While Theorem 9.3 is implied by Theorem 9.2 by a simple argument on rationality, its

proof is simpler and will be presented first (cf. Section 9.3). The technique differs from that

in [EH12].

1F. Eisenbrand, personal communication (September 2017).

198

To prove Theorem 9.3, we show how to embed a classical NP-hard quadratic optimization

problem into Polytope Translation. This is done by viewing each term in the quadratic

objective as the integer volume of a separate polygon in R2, which are then merged in a higher

dimension into a single convex polytope. Let us mention that positivity and convexity are

major obstacles here, and occupy much of the proof.

9.1.B. Expansions of polytopes. A quasi-polynomial p(t) : Z→ Z is an integer function

p(t) = c0(t)t
d + c1(t)t

d−1 + . . . + cd(t),

where ci(t), 0 ≤ i ≤ d, are periodic with integer period. For a rational polytope P ⊂ Rn,

consider the following function:

fP (t) :=
∣∣tP ∩ Zn

∣∣.

Ehrhart famously proved that fP (t) is a quasi-polynomial, called the Ehrhart quasi-polynomial,

see e.g. [Bar08, §18]. It is well known and easy to see that fP (t) ∼ voln(P)t
n.

Many interesting combinatorial problems can be restated in the language of Ehrhart

quasi-polynomials. We start with the following classical problem:

Frobenius Coin Problem

Input: α = (α1, . . . , αn) ∈ N, gcd(α1, . . . , αn) = 1.

Output: g(a) := max
{
t ∈ N : ∄ c1, . . . , cn ∈ N s.t. t = c1α1 + . . .+ cnαn

}
.

In other words, this problem asks for the largest integer t that cannot be written as a

combination of the coins αi’s. Such a t exists by the gcd(·) = 1 condition. Finding g(a) is an

NP-hard problem when the dimension n is not bounded, see [RA96]. For a fixed n, Kannan

proved that the problem can be solved in polynomial time [Kan92, BW03].

We can restate the Frobenius Coin Problem as follows. Let

∆α := {x ∈ Rn : α · x = 1, x ≥ 0} and fα := f∆α
.

Then fα(t) counts the number of ways to write t ≥ 0 as an N-combination of the αi’s. Thus,

199

g(α) is the largest t ≥ 0, such that fα(t) = 0. Beck and Robins [BR04] used this setting to

consider the following generalization:

k-Frobenius Problem

Input: α = (α1, . . . , αn) ∈ N, gcd(α1, . . . , αn) = 1, k ∈ N.

Output: g(α, k) := max
{
t ∈ N : fα(t) < k

}
.

In other words, the problem asks for the largest integer t that cannot be represented as a

combinations of αi’s in k different ways. Aliev, De Loera and Louveaux [ADL16] generalized

Kannan’s theorem to prove that for fixed n and k the problem is still in P (see Theo-

rem 6.21). Motivated by the above interpretation with the simplex ∆α, they also considered

the following generalization:

k-Ehrhart Threshold Problem (k-ETP)

Input: A rational polytope P ∈ Rn and k ∈ N.

Output: g(P, k) := max
{
t ∈ N : fP (t) < k

}
.

For a polytope P , this asks for the largest t so that tP contains fewer than k integer points.

Again, when both n and k are fixed, it was shown in [ADL16] that this problem is in P.

However, for varying k we have:

Theorem 9.4. The k-ETP is NP-hard for rational polytopes P ∈ R6 with at most 60

vertices.

It is an open problem whether the k-Frobenius Problem is NP-hard when k is a part

of the input (see §9.6.A).

9.1.C. Fluctuations of the Ehrhart quasi-polynomial. It is well known that every

quasi-polynomial p(t) : Z→ Z can be written in the form:

p(t) =
r∑

i=1

γi

n∏

j=1

⌊
αijt+ βij

⌋
, (9.1)

where αi, βi, γi ∈ Q. The smallest n for which p(t) is representable in this form is called the

degree of f(t). It is also known how to compute fP (t) in the from (9.1) efficiently when n is

200

fixed (see e.g. [VW08]).

Not all quasi-polynomials arise from polytopes. For instance, p(t) = 1 + t⌊ t
2
⌋ − t⌊ t−1

2
⌋

cannot be an Ehrhart quasi-polynomial because p(t) > 0 for all t, yet its leading terms

fluctuates between odd and even values of t. However, when restricted to finite intervals,

every quasi-polynomial can be realized as fP of a polytope P , in the following sense:

Theorem 9.5. Let N ∈ N and p : Z → Z be a quasi-polynomial of the form (9.1), with

γi ∈ Z, αij, βij ∈ Q for 1 ≤ i ≤ r and 1 ≤ j ≤ n. Then there exists a rational polytope

Q ∈ Rd and integers K,M ∈ N, such that:

p(t) +K = fQ(t+M) for every 0 ≤ t < N.

Moreover, we have d = O(n+ ⌈log r⌉), and polytope Q has at most r4n+1 vertices. Here the

vertices of Q and the constants K,M can be computed in polynomial time.

Roughly, this theorems say that locally, Ehrhart quasi-polynomials can fluctuate as badly

as general quasi-polynomials. In particular, we have:

Corollary 9.6. For every sequence c0, . . . , cr−1 ∈ N, there exists a polytope Q ∈ Rd and

K,M ∈ N such that:

ci +K = fQ(i+M) for every 0 ≤ i < r.

Moreover, we have d = O(log r) and polytope Q has at most O(r) vertices. Here the vertices

of Q and the constants K,M can be computed in polynomial time.

Proof. Consider the degree 1 quasi-polynomial

f(t) =
r−1∑

i=0

ci

(⌊
t− i
r

⌋
−
⌊
t− i− 1

r

⌋)
.

Then f(i) = ci for 0 ≤ i < r. Now we apply Theorem 9.5 to f(t) with N = r.

9.1.D. Brief historical overview. The Frobenius problem and its many variations is

thoroughly discussed in [RA05], along with its connections to lattice theory, number theory

201

and convex polyhedra. There are also some efficient practical algorithms for solving it,

see [BHNW05]. The k-Frobenius Problem, also called the generalized Frobenius problem,

has been intensely studied in recent years, see e.g. [AHL13, FS11].

Ehrhart quasi-polynomials become polynomials for integer polytopes, in which case there

is a large literature on their structure and properties (see e.g. [Bar08, Bar17] and references

therein). We discuss integer polytopes in Section 9.5. A bounded number of leading coeffi-

cients of Ehrhart quasi-polynomials in arbitrary dimensions can be computed in polynomial

time [Bar06a] (see also [B+12]). There is also some interesting analysis of the periods of

the coefficients ci(t), see [BSW08, Woo05]. It seems that fluctuations of Ehrhart quasi-

polynomials have not been considered until now.

9.2. Proof of Theorem 9.3

9.2.A. General setup. We start with the following classical QDE problem:

Quadratic Diophantine Equations

Input: α, β, γ ∈ N.

Decide: ∃u ∈ N, 0 ≤ u < γ s.t. u2 ≡ α (mod β)?

Manders and Adleman [MA78] proved that this problem2 is NP-complete (see also [GJ79,

§7.2]). Observe that the problem remains NP-complete when we assume α, γ < β, Thus, the

problem can be rephrased as the problem of minimizing

f(u, v) := (u2 − α− βv)2 over (u, v) ∈ B ∩ Z2. (9.2)

where B = [0, γ)× [0, β). Indeed, we have min(u,v)∈B f(u, v) = 0 if and only if the congruence

in QDE is feasible.

Let N = βγ. The two variables (u, v) ∈ B can be encode into a single integer variable

0 ≤ t < N by:

u = ⌊t/β⌋ and v = t (mod β) = t− β⌊t/β⌋.

2We already used this in Theorem 7.58.

202

It is clear that each pair (u, v) ∈ B∩Z2 corresponds to such a unique t ∈ [0, N − 1] and vice

versa. So we can restate the problem as minimizing f
(
⌊t/β⌋, t − β⌊t/β⌋

)
over t ∈ [0, N).

Now we have:

f
(
⌊t/β⌋, t− β⌊t/β⌋

)
=

(
⌊t/β⌋2 − α− β

(
t− β⌊t/β⌋

))2

=
(
⌊t/β⌋

(
⌊t/β⌋+ β2

)
−
(
α + βt

))2
(9.3)

= ⌊t/β⌋2
(
β2 + ⌊t/β⌋

)2
︸ ︷︷ ︸

T1(t)

+
(
α + βt

)2
︸ ︷︷ ︸

T2(t)

− 2⌊t/β⌋
(
β2 + ⌊t/β⌋

)(
α + βt

)
︸ ︷︷ ︸

S(t)

.

Here we denote by T1(t), T2(t) and S(t) the three terms in the above sum. First, we need to

convert −S(t) into a positive term. Fix a large constant σ, say σ := 10β5 will suffice for our

purposes. We have:

−S(t) = −S(t) + 2β(β2 + β)(α + βt) − 2β(β2 + β)(α+ βt) + σ − σ (9.4)

=
[
β(β2 + β)− ⌊t/β⌋

(
β2 + ⌊t/β⌋

)]
2(α + βt) + σ − 2β(β2 + β)(α + βt)− σ

=
(
β − ⌊t/β⌋

)(
β2 + β + ⌊t/β⌋

)
(2α + 2βt)

︸ ︷︷ ︸
T3(t)

+
[
σ − 2β(β2 + β)(α+ βt)

]
︸ ︷︷ ︸

T4(t)

−σ.

Thus,

f
(
⌊t/β⌋, t− β⌊t/β⌋

)
= T1(t) + T2(t) + T3(t) + T4(t) − σ.

Note that T1(t), . . . , T4(t) > 0 for 0 ≤ t < N . Let

g(t) := σ + f
(
⌊t/β⌋, t− β⌊t/β⌋

)
.

We can rephrase the original NP-hard problem as the problem of computing the following

minimum:

min
0≤t<N

g(t) = min
0≤t<N

T1(t) + . . . + T4(t). (9.5)

Note that each function Ti(t) is a product of terms of the form p± qt or r ± ⌊t/β⌋ for some

constants p, q, r > 0. We encode each of these three types of functions as the number of

integer points in some translated polytope. From this point on, we assume that 0 ≤ t < N ,

unless stated otherwise.

203

9.2.B. Trapezoid constructions. To illustrate the idea, we start with the simplest func-

tion qt with q ∈ Z+. Let ε = 1/4N2 and ~v = ~e1/N = (1/N, 0, . . . , 0). Consider the following

triangle:

∆ =
{
(x, y) ∈ R2 : x, y ≥ ε, qN(1− x) ≥ y

}
.

(see Figure 9.1). Fix a line ℓ := {x = 1}. It is easy to see that the hypotenuse of ∆ + t~v

intersects ℓ at the point y = qNt/N = qt. So we have (∆ + t~v) ∩ ℓ = [ε, qt], and thus

|∆+ t~v| = qt.

To encode a function p+qt with p, q ∈ Z+, we take ∆ and extend vertically by a distance

p − 1
2
below the line y = 0 to make a trapezoid FA. Similarly, to encode a function p′ − qt

with p′ > qN , we translate the hypotenuse of ∆ up by 2ε, and then extend upward by p′ to

get a trapezoid FB (see Figure 9.1). Formally, let:

FA =
{
(x, y) ∈ R2 : 1 ≥ x ≥ ε, qN(1 − x) ≥ y ≥ 1/2− p

}
and

FB =
{
(x, y) ∈ R2 : 1 ≥ x ≥ ε, p′ ≥ y ≥ qN(1− x) + 2ε}.

ε

ε

ε

ε

ε

ε

2ε
O 1

slope = qN

∆∆ ℓℓℓ

1
N

2
N
. . .

FA

FB

p− 1
2

p′

Figure 9.1: The triangle ∆ and trapezoids FA, FB.

Let us show that these trapezoids encode the function as stated above. For FA, we have

(FA + t~v) ∩ ℓ =
[
1
2
− p, qt

]
, and thus |FA + t~v| = p+ qt. For FB, the hypotenuse of FB + t~v

intersects ℓ at qt+2ε. Thus, we have (FB+t~v)∩ℓ =
[
qt+2ε, p′

]
, and thus |FB+t~v| = p′−qt,

as desired.

204

For the function ⌊t/β⌋, we can encode it with the following triangle:

∆′ =
{
(x, y) ∈ R2 : x, y ≥ ε, γ(1− x) ≥ y

}
.

(see Figure 9.2). It is easy to see that the hypotenuse of ∆′ + t~v intersects ℓ at the point

y = γt/N = t/β. So (∆′ + t~v) ∩ ℓ = [ε, t/β] and thus |∆′ + t~v| = ⌊t/β⌋.

By modifying ∆′ and keeping the same slope γ, we can encode the functions r + ⌊t/β⌋
and r′ − ⌊t/β⌋ with r, r′ ∈ Z+, r

′ > γ, by using the following trapezoids:

FC =
{
(x, y) ∈ R2 : 1 ≥ x ≥ ε, γ(1− x) ≥ y ≥ 1/2− r

}
and

FD =
{
(x, y) ∈ R2 : 1 ≥ x ≥ ε, r′ ≥ y ≥ γ(1− x) + 2ε

}
,

respectively (see Figure 9.2).

ε

ε

ε

ε

ε

ε

2ε

slope = N/β = γ

∆′

FC

FD

r − 1
2

r′

∆′
ℓ

ℓ

ℓ

Figure 9.2: The triangle ∆′ and trapezoids FC , FD.

Let us show that these trapezoids encode the function as stated above. For FC , we have

(FC + t~v)∩ ℓ =
[
1
2
− r, t

β

]
, and thus |FC + t~v| = r+ ⌊t/β⌋. Similarly, for FD, the hypotenuse

of (FD + t~v) intersects ℓ at y = t/β + 2ε, and thus (FD + t~v) ∩ ℓ =
[
t
β
+ 2ε, r′]. Since

t/β < t/β + 2ε < (t + 1)/β, we have |FD + t~v| = r′ − ⌊t/β⌋, as desired.

Note that the counting function for each constructed trapezoid is periodic modulo N . In

other words, |FA + t~v| = |FA + (t mod N)~v| for every t ∈ Z, and the same result holds for

FB, FC , FD. From this point on, we let t take values over Z in place of our earlier restriction

t ∈ [0, N).

205

9.2.C. The product construction. The next step is to construct polytopes that encode

products functions of the form p± qt and r ± ⌊t/β⌋.

Consider any d functions h1(t), . . . , hd(t) of these forms. We take the trapezoids F1, . . . , Fd

whose counting functions encode hi’s. Each Fi ⊂ R2 is described by a system:

Fi =
{
(x, y) ∈ R2 : µi ≤ x ≤ νi, ρi + τix ≤ y ≤ ρ′i + τ ′ix

}
.

We embed Fi into the 2-dimensional subspace spanned by coordinates x, yi inside Rd+1 (with

coordinates x, y1, . . . , yd). Then define:

P =
{
(x, y1, . . . , yd) ∈ Rd+1 : max

1≤i≤d
µi ≤ x ≤ min

1≤i≤d
νi, ρi + τix ≤ yi ≤ ρ′i + τ ′ix

}
. (9.6)

It is clear that for every t and every vertical hyperplane H = {x = x0} in Rd+1, we have

(P + t~v) ∩H =
(
(F1 + t~v

)
∩H)× · · · ×

(
(Fd + t~v) ∩H

)
.3 Therefore, we have

|P ∩ t~v| = |F1 ∩ t~v| . . . |Fd ∩ t~v| = h1(t) . . . hd(t).

So the (d + 1)-dimensional polytope P encodes the product h1(t) . . . hd(t). Note that P is

combinatorially a cube, which means it has 2(d+ 1) facets and 2d+1 vertices.

9.2.D. Putting it all together. We apply this product construction to each of the four

terms T1, T2 in (9.3), T3, T4 in (9.4) and get four polytopes P1 ∈ R5, P2 ∈ R3, P3 ∈ R4,

P4 ∈ R2 such that

|Pi + t~v| = Ti(t mod N) for every t ∈ Z. (9.7)

Now we embed them into R6 as follows:

Q1 = {x ∈ R6 : (x1, . . . , x5) ∈ P1, x6 = 1},

Q3 = {x ∈ R6 : (x1, . . . , x4) ∈ P3, x5 = 1, x6 = 0},

Q2 = {x ∈ R6 : (x1, . . . , x3) ∈ P2, x4 = 1, x5 = 0, x6 = 0},

Q4 = {x ∈ R6 : (x1, x2) ∈ P4, x3 = 1, x4 = 0, x5 = 0, x6 = 0}.

(9.8)

3Note that each Fi + t~v intersects exactly one such hyperplane H with x0 ∈ Z.

206

Note that Q1, . . . , Q4 are all disjoint. Define the polytope

W = conv(Q1, . . . , Q4). (9.9)

Because of the way P1, . . . , P4 are embedded in R4, for every t ∈ Z we have:

(W + t~v) ∩ Z6 =
4⊔

i=1

(
(Qi + t~v) ∩ Z6

)
.

Thus, for every t ∈ Z, we have:

|W + t~v| =
4∑

i=1

|Qi + t~v| =
4∑

i=1

|Pi + t~v| =
4∑

i=1

Ti(t mod N) = g(t mod N).

By (9.5), we conclude that computing the following minimum is NP-hard:

min
t∈Z
|W + t~v| = min

0≤t<N
g(t).

Note that the polytopes Q1, Q2, Q3, Q4 have 32, 8, 16, 4 vertices, respectively. Thus, poly-

tope W has in total 60 vertices, as desired. �

9.3. Proof of Theorem 9.2

We modify the construction in the proof of Theorem 9.3 by perturbing all its ingredients to

ensure that the desired minimum coincides with the one in the integer case. This construction

is rather technical and assumes the reader is familiar with details in the proof above.

Recall that 0 ≤ α, γ < β, N = βγ, ε = 1/4N2 and ~v = ~e1/N . We perturb all constructed

trapezoids as follows. Denote by s the maximum slope over all hypotenuses of all constructed

trapezoids. By a quick inspection of the terms T1, . . . , T4 in (9.3) and (9.4), one can see that

s < 4β4N < 4β6. Take δ > 0 much smaller than ε and (βs)−1. For example, δ := 1/4β8

works. Now translate each constructed trapezoid F by a distance +δ horizontally in R2.

Let F ′ be such a translated copy of some F .4 Then it is not hard to see that |F+t~v| = |F ′+t~v|
for all t ∈ Z. In fact, due to the δ perturbation, we have:

|F + t~v| = |F ′ + t~v| =
∣∣∣F ′ +

(t
N

+ τ
)
~e1

∣∣∣

4Recall that each F encodes some function h(t) as |F + t~v| = h(t mod N) for every t ∈ Z.

207

for every t ∈ Z and τ ∈ [−δ/4, δ/4]. This can be checked directly for all the trapezoid of

types FA, FB, FC , FD constructed in the proof of Theorem 9.3. Define the real set

Zδ =
{ t

N
+ τ : t ∈ Z, −δ/4 ≤ τ ≤ δ/4

}
. (9.10)

For λ ∈ Zδ, denote by t(λ) the (unique) integer t such that |λ− t/N | ≤ δ/4. By the above

observations, we have |F ′+λ~e1| = |F+t(λ)~v| for every λ ∈ Zδ. Now we take these perturbed

trapezoids and construct P ′
1, . . . , P

′
4 as similar to P1, . . . , P4 above, using the same product

construction (see (9.6)). Note that P ′
i = Pi + δ~e1 and by (9.7), for every λ ∈ Zδ we have:

|P ′
i + λ~e1| = |Pi + t(λ)~v| = Ti(t(λ) mod N) (1 ≤ i ≤ 4). (9.11)

We need to “patch up” Zδ to make it the whole real line R. Let

Yδ =
{ t

N
+ τ : t ∈ Z,

δ

8
≤ τ ≤ 1

N
− δ

8

}
. (9.12)

Zδ

Yδ

0
1
N

2
N

N−1
N 1- 1

N . . .

. . .

Figure 9.3: The sets Zδ and Yδ consisting of bold segments.

It is clear that Zδ ∪ Yδ = R. Take a large constant ω, s.t. ω ≫ g(t) for all 0 ≤ t < N . For

example, ω := 10β10 will suffice for our purposes, by (9.3)–(9.5). Now consider the following

parallelogram:

R =
{
(x, y) ∈ R2 : ωN − 1

2
≥ y ≥ 0, 1− δ

8
− y

N
≥ x ≥ 1− 1

N
+
δ

8
− y

N

}

(see Figure 9.4).

Lemma 9.7. We have: |R + λ~e1| = ω if λ ∈ Yδ, and |R + λ~e1| = 0 otherwise.

Proof. Denote by R(i) the horizontal slice of R at height i ∈ Z. Then for the bottom edge

R(0), we have |R(0)+λ~e1| = 1 if δ/8 ≤ λ mod 1 ≤ 1/N − δ/8, and |R(0)+λ~e1| = 0 otherwise.

208

10

δ/8

1/N − δ/8

R slope y
x
= NωN − 1

2

Figure 9.4: The parallelogram R.

In other words, |R(0) + λ~e1| = 1 if and only if λ lies in some jN -th segment of Yδ (j ∈ Z).

Also every next slice is translated by −1/N , i.e., R(i+1) = R(i) − ~e1/N . There are in total

ωN non-empty slices, which implies the claim.

Recall the perturbed polytopes P ′
1, . . . , P

′
4 above, see (9.11). We embed them into R5

similarly to (9.8):

Q′
1 = {x ∈ R6 : (x1, . . . , x5) ∈ P ′

1, x6 = 1},

Q′
3 = {x ∈ R6 : (x1, . . . , x4) ∈ P ′

3, x5 = 1, x6 = 0},

Q′
2 = {x ∈ R6 : (x1, . . . , x3) ∈ P ′

2, x4 = 1, x5 = 0, x6 = 0},

Q′
4 = {x ∈ R6 : (x1, x2) ∈ P ′

4, x3 = 1, x4 = 0, x5 = 0, x6 = 0}.

(9.13)

We also embed R into R5 as:

Q′
5 = {x ∈ R6 : (x1, x2) ∈ R, x3 = 0, x4 = 0, x5 = 0, x6 = 0}.

Now let W ′ = conv(Q′
1, . . . , Q

′
5). By the above embeddings, we have:

|W ′ + λ~e1| =
5∑

i=1

|Q′
i + λ~e1| = |R + λ~e1| +

4∑

i=1

|P ′
i + λ~e1|.

If λ ∈ Yδ, we have:

|W ′ + λ~e1| ≥ |R+ λ~e1| = ω ≫ max
0≤t<N

g(t).

On the other hand, if λ /∈ Yδ, then λ ∈ Zδ by (9.10) and (9.12). In this case, by (9.11) and

Lemma 9.7, we have:

|W ′ + λ~e1| =
4∑

i=1

|P ′
i + λ~e1| =

4∑

i=1

Ti(t(λ) mod N) = g(t(λ) mod N).

209

We conclude that the following minimum is NP-hard to compute:

min
λ∈R
|W ′ + λ~e1| = min

0≤t<N
g(t).

Note that the polytopes Q′
1, Q

′
2, Q

′
3, Q

′
4, Q

′
5 have 32, 8, 16, 4, 4 vertices, respectively. Thus,

polytope W ′ has in total 64 vertices. This completes the proof of Theorem 9.2. �

9.4. Applications

9.4.A. Proof of Theorem 9.4. Recall the polytope P ⊂ R6 from Theorem 9.3 with 60

vertices and the translation vector ~v = ~e1/N . From the construction in Section 9.2, it is

clear that P has at least one integer point, which we call ~p. We translate P by −~p so that

(0, 0) ∈ P , meanwhile still keeping |P + t~v| the same for every t ∈ Z.

Consider a very large multiple M of N (quantified later). Then for every 0 ≤ t < N , the

two polytopes

Rt = P + (t+M)~v and R′
t =

t +M

M
P + (t+M)~v

satisfy Rt ⊂ R′
t, even though R′

t is just slightly larger. Since both polytopes are closed, if

they differ by very little, we should have |Rt| = |R′
t|. To ensure this for all 0 ≤ t < N , it is

enough to pick M so that N/M < d1/D2, where:

d1 = min
0≤t<N

δ
(
P + t~v, Z6\(P + t~v)

)
and D2 = diameter of P.

Here δ(·, ·) denotes the shortest distance between two sets. Both 1/d1 and D2 are polyno-

mially bounded in N and the largest pq over all vertex coordinates p/q of P (see [Sch86,

Ch.10]). So M only needs to be polynomially large in N and the coordinates of P .

Now we have |Rt| = |R′
t| for every 0 ≤ t < N . Let Q = 1

M
P + ~v, then R′

t = (t +M)Q.

Thus, |Rt| = |(t+M)Q| for every 0 ≤ t < N . Recall that |P + t~v| is periodic modulo N and

N |M . So |Rt| = |P + (t+M)~v| = |P + t~v| for very t. We conclude that

|P + t~v| = |(t+M)Q| for every 0 ≤ t < N.

Thus, computing min0≤t<N |(t+M)Q| = min0≤t<N |P + t~v| is NP-hard.
210

By binary search, finding min0≤t<N |(t + M)Q| is equivalent to deciding polynomially

many sentences of the from min0≤t<N |(t +M)Q| < k for varying k. From the definition of

k-ETP, we have min0≤t<N |(t +M)Q| < k if and only if g(Q, k) ≥ M . This implies that

computing g(Q, k) is NP-hard. �

9.4.B. Proof of Theorem 9.5. The constants K,M will be later quantified. Recall that

p(t) =

r∑

i=1

γi

n∏

j=1

⌊
αijt+ βij

⌋
(9.14)

with γi ∈ Z. By increasing d by 1 and writing γi = ⌊0t + γi⌋, we can assume that all

coefficients γi = 1. Let ~v = ~e1/N . First, we construct a polytope W ⊂ Rd such that

p(t mod N) +K = |W + t~v| for all t ∈ Z. We need a technical lemma:

Lemma 9.8. For every n ≥ 2, we have the identity:

3n−1g1 · · · gn + h1 · · ·hn =
∑

S⊆[n], S 6=∅

3δ(S)
∏

j∈[n]\S

gj ·
∏

j∈S

(gj + σj(S) τj(S)hj)

where

σj(S) =
{ 1 if j − 1 ∈ S
−1 if j − 1 /∈ S

, τj(S) =
{ 1 if smax > j

−1 if smax ≤ j
, σ(S) = max(0, n− smax − 1),

and smax = max(S).

Proof. Straightforward by induction, starting with the base case n = 2:

3g1g2 + h1h2 = (g1 − h1)(g2 − h2) + g1(g2 + h2) + (g1 + h1)g2.

The inductive step from n− 1 to n is:

3n−1g1 . . . gn + h1 . . . hn = 3(g1 − h1)(3n−2g2 . . . gn − h2 . . . hn) +

g1(3
n−2g2 . . . gn + h2 . . . hn) + (g1 + h1)3

n−2g2 . . . gn.

Now replace −h2 by h′2 in the first term and apply the (n− 1)-st step.

211

The point of this lemma is that if qi(t) =
∏n

j=1 hij(t), where hij(t) = ⌊αijt + βij⌋, and
g ∈ N is big enough then we can write:

qi(t) + 3n−1gn = hi1(t) . . . hin(t) + 3n−1gn =
∑

S⊆[n], S 6=∅

3δ(S)gn−|S|
∏

j∈S

(
g ± hij(t)

)
. (9.15)

Now the trapezoid construction from Section 9.2 can be applied to each term g ± hij(t). In
other words, for each j, we construct two trapezoids F+

ij and F−
ij so that:

|F+
ij + t~v| = g + hij(t mod N) and |F−

ij + t~v| = g − hij(t mod N) for every t ∈ Z.

For each S ⊆ [n] in the sum in (9.15), we take the product of the trapezoids for the terms

g ± hij(t) with the construction from §9.2.C. This results in some polytope P ′
S in R|S|+1

with 2|S|+1 vertices. Then we take a prism of height 3δ(S)gn−|S| over P ′
S to get a polytope

PS ∈ R|S|+2 with 2|S|+2 vertices such that:

|PS + t~v| = 3δ(S)gn−|S|
∏

j∈S

(
g ± hij(t mod N)

)
for every t ∈ Z.

By padding in extra dimensions, we can assume each PS ⊂ Rn+2. To sum over all S (there

are 2n − 1 of them), we pad in another extra n dimensions, and augment each PS with the

coordinates of a distinct point in {0, 1}n (see (9.8)). Taking the convex hull of the resulting

polytopes, we get some polytope Wi ⊂ R2n+2 such that:

|Wi + t~v| =
∑

S⊆[n], S 6=∅

3δ(S)gn−|S|
∏

j∈S

(
g ± hij(t mod N)

)
= qi(t mod N) + 3n−1gn.

for ever t ∈ Z. Note that Wi has at most (2n − 1)2n+2 < 4n+1 vertices.

Now we have a polytope Wi ⊂ R2n+2 for each term qi(t) =
∏n

j=1⌊αijt + βij⌋ in (9.14).

Again, to sum up qi over 1 ≤ i ≤ r, we pad each Wi with ⌈log r⌉ extra dimensions and

augment it with a distinct point in {0, 1}⌈log r⌉. Taking their convex hull, we get P ⊂ Rd

such that

p(t mod N) + r3n−1g = |P + t~v| for every t ∈ Z.

Here d = 2n + 2 + ⌈log r⌉ is the dimension, and P has at most r4n+1 vertices. In this

construction, we only need g > |hij(t)| for all 1 ≤ i ≤ r, 1 ≤ j ≤ n and 0 ≤ j < N . So

g = 2⌈max |αij|N +max |βij |⌉ suffices. We let K = r3n−1g.

212

Finally, the argument from the proof of Theorem 9.4 can be applied to P . This gives a

polytope Q ⊂ Rd (with the same number of vertices) and an M ∈ N so that:

p(t) +K = |P + t~v| = |(t+M)Q| = fQ(t +M) for every 0 ≤ t < N.

This finishes the proof of Theorem 9.5. �

9.5. Integer polytopes

While much of this chapter deals with rational polytopes in fixed dimensions, we can ask

similar questions about integer polytopes (polytopes with vertices in Zn).

Proposition 9.9. For integer polytopes, the k-ETP problem is polynomial time solvable.

Proof. The Ehrhart polynomial fP (t) of an integer polytope P ⊂ Rn is a monotone polyno-

mial of degree at most n, see e.g. [Bar08, BR04]. Since n is fixed, the coefficients of fP (t)

can be computed using Lagrange interpolation. Now apply the binary search to solve the

k-ETP problem from definition.

Note that this approach also extends to (rational) polytopes P with a fixed denominator,

defined as the smallest t ∈ Z+ such that tP is integer.

For Polytope Translation, we do not know if Theorem 9.2 continues to hold for

integer polytopes. However, it is not difficult to see that Theorem 9.3 extends to this setting:

Theorem 9.10. Given an integer polytope P ⊂ R6 with at most 64 vertices and an integer

N ∈ N, minimizing |P + t~e1/N | over t ∈ Z is NP-hard.

Sketch of proof. The trapezoids in §9.2.B can be reused, with the ε’s removed to make all

their vertices integer.5 A small complication arises for trapezoids of type FD in Figure 9.2,

because now |FD+ t~v| = r′−⌊(t−1)/β⌋ instead of r′−⌊t/β⌋. This is easily circumvented by

considering only t ∈ [0, N) s.t. β ∤ t, and thus ⌊(t−1)/β⌋ = ⌊t/β⌋. The remaining t ∈ [0, N)

5Those ε’s only mattered in Section 9.3, where we say that small perturbation does not change the number
of integer points in the trapezoids.

213

with β|t can be ignored because they correspond to v = 0 in (9.2), which can be checked

directly.

For the special case of integer polygons, the number of integer points vary quite nicely

under translation (cf. [EH12]).

Proposition 9.11. For every fixed m, the Polytope Translation problem for integer

m-gons can be solved in polynomial time.

Proof. Let Q ⊂ R2 be an integer m-gon. Then f(λ) := |Q + λ~e1| is a sum of at most m

terms of the form
(
ai + bi⌊ci λ⌋

)
, for some ai, bi, ci ∈ Q. Then the generating function

FQ,N(z, w) :=

N−1∑

k=0

zkwf(k/N)

can be written in the short GF form (see Chapter 7). Here 1/N is a small enough refinement

of the unit interval. Then the short GF technique of taking intersections (see Theorem 7.14)

can be applied to FQ,N(z, w) to find the minimum of f(k/N) in polynomial time. We omit

the details.

Curiously, Alhajjar proved in [Alh17, Prop. 4.15], that for every integer polygon Q ⊂ R2,

the corresponding maximization problem is trivial:

|Q| > |Q+ λ~e1|, for all 0 < λ < 1.

This does not extend to R3, however. For example, take ∆ ⊂ R3 defined as the convex hull of

points (0, 0, 0), (1, 0, 0), (0, 1, k) and (1,−1, k). Then |∆| = 4, while
∣∣∆+(1/2, 0, 0)

∣∣ = k+1,

which is unbounded.

Finally, let us mention a large body of work on coefficients of the h∗-vector for the Ehrhart

polynomials of integer polytopes. This gives further restrictions on the values fQ(t) as in

Corollary 9.6. We refer to [Bra16] for a recent survey article and references therein.

214

9.6. Final remarks and open problems

9.6.A. Now that Polytope Translation is NP-hard, it would be interesting to know

its true complexity. First, it is clearly in PSPACE. Also our proof is robust enough to allow

embedding of general polynomial optimization decision problems (cf. [DHKW06]). Although

we were unable to find a more general optimization problem that fits our framework, we hope

to return to this in the future.

Note that in computational complexity, counting oracles are extremely powerful, as shown

by Toda’s theorem (see Proposition 7.49). From this point of view, our Theorem 9.2 is

unsurprising, since it uses a counting oracle in a restricted setting.

9.6.B. In another direction, it would be interesting to see if Polytope Translation

remains NP-hard in lower dimensions. We believe that dimension 6 is Theorem 9.2 is not

sharp.

Conjecture 9.12. The Polytope Translation problem for rational polytopes P ⊂ R3

is NP-hard.

In the plane, the polygon translation problem (with a fixed number of vertices) seem to

have additional structures that prevent it from being computationally hard. In the special

case of rational trapezoids, it can be reduced to a Diophantine approximation problem

of unknown complexity (see the approach in [EH12]). We conjecture that the polygon

translation problem is intermediate between P and NP.

Similarly, we believe that hardness still holds for much simpler types of polytopes:

Conjecture 9.13. For some fixed n, the Polytope Translation problem for rational

simplices ∆ ⊂ Rn is NP-hard.

By analogy, we believe that Theorem 9.4 also holds for simplices:

Conjecture 9.14. k-ETP is NP-hard for rational simplices ∆ ∈ Rn, for some fixed n.

215

A significantly stronger result would be the following:

Conjecture 9.15. The k-Frobenius Problem is NP-hard for some fixed n.

9.6.C. Corollary 9.6 is the type of universality result which occasionally arise in discrete

and algebraic geometry (see e.g. §12,13 in [Pak09] and references therein). It would be

interesting to find a simple or more direct proof of this result. In fact, we conjecture that

the dimension bound d = O(log r) is sharp.

216

REFERENCES

[Aa16] S. Aaronson, P
?
= NP, in Open problems in mathematics, Springer, New York,

2016, 1–122.

[AOW14] D. Adjiashvili, T. Oertel and R. Weismantel, A polyhedral Frobenius theorem
with applications to integer optimization, SIAM J. Discrete Math. 29 (2015),
1287–1302.

[Alh17] E. Alhajjar, A New Valuation on Lattice Polytopes, Ph.D. thesis, George Mason
University, 2017, 100 pp.

[ADL16] I. Aliev, J. A. De Loera and Q. Louveaux, Parametric polyhedra with at least k
lattice points: Their semigroup structureand the k-Frobenius problem, in Recent
Trends in Combinatorics, Springer, 2016, 753–778.

[AHL13] I. Aliev, M. Henk and E. Linke, Integer points in knapsack polytopes and s-
covering radius, Electron. J. Combin. 20 (2013), no. 2, Paper 42, 17 pp.

[AB09] S. Arora and B. Barak, Computational complexity: a modern approach, Cam-
bridge Univ. Press, Cambridge, 2009.

[A+16] M. Aschenbrenner, A. Dolich, D. Haskell, D. Macpherson and S. Starchenko,
Vapnik-Chervonenkis density in some theories without the independence prop-
erty, I, Trans. AMS 368 (2016), 5889–5949.

[BMS86] E. Bach, G. Miller and J. Shallit, Sum of divisors, perfect numbers and factoring,
SIAM J. Comput. 15 (1986), 1143–1154.

[B+12] V. Baldoni, N. Berline, J. A. De Loera, M. Köppe and M. Vergne, Computa-
tion of the highest coefficients of weighted Ehrhart quasi-polynomials of rational
polyhedra, Found. Comput. Math. 12 (2012), 435–469.

[Bar17] A. Barvinok, Lattice points and lattice polytopes, to appear in Handbook of
Discrete and Computational Geometry (third edition), CRC Press, Boca Raton,
FL, 2017, 26 pp.

[Bar08] A. Barvinok, Integer points in polyhedra, EMS, Zürich, 2008.

[Bar06a] A. Barvinok, Computing the Ehrhart quasi-polynomial of a rational simplex,
Math. Comput. 75 (2006), 1449–1466.

[Bar06b] A. Barvinok, The complexity of generating functions for integer points in poly-
hedra and beyond, in Proc. ICM, Vol. 3, EMS, Zürich, 2006, 763–787.

[Bar94] A. Barvinok, A polynomial time algorithm for counting integral points in poly-
hedra when the dimension is fixed, Math. Oper. Res. 19 (1994), 769–779.

217

[Bar93] A. Barvinok, A polynomial time algorithm for counting integral points inpolyhe-
dra when the fimension is fixed, in Proc. 34th FOCS, IEEE, Los Alamitos, CA,
1993, 566–572.

[BP99] A. Barvinok and J. E. Pommersheim, An algorithmic theory of lattice points
in polyhedra, inNew Perspectives in Algebraic Combinatorics, Cambridge Univ.
Press, Cambridge, UK, 1999, 91–147.

[BW03] A. Barvinok and K. Woods, Short rational generating functions for lattice point
problems, Jour. AMS 16 (2003), 957–979.

[BR04] M. Beck and S. Robins, A formula related to the Frobenius problem in two
dimensions, in Number theory, Springer, New York, 2004, 17–23.

[BSW08] M. Beck, S. V. Sam and K. M. Woods, Maximal periods of (Ehrhart) quasi-
polynomials, J. Combin. Theory, Ser. A 115 (2008), 517–525.

[BHNW05] D. Beihoffer, J. Hendry, A. Nijenhuis and S. Wagon, Faster algorithms for Frobe-
nius numbers, Electron. J. Combin. 12 (2005), RP 27, 38 pp.

[BV07] N. Berline and M. Vergne, Local Euler–Maclaurin formula for polytopes, Mosc.
Math. J. 7 (2007), 355–386.

[BWG17] T. Bogart, J. Goodrick and K. Woods, Parametric Presburger Arithmetic: logic,
combinatorics, and quasi-polynomial behavior, Discrete Anal., 2017:4, 34 pp.

[BGNW18] T. Bogart, J. Goodrick, D. Nguyen and K. Woods, Parametric Presburger
Arithmetic: Complexity of Counting and Quantifier Elimination, preprint;
arxiv:1802.00974.

[BGP92] E. Bombieri, A. Granville and J. Pintz, Squares in arithmetic progressions, Duke
Math. J. 66 (1992), 369–385.

[BT76] I. Borosh, L. B. Treybig, Bounds on positive integral solutions of linear Diophan-
tine equations, Proc. Amer. Math. Soc. 55 (1976), no. 2, 299–304.

[Bra16] B. Braun, Unimodality problems in Ehrhart theory, in Recent trends in combi-
natorics, Springer, Cham, 2016, 687–711.

[Cai07] J-Y. Cai, SP
2 ⊆ ZPPNP, J. Comput. System Sci. 73 (2007), 25–35.

[CH16] D. Chistikov and C. Haase, The taming of the semi-linear set, in Proc. ICALP
2016, 127:1–127:13.

[Che16] A. Chernikov, Models theory and combinatorics, course notes, UCLA; available
electronically at https://tinyurl.com/y8ob6uyv.

[Chu36] A. Church, An Unsolvable Problem of Elementary Number Theory, Amer. J.
Math. 58 (1936), no. 2, 345–363.

218

https://tinyurl.com/y8ob6uyv

[CL98] P. Clauss and V. Loechner, Parametric analysis of polyhedral iteration spaces,
J. VLSI Signal Process. 19 (1998), 179–194.

[Coo72] D. C. Cooper, Theorem proving in arithmetic without multiplication, in Machine
Intelligence (B. Meltzer and D. Michie, eds.), Edinburgh Univ. Press, 1972, 91–
99.

[Dav73] M. Davis, Hilbert’s tenth problem is unsolvable, Amer. Math. Monthly 80 (1973),
233–269.

[DHK09] J. A. De Loera, R. Hemmecke, M. Köppe, Pareto optima of multicriteria integer
linear programs, INFORMS J. Comput. 21 (2009), 39–48.

[DHKW06] J. A. De Loera, R. Hemmecke, M. Köppe and R. Weismantel, Integer Polynomial
Optimization in Fixed Dimension, Math. Oper. Research 31 (2006), 147–153.

[DHTY04] J. A. De Loera, R. Hemmecke, J. Tauzer and R. Yoshida, Effective lattice point
counting in rational convex polytopes, J. Symbolic Comput. 38 (2004), 1273–
1302.

[DRS10] J. A. De Loera, J. Rambau and F. Santos, Triangulations, Springer, Berlin, 2010.

[DHWZ16] A. Del Pia, R. Hildebrand, R. Weismantel and K. Zemmer, Minimizing cubic
and homogeneous polynomials over integers in the plane, Math. Oper. Res. 41
(2016), 511–530.

[DW14] A. Del Pia and R. Weismantel, Integer quadratic programming in the plane, in
Proc. 25th SODA, ACM, New York, 2014, 840–846.

[DK97] M. Dyer and R. Kannan, On Barvinok’s algorithm for counting lattice points in
fixed dimension, Math. Oper. Res. 22 (1997), 545–549.

[Eis10] F. Eisenbrand, Integer programming and algorithmic geometry of numbers, in50
years of Integer Programming, Springer, Berlin, 2010, 505–560.

[Eis03] F. Eisenbrand, Fast integer programming in fixed dimension, in Proc. 11th ESA,
Springer, Berlin, 2003, 196–207.

[EH12] F. Eisenbrand and N. Hähnle, Minimizing the number of lattice points in a
translated polygon, inProc. 24th SODA, SIAM, Philadelphia, PA, 2012, 1123–
1130.

[ER09] F. Eisenbrand and T. Rothvoß, New hardness results for Diophantine approxi-
mation, inLecture Notes Comput. Sci. 5687, Springer, Berlin, 2009, 98–110.

[ES08] F. Eisenbrand and G. Shmonin, Parametric integer programming in fixed dimen-
sion, Math. Oper. Res. 33 (2008), 839–850.

219

[FR74] M. J. Fischer and M. O. Rabin, Super-Exponential Complexity of Presburger
Arithmetic, inProc. SIAM-AMS Symposium in Applied Mathematics, AMS,
Providence, RI, 1974, 27–41.

[FT87] A. Frank and É. Tardos, An application of simultaneous Diophantine approxi-
mation in combinatorial optimization, Combinatorica 7 (1987), 49–65.

[FS11] L. Fukshansky and A. Schürmann, Bounds on generalized Frobenius numbers,
European J. Combin. 32 (2011), 361–368.

[Fü82] M. Fürer, The complexity of Presburger Arithmetic with bounded quantifier
alternation depth, Theoret. Comput. Sci. 18 (1982), 105–111.

[GJ79] M. R. Garey and D. S. Johnson, Computers and intractability. A guide to the
theory of NP-completeness, Freeman, San Francisco, CA, 1979.

[Gi66] S. Ginsburg, The mathematical theory of context free languages, McGraw-Hill,
1966.

[GS64] S. Ginsburg, E. Spanier, Bounded ALGOL-like languages, Trans. Amer. Math.
Soc. 113 (1964), 333–368.

[GP17] P. Glivický and P. Pudlák, Wild models of linear arithmetics, to appear in Math-
ematical Logic Quarterly, 2017; arXiv:1602.03083.

[Grä88] E. Grädel, Subclasses of Presburger Arithmetic and the polynomial-time hierar-
chy, Theoret. Comput. Sci. 56 (1988), no. 3, 289–301.

[Grä87] E. Grädel, The complexity of subclasses of logical theories, Dissertation, Univer-
sität Basel, 1987.

[GTW] E. Grädel, W. Thomas and T. Wilke (Eds.), Automata, Logics, and Infinite
Games. A Guide to Current Research, Springer, Berlin, 2002.

[GLS89] M. Grötschel, L. Lovász and A. Schrijver, Geometric algorithms and combinato-
rial optimization, Springer, Berlin, 1988.

[Guy04] R. K. Guy, Unsolved problems in number theory (Third edition), Springer, New
York, 2004.

[Haa14] C. Haase, Subclasses of Presburger Arithmetic and the weak EXP hierarchy, in
Proc. joint 23rd EACSL and 29th LICS, Article No. 47, 10 pp., ACM, New York,
2014.

[HW] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford
Univ. Press, Oxford, UK, 2008.

[Hie16] P. Hieronymi, Expansions of the ordered additive group of real numbers by two
discrete subgroups, J. Symb. Log. 81 (2016), no. 3, 1007–1027.

220

[Hie15] P. Hieronymi, When is scalar multiplication decidable, preprint;
arXiv:1409.6701.

[HNP18] P. Hieronymi, D. Nguyen and I. Pak, Presburger Arithmetic with algebraic scalar
multiplications, preprint; arXiv:1805.03624.

[HTe18] P. Hieronymi and A. Terry Jr., Ostrowski Numeration Systems, Addition, and
Finite Automata, Notre Dame J. Form. Log. 59 (2018), 215–232.

[HTy14] P. Hieronymi and M. Tychonievich, Interpreting the projective hierarchy in ex-
pansions of the real line, Proc. AMS 142 (2014), 3259–3267.

[HWZ17] R. Hildebrand, R. Weismantel and K. Zemmer, An FPTAS for minimizing in-
definite quadratic forms over integers in polyhedra, in Proc. 27th SODA, ACM,
New York, 2016, 1715–1723.

[Hou15] B. Hough, Solution of the minimum modulus problem for covering systems, Ann.
of Math. 181 (2015), 361–382.

[HUM06] J. E. Hopcroft, J. Ullman and R. Motwani, Introduction to automata theory,
languages, and computation (3rd ed.), Addison-Wesley, 2006.

[HS07] S. Hosten, B. Sturmfels, Computing the integer programming gap, Combinator-
ica 27 (2007), 367–382.

[Kan92] R. Kannan, Lattice translates of a polytope and the Frobenius problem, Combi-
natorica 12 (1992), 161–177.

[Kan90] R. Kannan, Test sets for integer programs, ∀∃ sentences, in Polyhedral Combi-
natorics, AMS, Providence, RI, 1990, 39–47.

[KB79] R. Kannan, A. Bachem, Polynomial algorithms for computing the Smith and
Hermite normal forms of an integer matrix, SIAM J. Comput. 8 (1979), 499–
507.

[Kar13] O. Karpenkov, Geometry of continued fractions, Springer, Heidelberg, 2013.

[KM00] M. Karpinski and A. Macintyre, Approximating volumes and integrals in o-
minimal and p-minimal theories, in Connections between model theory and al-
gebraic and analytic geometry, Seconda Univ. Napoli, Caserta, 2000, 149–177.

[KM97] M. Karpinski and A. Macintyre, Polynomial bounds for VC dimension of sig-
moidal and general Pfaffian neural networks, J. Comput. System Sci. 54 (1997),
169–176.

[KP00] L. Khachiyan and L. Porkolab, Integer optimization on convex semialgebraic sets,
Discrete Comput. Geom. 23 (2000), no. 2, 207–224

[Khi64] A. Ya. Khinchin, Continued fractions, Univ. of Chicago Press, Chicago, IL, 1964.

221

[KS01] A. Klivans and D. Spielman, Randomness efficient identity testing of multivariate
polynomials, in Proc. 33rd FOCS, ACM, New York, 2001, 216–223.

[Köp12] M. Köppe, On the complexity of nonlinear mixed-integer optimization, Mixed
integer nonlinear programming, 533–557, IMA Vol. Math. Appl., 154, Springer,
New York, 2012.

[Köp07] M. Köppe, A primal Barvinok algorithm based on irrational decompositions,
SIAM J. Discrete Math. 21 (2007), 220–236.

[KV08] M. Köppe and S. Verdoolaege, Computing parametric rational generating func-
tions with a primal Barvinok algorithm, Electron. J. Combin. 15 (2008), no. 1,
RP 16, 19 pp.

[Lag85] J. Lagarias, The computational complexity of simultaneous Diophantine approx-
imation problems, SIAM J. Comput. 14 (1985), 196–209.

[LO87] J. Lagarias and A. Odlyzko, Computing π(x): an analytic method, J. Algo-
rithms 8 (1987), 173–191.

[Len83] H. Lenstra, Integer programming with a fixed number of variables, Math. Oper.
Res. 8 (1983), 538–548.

[Ler05] J. Leroux, A Polynomial Time Presburger Criterion and Synthesis for Number
Decision Diagrams, in Proc. 20th LICS, IEEE, Chicago, IL, 2005, 147–156.

[Lov89] L. Lovász, Geometry of numbers and integer programming, inMathematical pro-
gramming, SCIPRESS, Tokyo, 1989, 177–201.

[MA78] K. Manders and L. Adleman, NP-complete decision problems for binary quadrat-
ics, J. Comput. System Sci. 16 (1978), 168–184.

[Mei93] S. Meiser, Point location in arrangement of hyperplanes, Inform. and Com-
put. 106 (1993), 286–303.

[Mey75] A. Meyer, Weak monadic second order theory of succesor is not elementary-
recursive, in Proc. Logic Colloquium (Boston, Mass., 1972–1973), pp. 132–154.
Lecture Notes in Math., Vol. 453, Springer, Berlin, 1975.

[Mil01] C. Miller, Expansions of dense linear orders with the intermediate value property,
J. Symbolic Logic 66 (2001), 1783–1790.

[MM11] C. Moore and S. Mertens, The nature of computation, Oxford Univ. Press, Ox-
ford, 2011.

[NW06] T. Neary, D. Woods, Small fast universal Turing machines, Theoret. Comput.
Sci. 362 (2006), 171–195.

222

[NP18] D. Nguyen and I. Pak, On the number of integer points in translated and ex-
panded polyhedra, preprint; arXiv:1805.03685.

[NP17a] VC-dimension of short Presburger formulas, preprint; arxiv:1710.04171.

[NP17b] D. Nguyen and I. Pak, Short Presburger Arithmetic is hard, in Proc. 58th FOCS,
IEEE, Los Alamitos, CA, 2017, 37–48; arXiv:1708.08179.

[NP17c] D. Nguyen and I. Pak, The computational complexity of integer programming
with alternations, in Proc. 32nd CCC, LIPIcs. Leibniz Int. Proc. Inform. 79,
2017; arXiv:1702.08662.

[NP17d] D. Nguyen and I. Pak, Complexity of short generating functions, Forum of Math-
ematics, Sigma 6 (2018) E.1; arXiv:1702.08660.

[NP17e] D. Nguyen and I. Pak, Complexity of short Presburger Arithmetic, in Proc. 49th
STOC, ACM, New York, 2017, 812–820; arXiv:1704.00249.

[NP17f] D. Nguyen and I. Pak, Enumeration of integer points in projections of unbounded
polyhedra, SIAM J. Discrete Math. 32 (2018), 986–1002.

[Opp78] D. C. Oppen, A 22
2pn

upper bound on the complexity of Presburger Arithmetic,
J. Comput. System Sci. 16 (1978), 323–332.

[Pap94] C. H. Papadimitriou, Computational complexity, Addison-Wesley, Reading, MA,
1994.

[Pak09] I. Pak, Lectures on Discrete and Polyhedral Geometry, monograph draft, 2009;
available electronically at https://tinyurl.com/y9hayto.

[Par66] R. Parikh, On context-free languages, J. Assoc. Comput. Mach. 13 (1966), 570–
581.

[Pre29] M. Presburger, Über die Vollständigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt (in
German), inComptes Rendus du I congrès de Mathématiciens des Pays Slaves,
Warszawa, 1929, 92–101.

[RA05] J. L. Ramı́rez Alfonśın, The Diophantine Frobenius problem, Oxford Univ. Press,
Oxford, 2005.

[RA96] J. L. Ramı́rez Alfonśın, Complexity of the Frobenius problem, Combinatorica 16
(1996), 143–147.

[RL78] C. R. Reddy and D. W. Loveland, Presburger Arithmetic with bounded quantifier
alternation, in Proc. 10th STOC, ACM, 1978, 320-325.

223

https://tinyurl.com/y9hayto

[Rei02] K. Reinhardt, The complexity of translating logic to finite automata, in Au-
tomata, logics, and infinite games, 231–238, Lecture Notes in Comput. Sci., 2500,
Springer, Berlin, 2002.

[Rib96] P. Ribenboim, The new book of prime number records, Springer, New York, 1996.

[RS92] A. M. Rockett and P. Szüsz, Continued fractions, World Sci., River Edge, NJ,
1992.

[Sa72] N. Sauer, On the density of families of sets, J. Combin. Theory, Ser. A 13 (1972),
145–147.

[Sca84] B. Scarpellini, Complexity of subcases of Presburger Arithmetic, Trans.
AMS 284 (1984), 203–218.

[Sch97] U. Schöning, Complexity of Presburger Arithmetic with fixed quantifier dimen-
sion, Theory Comput. Syst. 30 (1997), 423–428.

[Sch86] A. Schrijver, Theory of linear and integer programming, John Wiley, Chichester,
1986.

[Sh72] S. Shelah, A combinatorial problem; stability and order for models and theories
in infinitary languages, Pacific J. Math. 41 (1972), 247–261.

[Sil11] J. H. Silverman, A Friendly Introduction to Number Theory, Pearson, 2011.

[Sko31] T. Skolem, Über einige Satzfunktionen in der Arithmetik (in German), in Skr.
Norske Vidensk. Akad., Oslo, Math.-naturwiss. Kl. 7, 1931, 1–28.

[Sto74] L. Stockmeyer, The Complexity of Decision Problems in Automata Theory and
Logic, Ph.D. thesis, Massachusetts Institute of Technology, 1974, 224 pp.

[SM73] L. J. Stockmeyer and A. R. Meyer, Word problems requiring exponential time:
preliminary report, in Proc. Fifth STOC, ACM, New York, 1973, 1–9.

[Sze74] E. Szemerédi, The number of squares in an arithmetic progression, Studia Sci.
Math. Hungar. 9 (1974), no. 3-4, 417.

[TCH12] T. Tao, E. Croot and H. Helfgott, Deterministic methods to find primes, Math.
Comp. 81 (2012), 1233–1246.

[TV06] T. Tao and V. H. Vu, Additive combinatorics, Cambridge Univ. Press, Cam-
bridge, UK, 2006.

[Tho12] W. Thomas, Finite automata and the analysis of infinite transition systems, in
Modern applications of automata theory, World Sci., Hackensack, NJ, 2012, 495–
527.

224

[vdDH92] L. van den Dries, J. Holly, Quantifier elimination for modules with scalar vari-
ables, Ann. Pure Appl. Logic 57 (1992), no. 2, 161–179.

[vEB81] P. van Emde Boas, Another NP-complete partition problem and the complexity
of computing shortvectors in a lattice, Math. Dept. Report 81–04, Univ. Ams-
terdam, April 1981, 10 pp.

[Vap98] V. N. Vapnik, Statistical learning theory, John Wiley, New York, 1998.

[VC71] V. N. Vapnik and A. Ja. Chervonenkis, The uniform convergence of frequencies
of the appearance of events to their probabilitie, Theor. Probability Appl. 16
(1971), 264–280.

[Weil84] A. Weil, Number theory. An approach through history, Birkhäuser, Boston, MA,
1984.

[Wei99] V. D. Weispfenning, Mixed real–integer linear quantifier elimination, in Proc.
1999 ISSAC, ACM, New York, 1999, 129–136.

[Wei97] V. D. Weispfenning, Complexity and uniformity of elimination in Presburger
Arithmetic, in Proc. 1997 ISSAC, ACM, New York, 1997, 48–53.

[V+07] S. Verdoolaege, R. Seghir, K. Beyls, V. Loechner and M. Bruynooghe, Count-
ing integer points in parametric polytopes using Barvinok’s rational functions,
Algorithmica 48 (2007), 37–66.

[VW08] S. Verdoolaege and K. Woods, Counting with rational generating functions, J.
Symbolic Comput. 43 (2008), 75–91.

[Woo15] K. Woods, Presburger Arithmetic, rational generating functions, and quasi-
polynomials, J. Symb. Log. 80 (2015), 433–449.

[Woo14] K. Woods, The unreasonable ubiquitousness of quasi-polynomials, Electron. J.
Combin. 21 (2014), no. 1, Paper 1.44, 23 pp.

[Woo05] K. Woods, Computing the period of an Ehrhart quasi-polynomial, Electron. J.
Combin. 12 (2005), RP 34, 12 pp.

[Woo04] K. Woods, Rational Generating Functions and Lattice Point Sets, Ph.D. thesis,
University of Michigan, 2004, 112 pp.

[Zie95] G. Ziegler, Lectures on polytopes, Springer, New York, 1995.

225

	I Presburger Arithmetic
	Background
	Complexity of Integer Programming with alternations
	Introduction
	Geometric constructions and properties
	Proof of Theorem 2.2
	Proof of Theorem 2.3
	Proof of Theorem 2.6
	Another hard decision problem
	Final remarks

	Complexity of short Presburger Arithmetic
	Introduction
	Basic properties of finite continued fractions
	From arithmetic progressions to short PA
	Proof of Theorem 3.1
	Proof of Theorem 3.3
	Proof of Theorem 3.2
	Bilevel optimization and Pareto optima
	Covering with arithmetic progressions
	On Kannan's Partition Theorem
	Final remarks and open problems

	VC-dimensions of Presburger formulas
	Introduction
	Proofs
	Final remarks and open problems

	Parametric Presburger Arithmetic
	Introduction
	Proof of Theorem 5.10 and its corollaries
	Counting-universality of 2-parametric PA
	Counting in parametric unordered PA
	Summary of complexity results

	II Short generating functions
	A strengthening of the Barvinok–Woods theorem
	Introduction
	Structure of a projection
	Finding short GF for unbounded projection
	Generalization to Presburger formulas
	The k-feasibility problem
	Final remarks

	Complexity of short generating functions
	Introduction
	Preliminaries on short GFs
	Short GFs and the class P/poly
	Short GFs and the hierarchy PH/poly
	A hierarchy of generating functions
	Short GFs have long projections
	Intersections, unions and Minkowski sums
	Squares, primes, and short GFs
	Relative complexity of short GFs
	Proof of Lemma 7.34
	Final remarks and open problems

	III Related problems
	Presburger Arithmetic with algebraic scalar multiplications
	Introduction
	Preliminaries
	Quadratic irrationals: Upper bound
	Quadratic irrationals: PSPACE-hardness
	Quadratic irrationals: General lower bound
	Non-quadratic irrationals: Undecidability
	Final remarks and open problems

	Integer points in translated and expanded polyhedra
	Introduction
	Proof of Theorem 9.3
	Proof of Theorem 9.2
	Applications
	Integer polytopes
	Final remarks and open problems

	References

