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ARTICLE

Enhanced cell deconvolution of peripheral blood
using DNA methylation for high-resolution immune
profiling
Lucas A. Salas 1, Ze Zhang 1, Devin C. Koestler2, Rondi A. Butler 3, Helen M. Hansen 4,

Annette M. Molinaro4, John K. Wiencke4,5, Karl T. Kelsey 3✉ & Brock C. Christensen 1,6,7✉

DNA methylation microarrays can be employed to interrogate cell-type composition in

complex tissues. Here, we expand reference-based deconvolution of blood DNA methylation

to include 12 leukocyte subtypes (neutrophils, eosinophils, basophils, monocytes, naïve and

memory B cells, naïve and memory CD4+ and CD8+ T cells, natural killer, and T regulatory

cells). Including derived variables, our method provides 56 immune profile variables. The

IDOL (IDentifying Optimal Libraries) algorithm was used to identify libraries for deconvo-

lution of DNA methylation data for current and previous platforms. The accuracy of

deconvolution estimates obtained using our enhanced libraries was validated using artificial

mixtures and whole-blood DNA methylation with known cellular composition from flow

cytometry. We applied our libraries to deconvolve cancer, aging, and autoimmune disease

datasets. In conclusion, these libraries enable a detailed representation of immune-cell

profiles in blood using only DNA and facilitate a standardized, thorough investigation of

immune profiles in human health and disease.
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Advances in DNA methylation microarrays have allowed a
greater understanding of how DNA methylation is
affected by environmental exposures and altered in

chronic diseases1,2. Peripheral blood is one of the most common
biological matrices for those investigations. Blood DNA methy-
lation profiles include information from multiple cell lineages
and, in some cases, cell states. Every cell lineage has unique DNA
methylation patterning regulating cell-specific gene expression,
and some methods leverage DNA methylation to understand
underlying cell heterogeneity1–7. The reference-based approach
assumes that the principal source of signal variability in a het-
erogeneous sample (such as blood) reflects the signals’ propor-
tions in the different cell components8. Constrained projection/
quadratic programming (CP/QP) employs purified cell types as
reference samples to generate a “reference library,” a matrix of
differentially methylated sites among cell types, and yields highly
accurate estimates of the underlying cell composition in mixed
cell populations (e.g., peripheral blood)9. Previously established
statistical deconvolution frameworks such as CP/QP, support
vector regression (CIBERSORT), and robust partial regression
(EpiDISH) have similar accuracy and precision in deconvolution
estimates10. Marker selection methods for library creation use
automatic procedures to discern library markers11 or iterative
approaches for selecting sets of markers (IDOL—IDentifying
Optimal Libraries) that maximize the accuracy of deconvolution
estimates12. To enhance the utility of cell-type deconvolution,
reference library improvements and expansions of existing
libraries to include additional cell types are needed to broaden the
scope of DNA methylation-based immune phenotyping13–16.

Continued methodological advancements are highly dependent
on the quality and genome coverage of a reference library. In the
original description of CP/QP for methylation-based deconvolu-
tion, Houseman et al. developed a library based on an early
microarray platform, the Illumina HumanMethylation27k
microarray9. When the Illumina-HumanMethylation450k tech-
nology was released, Jaffe et al. applied the Houseman method
with the reference data developed by Reinius et al.11,17. They
accurately discriminated CD8 and CD4T cells, but NK and
granulocytes (neutrophils and eosinophils) discrimination per-
formance showed room for improvement11,17. Potentially limit-
ing generalizability, the reference cell populations were purified
solely from males of Northern European (Swedish) origin17,18.
We recently developed a deconvolution library to discriminate
better six major cell types (CD4(+) T cells, CD8(+) T cells, NK, B
cells, monocytes, and neutrophils) using the Illumina Human-
MethylationEPIC technology, hereafter named EPIC IDOL-619. A
distinct advantage of this library is the inclusion of more ethni-
cally diverse male and female subjects.

Beyond the six major leukocyte cell types in peripheral blood,
there have been further attempts to deconvolve memory and
naïve cells and other granulocytes13,14. However, they have not
been widely adopted or tested as some of the references are not
publicly available or involved a combination of different tech-
nologies. Some algorithms include other rarer cell subpopulations
[e.g., plasmablasts, exhausted CD8(+) T cells] as linearly related
scores, but they do not represent the sample’s cell-type
proportions15. Several newborn umbilical cord blood-specific
libraries also have been developed20–24.

Here, we augment reference-based deconvolution of adult
peripheral blood DNA methylation data to include memory and
naïve cells from cytotoxic and helper T cells and B cells and parse
the granulocyte subtypes into neutrophils, eosinophils, and
basophils (Fig. 1). Our comprehensive library provides informa-
tion across 12 different cell subtypes; depending on the hypoth-
esis, categories could be collapsed at in seven additional higher
branches (T cells, B cells, CD8T, CD4T, granulocytes, lymphoid,

and myeloid), Fig. 1 panel c, resulting in 19 relative cell-type
proportions and 19 cell counts (derived data using the complete
cell blood counts or flow cytometry). In addition, the library
includes multiple cell-derived ratios and proportions, such as the
neutrophil to lymphocyte ratio or naïve to memory ratios (see
Fig. 1 for 18 known examples), totaling more than 56 total
immune profile variables. This library, hereafter named EPIC
IDOL-Ext, will find wide application to the study of immune
profiles in health and disease. Additionally, a second extended
library using probes present on the legacy DNA HumanMethy-
lation450k array, henceforth named 450k IDOL-Ext, was created
for application to existing 450 K datasets to expand cell-type
representation.

Results
Deconvolution library development. To define a novel decon-
volution library from 12 purified cell types, we measured DNA
methylation and performed rigorous quality assessment and
control for all samples. The final reference dataset included the
following cell types: neutrophils (Neu, n= 6), eosinophils (Eos,
n= 4), basophils (Bas, n= 6), monocytes (Mono, n= 5), B naïve
cells (Bnv, n= 4), B memory cells (Bmem, n= 6), T-helper
CD4+ naïve cells (CD4nv, n= 5), T-helper CD4+memory cells
(CD4mem, n= 4), T regulatory cells (Treg, n= 3), T-cytotoxic
CD8+ naïve cells (CD8nv, n= 5), T-cytotoxic memory CD8+
cells (CD8mem, n= 4), and natural killer cells (NK, n= 4). The
estimated purity of reference samples is based on commonly
accepted CD marker definitions (Supplementary Table 1). The
cells represented a wide variety of adult donors, including both
sexes and different genetic ancestries, a more granular demo-
graphic information is included in Supplementary Table 2. The
mean purity obtained from the flow cytometry confirmation step
(after antibody-linked magnetic bead sorting) was 93% (range
85–99%), with the lowest purity observed for the CD8mem
samples (85%). We first used the minfi pickCompProbes function
to select an automatic library and estimated cell-type proportions
using this library with methylation data from purified cells. This
library represents the expected average signal of some extreme
hypo and hypermethylated markers per cell type. Pure samples
would approximate the average signal of the specific cell type.
However, when a sample is contaminated, the signal from
another cell type(s) will differ from the average and indicate the
potential contaminant’s proportion. This procedure for reverse
cell-type estimation is denoted as “DNA methylation purity.” We
previously used this technique to corroborate cell identity and
estimate potential residual cross-contamination during the flow
cytometry procedures24. The mean DNA methylation purity for
these samples was 97.6% (range: 85.7–100%), where a target cell-
type purity of 85% was required to include the sample in the
dataset for library construction. Of the cell subtypes included,
CD4nv had the highest estimated cell purity (range: 95.2–100%,
median DNA methylation purity: 100%, interquartile range-IQR:
96.5–100%), and CD8mem cells had the lowest DNA methylation
purity (range: 85.7–98.5%, median DNA methylation purity: 93%,
IQR: 88.3–97.8%). The remaining cell types had median DNA
methylation purity that ranged between 97.5 and 99.4%, IQR:
97.3–99.4%, (Supplementary Fig. 1). Potential genetic sources of
variability were assessed, including known SNPs tracing genetic
ancestry (Supplementary Fig. 2). We excluded probes potentially
tracking to polymorphisms, cross-reactive areas, or CpHs, probes
tracking to sex chromosomes, and those whose signal intensities
were equal or below to the background probes (see Methods for
details). After filtering, 675,992 high-quality probes were retained
for analysis and deconvolution library construction. The first 20
principal components showed that the main sources of variability
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corresponded to the cell-type identity and the slide beadchip, not
to sex, age, or other phenotype variables (Supplementary Fig. 3).
Due to the distribution of the 12 cell types across 26 different
slide chips, some residual experimental variance cannot be cor-
rected in the modeling. As such, we strived for the highest quality
data to eliminate most of the additional technical variability in the
experiment.

We next applied the IDOL algorithm to the 56 samples
collected across all 12 cell types using the 675,992 high-quality
CpGs to select the optimal library for accurate deconvolution of
these 12 cell types. To test our library’s performance, we used
artificial mixtures (n= 24) of DNA from purified cell types
representing varying proportions of the 12 cell types in the IDOL

analysis and measured DNA methylation in these samples (Fig. 2,
Supplementary Table 3). Using a discovery selection pool totaling
3535 CpGs representing candidate markers of differentially
methylated CpGs across the interrogated cell types, we imple-
mented the IDOL algorithm with 500 iterations to select a set of
libraries ranging in size from 250 to 3000 CpGs, in increments of
50 CpGs (detailed in the methods). The coefficient of determina-
tion (R2) and the root mean square error (RMSE) were calculated
based on a comparison of deconvolution estimates obtained using
each library versus the known proportions of the 12 cell types in
the artificial mixture samples (Supplementary Table 4). The
optimal library, EPIC IDOL-Ext, consisted of 1200 CpGs and was
observed to have an average R2 of 1 across all cell types and the

a Analysis b Sampling c Outcome

Basophil
Eosinophi
Neutrophil
Monocyte
B naive
B memory

CD4 naive
CD4 memory
CD8 naive
CD8 memory
NK
Treg

Cell-types

Methylation array
measures (EPIC)

Whole blood DNA 
methylation array 

measures 

Cell mixture 
deconvolution

CP/QP (Houseman 
et al., 2012)

450k legacy
library

450k IDOL-ext

EPIC
library

EPIC IDOL-ext

Total 
leukocyte 
counts*

Primary results:
Relative proportions of leukocyte subtypes 

Lymphocytes

Myeloid cells

Cell-ratios/proportions (some known examples only)

Derived variables:
Inferred cell-counts of leukocyte subtypes
(*using total leukocyte counts)  

CD8T/Bcell
CD8T+NK/Monocyte

Neutrophil/Lymphocyte
Lymphocyte/Monocyte
Eosinophil/Lymphocyte
Eosinophil*Neutrophil/Lymphocyte
Basophil/Lymphocyte

CD4T/CD8T
CD4T naive/Total CD4T
CD4 naive/CD4 memory
CD8T naive/Total CD8T
CD8 naive/CD8 memory
Treg/Total CD4T
B naive/Total B
B naive/B memory

Myeloid-to-lymphocyte

Eosinophil/Neutrophil
Eosinophil+Basophil/Neutrophil
Neutrophil/Monocyte

Myeloid-to-myeloid

T cell-to-T cell

B cell-to-B cell

Other miscellaneous

Identification of methylation 
libraries for reference-based 
deconvolution using IDOL 

(Koestler et al., 2016)
Basophil
Eosinophil
Neutrophil
Monocyte
B naive
B memory
CD4 naive
CD4 memory
Treg
CD8 naive
CD8 memory
NK

B-cells

CD4T(+) Tcells

CD8T(+) Tcells

Lymphocytes

Myeloid cells Granulocytes

Basophil
Eosinophil
Neutrophil
Monocyte
B naive
B memory
CD4 naive
CD4 memory
Treg
CD8 naive
CD8 memory
NK

T-cells

T-cells
CD4T(+)

T cells
CD8T(+)

T cells

B-cells

Granulocytes

DNA derives from
a heterogeneous 
mixture of
leukocyte subtypes

Cell-type

C
pG

s

Fig. 1 Extended library development, samples intended analysis and expected and optional measures from the library application. a Twelve cell types
were acquired commercially, their DNA was isolated, and DNA methylation was measured using the Illumina HumanMethylationEPIC (EPIC) microarray.
Using artificial mixtures as ground truth, two libraries were identified using an iterative process named IDOL (IDentifying Optimal Libraries, Koestler, et al.
2016). The two extended (ext) libraries were designed for microarray data derived from the EPIC array (EPIC IDOL-ext) or legacy data derived from the
previous Illumina-HumanMethylation450k array (450k IDOL-ext). b Samples with variable amounts of leukocytes are arrayed using any of the two
validated microarray technologies. Using the appropriate library for the microarray, a cell mixture deconvolution is performed using the constrained
projection/quadratic programming (CP/QP, Houseman, et al. 2012). *Optionally, leukocyte counts can be collected for downstream analyses. c The
primary results of the deconvolution are the 12 cell types of the library. These results could be aggregated at different levels for different hypotheses. Two
sets of derived results are possible: (1) if total leukocyte counts are available cell-type-specific counts may be inferred, or (2) cell ratios and proportions are
used to evaluate immune-cell shifting between the different cell-type subpopulations (only a few examples illustrated here).
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lowest average RMSE (0.226) among the interrogated library sizes
(Fig. 2a). The testing dataset showed high R2 and low RMSE
across the different interrogated cell types (Fig. 2b). The library
was further validated using a set of 12 artificial mixtures obtained
from independently isolated samples (purity > 90%) not used in
the library construction (Fig. 2c), with a high coefficient of
determination and low RMSE. We observed some slight increase

in the error estimations for CD4mem (RMSE= 3.64) with
compensatory decreases in the Treg, CD4nv, and CD8mem
compartments.

Probes in the EPIC IDOL-Ext library tracked mostly to open
sea regions of low CpG density (76%), followed by CpG island
shore regions (14%) (see Table 1), and were enriched for open sea
regions (OR: 2.19 95% CI:1.93–2.49), and depleted for probes in

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27864-7

4 NATURE COMMUNICATIONS |          (2022) 13:761 | https://doi.org/10.1038/s41467-021-27864-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


CpG Islands and Shores (See Supplementary Table 5 for details).
Probes were enriched for DNAse hypersensitivity sites-DHS and
Phantom5 enhancers. Notably, the library probes were also highly
distinct as only 4% overlapped with the EPIC IDOL-619.

As only 459 (38%) of the 1200 probes in the EPIC IDOL-Ext
library are common to both the EPIC and 450k array platforms,
we developed a library for the legacy IlluminaHumanMethyla-
tion450k array platform, repeating the above-described optimiza-
tion process after constraining the selection pool for the candidate
list of CpGs to those only present on the 450k array. The resulting
library, 450k IDOL-Ext, contains 1500 probes; the library details
are included in Table 1 and Supplementary Table 5. One
thousand five hundred contained a lower proportion of open sea
(52%) and enhancer-related probes (5%) than the EPIC IDOL-
Ext library, although Phantom5-enhancer probes and DHS
probes were enriched compared to the total background probes
in the microarray. In total, 330 probes were shared between the
450k IDOL-Ext and EPIC IDOL-Ext libraries.

Finally, we compared the EPIC IDOL-Ext, and 450k IDOL-Ext
versus the pickCompProbes EPIC library obtained using func-
tions in the minfi Bioconductor package11. The pickCompProbes
automatic selection method builds the library picking the top 50
most hyper- and hypomethylated CpGs per cell type, totaling
1200 probes (same size as our EPIC IDOL-Ext library),
summarized in Table 1 and Supplementary Table 5. The probes
overlap from the pickCompProbes library with the EPIC IDOL-

Ext library was only 147 (12%). However, the probes’ genomic
context distribution was similar between libraries, with similar
enrichment of open sea and larger Phantom5-enhancer regions
than the EPIC IDOL-Ext. When analyzing the cell type by cell-
type estimation performance across all three libraries, there was
consistency in monocytes, neutrophils, and NK cells. However,
more variability was observed for estimates obtained from the
library derived by pickCompProbes. When assessing the
deconvolution accuracy of the pickCompProbes library, the
RMSE was severely biased for eosinophils and T-cell subtypes.
Specifically, CD4 and CD8 naïve T-cell distributions were biased
with an underrepresentation of CD8nv (RMSE: 5.81%) and the
overestimation of CD4nv (RMSE: 9.25%). The pickCompProbes
library also had unreliable results for CD4mem vs. Treg
compartments and Eos, Supplementary Fig. 4. In contrast, both
the EPIC IDOL-Ext and 450k IDOL-Ext libraries were highly
accurate in the training and testing datasets, Fig. 2 and
Supplementary Fig. 4. The heatmaps summarizing the markers
in the three libraries are shown in Fig. 3. The complete set of
markers information is available as Supplementary Data Files 1
(EPIC IDOL-Ext), 2 (450k IDOL-Ext), and 3 (pickCompProbes).

Libraries validation. The EPIC IDOL-Ext library was validated
using samples with blood cell counts from flow cytometry (FCM)
and by using an independent set of artificial mixtures from the
Gene Expression Omnibus (GEO) (Fig. 4). In five samples (Fig. 4a,

Fig. 2 Comparison of estimate cell proportions using constrained projection/quadratic programming (CP/QP) versus the reconstructed (true) DNA
fraction in the artificial DNA mixtures using the EPIC IDOL-Ext method. a Cell-specific DNA proportions per sample included in the training set, R2 and
Root Mean Square Error-RMSE using the EPIC IDOL-Ext method per cell type. b Cell-specific DNA proportions per sample included in the testing set, R2

and RMSE using the EPIC IDOL-Ext method per cell type. c Cell-specific DNA proportions per sample included in an independent validation set (using
isolated cells not included in the testing or training), R2, and RMSE using the EPIC IDOL-Ext method per cell type. Source data are provided as a Source
Data file. Bas Basophils, Eos eosinophils, Neu neutrophils, Bnv B-cells naïve, Bmem B-cells memory, CD4nv helper CD4(+) T-cells naïve, CD4mem helper
CD4(+) T-cells memory, Treg CD4(+) T regulatory cells, CD8nv cytotoxic CD8(+) T-cells naïve, CD8mem cytotoxic CD8(+) T-cells memory, Mono
monocytes, NK natural killer cells.

Table 1 Characteristics of the context of the different blood cell-type deconvolution libraries.

EPIC IDOL-Ext 450k IDOL-Ext EPIC IDOL-6 pickCompProbes

n= 1200 n= 1500 n= 450 n= 1200

N (%) N (%) N (%) N (%)

Genomic context
CpG Island 50 (4) 122 (8) 10 (2) 62 (5)
Shores 189 (16) 388 (26) 63 (14) 146 (12)
Shelves 95 (8) 213 (14) 35 (8) 90 (8)
Open Sea 866 (72) 777 (52) 342 (76) 902 (75)

Functional context
Promoter 276 (23) 558 (37) 104 (23) 271 (23)
Exon 88 (7) 144 (10) 25 (6) 100 (8)
Intron 551 (46) 556 (37) 201 (45) 548 (46)
Intergenic 285 (24) 242 (16) 120 (27) 281 (23)
Enhancers 139 (12) 76 (5) 70 (16) 194 (16)
DHS 856 (71) 1001 (67) 328 (73) 868 (72)
Open chromatin 135 (11) 174 (12) 43 (10) 113 (9)
TFBS 166 (14) 193 (13) 59 (13) 147 (12)
Contained in 450 K 459 (38) 1500 (100) 149 (33) 517 (43)

Total overlap vs. Ref
vs. EPIC IDOL-Ext Ref 330 (22) 43 (10) 147 (12)
vs. 450k IDOL-Ext 330 (28) Ref 27 (6) 89 (7)
vs. EPIC IDOL-6 43 (4) 27 (2) Ref 57 (5)
vs pickCompProbes 147 (12) 89 (6) 57 (13) Ref

DHS DNase Hypersensitive site, TFBS transcription factor binding site, Ref reference for comparison in the column, Enhancers Phantom5 enhancers. Genomic context, Enhancers, DHS, and open
chromatin information were extracted from the Illumina EPIC annotation file “IlluminaHumanMethylationEPICanno.ilm10b5.hg38”. Functional context information was extracted from the UCSC reference
genome file “UCSC_hg19_refGene.bed”.
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GSE110530) from a healthy male subject in his forties, who were
followed longitudinally for 400 days, we observed a strong corre-
lation between the deconvolution estimates and FCM measure-
ments, with a maximum root mean square error- RMSE of 2.15%
for CD4T cells19. Using independent artificial mixtures from the
previously published FlowSorted.Blood.EPIC library with six
known cell types (Neu, CD8T, CD4T, B cell, Mono, NK; Fig. 4b,
GSE110554), the correlation was close to 1, and the maximum
RMSE was 3.39 for the CD8T. The 450k IDOL-Ext library was also
validated using the GSE77797 dataset with six anonymous adult
volunteers [5 males, epigenetic age mean (sd): 34.1(11.4) years]
with FCM information (Fig. 4c) and six artificial mixtures with six
known cell types (Neu, CD8T, CD4T, B cell, Mono, NK). The
information from this dataset was used in the original IDOL
manuscript (Fig. 4d)12. Of note, the coefficient of determination
was lower for monocytes (0.19) and NK (0.66), Fig. 4a, c, respec-
tively, using the EPIC IDOL-Ext library. This decrease is driven by
the narrower range of distribution of these cells in the FCM
samples. Consequently, any minor deviation in the estimation is
magnified even with the high precision reflected by the RMSE.

As a proof-of-concept, we explored how the cell proportion
estimates from the EPIC IDOL-Ext library could recapitulate cell
counts using FCM cell count information from the GSE112618
dataset (Supplementary Fig. 5)19. This dataset included six
subjects [five males: mean (sd) age 42.8 (10.6) years] with counts
for nine cell types (Bas, B cell, CD4T, CD8T, Eos, Neu, Mono,
NK, and Treg). Additional validation sets were analyzed,
including glioma patient blood and the cytometric information
for the Reinius dataset17. A group of 76 glioma patients
(GSE180683) was used to evaluate the information from T-cell
subsets. The patients were 51% male with a mean (sd) epigenetic
age (Horvath) of 54.7 (14.1) years. For this study, cytometric
information was obtained using a two-stage characterization of
T-cell subtypes. Briefly, T cells were measured and separated into
CD4+ and CD8+ . Next, using a second tube, samples were
characterized as naïve or memory. Although samples were
measured from the same subjects, the proportions were estimated
based on two independent measurements and were mathemati-
cally derived based on both experiments’ average counts. We
observed the second-largest difference for the CD8mem with an

Fig. 3 Comparison of the selected CpG among the EPIC IDOL-Ext, 450k IDOL-Ext (legacy), and pickComProbes. a DNA methylation of the 1200 CpG
probe EPIC IDOL-Ext library with average methylation for cell-type samples shown in columns as labeled and tracking bars for CpG probes information in
the rows, including: present on 450k array (HM450k), tracking to transcription factor binding site (TFBS), DNA hypersensitivity site (DHS), enhancer
region from Phantom5 annotation, and genomic context relative to gene (Function) and CpG island (CGI). b DNA methylation of the 1500 CpG probe 450k
IDOL-Ext (legacy) library and c DNA methylation of the 1200 CpG pickComProbes library. The average DNA methylation levels (here as beta values) are
represented per each of the 12 cell types. Information about CpG island gene context, Phantom5-enhancer information, DNase Hypersensitivity sites
(DHS), Open chromatin, and annotated transcription factor binding sites (TFBS) from ENCODE included in the Illumina annotation file are summarized
using the row ribbons. Source data are provided as a Source Data file. Bas Basophils, Eos eosinophils, Neu neutrophils, Bnv B-cells naïve, Bmem B-cells
memory, CD4nv helper CD4(+) T-cells naïve, CD4mem helper CD4(+) T-cells memory, Treg CD4(+) T regulatory cells, CD8nv cytotoxic CD8(+)
T-cells naïve, CD8mem cytotoxic CD8(+) T-cells memory, Mono monocytes, NK natural killer cells.
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RSME of 4.34% and the largest with the unmeasured remainder
cells (RMSE of 12.6%) (Supplementary Fig. 6a). The 450k IDOL-
Ext was also validated using the GSE35069 datasets (Reinius) with
FCM information (Supplementary Fig. 6b). The Reinius dataset
was composed of six male subjects in their thirties. FCM
information was obtained for whole blood, peripheral blood
mononuclear cells, and granulocytes for six cell types (granulo-
cytes, CD8T, CD4T, Mono, NK, and B cell). The FCM
information is abstracted from the supplementary material in
the original manuscript by Reinius et al. We observed

considerable variation (~10%) for the granulocytes, monocytes,
and CD4T cells in this dataset17. Differences were more
prominent for the PBMC samples’ observed values and in two
of the six WBC samples, particularly for the granulocytes
reported.

Finally, we explored whether these libraries could be applied
for the deconvolution of umbilical cord blood samples. We used
the Jones et al. GSE127824 dataset (450k) with known FCM
information for seven cell types (erythroblasts-nucleated red
blood cells-nRBC, granulocytes, CD8T, CD4T, Mono, NK, and B

Fig. 4 Validation of the library using flow cytometry-FCM and independent artificial mixtures for adult peripheral blood. a and b Vaalidation of the EPIC
IDOL-Ext. c and d Validation of the 450k IDOL-Ext. The area of each pieplot corresponds to the estimated proportion of the cell types within each group.
Gran (Granulocytes) corresponds to the sum of Neu-neutrophils, Eos-eosinophils, and Bas-basophils. CD4T corresponds to the sum of CD4+ T cells
naïve-CD4nv, memory-CD4mem and Treg. CD8T corresponds to the sum of CD8+ T-cells naïve-CD8nv and memory-CD8mem. B cell to the sum of the
naïve-Bnv and memory-Bmem. No basophils were detected in the samples illustrated in a. Additionally, in a, “nonTcell” (Bnv, Bmem, and NK) were not
experimentally measured. Source data are provided as a Source Data file.
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cell)24. As erythroblasts were not present in our libraries, these
cells are only briefly present in newborns’ blood but not at any
other age, the fraction was added to the myeloid granulocyte
components for comparison. The rationale for adding the
erythroblasts to the granulocytes is based on the known biology
that establishes the closest lineage to the erythroid-myeloid
precursor25. This is reinforced by clustering of nucleated red
blood cells with basophils and eosinophils using the markers in
EPIC IDOL-Ext (Supplementary Fig. 7a). The nRBC fraction
showed the most considerable variability in this dataset, with an
RMSE of 16.02% (Supplementary Fig. 7b). In contrast, in an
experiment of 12 umbilical cord blood artificial mixtures
(GSE180970) from healthy anonymous newborns acquired from
commercial vendors with only six cell types (granulocytes, CD8T,
CD4T, Mono, NK, and B cell), in which the largest RMSE
observed for granulocytes was less than 3% (Supplementary
Fig. 7c). Of importance, the B cells and T cells clustered with the
purified adult naïve cells, while NK, monocytes, and neutrophils
clustered perfectly with their adult equivalents.

Biological interpretation of the libraries’ components. The
different libraries’ components were examined for how the
included genes were related to specific cell types and immune
pathways. First, we used the molecular signatures database
(MSigDB v. 7.2), curated by the Broad Institute, for gene set
enrichment analyses. Most of the pathways were immune-related
and are summarized in Supplementary Data File 4. Some specific
genes showing differential hypomethylation for specific cell
types are outlined in Fig. 5. We also used eForge (https://
eforge.altiusinstitute.org/) to identify whether the components of
the library were related to particular primed enhancer histone
marks (H3K4me1). When analyzing probes specific for the 12 cell
types, all subsets were enriched for blood components, but the top
significant results were consistent with the specific cell type: E029
Monocytes with monocytes (Supplementary Fig. 8 panel f), E032
B cells with Bnv, and Bmem (panels b and a), E033 T cells with
CD4nv, CD4mem, Treg, CD8nv and CD8mem (panels i, h, j, l,
and k, respectively) and E046 Natural killers with NK (panel g).
There were no specific datasets to compare the granulocytes (Bas,
Eos, Neu), where the signal was less straightforward (panels c, d,
and e).

Applications of the libraries. We next applied the EPIC IDOL-
Ext library and the 450k IDOL-Ext libraries to several publicly
available datasets from GEO and ArrayExpress to identify
potential variation in immune-cell proportions in multiple
sclerosis, rheumatoid arthritis, breast cancer patients, and
COVID-19 infection (Supplementary Table 6). In multiple
sclerosis patients, we observed significantly increased basophil
and naïve B cell proportions in cases (n= 13) compared to
controls (n= 14) (Wilcoxon rank-sum P < 0.01, Supplementary
Fig. 9). In rheumatoid arthritis, significant increases in neutrophil
and regulatory T-cell proportions and decreases in memory B
cell, memory CD4 cell, naïve CD4 cell, memory CD8 cell, naïve
CD8 cell, eosinophil, monocyte, and NK cell proportions were
observed in case blood samples (n= 354) compared to control
blood samples (n= 355) (Wilcoxon rank-sum P < 0.01, Supple-
mentary Fig. 10). Predicted immune-cell proportions in breast
cancer patients before and after receiving chemotherapy or a
combination of chemo/radiation therapy were explored. Patients
receiving radiation therapy only (n= 74) showed a significant
relative increase of the neutrophil proportion and a mirror
decrease of several lymphoid lineages (memory B cell, naïve B
cell, naïve CD4 cell, and NK) after treatment (Wilcoxon rank-
sum P < 0.01, Supplementary Fig. 11a). Patients receiving

radiation therapy and chemotherapy (n= 70) exhibited sig-
nificant increases in eosinophil, monocyte, and regulatory T-cell
proportions and decreases of memory B cells after treatment
(Wilcoxon rank-sum P < 0.01, Supplementary Fig. 11b). Finally,
we evaluated the changes in immune-cell proportions in six
COVID-19 patients with and without remission versus six heal-
thy controls in Supplementary Fig. 12. Because of the limited
sample size, no statistically significant differences were observed,
but, as expected, the median of neutrophils was higher in patients
versus controls. In contrast, all the median lymphocyte sub-
populations were lower in the infected patient than those who
recovered from the disease. The median monocytes were lower in
those that remitted.

We investigated blood methylation data associated with
subject-to-subject variation in non-pathological conditions using
data from monozygotic versus dizygotic twins and subjects at
different ages (Supplementary Table 6). To characterize immune
cell variation between twins, predicted immune cell proportions
in monozygotic (n= 852) and dizygotic twins (n= 612) were
estimated. Significant differences in all the immune cells were
observed in monozygotic twins and dizygotic twins (Paired t-test
P < 0.01). More considerable differences between dizygotic twins
and monozygotic twins were seen in memory B cell, naïve B cell,
memory CD4 cell, naïve CD4 cell, memory CD8 cell, naïve CD8
cell, eosinophil, monocyte, and NK (Wilcoxon rank-sum P < 0.01,
Supplementary Fig. 13). Next, the impacts of aging on predicted
immune cell proportions in blood samples from newborn to
nonagenarian (n= 2504) were investigated. Extensive literature
has explored the changes in immune proportions with aging26,27,
but it has not been systematically explored using DNA
methylation28–30. Several subpopulation cell ratios across differ-
ent ages were calculated (Supplementary Fig. 14). The complete
granular data and trajectories of the different cell subpopulations
are represented in Supplementary Fig. 15. Longitudinal changes
of predicted immune cell proportions within five years after birth
in human blood leukocytes from 10 healthy girls are shown in
Supplementary Fig. 16.

We included some sensitivity analyses to compare the 450k
IDOL-Ext vs. the EPIC IDOL-Ext libraries when using EPIC or a
combination of EPIC and 450k legacy arrays. As shown in
Supplementary Fig. 4, both libraries provide an accurate
estimation for the 12 cell types. There are minor variations in
Bmem and Bnv estimations, with more precise estimates using
the EPIC IDOL-Ext (absolute mean difference 0.08%-EPIC vs.
0.48%–450k, and 0.23-EPIC% vs. 0.52%–450k, respectively), and
CD4mem and Treg with more precise estimations using the 450k
IDOL-Ext (absolute mean difference 0.62%-EPIC vs. 0.07%–450k,
and 0.6-EPIC% vs. 0.34%–450k, respectively), see Supplementary
Fig. 17 for additional information. Results using other statistical
procedures for cell deconvolution, CIBERSORT, and robust
partial correlations, were compared and are illustrated in
Supplementary Fig. 18. Results were generally similar using the
different methods, though slightly lower accuracy was observed
for CIBERSORT compared to CP/QP or robust partial
correlations.

Discussion
We established compact and reliable libraries to deconvolve the
proportions of 12 different cell types in peripheral blood,
including closely related cell types such as T-cell subtypes and
various types of granulocytes. Importantly, the libraries’ derived
variables offer a detailed immune profile from peripheral blood,
providing more than 56 cell-type and ratio components. Our
libraries are designed both for current (EPIC) and legacy (450k)
DNA methylation measurement platforms. The Gene Expression
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Omnibus repository, as of July 2021, includes publicly available
data from ~148,325 samples for both platforms31. Our libraries
have high accuracy and minimal bias compared to flow cyto-
metry, considered the “gold standard” data (Fig. 4). For most cell
types, that accuracy represents a difference of less than 3% in the
estimations. However, more considerable differences (>4%) are
observed in some datasets for the most abundant cell types
(neutrophils and total CD4T, Supplementary Figs. 6 and 7) and
for CD8Tmem (Supplementary Fig. 6). This error results from
limited purity in this cell component and possibly differences in
gating processes during the count splitting32. For the CD8mem
compartment, it is also possible that unaccounted residual het-
erogeneity is present, TEMRA (T effector memory cell expressing
CD45RA isoform), effector memory, central memory, NKT cells,
and other less characterized CD8Tmem subclasses33. The new
libraries will be important where specific memory and naïve cell
compartments are interrogated for disease, pathogenesis, or
exposure. Both EPIC IDOL-Ext and 450k IDOL-Ext are accurate,
with the former requiring fewer probes for the estimation. In
complex problems, such as EWAS using EPIC and 450k tech-
nologies simultaneously, we recommend using the more
straightforward approach for the data using the 450k IDOL-Ext
given the minimal variation observed (<1%) in the estimates. We
advise the researchers to evaluate their data quality before using
any deconvolution approach to avoid potential technical biases

(e.g., examining the library probe call rate and possible batch
effects in the data).

We consistently observed biologically relevant genes and
groups of genes in related pathways for the different cell types,
such as the SPTBN1, which is more expressed in basophils34;
GRB2, involved in Bmem formation35,36; P4HA2, related to
immature B cells37; CHD7, associated with thymic function38;
CCR5, related to CD8mem recruitment and trafficking39; CD248
a CD8 regulator and marker of naïve states40; EPX, the eosinophil
peroxidase marker of eosinophils41; LYST a lysosome maturation
in monocytes42; or KIR2DL4 a natural killer cell receptor43; and
the CTLA4 an essential marker in Treg tumor suppression44.

Our EPIC IDOL-Ext and 450k IDOL-Ext libraries provide
enhanced features for researchers using DNA methylation data
derived from blood. When the research question requires precise
resolution, the newly extended libraries provide that extra
information, with a minimal trade-off in precision compared with
the earlier EPIC IDOL-6 library. Previous attempts to generate
extended libraries for blood deconvolution encountered several
problems. The discrimination of scarcer cells has been proble-
matic, leading to inconsistent estimates; even when candidate
references were available, this library has largely overcome those
challenges. Some markers delineating particular cell types are
dependent on sex chromosome dosage (e.g., FOXP3 located in the
X chromosome for Tregs). To avoid that potential problem here,
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Fig. 5 Examples of differentially methylated sites demarcating the different cell lineages. The boxplots include the following information: (1) The box
shows the interquartile range (IQR), (2) the whiskers show the inner fences (1.5 × IQR out of the box), (3) the bolded line shows the median of the data.
The color inside the box corresponds to the cell type. Source data are provided as a Source Data file. Bas Basophils, Eos eosinophils, Neu neutrophils, Bnv
B-cells naïve, Bmem B-cells memory, CD4nv helper CD4(+) T-cells naïve, CD4mem helper CD4(+) T-cells memory, Treg CD4(+) T regulatory cells,
CD8nv cytotoxic CD8(+) T-cells naïve, CD8mem cytotoxic CD8(+) T-cells memory, Mono monocytes, NK natural killer cells.
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we only used autosomal probes. Distinguishing hierarchically
close cell types such as CD4mem and Tregs is challenging as the
pool of potential specific markers is limited. These markers may
even show some dependency when transitioning from one state
to another. For example, CD248 is mostly unmethylated in
CD8nv, but some cells in the CD8mem compartment are not
completely methylated at CD248, while it is completely methy-
lated and repressed in other cell types. In such case, using mul-
tiple markers attenuates the effect of using single markers to
define cell identity. Finally, the statistical process may favor
markers that do not necessarily reflect biologically relevant genes
when using libraries derived from an automatic selection. For
example, four (EPIC) and five (450k) EPX probes were selected in
the extended libraries, in contrast to none by the minfi pick-
CompProbes procedure. EPX is the gene containing the infor-
mation for the eosinophil peroxidase protein, which is essential
for eosinophil function and solely expressed in this blood cell
type41,45.

Including six additional cell types and, in particular, the naïve
compartments is a significant step towards a universal deconvo-
lution library for application to cord or adult blood data. Parti-
cularly intriguing for umbilical cord blood, nucleated red blood
cells interfered with more precise estimations than available FCM
information. Yet artificial mixtures showed the library capturing
leukocyte components accurately. As expected, most (if not all) of
the B and T cells were naïve cells as memory populations are
derived after antigen exposures, most commonly after birth.

Another advance of this library is the most accurate eosinophil
predictions compared to previous libraries and now basophil
estimations. These cells are involved in multiple pathologies,
including allergies and asthma, and through these libraries, they
can now be estimated. As with previous libraries, some residual
confounding from unaccounted cell types may be observed. In
particular, we observed inflation in several datasets of the basophil
estimation. Based on single-cell murine data, one hypothesis for
this estimate inflation is common progenitors’ relation with triple
differentiation to basophil/mast cells and erythroid cells46,47.
According to those potential common markers, it is possible the
basophil signal could interfere with the signal derived from cir-
culating immature nucleated erythroid cells. At least in umbilical
cord blood samples, the signal obtained from basophils is highly
correlated with the predicted fraction of nucleated red blood cells.
As such, a careful assessment of any high basophil signal is war-
ranted, as it could be driven by interference with nucleated red
blood cells in newborns and potentially some pathological or
adaptative conditions at other ages. Thus, careful interpretation
based on those estimates alone is prudent as they may signal
residual cell signals of other cell types not included in the library.

We applied this library to several public datasets, comparing
cases and controls for several pathologies. Our results are con-
cordant with known pathophysiology and immune responses for
these diseases: increased proportions of abnormal naive B cell
populations in the blood in multiple sclerosis patients48, pancy-
topenias with a predominance of neutrophils in radiotherapy plus
chemotherapy in breast cancer49, predominancies of neutrophilia,
and lymphopenia in COVID-19 patients that did not show
remission50. However, the limited sample sizes of these data
preclude more generalizable conclusions for most of the findings.
We will only discuss the most extensive dataset available of
rheumatoid arthritis patients vs. controls. This dataset, published
by Liu et al51., has explored how some immune cell components
(monocytes) are associated with specific DNA methylation
changes in the cases who were not receiving any treatment at the
time of blood collection. We observed a reduction in monocyte
proportions in rheumatoid arthritis patients compared to controls
(P-value = 1.1 E-5). Paradoxically in our analysis, we found a

non-statistically significant increase in Tregs in cases compared to
controls (P-value = 0.06), which are related to disease activity or
response to medications in other studies52. These differences are
essential to understand the activity of the disease and potentially
for the classification of the heterogeneous subjects when com-
pared to healthy controls. It is difficult to predict the extent of
discoveries made possible with the extended capability for
immune profiling we provide. Our method gives higher resolu-
tion than clinical approaches allows for more scalable, efficient,
standardized immune profiling compared with flow cytometry,
and has the added benefit of applying to archival specimens.
Although we have only begun to demonstrate the potential of our
approach, we do not doubt that the research community will
leverage this method to provide new insights into the relation of
immune profiles in human health and disease in exciting and
meaningful ways that impact public health and translational
medicine.

In summary, the new reference libraries greatly enhance the
detail of immune cell profiling with DNA methylation. These
enhanced libraries can be applied directly for immune profiling
and adjustment of cell-type proportions in EWAS. Future work
includes validating the use of this library in methylation data
from children and umbilical cord blood and expanding the
libraries to additional cell subsets critical for some pathologies
(e.g., dendritic cells). The increased detail in describing leukocyte
subtypes using the extended libraries will be crucial for control-
ling for aging-related DNA methylation changes; age-associated
changes in specific subpopulations of memory T and B lym-
phocytes are unaccounted for in previously established libraries.
Indeed, the IDOL-Ext library applications developed here greatly
enhance the detail of immune characterization for existing
immune profiles data and open opportunities for future studies
using DNA methylation data derived from human blood samples.

Methods
This work extended the available six-cell reference library using twelve cell sub-
types for deconvolution of blood cell proportions using the EPIC array, as well as a
legacy library for the 450k platform. Using cytometric and magnetic-sorted, flow
confirmed neutrophils, eosinophils, basophils, B cells (naïve and memory),
monocytes, NK cells, CD4+ T cells (naïve, memory and T regulatory cells), and
CD8+ T cells (naïve and memory), DNA methylation was measured with the
850 K/EPIC DNA methylation array. We applied the IDOL method to identify
optimal Leukocyte -Differentially Methylated Regions (L-DMR) libraries using a
testing set of six artificial mixtures containing the 12 cell types. Artificial mixtures
(also referred to as reconstructions) consist of DNA from purified isolated cell
types, representing mock blood samples of known, predefined cell proportions. Six
additional testing artificial mixtures were employed to corroborate the perfor-
mance, and 12 independent artificial mixtures derived from a set of 12 isolated cell
types not utilized in the training or testing, were used to validate the results. We
compared the performance of cell estimates obtained applying our previously
developed six model cell type (available in Bioconductor as“FlowSorted. Blood.E-
PIC”) and optimized an additional L-DMR IDOL library limiting the probes to
those available in the older 450 K array, and again compared the performance using
the training, testing, and validation datasets.

The DNA used to generate mixtures were derived from four MACS-isolated and
FACS-verified purity cell subtypes from the myeloid lineage [neutrophils (Neu),
eosinophils (Eos), basophils (Bas), and monocytes (Mono)], and eight MACS-
isolated and FACS-verified purity cell subtypes from the lymphoid lineage [B
lymphocytes naïve (Bnv), B lymphocytes memory (Bmem), T-helper lymphocytes
naïve (CD4nv), T-helper lymphocytes memory (CD4mem), T regulatory cells
(Treg), T-cytotoxic lymphocytes naïve (CD8nv), T-cytotoxic lymphocytes memory
(CD8mem), and natural killer lymphocytes (NK) cells] were purchased from
AllCells® corporation (Alameda, CA, USA), StemExpress (Folsom, CA), and
STEMCELL Technologies (Vancouver, BC, Canada). Cells were isolated from 41
males and 15 females, all anonymous healthy donors. The donors had a mean age
of 32.2 years (sd= 12.2, range 19–58 years) and an average weight of 85.1 kg (range
57–136 Kg). Donors identified themselves from multiple ethnicities, including
mixed ethnicities, and were categorized broadly into four groups (African-Amer-
icans, East-Asian, Indo-European, multiple/admixed). They were negative for
Human Immunodeficiency Virus-HIV, Hepatitis B Virus-HBV, and Hepatitis C
Virus-HCV. Women were not pregnant at the time of sample collection, and
samples were collected from donors with no history of heart, lung, kidney disease,
asthma, blood disorders, autoimmune disorders, cancer, or diabetes. All donors
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provided written informed consent before donation. The data discussed in this
publication have been deposited in NCBI’s Gene Expression Omnibus (Salas et al.,
2021) and are accessible through GEO Series accession number GSE167998. Iso-
lation protocols are available through the commercial websites of AllCells, Ste-
mExpress, and STEMCELL Technologies. In brief, cells were selected using
immunomagnetic labeling through the vendors’ specific protocols (see, Supple-
mentary Table 1 for details). Recovered cells were confirmed using flow-sorting.
Twenty-four artificial mixtures were determined by randomly generating propor-
tions from a twelve-component Dirichlet distribution. Each mixture of 1.2 μg total
DNA was generated from isolated cell DNA using the proportions in Supple-
mentary Table 3. The isolated cell DNA and those of the artificial mixtures were
bisulfite converted and processed according to the Illumina protocols at the Vin-
cent J. Coates Genomics Sequencing Laboratory at UC Berkeley, Avera, or Diag-
enode. Samples were randomized prior to loading onto microarray chips. The EPIC
methylation array raw idat files were pre-processed using minfi, EnMIX, and
SeSaMe for quality control using R v.4.0.2 and 4.1.053–55. To assess data quality, we
used an out-of-band detection P-value of 0.05, three standard deviations of the
mean bisulfite conversion control probe fluorescence signal intensity, and a
minimum of three beads per probe. To ascertain the highest purity of the samples
included in our library, in addition to the information obtained through the FCM
confirmation, we projected back the proportions, thus “purity,” of the cells, using
Jaffe’s procedure11. The corresponding cell-type proportion was retrieved and
designated as “DNA methylation purity.” Only samples with DNA methylation
purity levels higher than 85% (range 85.7 to 100%) were included in the library.
Subsequently, a stringent out-of-band p-detection value (pOOBHA) > 0.05 was
applied and set those that could not be distinguished from the background probes
as “missing values.” Only those probes with complete information for all the
samples were selected for the library. No imputation was performed in this context
as the signals could be dependent on the specific cell type. Additionally, all non-
CpG (referred to as CpH) probes were filtered in light of the minimal variation and
all CpH beta values were under 0.08. Finally, as both female and male samples were
present, we discarded probes tracking the X and Y chromosomes. According to
Zhou et al., those that showed known polymorphisms or cross-reactivity were also
excluded56. Our set for library discovery included 675,992 complete high-quality
probes. The EPIC IDOL-Ext L-DMR library is available as an R library “Flow-
Sorted.BloodExtended.EPIC” please contact the Office of Technology Transfer
Technology.Transfer@dartmouth.edu for a free Academic license (for license
instructions, please refer to https://github.com/immunomethylomics/
FlowSorted.BloodExtended.EPIC). The extended blood deconvolution can be
performed using the FlowSorted.Blood.EPIC Bioconductor library and we
recommend using the minfi noob background correction for the target dataset. The
package contains an RGChannelSet R object processed using SeSaMe in which
probes showing channel switching were corrected and SNPs derived from Infinium
Type I probes were added, using the total signal intensities, to the control for
genetic ancestry. The object is unfiltered and contains 56 samples and the 12
artificial mixtures information on 1,008,711 probes corresponding to 866,091 sites
(CpGs and CpHs) using the latest annotation released by Illumina (Methylatio-
nEPIC_v-1-0_B5). The reader needs to note that the cells were purified using
an immunomagnetic procedure; the name “FlowSorted” is kept for historical
reasons and downstream integration with previous minfi pipelines and similar
algorithms.

IDOL algorithm. For a complete description of the IDOL algorithm, please refer to
the original application in Koestler et al.12. In brief, the IDOL algorithm utilizes a
training dataset (ground truth) consisting of samples with DNA methylation data
in which the measured fraction of each of the underlying cell types is known (here
corresponding to artificial mixtures with prespecified proportions) as a means to
identify a set of probes confirming an optimal reference library for cell mixture
deconvolution. A series of t-tests compared the mean CpG-specific methylation
between each leukocyte cell type vs. the mean methylation across all the other cell
types identified the probes discriminating CpGs (e.g., leukocyte differential
methylated regions or L-DMRs) for each specific cell type of the 12 included in this
application. CpGs were then rank-ordered using their t-statistics, and the L/2 CpGs
with the largest and smallest t-statistic for each K cell type were identified and
pooled. Our application set the tuning parameter L to 150 in, consistent with
Koestler et al.12. A discovery L-DMR library containing the total L*K unique
L-DMRs for each cell type forms the IDOL algorithm search space. L-DMR subsets
of size <L*K are sequentially selected and examined for their prediction accuracy in
deconvolving the training dataset samples. The user needs to preselect the library
size to balance the accuracy and precision of cell-composition estimates. For the
current application of IDOL presented here, we considered libraries ranging from
250 to 3000 CpGs. We initially set increments of 50 CpGs until a size of 1100; then
we increased by 100 CpGs until a size of 2000 and tested libraries of 2500 and 3000
CpGs to corroborate the elbow in the error distribution. In the first iteration of the
IDOL algorithm, all L*K CpGs constituting the candidate library has an equal
probability of being selected to be included in the L-DMR library. We applied the
constrained projection/quadratic programming approach9 to obtain the cell-
composition estimates for each sample in the training dataset. These predictions
then allow us to calculate the R2 and RMSE (root mean square error) for each cell

type, contrasting the cell estimates versus the known proportion in each sample.
Then one-by-one CpGs are removed from the randomly selected DMR library,
followed by computation of R2 and RMSE based on cell-composition estimates
obtained using the new library. Through this, we can assess the contribution of
each CpG in the library in terms of its impact on the accuracy of cell-composition
estimates and, then the algorithm modifies the probability of each CpG being
selected in subsequent IDOL iterations. The process is repeated at each of the 500
iterations, with the algorithm eventually converging on an “optimal” library for
deconvolution (showing the lowest error and highest precision).

Enrichment analysis. Gene set enrichment analyses used missMethyl to control
for multiple probes bias and the Molecular Signatures Database (MSigDB) version
7.257,58. Hypergeometric tests were used to evaluate enrichment of specific genomic
context and functions compared to the background probes used for selecting the
candidates in the library. Additionally, eForge was used to evaluate the enrichment
of cell-specific probes in the library versus the presence of primed enhancer histone
marks (H3K4me1)59.

Additional validation sets. We used five datasets for validation: a set of samples
obtained from a longitudinal analysis (GSE110530) with six observations. A set of
independent artificial mixtures (GSE110554) derived from six cell types. A set of
samples from 72 glioma patients in different treatment stages (GSE180683),
including FCM information for T cells CD4+ and CD8+ naïve and memory. A
set of 20 umbilical cord blood (GSE68456) with FCM information. A set of 12
umbilical cord blood artificial mixtures including six cell types (GSE180970). A set
of samples using the 450k technology (GSE77797) with FCM and artificial mixture
information derived from six cell types. Finally, the Reinius et al. GSE35069 dataset
using the FCM information for the whole-blood cells, peripheral blood mono-
nuclear cells, and granulocytes as reported in the original manuscript’s supple-
mentary material.

Potential applications. We identified 12 publicly available datasets from GEO and
ArrayExpress that contained DNA methylation data on two different normal
health conditions (twins, aging) and four diseases (Supplementary Table 6). The
application datasets included whole-blood samples from 426 pairs of monozygotic
twins and 306 dizygotic twins, 2504 umbilical cord and peripheral blood samples
from newborn to nonagenarian, 13 multiple sclerosis whole-blood case samples
and 14 controls, 354 rheumatoid arthritis peripheral blood leukocyte samples, and
355 controls, 144 peripheral blood samples from breast cancer patients before and
after receiving chemotherapy and radiation or isolated radiation therapy treatment,
and six COVID-19 patients (with 18 samples) and six healthy controls. Illumina
Infinium DNA methylation IDAT files were retrieved from GEO and ArrayExpress
for application datasets. minfi package from Bioconductor was used to process the
data using noob. Four thousand eight hundred and seventy-two samples in total
were eventually contained in the application datasets. We estimated the proportion
of immune cells in those datasets using the appropriate extended immune cell
deconvolution library for the array (EPIC or 450k).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The main source dataset (12 cell types, testing, and training artificial mixtures) generated
in this study have been deposited in GEO under accession code GSE167998. This
Superseries GSE181034 is composed of the following series GSE180683 (glioma samples,
validations for T-cell memory subsets), GSE180970 (umbilical cord artificial mixtures),
GSE182379 (independent validation 12 cell types artificial mixtures). Additional public
datasets analyzed in this manuscript are available in GEO and ArrayExpress with
accession numbers: GSE110554, GSE77797, GSE110530, GSE35069, GSE68456,
GSE88824, GSE42861, GSE140038, GSE161778, GSE105018, E-MTAB-7069, GSE85042,
GSE103189, GSE104778, GSE62219, GSE87571, E-MTAB-7309, GSE87571,
GSE12163. Source data are provided with this paper.

Code availability
The code used for this manuscript has been deposited in Zenodo doi: 10.5281/
zenodo.533851360. Instructions to obtain a license for FlowSorted.BloodExtended.EPIC
R library are available in GitHub (https://github.com/immunomethylomics/
FlowSorted.BloodExtended.EPIC) or through the Technology Transfer Office
Technology.Transfer@dartmouth.edu. Free licenses are available solely for Non-
Commercial Entities to conduct academic research. All other parties will require a
specific license. Most of the licenses are granted less than two business days after the
agreement signature.
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