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2Pacific Northwest Research Station, USDA Forest Service, Seattle, WA, United States

3Department of Public Health Sciences, MIND Institute, University of California Davis School of 
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Abstract

Urban smoke exposure events from large wildfires have become increasingly common in 

California and throughout the western United States. The ability to study the impacts of 

high smoke aerosol exposures from these events on the public is limited by the availability 

of high-quality, spatially resolved estimates of aerosol concentrations. Methods for assigning 

aerosol exposure often employ multiple data sets that are time-consuming to create and difficult 

to reproduce. As these events have gone from occasional to nearly annual in frequency, the 

need for rapid smoke exposure assessments has increased. The rapidfire (relatively accurate 

particulate information derived from inputs retrieved easily) R package (version 0.1.3) provides 

a suite of tools for developing exposure assignments using data sets that are routinely generated 

and publicly available within a month of the event. Specifically, rapidfire harvests official air 

quality monitoring, satellite observations, meteorological modeling, operational predictive smoke 

modeling, and low-cost sensor networks. A machine learning approach, random forest (RF) 

regression, is used to fuse the different data sets. Using rapidfire, we produced estimates of 

ground-level 24 h average particulate matter for several large wildfire smoke events in California 

from 2017–2021. These estimates show excellent agreement with independent measures from 

filter-based networks.

1 Introduction

Changes in climate in the western United States, and elsewhere, are driving larger, more 

intense fires with greater smoke impacts on larger populations (Burke et al., 2021), and these 

trends are projected to continue (Hurteau et al., 2014). The wildfire seasons of 2020 and 
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2021 produced some of the highest concentrations of particulate matter, less than 2.5 μm in 

diameter (PM2.5), ever observed in monitoring stations around California, some for several 

days or weeks. Despite reductions in ambient PM2.5 driven by air pollution regulations, 

areas of the western United States are seeing increasing concentrations due to wildfire 

smoke impacts (McClure and Jaffe, 2018).

There are widespread concerns about potential health consequences of wildfire exposures on 

vulnerable populations as the smoke increasingly reaches populated areas. From 2008–2012, 

it was estimated that over 10 million individuals in the United States experienced unhealthy 

air quality levels (average daily fire PM2.5 > 35 μg m−3) associated with exposure to wildfire 

for more than 10 d (Rappold et al., 2017). This number is expected to have risen several-fold 

in the decade since, given the increase in wildfire events across the continent (Childs et al., 

2022). Additionally, long-range transport of wildfire PM2.5 has been associated with adverse 

health effects in susceptible populations thousands of miles away (Le et al., 2014; Kollanus 

et al., 2016).

Wildfire smoke is associated with premature deaths (Chen et al., 2021a; Johnston et al., 

2012) and significant cardiovascular (Chen et al., 2021b) and respiratory morbidity (Reid 

et al., 2016), including asthma exacerbations. Certain subpopulations are more susceptible 

to the health impacts of air pollution and wildfire smoke, including the elderly, pregnant 

women, and those with underlying health conditions such as asthma (Chen et al., 2021b). 

Few studies have examined long-term health outcomes in relation to chronic exposures to 

high concentrations of wildfire smoke. Prenatal wildfire smoke exposure has been linked 

to adverse birth outcomes, including preterm birth (Heft-Neal et al., 2022) and lower birth 

weight (Abdo et al., 2019; Holstius et al., 2012), especially with exposure in the second or 

third trimester. In contrast to studies of ambient air pollution, associations between wildfire 

smoke and adverse birth outcomes did not differ by race, ethnicity, or income but differed by 

baseline smoke exposure. Many epidemiological studies have linked early-life air pollution 

exposure to increased autism spectrum disorder risk (Volk et al., 2013; Dutheil et al., 2021; 

Volk et al., 2011) and to cognitive functioning impairments (Clifford et al., 2016; Loftus et 

al., 2019; Chiu et al., 2016; Loftus et al., 2020).

Evidence suggests that wildfire PM2.5 could induce higher toxicity than other ambient 

air PM2.5 (Kim et al., 2018; Wegesser et al., 2010; Franzi et al., 2011; Wegesser et al., 

2009) and is associated with about 10 times higher increase in hospital admissions for 

respiratory health than PM2.5 from other sources (Aguilera et al., 2021a), including in young 

children (Aguilera et al., 2021b). With climate predictions for increased occurrence and 

severity of wildfires, there is a growing need to understand which populations are at highest 

risk and PM2.5 concentrations of concern to inform adverse-health mitigation strategies. 

Yet, many gaps remain in our understanding of the linkages between wildfire smoke and 

human health (Black et al., 2017). A critical challenge is in characterizing personal or 

population exposures during high-intensity events. There are many methods for estimating 

exposure to ambient pollution, including spatial interpolation of measured values, chemical 

transport modeling, remote sensing, land-use regression modeling, data fusion and machine 

learning, and combinations of all of these approaches (e.g., Reid et al., 2015; Zhang et 

al., 2020; Al-Hamdan et al., 2014; Cleland et al., 2020; Hoek et al., 2008). The rapidly 
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changing conditions during wildfire smoke events can confound otherwise high-performing 

approaches (O’Neill et al., 2021). There are several barriers to the adoption of existing 

methods for exposure assignment. These can include data availability for the study location, 

data latency, and high-performance computing requirements. The combination of increasing 

frequency of smoke events and the proliferation of smoke exposure human health studies 

drives a need for exposure modeling that is quick and inexpensive.

There has been a rapid proliferation of low-cost sensors for air quality within the past 

decade. While these sensors do not measure PM2.5 with the same fidelity as the regulatory 

monitoring conducted by federal and local air quality agencies, they represent a new 

resource for PM2.5 assessment with relatively dense spatial coverage. Many low-cost PM2.5 

sensors operate with similar principles, using a laser to count particles that scatter light in 

the optical range, with sensitivities peaking for aerosols with median scattering diameter 

of < 0.3 μm (Ouimette et al., 2022). Recent studies have shown the value of incorporating 

low-cost sensor networks into PM2.5 exposure modeling (Bi et al., 2020).

Past work has shown that a data fusion approach that combines ground-based air quality 

monitors, transport modeling that incorporates wildfire emissions, satellite observations, and 

meteorological variables can be effective in predicting PM2.5 exposure during large wildfire 

events (Zou et al., 2019; O’Neill et al., 2021) and prescribed fires (Huang et al., 2021).

We developed methods and a suite of tools for rapidly predicting PM2.5 exposure, 

particularly during wildfire smoke events, using readily available data with low latency 

(less than 1 month). The tools are contained within a package written in the R programming 

language called rapidfire (relatively accurate particulate information derived from inputs 

retrieved easily). rapidfire adapts and builds upon the methods of Zou et al. (2019) and 

O’Neill et al. (2021), replacing retrospective chemical transport modeling and other data 

sets developed for research with smoke forecast modeling and “off-the-shelf” data sets 

that are routinely available and easily acquired. A major addition is the incorporation of 

low-cost sensor data. This paper describes the data sets and algorithms used in the rapidfire 

package and presents an example case study during five recent extreme wildfire seasons in 

California.

2 Methods

In this study, data sets and algorithms are applied to time periods of large California 

wildfires from 2017–2021. Table 1 summarizes some of the major California wildfires 

and the area burned for the year. Figure 1 shows the wildfire locations, as detailed by 

the California Department of Forestry and Fire Protection’s Fire and Resource Assessment 

Program (FRAP). Extreme fire weather conditions fueled the October 2017 wine country 

wildfires (~ 81 ha) in the Napa and Sonoma counties of central coastal California (Mass 

and Ovens, 2019), and over 7 million people were impacted by unhealthy levels of smoke 

(O’Neill et al., 2021). The 2018 wildfire season began in July with wildfires such as 

the Carr, Ferguson, and Mendocino Complex (Mueller et al., 2020) and extended through 

November with the Camp and Woolsey wildfires. In comparison, 2019 was a relatively 

low-activity fire year, but the Kincade wildfire (~ 31 ha) again impacted the wine country 
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in October–November. The 2020 wildfire season was relatively quiet until the middle 

of August when widespread lightning ignited many wildfires across central and northern 

California, including the coastal range south of San Francisco. In 2021 about two-thirds of 

the acres were burned as in 2020, but over a longer duration, starting about a month earlier 

in July. These different patterns and the level of smoke impacts are seen in Fig. 2, which 

shows 24 h average PM2.5 concentrations from permanent and temporary monitors across 

the state of California and satellite imagery of the smoke and satellite hotspot detections.

2.1 Input data sets

Input data for rapidfire consist of ground-based monitors from three sources, aerosol optical 

depth from satellite instruments, and modeled meteorological and air quality data. Table 2 

summarizes these data sources and the rapidfire functions used to access them and/or the 

location where the data can be obtained.

2.1.1 Permanent and temporary air quality monitoring data—Hourly PM2.5 

observations are available from monitoring stations across the United States via the AirNow 

program, which is a partnership of the United States Environmental Protection Agency 

(EPA); National Oceanic and Atmospheric Administration; National Park Service; NASA; 

Centers for Disease Control and Prevention; and tribal, state, and local air quality agencies 

(https://www.airnow.gov/, last access: 10 January 2024). Within California, about 117–141 

monitors were operating during the study period. These permanent monitors are a mixture of 

federal reference method or federal equivalent method instruments, instruments of sufficient 

quality such that the data are used by EPA to determine attainment and non-attainment of the 

National Ambient Air Quality Standards (NAAQS).

During wildfires, temporary monitors are also deployed by the Interagency Wildland Fire 

Air Quality Response Program (IWFAQRP; Congress.gov, 2019) and the California Air 

Resources Board (CARB). These monitors are environmental beta attenuation monitors 

(E-BAMs; Met One Instruments, Inc.). As discussed in O’Neill et al. (2021), laboratory 

(Trent, 2006) and field (Schweizer et al., 2016) studies, evaluating E-BAM performance 

with federal reference method monitors (BGI Inc., PQ-200, and Met One Instruments BAM) 

found correlations greater than 0.9 with a tendency of the E-BAMs to overestimate PM2.5, 

especially when relative humidity was greater than 40 % (Schweizer et al., 2016). Though 

not as accurate as the AirNow monitors, they are deployed in regions where smoke impacts 

are significant and permanent monitoring is sparse or absent. The locations of permanent 

and temporary monitors as of 1 September 2021 are shown in Fig. 3 (left). The permanent 

monitors are concentrated in the coastal and valley regions where larger populations of 

people are located, while temporary monitors are focused in areas of complex terrain where 

most wildfires and smaller communities without air quality monitoring data are located.

Hourly PM2.5 concentrations from both the permanent and temporary 

monitors were acquired using the rapidfire::get_airnow_daterange and 

rapidfire::get_airsis_daterange functions. These wrap the monitor_subset 

function from the Mazama Science PWFSLSmoke R package (Mazama Science, 2024). 

rapidfire::recast_monitors was then used to calculate daily 24 h averages from 
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the hourly data. At least 16 h is required to produce an average. The daily average 

data from both the permanent and temporary monitors were combined into a single data 

set. Of this monitor data set, 30 % was withheld for development and evaluation of 

the rapidfire model results. The remaining 70 % was used to develop model variograms 

using rapidfire::create_airnow_variograms. These PM2.5 observations were then 

log-transformed and interpolated to estimate concentrations at locations away from the 

monitors using ordinary kriging (Wackernagel, 1995), providing a spatially complete data 

set for use in the rapidfire data fusion.

2.1.2 Low-cost sensors—There has been a proliferation of low-cost sensors that 

estimate PM2.5 deployed by the public across the world in the last decade. We used data 

from the PurpleAir network, which had grown to over 6500 outdoor sensors in California as 

of the end of 2021. Figure 3 (right) shows the locations of PurpleAir sensors reporting data 

on 1 September 2021. Coverage in populated areas is extensive.

While PurpleAir estimates of PM2.5 concentration have been shown to be biased and are 

dependent on humidity and aerosol type (Barkjohn et al., 2021), they still correlate with 

PM2.5 observed at FEM monitors and provide invaluable spatial and temporal information 

that is not available with the relatively sparse network of monitors. Because these sensors 

are not quality controlled or validated, and their siting may be suspect, care must be taken 

when using them in modeling.

For time periods since February 2021, rapidfire acquires PurpleAir archive data using 

the OpenAQ application programming interface (API). OpenAQ is a non-profit data 

platform that aggregates air quality data from around the world (OpenAQ, 2023). 

rapidfire::openaq_find_sites is first run to find all sensors within a specified 

geographic boundary. Then, rapidfire::openaq_get_averages can be used to 

download data for those sensors over the specified time period. At the time of 

publication, PurpleAir data from prior to February 2021 were not available via OpenAQ. 

For earlier time periods, rapidfire queries data directly from the PurpleAir API. 

rapidfire::pa_find_sensors is used for finding all available outdoor PurpleAir 

sensors within a geographic bounding box. Then, rapidfire::pa_sensor_history can 

be run to acquire hourly PM2.5 concentration estimates from each sensor. Note that access 

to historical data via the PurpleAir API now requires an API key, and there is a cost for 

requesting larger amounts of data. There is no cost to access the data via OpenAQ.

We employ a spatial test to remove sensors that are significantly different from their 

neighbors. rapidfire::purpleair_clean_spatial_outliers removes any sensors 

that are more that 2 standard deviations away from the median of all sites within 10 km. 

PurpleAir estimates used in data fusion were log-transformed and then interpolated using 

ordinary kriging. While it is common to apply a correction to PurpleAir data to better 

correlate with PM2.5 from standard monitors, we elected not to do so. The data fusion model 

described below incorporates relative humidity and other meteorological parameters and is, 

in essence, applying a correction specific to the region and time period of the modeling 

domain.
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2.1.3 Satellite aerosol optical depth—Satellite aerosol optical depth (AOD) is a 

measure of the total columnar aerosol light extinction from the satellite sensor to the 

ground. AOD is indirectly related to PM2.5, with the relationship depending on aerosol 

type, humidity, and aerosol vertical profile (Li et al., 2015). We used AOD from the 

Multi-Angle Implementation of Atmospheric Correction (MAIAC) project (Lyapustin et 

al., 2011). MAIAC is an advanced algorithm that uses time series analysis and additional 

processing to improve aerosol retrievals; atmospheric correction; and, importantly, cloud 

detection from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments 

on board NASA’s Terra and Aqua satellites. Past work has shown that thick smoke is often 

mistaken for clouds in the standard MODIS algorithms (van Donkelaar et al., 2011), which 

hampers their use in wildfire conditions. The MAIAC algorithm reduces those errors.

The rapidfire::maiac_download function can be used to acquire the 1 km daily 

atmosphere product (MCD19A2) which contains AOD. Clouds prevent the retrieval of 

AOD, and there are sometimes clouds present even in the hot, dry conditions during 

California wildfires. The data fusion algorithm requires a complete data set, so a placeholder 

value must be used to gap-fill in locations under clouds. Previous work has used model-

simulated AOD, along with meteorological variables in a data fusion approach, to gap-fill 

satellite-observed AOD (Zou et al., 2019). For this work, where clouds cover less of the 

domain, we took a simpler approach. Missing AOD values were filled using a three-stage 

focal average available in rapidfire::maiac_fill_gaps_complete and illustrated in 

Fig. 4. In the first stage, a focal mean of a 5-by-5 pixel square (5 km) is used. In the second 

stage, the window is increased to 9 by 9, and in the final stage it is increased to 25 by 25. 

Any values that are still missing after the final stage are filled with the median value for the 

entire scene.

2.1.4 Smoke modeling—Air quality models provide near-surface estimates of PM2.5 

on an output grid. We processed daily average PM2.5 concentration values acquired from 

the BlueSky smoke prediction system (Larkin et al., 2009) developed by the United 

States Department of Agriculture Forest Service (USFS) which first became operational 

in 2002 and has undergone significant development in recent years. The USFS runs 

over 30 simulations a day predicting near-surface 1 h average PM2.5 concentrations from 

wildland fire across the United States at a variety of spatial extents and resolutions 

using the HYSPLIT dispersion model (Stein et al., 2015). For this work we extracted 

BlueSky data from the California and Nevada Smoke and Air Committee (CANSAC; https://

cansac.dri.edu/, last access: 10 January 2024) domain that encompasses California and 

Nevada for the months of July–November, years 2017–2021. In 2018 and 2019 the domain 

was at a 2 km resolution, and for 2019–2021 the domain was at a 1.33 km resolution. On 

some days, the model did not run successfully. For those days, data were backfilled by 

using the second or third day of a previous day’s 72 h model run. We chose this air quality 

data set because it is available operationally, is of a high spatial resolution, and is focused 

specifically on modeling smoke aerosols from wildland fires; however, other air quality 

modeling could be substituted.

Smoke prediction systems need to make many more assumptions than retrospective 

analyses. These assumptions, such as vegetation type and fuel loading, fire size and 
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behavior, persistence of fire activity into the future, and using a meteorological forecast, 

all have considerable implications for the quantity of emissions released from fires and 

how those emissions transport and undergo chemical reactions in the atmosphere (Kennedy 

et al., 2020; Larkin et al., 2012; O’Neill et al., 2022). These assumptions and associated 

uncertainties can result in orders of magnitude spread in the estimated downwind PM2.5 

concentrations (Li et al., 2020). Despite these issues, these systems are useful in providing 

information about potential smoke impacts (Lahm and Larkin, 2020), and the data are 

more available and can provide the underlying consistent data sets necessary to represent 

near-surface PM2.5 concentrations for successful applications of machine learning and health 

impact analyses. Further retrospective studies are not routinely available for long-term time 

periods (5–10 years or more), and maturing air quality forecasting systems, when coupled 

with machine learning approaches such as those provided here, can provide the consistent 

high-quality data sets needed for health impact analyses.

2.1.5 Meteorology—Meteorological conditions can help explain the relationships 

between our inputs and observed PM2.5. For example, the PurpleAir sensor is sensitive 

to relative humidity. AOD is sensitive to humidity and planetary boundary layer height. 

Following Zou et al. (2019), we included several meteorological variables in our model, 

including daily average temperature, winds, humidity, boundary layer height, and daily 

rainfall. These variables were acquired from the North American Regional Reanalysis 

(NARR) data set (Mesinger et al., 2006).

2.2 Data fusion

We developed event-specific models using random forest (RF) regression. RF is a technique 

that uses a large number of randomly generated regression trees (Breiman, 2001). Each tree 

is constructed using a random subset of the training data, and each node uses a random 

subset of the potential predictive variables. New values are estimated as the mean prediction 

of the individual trees. For each RF run, 500 trees were grown. A single tuning parameter, 

the number of variables selected at each node (mtry), was varied between 2 and 5. The 

model was trained using 10-fold cross-validation, withholding 30 % of the monitoring data 

for tuning. Internally, rapidfire::develop_model uses the random-Forest R package 

(Liaw and Wiener, 2002).

For the final model, 10 predictor variables were used (Table 3). PM2.5 from the monitors 

was used as both a predictor and a target variable. Given a list of locations and dates, the 

final result from rapidfire::predict_locs is a table with the 10 input variables plus 

the resulting modeled PM2.5 for each location and date.

3 Results and discussion

3.1 Model evaluation and comparison with measurements

To demonstrate the performance of the rapidfire system, we developed models for five large 

wildfire smoke events from 2017–2021 in northern California (Table 1). Six quantitative 

analysis metrics are used to evaluate model performance (Table 4). The model was assessed 

in two ways.
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First, a 10-fold cross-validation was performed on the permanent and temporary monitors. 

For each fold, 10 % of the monitoring data were withheld prior to interpolation. For 

this analysis, we also developed models with three simpler methods: (1) ordinary kriging 

(OK) interpolation of AirNow monitors, (2) OK interpolation of PurpleAir sensors, and 

(3) multiple linear regression (MLR) using the same inputs as those used for the rapidfire 

modeling.

Second, rapidfire predictions using the full data set were compared against 24 h filter-

based measurements from the Interagency Monitoring of PROtected Visual Environments 

(IMPROVE) network and Chemical Speciation Network (CSN).

The cross-validation results for rapidfire are shown in Fig. 5. The vast majority of results 

are along the 1 : 1 line. There is a large dynamic range, with concentrations ranging from 

less than 1 to over 1000 μg m−3. The model overestimates at the lowest concentrations 

and sometimes underestimates the highest concentrations, especially in 2017. The relative 

paucity of low-cost sensors in 2017 may have contributed to poorer performance in that year.

Model performance statistics for the cross-validation using the four methods are shown in 

Table 5. For these wildfire events, rapidfire provides good correlation with low error and 

bias, offering improvement over classical MLR or interpolation of the ground monitors 

alone. The high density of monitors in this region helps the interpolation approaches perform 

well; all of the methods are available within the rapidfire package. These results are similar 

to results from recent data fusion studies. Cleland et al. (2020) applied bias correction and 

data fusion methods to estimate PM2.5 impacts during the 2017 wine country wildfires 

with a resulting correlation of 0.71. They found that temporary monitors in the more rural 

areas were critical in improving results. Similarly, Zou et al. (2019) applied several machine 

learning approaches, including random forest, to improve PM2.5 estimates across the Pacific 

Northwest (PNW) during August–September 2017, with correlations ranging from 0.45 

to 0.59. Note that the PNW region is much more sparsely populated with monitors than 

California.

Complete rapidfire results were also compared with available observations from the 

IMPROVE network and CSN. Both IMPROVE and CSN collect 24 h integrated filter-

based measurements of speciated particulate matter every third day (Solomon et al., 

2014). IMPROVE PM2.5 mass is determined gravimetrically. CSN no longer performs 

gravimetric mass analysis, but PM2.5 is estimated by reconstructing total mass from the 

major components of PM2.5: ammonium sulfate, ammonium nitrate, soil, organic matter, 

elemental carbon, and sea salt.

Figure 6 shows the CSN and IMPROVE monitor locations along with the identifiers used 

in this study. The rapidfire modeling shows excellent agreement with individual CSN and 

IMPROVE monitors as shown in Fig. 7 and Table 6. This is somewhat surprising, as they 

represent a challenging test of the method. The 24 h filter data are 100 % independent 

of the model inputs and, for IMPROVE especially, are located far from other monitors in 

remote locations with complex terrain. However, the lower dynamic range of the data helps 

to explain the lower RMSE compared to the cross-validation analysis above. Because the 
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IMPROVE sampler clogs in very heavy smoke situations, the highest concentrations in this 

data set are less than 200 μg m−3. The network is also relatively sparse, and sampling is only 

every third day.

3.2 Characterizing rapidfire results across California

The results are plotted across California for two wildfire seasons: August–October 2020 

(Fig. 8) and August–October 2021 (Fig. 9). In each case, daily average PM2.5 reaches 

values greater than 200 μg m−3, with very strong spatial and temporal variability. The 

2020 case shows three widespread peaks in August, September, and October. In the 2021 

case, concentrations were highest in northern locations in August, while values were higher 

further south in September and early October. These two cases highlight the complexity of 

these smoke events, which are controlled by multiple wildfires burning in and around the 

state simultaneously.

3.3 Excess mortality

As a demonstration of the utility of the rapidfire system, we adapted the methods of 

Johnston et al. (2012) to estimate statewide mortality attributable to excess PM2.5 during 

the wildfire seasons of 2017–2021. Excess mortality was estimated daily at the census tract 

level.

Mortality attributable to PM2.5 exposure

= ∑
d = 1

n
P × M × PM2.5, d − PM2.5, b × RRSI,

where PM2.5,d is daily average PM2.5 concentration predicted by rapidfire at census tract 

centroids, with minimum and maximum values of 15 and 200 μg m−3. Much of California 

has a relatively high baseline average PM2.5 concentration during non-fire conditions. We 

developed a conservative non-fire baseline PM2.5,b concentration value by taking three 

lower-fire-activity years (2016, 2019, and 2022) and calculating the 90th percentile of daily 

PM2.5 by month and county based on AirNow monitors. Predictions were capped at 200 

μg m−3, as the PM2.5 dose–response curve flattens at higher exposures (Pope et al., 2011). 

M is the county-level daily average mortality rate, which was acquired from the Centers 

for Disease Control and Prevention’s WONDER database (CDC, 2023), for the year 2016 

(a recent low-fire year). P is the census tract population from the 2020 Census (Census, 

2021). RRSI is the relative risk function for multiple-cause mortality due to short-term PM2.5 

exposure. The value of RRSI was 0.11 % per 1 μg m−3 increase in PM2.5 concentration 

(Johnston et al., 2012).

Figure 10 shows the California-wide daily excess mortality calculated from the increment 

of PM2.5 concentrations above PM2.5,b. The most significant impacts are seen in 2018 

and 2020. In November 2018, the Camp wildfire produced massive PM2.5 emissions that 

were transported throughout the Sacramento and San Joaquin valleys and persisted under 

stagnant weather conditions. The nearly 2-week period of high concentrations across a broad 

region of relatively high population density led to an estimated 266 excess deaths. The 
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historic 2020 fire season was even more dramatic. Beginning in August, smoke from fires 

burning around the state contributed to an estimated 615 excess deaths across a 3-month 

period. Incorporating the error in the rapidfire predictions, the range of excess deaths is 

209–339 in the November 2018 period and 457–1072 in the 2020 3-month period. The 

spatial distribution of excess mortality for 2020 is shown in Fig. 11. Impacts are shown by 

census tract. Though census tracts vary greatly in size, they have similar populations, with a 

minimum of 1200 and maximum of 8000. Elevated excess mortality was widespread in the 

northern half of the state, especially away from the coast.

4 Discussion

4.1 Model input importance

Although the random forest model uses all of the provided predictor variables, the most 

explanatory variables are selected more often at each node. The relative importance of each 

variable can be visualized by calculating SHapley Additive exPlanations (SHAP) (Lundberg 

and Lee, 2017). SHAP quantifies the contribution of each predictor variable to the final 

model prediction. Figure 12 shows input values plotted versus SHAP for 1–10 November 

2018. A single prediction, for CSN site 107–1001 on 10 November 2018, is highlighted. The 

SHAP values show the contributions to the final predicted concentration value from each 

of the model inputs. The individual component features of the model behave as expected 

from atmospheric dynamics. In the highlighted case, PM2.5 was high in the permanent 

and temporary monitors (Monitors), the sensor network (PurpleAir), and the smoke model 

(BlueSky). AOD was also elevated. By contrast, the planetary boundary layer (PBL height) 

was low, as were wind speeds, humidity, and precipitation. Air temperature was moderate. 

The magnitude of the SHAP values in Fig. 12 quantifies the relative importance of the 

different inputs. The ground-based networks, both official monitoring and low-cost sensors, 

are the most important variables in the model, followed by the BlueSky smoke model, 

planetary boundary height, and AOD. The remaining meteorological variables have a small 

but coherent impact.

4.2 Application for health studies

The rapidfire modeling has been applied, and is being applied, in several epidemiological 

studies. The ability to produce wildfire-associated PM2.5 measures in a timely manner 

(about 1 month post-event) allows time-critical planning and implementation of 

epidemiological studies. For example, when each of the recent large wildfires produced 

smoke plumes that covered urban areas of northern California, the rapidfire modeling 

was used to determine the time periods and geographical areas where populations were 

most impacted by wildfire smoke. This information was used in two local studies, the 

Bio-Specimen Assessment of Fire Effects (B-SAFE) wildfire pregnancy cohort study and 

the WHAT-Now CA wildfire cohort study, to recruit participants from highly affected areas 

to collect information and biological specimens to analyze later for wildfire-associated 

compounds and biologic responses as indicators of potential for downstream health impacts. 

Both studies also related the wildfire-associated PM2.5 from rapidfire modeling to reported 

symptoms and health outcomes of the cohort participants. In B-SAFE, the timing and 

concentrations of PM2.5 are being linked to birth outcomes of the children gestationally 

Raffuse et al. Page 10

Geosci Model Dev. Author manuscript; available in PMC 2024 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



exposed to wildfires for the initial study and in follow-up studies on respiratory, 

developmental, and other child conditions. Specimens collected in B-SAFE for those with 

higher versus lower modeled wildfire-associated PM2.5 are also being compared across 

various measures (e.g., metals, contaminants, cytokines) to better understand differences 

by degree of exposure. In WHAT-Now CA, PM2.5 is being examined in association with 

respiratory outcomes. Both studies are planning to follow these exposed cohorts forward to 

examine later health outcomes.

Other local studies, including existing cohorts not focused on wildfire exposure, like the 

Markers of Autism Risk in Babies – Learning Early Signs (MARBLES) pregnancy cohort 

study of younger siblings of children with autism (Hertz-Picciotto et al., 2018), also 

used the rapidfire modeling in order to identify mothers and infants exposed to wildfire 

smoke during pregnancy and examine specimens being collected as part of the protocol for 

differences. Further, outcomes of these children, who are at higher risk of autism and other 

neurodevelopmental conditions, will be compared across those exposed and unexposed to 

wildfire.

rapidfire modeling will be used to determine the time periods and geographical areas 

where populations were and will be most impacted by future wildfire smoke events for 

other statewide air pollution studies, including one funded by EPA (EPA STAR 84048401) 

that will link air pollution measures, including wildfire-specific air pollution, to birth 

outcomes and neurodevelopmental disorders and work with the most affected communities 

to distribute education, materials, and tools for mitigating exposures.

4.3 Advantages over existing methods

There are many methods to produce spatially resolved estimates of PM2.5 for use in 

exposure studies. The advantages of rapidfire include reliance on only off-the-shelf inputs 

with low latency, inclusion of data sets that provide improvements for wildland fire smoke, 

and an extensible framework with an open code base. If a new smoke event occurred, all 

inputs would be accessible and PM2.5 modeling could be completed within 1 month. At 

present, only the NARR meteorological data are not available in near real time. In future 

work, these could be replaced by a daily operational model and the rapidfire predictions 

could be produced 1 d after an event. The addition of a low-cost sensor network has also 

significantly improved resulting predictions. The rapidfire algorithm and code base have 

been designed to be modular so that new inputs can be included as they become available. 

For example, the MAIAC AOD may become unavailable as the MODIS instrument reaches 

end of life. A new function could be added to deal with AOD from another data source.

4.4 Limitations and future directions

The rapidfire modeling approach has some limitations. The model requires high-quality 

training data to produce a high-quality result. In areas without accurate PM2.5 measurements 

at point locations within the modeling domain, there is no way to create a reliable 

regression, though this is true for all statistical air quality models. In this study, the monitors 

from the AirNow network served that purpose. However, AirNow is only present in the 

United States, and the current rapidfire functions require data sets that are not all globally 
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available. These data sets could be replaced by others to cover a specific region, and new 

handling functions could be added to rapidfire to support those data sets as needed.

The rapidfire methods are designed with wildfire smoke events in mind. They are best suited 

for regional-scale modeling at spatial resolutions of 1 km or larger. This is appropriate for 

smoke events, which are driven by a regional source that impacts a broad swath. rapidfire 

would be less suitable for modeling exposure to PM2.5 from emission sources at very fine 

spatial scales, such as near-road emissions. Also, rapidfire is currently limited to estimates of 

total PM2.5 only. Estimates of PM2.5 composition, or specific wildfire contribution, are not 

supported with the currently available inputs, though this is an area of future work.

The random forest regression method has historically been seen as a black box, with 

potential for good prediction but limited ability to provide insight into the drivers of the 

model prediction and the underlying physical phenomena. However, the advent of new 

metrics for explaining machine learning models, such as SHAP, makes these models more 

useful and transparent.

Several improvements could be made to enhance the algorithm and potentially improve 

performance. The recently released collection 6.1 of MAIAC AOD provides better spatial 

coverage and more accurate results in conditions of heavy smoke compared to collection 

6.0 (Ye et al., 2022). The relatively simplistic gap-filling approach applied to AOD should 

be reviewed, especially for use in cloudier conditions. Additional transport models with 

modern fire emissions processing and broad coverage, such as HRRR-Smoke (https://

rapidrefresh.noaa.gov/hrrr/HRRRsmoke/, last access: 10 January 2024), could be tested. 

Other machine learning algorithms such as eXteme Gradient Boosting (XGBoost) should be 

explored.

5 Conclusions

The rapidfire R package was developed to model relatively accurate particulate information 

derived from inputs retrieved easily. It incorporates off-the-shelf data sets that are produced 

operationally and with low latency (< 1 month) within a machine learning framework. 

rapidfire takes advantage of the recent burgeoning of low-cost sensors around the world, in 

addition to traditional air pollution data sources such as ground-based monitoring networks 

and satellitederived aerosol products. The rapidfire code is available for use and contribution 

at https://github.com/raffscallion/rapidfire (last access: 10 January 2024). We demonstrated 

rapidfire modeling for five recent wildfire seasons in California and validated results 

against fully independent filter-based measurements of PM2.5. rapidfire showed excellent 

performance, predicting PM2.5 under heavy smoke with high accuracy, even at remote and 

elevated sites. An example calculation of conservative excess mortality from high PM2.5 

exposure in California showed large impacts, including an estimated 615 excess deaths 

in California over a 3-month period of intense wildfire smoke in 2020. rapidfire PM2.5 

estimates are currently being used in several health effect studies in California. In the 

future, we hope to expand the methods to include data sets that are of even lower latency. 

At present, the input that becomes available the most slowly is the NARR meteorology, 

which is available at the end of each month. There are several candidate meteorological 
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data sources that are available daily, which would allow for next-day estimates of PM2.5. 

These low-latency estimates would be useful for rapid deployment, recruitment, and sample 

collection in epidemiologic studies.
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Figure 1. 
Locations of burned areas in California, 2017–2021.
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Figure 2. 
Temporal and area views of smoke impacts across California. Panels on the left show 

24 h PM2.5 concentrations from permanent and temporary monitors in California for July–

November for 2017–2021. Data are color-coded by air quality index. Panels on the right 

show visible satellite imagery of smoke and satellite fire hotspot detections across California 

from NASA Worldview for 13 October 2017 during the wine country wildfires, 9 November 

2018 during the Camp and Woolsey wildfires, 27 October 2019 during the Kincade wildfire, 

9 September 2020 after widespread lightning ignition of wildfires in northern and central 

Raffuse et al. Page 19

Geosci Model Dev. Author manuscript; available in PMC 2024 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



California, and 19 August 2021 when many wildfires were burning in northern California 

and the Sierras.
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Figure 3. 
Map of permanent and temporary California monitor locations (a) and PurpleAir outdoor 

sensor locations (b), 1 September 2021.
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Figure 4. 
Illustration of the MAIAC AOD gap filling showing the original scene and results of three 

sequential focal mean imputations (denoted by Fill 1, Fill 2, and Fill 3).
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Figure 5. 
Cross-validation results by year against measured PM2.5 from AirNow monitors (values are 

given in units of μg m−3).
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Figure 6. 
Map of CSN and IMPROVE monitoring stations used to validate model results.
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Figure 7. 
Model comparison against measured PM2.5 at IMPROVE and CSN monitors.
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Figure 8. 
rapidfire PM2.5 estimates for August–October 2020. Each box on the map shows the time 

series for a point at the centroid of the box, and the larger plot shows all of those time series 

overlaid.
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Figure 9. 
rapidfire PM2.5 estimates for August–October 2021. Each box on the map shows the time 

series for a point at the centroid of the box, and the larger plot shows all of those time series 

overlaid.
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Figure 10. 
California-wide estimated daily excess mortality from PM2.5 concentrations above estimated 

baseline for the period July–November 2017–2021.
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Figure 11. 
July–November 2020 excess mortality by census tract from PM2.5 concentrations above 

estimated baseline.
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Figure 12. 
SHAP dependence plot at CSN and IMPROVE sites for 1–10 November 2018. Units 

for feature values depend on the variable and are listed in Table 3. BlueSky data were 

log-transformed in this plot for clarity.
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Table 4.

Definitions of quantitative analysis metrics.

Metric Equation

r2
∑i Y i − Y 2

∑i Y i − Y 2

Root-mean-square error (RMSE) 1 − r2SDY

Median bias med Y i − Y i

Normalized bias (%) 100 ⋅ med Y i − Y i
Y i

Median error med Y i − Y i
Y i

Normalized error (%) 100 ⋅ med abs Y i − Y i
Y i
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