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Ab initio determination of iron melting at terapascal pressures and Super-Earths core crystallization
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Burkhard Militzer
Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
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(Received 16 April 2018; revised 10 December 2018; accepted 23 August 2023; published 18 September 2023)

We performed ab initio molecular dynamics simulations for pressures and temperatures from 300–5000 GPa
and 3000–30 000 K in order to determine the equation of state of solid and liquid iron. By employing a
thermodynamic integration technique, we derive the ab initio entropy and Gibbs free energy of both phases,
which allows us to construct solid and liquid adiabats and discuss implications for shock experiments. We
derive the melting line by equating solid and liquid Gibbs free energies and represent it by a Simon fit
6469 K(1 + (P/GPa − 300)/434.82)0.54369. Near 300 GPa, our melting line is higher than extrapolations of
previous melting laws that were obtained with simulations at lower pressures but is in very good agreement
with the most recent experiments by Kraus et al. Science 375, 202 (2022), that reached TPa pressures. The
slope of our melting line is consistently steeper than that of our adiabats, which implies that the crystallization
of iron in the cores of terrestrial planets always starts from their centers, like on Earth. We also construct
models for Super-Earth interiors and compare with temperature profiles from published evolution models. These
temperatures in many earlier publications are rather low, so that our melting line would imply completely frozen
cores. Only later models by Stamenković et al. [Astrophys. J. 748, 41 (2012)] and Boujibar et al. [J. Geophys.
Res. Planets 125, e2019JE006124 (2020)] consider a much wider range of interior temperatures, which imply
that the core of Super-Earths may remain in a state with a partially molten core for a long time and the resulting
buoyancy force will contribute to convection and the magnetic field generation.

DOI: 10.1103/PhysRevResearch.5.033194

I. INTRODUCTION

During the last two decades, several thousand exoplanets
have been detected [1–3]. Measurements of their masses and
radii have become more and more accurate, which allowed
us to place constraints on their composition and better under-
stand their atmospheres, formation, and evolution. Among the
detected exoplanets, there are many Super-Earths, which are
assumed to have a rocky composition but are larger than Earth.
They are a particularly interesting type of exoplanets because
they have no analogs in our solar system. Their interior struc-
ture has been the subject of numerous studies that have tried
to constrain their composition [4–11]. Observations combined
with modeling suggest that planets larger than 1.6 Earth radii
are not purely rocky [12]. Recently, it has been proposed that
Super-Earths may form from sub-Neptune sized planets that
lose their H/He envelopes by irradiation from a supermassive
black hole [13].

*f_gonzalez@berkeley.edu
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Developing realistic planetary interior models to infer the
composition of Super-Earths requires knowledge of the equa-
tion of state (EOS) of the candidate minerals such as iron and
silicates at extreme pressure-temperature conditions [14,15],
which represents a challenge in planetary and materials sci-
ence because the conditions of interest often lie outside the
reach of laboratory experiments. Models predict that pressures
in the interior of Super-Earth planets can exceed 1000 GPa
at the core-mantle boundary, and temperatures can exceed
10 000 K [4,5,8]. More recently Boujibar et al. [16] studied the
possible range of temperatures at the core-mantle boundary,
for which a solid inner and a liquid outer core coexist, and
showed that it depends on the planet’s total mass and its
core-mass fraction, but also sensitively depends on knowing
the melting temperatures of iron at TPa pressures. The for-
mation of a metallic iron core in these planets is driven by
chemical differentiation and gravitational separation of liquid
silicate-iron mixtures. The generation of magnetic fields is a
direct consequence of the presence of liquid iron in the core.
In the Earth, the crystallization of a solid inner core is assumed
to be a major driver for the magnetic dynamo. Thus, studying
the melting behavior of iron at pressures of Super-Earth inte-
riors will contribute to a better understanding of their internal
structure, core crystallization, and dynamo activity.

Because iron is the main constituent of the Earth’s core,
the characterization of its high-pressure properties have been
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of fundamental importance geophysics and condensed-matter
physics. Planetary formation models predict it to be the main
constituent of the core of the other terrestrial planets as well.
The phase diagram of iron and, in particular, its melting
line is not well understood for pressures exceeding 300 GPa,
but both experiments and first-principles quantum mechanical
simulations have shown that iron transforms from the body-
centered-cubic (bcc) phase to the hexagonal-closed-packed
(hcp) phase under pressure [17,18].

The melting curve of iron at pressures relevant to the Earth
inner-core boundary (330 GPa) has been explored with differ-
ent computational methods. Predictions published in the last
two decades place the melting temperature of iron between
6300 K and 7300 K for this particular pressure [19–22]. Using
thermodynamic integration, Alfè et al. [20] performed density
functional theory molecular dynamics (DFT-MD) simulations
and obtained a melting temperature of 6350 K, which was
later confirmed by first-principles two-phase simulations in
the microcanonical ensemble, using a relatively large number
(1000) of atoms [21]. In a recent DFT study, Bouchet et al.
[22] performed two-phase simulations in the canonical ensem-
ble to extend the melting curve of bcc iron up to 1500 GPa.
However, since the hcp structure is predicted to be the stable
phase at these pressures [18,23–25], two-phase simulations of
hcp iron may actually lead to higher melting temperatures.
Nevertheless, the results in Ref. [22] are in good agreement
with the aforementioned DFT studies [20,21].

A separate study by Sola and Alfè [26] showed that quan-
tum Monte Carlo simulations, which treats correlation effects
more accurately than DFT, tend to favor higher tempera-
tures for ICB conditions, placing the melting temperature at
6900 ± 400 K for 330 GPa. Belonoshko et al. [19] fitted an
embedded atom potential (EAM) to DFT simulations of hcp
iron and performed two-phase simulations that predicted a
melting temperature of 7100 K, similar to the quantum Monte
Carlo predictions. In a recent paper, these authors coupled
the EAM simulations to thermodynamic integration to obtain
the free energies of bcc and hcp iron and obtained a melting
temperature of 7190 K at 360 GPa for bcc and slightly lower,
6800 K, for hcp [27]. The most recent experiments on iron
at TPa pressures by Kraus et al. [24] used dynamic shock
and ramp compression [28,29] to show that at 330 GPa, iron
melts from the hcp phase at 6230 ± 540 K, in agreement with
previous experiments in diamond anvil cells by Anzellini et al.
[30].

In this paper, we present a DFT-MD calculation of the
melting curve of iron from 300 to 5000 GPa in order to cover
the conditions present in Super-Earth interiors. The melting
temperatures are obtained from free energy calculations that
are based on a thermodynamic integration (TDI) method. With
this technique, we determine which phase, liquid or solid, has
lower Gibbs free energy for a given pressure and temperature.
For a given pressure, the melting temperature is obtained by
interpolating the free energy difference between solid and
liquid phases as function of temperature. We also use the TDI
method to derive the entropy as a function of temperature and
pressure, which we enables to derive isentropes to character-
ize the temperature profiles in the cores of Super-Earths.

In Sec. II, we describe our computational methods and
Gibbs free energy calculations. In Sec. III, we discuss our

melting curve and adiabats. We show that our melting tem-
peratures are considerably higher than previous predictions
that were extrapolated from data at lower pressure. We also
predict that the melting curve is steeper than the adiabats,
which implies that the crystallization of iron cores of Super-
Earth would always start from the center, provided that core
crystallization occurs in a planet’s lifetime. In Sec. IV we
build models for Super-Earth interiors focusing on planets
with up to 1.6 Earth radii and 5.8 Earth masses. For relevant
pressure conditions, we find that our melting temperature is
much higher than the temperature profiles in available interior
models, suggesting that the cores of Super-Earths are com-
pletely frozen over their entire lifetime.

II. COMPUTATIONAL METHODS

A. Ab initio techniques

Using density functional theory molecular dynamics (DFT-
MD), we calculate the Gibbs free energy of iron for the solid
and the liquid phases at specific pressure-temperature condi-
tions. The melting temperature Tm is obtained when the Gibbs
free energy difference

�G = Gliquid − Gsolid, (1)

vanishes for a given pressure. For most solid calculations,
we assume an hcp crystal structure, but we also performed a
few calculations near 300 GPa using the bcc phase and one
calculation for the melting temperature of the fcc phase at
5000 GPa.

An alternative approach for calculating the melting tem-
peratures with computer simulations is the Z method, which
has been applied to a number of other materials [31–37].
This technique is independent of the Gibbs free energy
calculations, and is based on overheating the solid in the
microcanonical (NV E ) ensemble. The Z method relies on the
fact that any solid system that has been sufficiently overheated
will spontaneously melt, provided the simulations are long
enough. As the latent heat is removed, the temperature of
the system drops. If the amount of overheating is carefully
calibrated, temperature will drop precisely to the melting
temperature, Tm. Here we applied the Z method to study the
melting of iron at different densities to compare with the melt-
ing points we derived from Gibbs free energy calculations.

We perform our DFT-MD simulations with the VASP code
[38] using exchange-correlation functional of Perdew, Burke,
and Ernzerhof [39]. We used a Mg-core pseudopotential of
the projector-augmented wave type [40] with 14 valence
electrons per atom (PAW-14) and a core radius of 1.16 Å.
Some calculations were done using a Ne-core pseudopoten-
tial (PAW-16). Single-particle orbitals have been expanded in
plane-waves with a cutoff of 1100 eV in all calculations. The
DFT-MD simulations were carried out under the assumption
of Born-Oppenheimer approximation. A time step of 0.5 fs
was employed and the simulations lasted between 1.0 and
12 ps. We performed preliminary DFT-MD simulation in an
hcp cell with 96 atoms using 2 × 2 × 2 and �-only k-point
grids. We found a that the energy and pressure were underes-
timated by 150 meV per atom and 14 GPa, respectively by the
�-only k-point grid for pressures close to 5000 GPa.
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All following simulations of both solids and liquids were
then performed in a larger cell, containing 144 atoms (except
for the bcc phase, where we employed a supercell with 128
atoms) with �-only k-point grid in order to converge the ther-
modynamic properties and prevent dynamic instabilities in the
overheated solids. The same parameters were considered for
the Z method calculations, with the exception of the simula-
tion time, which was extended up to 8 ps in some cases to
ensure the stability of the overheated solids. DFT-MD simula-
tions with 144 atoms and a 2 × 2 × 2 k-point grid showed that
the total energy differs by less than 4 meV per atom respect to
the �-only k-point grid. We also performed calculations with
a larger cell of 180 atoms and obtained thermodynamic prop-
erties that were consistent with the 144 atom results, which
we therefore considered sufficiently well converged for the
purpose of this study. The c/a ratio in the hcp supercells was
adjusted for every pressure-temperature condition in order to
obtain hydrostatic conditions. For liquids, we used cubic cells
with 144 atoms and � point to sample the Brillouin zone.
In addition, DFT-MD simulations were performed with four
other pseudopotentials available in VASP, which treat 8 or 16
electrons explicitly with PBE and PW91 functionals. These
simulations also used 144 atoms and �-point sampling.

We also performed simulations in larger cells of up to 1296
atoms to test the convergence with respect to system size and
simulation time. To do this, we trained an on-the-fly machine
learning potential, as implemented in VASP 6. We trained
the force field on a supercell of 144 iron atoms in the hcp
phase using the PAW-16 pseudopotential at 12.938 g/cc and
6000 K. Simulations were carried out at both constant volume
(NV T ) and constant pressure (NPT ), obtaining consistent
results. After running them for over 25 ps, we observed no
significant change in the pressure or free energy of the system
with respect to our DFT-MD simulations performed with 144
atoms. We provide more details in the Appendixes.

B. Computation of Gibbs Free energies

Free energy calculations require the knowledge of the en-
tropy, which is not directly accessible from the standard MD
simulations. The anharmonic contributions to the free energy
of iron are large [41], so a description of the solid phase with
quasi-harmonic methods alone would not be appropriate and
lead to incorrect melting temperatures. One of the available
methods to address this problem is the thermodynamic in-
tegration (TDI), which is a general technique to determine
the difference in Helmholtz free energy between two systems
with potential-energy functions Ua(ri ) and Ub(ri ). By defin-
ing a hybrid potential Uλ = Ua + λ(Ub − Ua), the difference
in Helmholtz free energy between the two systems can be
computed from

�Fa→b = Fb − Fa

=
∫ 1

0
dλ

〈
dU

dλ

〉
λ

=
∫ 1

0
dλ〈Ub(ri ) − Ua(ri )〉λ (2)

where one averages over configurations ri generated with
forces derived from the hybrid potential.

In order to increase computational efficiency, we adopt
a two-step TDI scheme as implemented in previous stud-
ies [42–48]. In this scheme, we introduce an intermediate
system governed by a classical pair potential Ucl, which we
constructed for every density and temperature by matching
the forces along the DFT-MD trajectories [49]. For every
temperature-volume condition, we perform a preliminary
DFT-MD simulation and fit a new pair potential to the forces
along the computed trajectory. More details on how this
method is applied in liquid systems can be found in refer-
ences [43,47], and Appendixes. The TDI procedure for solid
systems is discussed in Refs. [42,45–47,50]. In the first inte-
gration step, one derives the free energy difference �Fcl→DFT

between the system interacting with the DFT potential UDFT

and the system governed by the classical pair potential Ucl.
Because the classical forces match the DFT forces well, five
equally spaced λ points are sufficient to obtain an accurate
value of the integral in Eq. (2) in this step.

Then a second TDI step is performed in order to obtain
�Fref→cl, the free energy difference between the classical
system and a reference system with known Helmholtz free
energy Fref. For liquids, we chose the ideal gas as the reference
system. For solids, we employed an Einstein crystal as the ref-
erence system with a combination of two-body and one-body
harmonic potentials for the classical system [42,45,47]. Re-
cent work has shown that the correction by Frenkel et al. [51]
to the free energy of a solid due to a fixed center of mass has
been overestimated [52]. This correction overestimated of the
stability of the solid phase, leading to melting temperatures
that were slightly too high as was discussed for materials such
as MgO and Be [50,52–54]. The alternate correction proposed
in Ref. [52] is much smaller than the Frenkel correction and,
in practice, it is equivalent to applying no correction because
it is smaller than the error bars we obtain. Not applying the
Frenkel correction due to a fixed center of mass increases the
free energy of the solid, which slightly lowers the resulting
melting temperature.

Since only classical Monte Carlo simulations are needed,
the second integration step is computationally much less ex-
pensive (by factor of ∼10−5) than the first step that requires
solving the Kohn-Sham equations. This remains true even
though a larger number of simulations is required to accu-
rately compute the integral in Eq. (2). The Helmholtz and
Gibbs free energies of the DFT system are then obtained from

FDFT = Fref + �Fref→cl + �Fcl→DFT (3)

and

GDFT = FDFT + PDFTV. (4)

In order to align the Gibbs free energy of the solid and the
liquid at the same pressure, we use the thermodynamic rela-
tionship

G(P, T ) = G0 +
∫ P

P0

V (P, T ) dP, (5)

where G0 = G(P0, T ), P0 = PDFT, P is the target pressure, and
V (T, P) is the respective volume of each system along an
isotherm of temperature T that we obtain from a separate set
of DFT-MD simulations.
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FIG. 1. Melting temperature of iron at 330 GPa, according to dif-
ferent studies. Open symbols denote experiments [23–25,30], while
solid symbols represent predictions from ab initio simulations us-
ing different methods: TDI [20,26,27,55,57], two-phase simulations
[19,21,22,58], free-energy based models [59], and the Lindemann
law [18]. The temperatures from Refs. [27,57] have been interpolated
from the values that the authors report at similar pressures.

For comparison purposes, we also implemented the Weeks-
Chandler-Andersen (WCA) potential, given by

�WCA(r) =
{

4ε
[(

σ
r

)12 − (
σ
r

)6] + ε, r � 21/6σ

0, r > 21/6σ
(6)

because it was employed in one earlier study of iron [55]. We
use it in lieu of our fitted pair potentials when we conduct test
calculations for a few cases. This potential adopts the repul-
sive part of Lennard-Jones potential but removes its attractive
part. Mirzaeinia et al. [56] computed the free energy of the
WCA liquid by performing a TDI along a path at constant
temperature to the low-density limit where the system’s free
energy is known analytically and corresponds to the ideal gas.
This path provides an alternative to the integration path at
constant density toward the limit of infinite temperature that
we typically employ because our pair potential are finite at the
origin. Still, we confirmed the accuracy of the subset of the
results in Ref. [56] that are relevant for this study. Following
Ref. [55], we set the potential parameters to each temperature
an volume such that the reduced temperature T ∗ ≡ kBT/ε =
1.5 and the reduced volume η ≡ πσ 3/6V = 0.1 to ensure that
the system is in the liquid phase.

III. RESULTS

A. Melting at 330 GPa

Determining the precise melting temperature of iron at the
Earth’s inner-core boundary conditions, 330 GPa, is crucial
for developing models of Earth’s interior and understanding
its core’s crystallization and heat flow. Despite numerous
attempts through simulations and experiments, a consensus
on the precise melting temperature of pure iron at this
pressure has been difficult to reach, as we illustrate in Fig. 1.
This figure reveals discrepancies among the predictions
for the melting temperature of iron at 330 GPa between
different theoretical techniques, such as thermodynamic
integration [20,26,27,55,57], two-phase simulations

FIG. 2. Thermodynamic integration (TDI) of liquid iron at
330 GPa and 6400 K. The curves show the integrands of Eqs. (2) and
(7). The integrand for our fitted pair potentials is a linear function
of λ and varies by ∼0.01 eV/atom (lower panel). Conversely, the
different integrands for the WCA potential vary by several eV and
some show considerable curvature (upper panel).

[21,22,58], free-energy based models [59], and the
Lindemann law [18], as well as between experiments that
have explored similar conditions [23–25,30]. Conducting
experiments and accurate computer simulations has remained
a challenge even at lower pressures of the core-mantle
boundary [60], and the source of discrepancies among various
study is often difficult to identify.

Because of these discrepancies, we have performed careful
calculations with our TDI methods for solid and liquid iron at
330 GPa and temperatures ranging from 6000 K to 6800 K.
As explained in Sec. II, we fit a new pair potential for every
single thermodynamic condition so that our TDI calculations
are independent from each other. For the solid, we use the Ein-
stein crystal as the reference system with known free energy.
The TDI is conducted in two steps. For the solid phase, we
first integrate from the DFT system to a classical system with
pair and harmonic Einstein forces. In the second integration
step, we gradually turn off the pair forces.

For the liquid, we follow a similar procedure. First we
switch from the DFT potential to a classical pair potential
and then we turn off the classical forces, leading to a gas of
noninteracting particles. To double-check our predictions, we
repeated the TDI calculation for the liquid using the WCA
potential instead of using our fitted pair potential as the inter-
mediate system, as done in Ref. [55]. In Fig. 2, we show an
example of the integrand in Eq. (2) as a function of λ for both
TDI implementations for liquid iron at 330 GPa and 6400 K.
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While for the pair potential the integrand is linear and varies
by ∼0.01 eV/atom (bottom panel), for the DFT → WCA
integration the integrand has a large curvature in the same
interval and varies ∼18 eV/atom because the WCA potential
does not represent the forces between the iron atoms very
well.

The DFT → WCA integration can be performed directly
as a function of λ if the integrand has been constrained by
a sufficient number of points, each requiring computationally
expensive DFT-MD simulations. However, fewer integration
points may be used if a change of variables λ → λm is ap-
plied with 0 < m � 1 in Eq. (2). This allows one to work
with an integrand that varies more smoothly and obtain the
integral

�FWCA→DFT =
∫ 1

0

〈UDFT − UWCA〉λ
m λm−1

d λm (7)

via Gaussian quadrature, as done by Sun et al. [55]. We sam-
pled the integrand for this particular condition with 12 points,
so we are not required to change the integration variable. We
were able to obtain a smooth interpolation using cubic spline
function for m = 0.5, m = 0.25 and the original integration
(m = 1) as we show in Fig. 2. We obtained a consistent
value of �FWCA→DFT = −3.893 ± 0.007 eV/atom that varies
within the given error bars for all three values of m.

For 330 GPa, Sun et al. [55] reported a melting temper-
ature of 6200 K, which is lower than our value of 6522 K.
We primarily attribute this difference to a deviation in the
computed Gibbs free energies of the liquid. In the two lower
panels of Fig. 3, we show that our liquid Gibbs free energies
for PAW-16 pseudopotential are about 35 meV/atom higher
than the corresponding values by Sun et al.. While we could
not extract sufficient details from Sun et al. article to fully
explain this difference, we want to point out parts of the free
energy calculations that we agree on and others that we do not.
We added Fig. 2 for this comparison.

This figure also shows that using the WCA potential as
classical system results in a very pronounced curvature of the
integrand, which requires both a very careful sampling and
a precise integration and interpolation methods to reduce the
error in the final integral. Figure 2 shows that the integrand
for the WCA potential varies by 18 eV/atom between λ = 0
to λ = 1, which makes it difficult to control the integration to
meV/atom precision level. The lower panel shows when our
pair potentials are employed, the integrand is approximately
linear and varies by only 0.013 eV/atom. Furthermore, the
WCA integral is very sensitive to the quality of the individ-
ual points because one needs to capture the curvature of the
function correctly. For example, removing 3 out of 12 points
can introduce differences of more than 100 meV/atom in the
resulting integral.

We agree with Ref. [55] on the average energy of the
WCA potential [56]. Our value of 〈UWCA〉λ=0 = 33.1 ±
0.6 meV/atom agrees with the 33.9 ± 0.3 meV/atom found
by Sun et al. at their smallest value of λ = 10−6. They im-
plemented the TDI between the DFT and WCA potentials in
a slightly different way, Uλ = UWCA + λUDFT, which requires
to integrate 〈UDFT〉λ (open circles and open squares in Fig. 2)
instead of our expression, 〈UDFT − UWCA〉λ (filled symbols).

FIG. 3. Gibbs free energies per atom of solid (hcp) and liquid
iron at P0 = 330 GPa obtained from TDI using the PAW-16 pseu-
dopotential. Top: original energies of each phase. Middle: Gibbs free
energy difference �G = Gliq − Gsol. Bottom: We plot the liquid and
solid Gibbs free energies with respect to G̃(P0, T ) ≡ G̃0 − S0 (T −
T0 ) (with S0 = 13.35 kB, T0 = 6000 K, and G̃0 = 3.939 eV), which
is an linear approximation for Gliq (P0, T ). TDI calculations of Gliq

using our fitted pair potential (open red squares) and the WCA
potential (open black squares) give consistent values, but the latter
approach yields much larger error bars. We compare our results to
those from Sun et al. [55].

Sun et al. performed the their TDI calculations using the
PAW-8 pseudopotential, which means their values of 〈UDFT〉λ
differs from ours even in the limit of λ = 0, as we can see in
the Fig. 2. Sun et al. then corrected their resulting Helmholtz
free energies F1 to achieve PAW-16 precision F2 using free
energy perturbation theory,

e−β(F2−F1 ) = 〈e−β(E2−E1 )〉1, (8)

which does not correct the pressure. Before this correc-
tion, Sun et al. reported �F Sun

WCA→PAW−8 = −3.823 eV/atom
with PAW-8 pseudopotential (Fig. 4 in Ref. [55]), which
is 70 meV/atom higher than we obtained with the PAW-
16 pseudopotential. Sun et al. reported a smaller value of
53 meV/atom for the Helmholtz free energy difference be-
tween PAW-8 and PAW-16 pseudopotentials.

On the other hand, as we can see in the bottom panel
of Fig. 2, our implementation of TDI, which involves fit-
ting a pair potential that matches the interatomic forces at
this specific temperature and pressure, is much less sensi-
tive to the sample quality and interpolation methods because
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〈UDFT − Ucl〉λ changes by much less and varies mostly lin-
early with λ. The choice between using a linear, Gaussian
quadrature, or spline interpolation method, and whether we
perform the integral directly or using the change of variables
in Eq. (7), varies the integral by less than 10−4 eV/atom
(�Fcl→DFT = −22.7313 ± 0.0005 eV/atom). Even if we use
two points only, λ = 0 and λ = 1, we can obtain the same
value of the integral within 0.3 meV/atom. Therefore, our
implementation of TDI is more robust than an integration that
uses the WCA potential.

In Fig. 3, we show the resulting Gibbs free energy of liquid
and solid iron at 330 GPa that we obtained from TDI results in
Fig. 2, using both the WCA and our fitted pair potentials. We
repeated these calculations for 6000, 6200, and 6800 K and
compare the results between the two TDI implementations
for liquids. Our Gibbs free energies of solid iron are in very
good agreement with those provided by Sun et al. [55], and
a calculation we have done with a larger simulations cell
with 240 atoms confirms the convergence with respect to the
system size. As we can see in the bottom panel, there is re-
markable agreement between our two implementations of TDI
for liquids. But when we utilize our fitted pair potential, the
error bars on the Gibbs free energy are an order of magnitude
smaller than for the WCA potential.

However, we observe a systematic offset of
∼35 meV/atom between our calculated Gibbs free energies
for liquid iron and those reported by Sun et al [55]. Their
results rest on a single TDI calculations with the WCA po-
tential for a temperature of T0 = 6400 K. Values for all other
temperatures are calculated along the isobar by utilizing the
thermodynamic relationship, G/T = G0/T0 − ∫ T

T0
H/T 2 dT .

So if there is an offset at 6400 K, all other Gibbs free energy
values will be shifted, while our calculations for different P-T
conditions are independent.

The middle panel of Fig. 3 shows that our solid and liquid
free energies become equal at a temperature of 6523 ± 8 K,
which is our prediction for the melting temperature at 330 GPa
using the PAW-16 pseudopotential. In the same panel we show
that when we repeat the calculation with the PAW-14 pseu-
dopotential, �G = Gliq − Gsol increases by a modest amount
of 20 meV/atom, which implies a melting temperature in-
crease of approximately 200 K. In Ref. [55], the authors
derived a �G value of 32 meV from perturbation calculations,
which very close to the our result that we with full TDI cal-
culations. The deviation between the two �G values is within
the error bars of most numerical methods (see Fig. 1).

Using the PAW-14 pseudopotential, we find a melting tem-
perature of 6747 ± 14 K at 330 GPa. Previous free energy
calculations of hcp iron performed by Alfè et al. [20,61]
used a nonstandard PAW-8 pseudopotential that mimicked
the inner electrons by introducing a repulsive interaction via
a classical pair potential correction in the PW91 functional.
Their results point towards a lower melting temperature of
∼6350 ± 300 K, with an additional error of 300 K associated
to the inherent DFT inaccuracies, including the choice of
different pseudopotentials. This is close, but still lower, to our
prediction using the PAW-16 pseudopotential. A later work by
Sola and Alfè [26] revisited these calculations using diffusion
Monte Carlo calculation that incorporate correlation effects

more accurately, and obtained a higher temperature of 6900 K
± 400 K for 330 GPa.

We have found, in agreement with other authors
[20,55,57,61] that the predicted melting temperature of iron
depends on the pseudopotential used, and the discrepancies
become particularly pronounced when the 3p electrons are
not considered. In order to address this issue in more depth,
we performed a detailed study on how much the Gibbs free
energies of liquid and solid iron are affected by the choice of
the pseudopotential. For four additional VASP pseudopoten-
tials, we redetermined the pressure-density relation along an
isotherm, recomputed the free energies and melting tempera-
tures. We performed these calculations for the three pressures
of 300, 3000, and 5000 GPa to cover the entire pressure range
of interest. We considered two PBE and two PW91 pseudopo-
tentials with 8 and 16 valence electrons per atom, respectively.
In the case of the eight-electron pseudopotentials, the 3s and
3p electrons are frozen while they were treated explicitly for
the 16-electrons per atom pseudopotentials. We always find
consistent melting temperatures when we switched between
PBE and PW91 functionals for calculations with pseudopo-
tentials that have the same number of electrons. Furthermore,
the predictions with the small-core pseudopotentials, that treat
16 electrons per atom explicitly, were consistent with those
from the 14 electrons per atom pseudopotential that we em-
ployed for most calculations in this paper, and the difference
in the resulting melting temperatures are small, about ∼200 K,
as we show in Fig. 3.

However, when we switched to the eight-electron PBE
and PW91 pseudopotentials, the Gibbs free energies of solid
and liquid iron were not affected equally. For these pseu-
dopotentials, the liquid-solid Gibbs free energy difference at
300 GPa was ∼50 meV per atom lower than we had ob-
tained with the 14-electron pseudopotentials. This reduced
our predicted melting temperature at 300 GPa by 600 K to
approximately 6200 K, which is in good agreement with the
PAW-8 calculations by Sun et al. [55] who also used an 8-atom
pseudopotential. Shock experiments from Yoo et al. [62] also
suggest, as we do, a higher melting temperature. However, at
300 GPa, they report a melting temperature of 6720 K, which
is 250 K above our predicted melting temperature using PAW-
14 and 470 K below using PAW-16 at this pressure. These
results by Yoo et al. [62] were recently reinterpreted by Kraus
et al. [24], suggesting a much lower melting temperature at
shock conditions that is consistent with their measurements
and previous experiments by Anzellini et al. [30]. Despite of
these differences, we find very good agreement among the
predictions from various pseudopotentials for the volume and
entropy differences upon melting.

B. Thermodynamic stability of the bcc phase

Other studies have considered that iron melts from the
bcc phase at these conditions [27,57,58,63] because it has
been argued that this phase may become stable at Earth
inner-core pressures via a self-diffusion mechanism [64–66].
However, the bcc phase has not been observed in experiments
at these conditions [23–25,67] and the size-dependent anoma-
lies of the bcc cell are still controversial [68]. In Ref. [27],
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Belonoshko et al. used thermodynamic integration to compute
the free energy differences between the hcp, bcc, and liquid
phases of iron at 120 and 360 GPa. While the simulations
were done with classical molecular dynamics using the EAM,
which does not take the electronic entropy into account explic-
itly, the contribution from the electrons to the free energy was
obtained from ab initio calculations to correct the EAM-based
free energies. Their results show that the free energy of the bcc
structure is lower than that of hcp by �G = Ghcp − Gbcc =
23 meV/atom at 360 GPa and 6000 K and that the result-
ing melting temperature of iron in the bcc phase is 7190 K
at 360 GPa, higher than the melting temperature of hcp at
the same pressure (6800 K). However, our TDI calculations
based on DFT-MD at these conditions indicate that the free
energy of the bcc structure is considerably higher, hence less
stable than hcp, with �G = Ghcp − Gbcc = −65 meV/atom
and a melting temperature for hcp of 6922 K at 360 GPa.
At 330 GPa, this difference is −57 meV, favoring hcp at
Earth inner-core boundary pressures. Therefore, although our
calculations show that the hcp is much more stable than the
bcc structure, our resulting melting temperatures for both
structures are still similar.

In Ref. [57], Y. Sun et al. implemented a different type of
thermodynamic integration but used a similar approach to that
of Ref. [55], where they performed the TDI calculations with
PAW-8 and corrected the free energies to PAW-16 accuracy
through free energy perturbation. In contrast to the findings of
Ref. [27], and along with our predictions, the authors obtain
a higher melting temperature for the hcp phase than for the
bcc phase at 360 GPa: 6692 ± 45 K and 6519 ± 80 K, respec-
tively. Near 330 GPa, the authors report melting temperatures
of 6357 ± 45 K and 6168 ± 80 K for hcp and bcc, respec-
tively. This study, like ours, also suggest that hcp should be
the stable phase of pure iron at core conditions, as this phase
has lower free energy and higher melting point than bcc, in
agreement with our results. However, the authors of Ref. [57]
suggest that PAW-8 underestimates the melting temperatures
by more than 600 K compared to PAW-16, while in Ref. [55]
the authors suggest that this difference is 400 K. Going be-
yond free energy perturbation, our TDI calculations using
PAW-16 suggest that this difference is actually 466 K, as we
obtain a melting temperature of 6060 ± 8 K with PAW-8. This
is ∼200 K higher than the melting temperatures reported in
Refs. [55] and [57] with the same pseudopotential. Again, the
melting temperatures reported in Ref. [57] using PAW-16 are
∼200 K lower than our prediction with this pseudopotential.

C. Melting at TPa pressures

Pressures in the cores of Super-Earths can easily reach
several TPa [5,8,12,69]. Extending the melting curve of iron
to such conditions is thus important to determine whether
such planets have solid or liquid cores. In Fig. 4 we show the
Gibbs free energy difference �G between solid and liquid iron
at different pressures as a function of temperature. Negative
values of �G indicate that the liquid phase is more stable than
the solid, while �G = 0 corresponds to the melting tempera-
ture at the given pressure. Since we have determined that the
hcp structure has a lower Gibbs free energy at Earth’s core
conditions, and based on stability arguments of iron phases in

FIG. 4. Gibbs free energy difference between solid and liquid
iron at different pressures obtained with the PAW-14 pseudopotential
using 144 (except for 108 fcc and 180 hcp). No correction due to a
fixed center of mass (Frenkel correction) has been applied to the free
energy of the solid. Negative values of �G favor melting. Half-filled
circle: fcc iron (108 atoms). Yellow-filled triangle: hcp iron (180
atoms). Yellow stars denote the melting temperature at each pressure.

Ref. [18], we adopted the hcp structure to perform all other
calculations at higher pressures in this paper. Figure 4 shows
that �G is a sufficiently linear function of temperature. We
therefore use a linear interpolation for �G(T ) to determine
the temperature at which �G = 0 for every pressure. The
resulting melting points are shown in Fig. 5 along with the
isochores we derived using the Z method. Previous ab initio
studies of the melting curve of iron are also shown for com-
parison.

First, we notice that the melting temperatures we predict
using the Z method are slightly higher, T1 = 11850 K and
T2 = 25030 K at P1 = 1008 GPa and P2 = 4518 GPa, re-
spectively, which agree with our melting curve within an 8%
relative error. This also means that iron can withstand signifi-
cant overheating without melting, as reported in recent shock
experiments [70], with critical superheating temperatures 10%
to 16% higher than the melting temperatures, but not as high
as the critical limit of 23.1% [31]. Although the Z method can
provide a close upper limit for the melting temperature, it is
susceptible to waiting times required for the sample to melt
[32], especially in the vicinity of the melting temperature. In
addition, it is not clear what the appropriate electronic smear-
ing should be in the microcanonical ensemble simulations
of the Z method, which is particularly important for metals
like iron, as the evolution of temperature and pressure of the
system depends on this choice. In practice, this means that the
ions are not in equilibrium with the electrons, as they follow
a Fermi distribution with an associated temperature that is
different to that of the ions. If we correct for this effect by con-
sidering a smearing of σ = kBTeq, where Teq is the equilibrium
temperature that the ions reached in the original Z method
calculations, we obtain a melting temperature of 10 500 K at
969 GPa for the density of 17.44 g cm−3, which is in much
better agreement with our melting curve that we derived from
free energies. Nevertheless, we obtained the specific heat of
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FIG. 5. Melting curve of iron from this study compared with
previous ab initio simulations [18,20,22,26,27,55,58,63] and exper-
iments [23–25,30]. Isochores of densities 17.44 and 27.23 g cm−3

obtained using the Z method are shown in black filled circles (solid)
and open triangles (liquid). Liquids frozen during the simulation are
shown in black filled up triangles. Open blue circles correspond to
the melting points using the Frenkel correction, which overestimates
the melting temperatures.

liquid iron from the slope of the Z curve in energy-temperature
space, which yields Cliq

V = 5.11 kB/atom along the 17.44 g
cm−3 isochore that spans through pressures near 1000 GPa, as
we see in Fig. 5. This value agrees with the recent experiments
by Kraus et al. [24], who estimated a value of 4.2 ± 1.0 kB at
similar conditions. At a density of 27.23 g cm−3, the solid and
the liquid have a comparable specific heat of Csol

V = 4.94 kB

and Cliq
V = 5.64 kB, respectively. The Z method approach is

independent from our TDI method and confirms our melting
predictions over a wide pressure interval.

Second, we find that our melting temperatures are higher
than the estimations from vibrational frequencies using the
Lindemann melting criterion [18]. The difference is as large
as 5000 K (20%) at 5000 GPa, which shows that iron can
withstand significant thermal vibration at high pressure before
undergoing melting. At 1500 GPa, our melting line is approxi-
mately 750 K higher than the bcc iron melting line of Bouchet

et al. [22] who used the two-phase (TP) method to calculate
the melting curve up to this pressure. From heat-until-it-melts
simulations, the authors conclude that the melting temperature
does not significantly depend on whether hcp or bcc crystal
structure is used at the pressures of interest and decided to use
the bcc structure in all their TP simulations. They acknowl-
edged, however, that calculations with a metastable phase
could lead to an underestimation of the melting temperature.
While the stability of the bcc structure at Earth’s ICB condi-
tions is still a matter of debate [64,66,71,72], the hcp structure
has been predicted to be the most stable structure for a wide
range of pressures and temperatures [18].

Furthermore, for temperatures as high as 20 000 K, we
observed that some of our simulation of liquid iron froze spon-
taneously within a few picoseconds at pressures between 2500
and 5000 GPa. This has also been confirmed by the recent
experiments of Kraus et al. [24] that report fast crystallization
in the nanosecond time scale. The filled triangles in Fig. 5
mark these conditions. Many of them are at substantially
higher temperatures than the extrapolated melting law by
Bouchet et al., which underlines that the melting temperature
of iron at TPa pressure must be considerably higher than this
extrapolation predicts.

At 5 TPa, the Gibbs free energy between the hcp crystal
and liquid iron is less than 60 meV/atom at 24 000 K and
26 000 K, which indicates this temperature is close to the
melting line (see Fig. 4). A study of the free energy of iron
obtained from phonon calculations in the quasi-harmonic ap-
proximation (QHA) [18] predicted an hcp-to-fcc transition at
5.8 TPa, with a steep Clapeyron slope at higher temperatures,
implying that the transition should occur at lower pressures
for higher temperatures and that both phases should have the
same Gibbs free energies at the phase boundary. Therefore,
we decided to perform one additional calculation of the Gibbs
free energy of iron in the fcc phase at 5 TPa for 27 500 K in
order to determine whether the fcc phase has a significantly
lower Gibbs free energy than the hcp structure, which would
have an affect on the predicted melting line. We derived a
Gibbs free energy difference of Gfcc − Ghcp = 56 meV per
atom, which means that even at this high temperature the
hcp phase is still more stable than the fcc phase, even though
predictions from Ref. [18] using QHA indicate that the tran-
sition to the fcc phase at 5 TPa should occur at 13 300 K.
Therefore, we conclude that anharmonic contributions to the
free energy play an important role, which is consistent with
the underestimated melting temperatures inferred using the
Lindemann criterion in Fig. 5 based on QHA.

We also studied finite-size effects at this pressure by per-
forming one calculation at T = 30 000 K in a larger hcp cell
with 180 atoms. The difference in Gibbs free energy between
the 144 and 180 atoms cells was found to be 45 meV, which
is shown by the yellow triangle in Fig. 4. This means that the
effect of size on the melting temperature is negligible, as our
144 atoms cell is large enough.

We fitted our melting temperatures from 300–5000 GPa to
a Simon equation,

Tm(P) = T0

(
1 + (P − P0)

a

)1/c

(9)
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FIG. 6. Fractional change in volume, entropy, and enthalpy dif-
ference (latent heat) between liquid and solid iron along the melting
line as a function of pressure. The black circle and dashed red lines
show results from Refs. [73] and [20], respectively.

with the parameters a = 434.822 GPa and c = 1.839 in addi-
tion to P0 = 300 GPa and T0 = 6469 K.

The fractional changes of volumes, entropy, and latent heat
of fusion (�V , �S, and �H , respectively) along the melting
line are shown in Fig. 6 as a function of pressure. At 300 GPa,
the volume increase upon melting is 0.116 Å3 per atom, which
correspond to a fractional decrease in density of 1.6%. The
enthalpy and entropy of melting, respectively, are 1.06 × 106

J/kg (0.61 eV/atom) and 1.05 kB/atom at this pressure. These
results are an agreement with previous findings at similar
conditions [20,73,74]. Our entropies of melting, however, de-
crease with pressure and are slightly higher than the those
reported by Kraus et al. [24], who assumed a constant entropy
of melting of �S = 0.77 kB to derive the melting temperatures
between 300 and 1000 GPa. We determined that this value de-
creased from 1.05 to 0.8 kB/atom over this pressure interval.
Novel techniques based on latent heat to detect melting may
confirm these values in the near future [75].

As pressure increases, the volume difference between the
solid and the liquid decreases and becomes as small as
0.038 Å3 at 5000 GPa, which still represents a fractional dif-
ference of 1.21%. Despite this decrease, we always find the
solid to be denser than the liquid at the same pressure and tem-
perature, which implies a positive slope for the melting curve.
We used these values to calculate the slopes of the melting line
from the Clausius-Clapeyron equation dTm/dP = �V/�S.
The slopes decrease from 8.6 K/GPa at 300 GPa to 2.6 K/GPa
at 5000 GPa, and are consistent with slope of the fitted melting
curve in Eq. (9).

In order to study the crystallization of planetary cores,
we calculated adiabats of solid and liquid iron. We obtained
the Gibbs free energy for both phases along five different
isotherms, for pressures ranging from 500 to 5000 GPa. The
entropies were then obtained from the free energies as S =
(E − F )/T , and a spline interpolation was applied to obtain
the points of constant entropy. The results are shown in Fig. 7.
We observe that the S = 14 kB adiabat intersects the melting

FIG. 7. Melting curve and adiabats of solid (dashed black) and
liquid (dot-dashed red) iron, where the numbers indicate the respec-
tive entropy in kB/atom. The S = 14 kB/atom adiabat is shown in
thick, grey line and the open circles indicate the intersection of this
adiabat with the melting line. The blue line is our fit our melting
points according to Eq. (9). We also show the core-mantle boundary
conditions (CMB) for Uranus (U), Neptune (N), Saturn (blue area),
and Jupiter (red area) [9,76] for comparison. The temperature profile
of a 10 Earth mass Super-Earth model from Ref. [8] is shown in
solid, black line. The 60 GPa isentrope from the ramp-compression
experiments on iron from Ref. [77] is shown in short dashed line.

line at 1032 GPa and only reemerges in the solid phase at
a much higher pressure 3247 GPa. This implies there exists
an extended solid-liquid coexistence region along the adia-
bat, which has implications for shock and ramp compression
experiments that are designed to measure the melting temper-
ature by compressing liquid iron. If ramp waves are employed
to avoid shock heating, one can expect such experiments to
be nearly adiabatic [24,77,78], such as the recent experiments
performed by Kraus et al. [24]. Our example illustrate that up
3247 GPa, such shock experiments would generate a solid-
liquid mixtures on the melting line. X-ray diffraction signal
would grow with pressure as the solid fraction increases until
complete solidification is obtained. This is consistent with the
recent measurements by Kraus et al. [24] who observed a
solid-liquid mixture when they started the ramp compression
from approximately 580 GPa and 8500 K.

IV. RELEVANCE TO THE INTERIOR OF SUPER-EARTHS

Since our melting line is considerably higher than previous
predictions, our paper will revise some of the assumptions
that so far have been made about the temperature distribution
in the interiors of Super-Earths. We will now discuss how
existing models may have to be adjusted. For planets with 2
Earth masses or more, Gaidos et al. [79] predicted their iron
cores to crystallize from the top and suggested iron “snow”
near the core-mantle boundary (CMB), which would inhibit
convection in their cores. This would shut down the magnetic
dynamo and reduce their chances for harboring life [80]. Con-
versely, our ab initio simulations predict the melting line to be
steeper than the adiabats up to a pressure of at least 50 Mbar.
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TABLE I. Parameters for super-Earths of 2 or 5 Earth masses
with terrestrial iron mass fraction of 32.5%. For each mass, we
constructed two models: the coldest but still completely liquid core
and the hottest but still completely frozen cores.

M Core Pcentral PCMB Tcenter 〈Tcore〉 TCMB

ME state (GPa) (GPa) (K) (K) (K)

2.0 frozen 765 272 8931 7409 6198
2.0 liquid 768 273 9602 8069 6822
5.0 frozen 1923 672 12442 10642 8983
5.0 liquid 1997 678 15333 12457 10236

This means in Super-Earths with up 10.4 Earth masses, the
core crystallization will start from the center, like on Earth.
We derived this mass estimate by assuming a terrestrial iron
fraction of 32.5% and by building interior models following
by Seager et al. [5] as well as by Wilson and Militzer [10].

In the following discussion about interior temperature dis-
tributions, we will focus on terrestrial planets with up to
1.6 Earth radii and 5.8 Earth masses because observations
combined mass-radius models have shown that larger planets
must have a low-density outer envelope that is presumably
composed of gas or ice [12]. To compare with earlier work,
we construct models for planets with 2.0 and 5.0 Earth masses.
Papuc and Davies [81] reported the average core temperature
over an assumed lifespan of 10 billion years. According to
their thermal evolution models, average core temperature of a
5.0 (2.0) Earth mass planet would start from 5100 (4300) K
and then drop to 4300 (3300) K over a period of 10 Gyr.
To compare with these predictions, we constructed a number
of interior models based on our computed adiabats for liq-
uid and solid iron and provide some results in Table I. Our
calculations predict that the core crystallization of a 5.0 (2.0)
Earth mass planet would start when average core temperature
reaches 12457 (8069) K. The core crystallization would be
complete when average temperature reaches 10 642 (8069) K.
This means our melting calculations imply that the cores of
Super-Earths with 2.0–5.0 Earth masses would be frozen for
their entire 10 Gyr lifespan, if we assume the temperatures
predicted by Papuc and Davies are correct. While solid cores
are still assumed to cool convectively, there would be no or
only a very weak dynamo, as convection in a solid body
would produce such small flow speeds that would render the
magnetic Reynolds number negligibly small, thus leading to
the field decay by magnetic diffusion [82]. While we have
performed all calculations for pure iron and light elements
are known to be present in Earth core, it is reasonable to
assume that they would lower the core melting temperature
of Super-Earths, but this effect is unlikely to bridge the de-
viations between our melting predictions and the models by
Papuc and Davies that approximately amount to a factor of 2
in temperature.

Noack and Breuer [83] also put together models for the in-
teriors of Super-Earth. For planets with five Earth masses, they
predict a temperature at the core-mantle boundary (CMB) of
5100 K. According to our calculations, the core crystallization
of such planet would set in when the temperature at the CMB
reaches 10 236 K and already be complete when it reached
8983 K.

Other authors have constructed Super-Earth models with
somewhat hotter interiors. Tachinami et al. [84] used mixing
length theory to study the thermal evolution of Super-Earth
interiors. The temperature profile of five Earth mass planet
did hardly change over the 10 Gyr lifespan. Respectively,
11 300 and 7540 K were predicted for the temperatures in the
planet’s center and at the CMB. According to our models, core
crystallization would start when temperature in the planet’s
center 15 333 K and be already complete when it reaches
12 442 K. Wagner et al. [8] also used mixing length theory,
and predicted that a five-Earth masses planet should have a
central pressure and temperature of 2000 GPa and 8000 K,
respectively. Again these assumed temperatures, imply frozen
cores. In Fig. 7, we show the temperature profile of a 10 Earth
mass Super-Earth model by the same authors.

Stamenkovic et al. [85] investigated the impact that differ-
ent viscosity models have on the evolution of Super-Earths.
They consider a wide range of initial CMB temperatures from
5100 to 13 500 K when they model planets of five Earth
masses, which implies some planet models start with frozen
cores, some with partially liquid and some with completely
liquid cores. If a strongly pressure and temperature dependent
viscosity is assumed, it takes ∼3 Gyr for the temperature at
the CMB to cool from 13 500 to 9000 K. At this temperature,
our melting calculations again imply that the core of such a
planet would be completely frozen.

Recently, Boujibar et al. [16] constructed models for
Super-Earth of different masses, core-mantle fractions, and
a wide range of interior temperatures in order to determine
which planets have partially crystallized cores. Buoyancy ef-
fects from core crystallization contribute to convection and
the magnetic field generation [86]. Results are presented in
terms of the temperature at the core-mantle boundary, which
is related to the efficiency of retaining the gravitational energy
from accretion. We agree with the assumptions and predic-
tions by Boujibar et al. but they based their analysis on the
melting line that Morard et al. [63] derived with ab initio simu-
lations and the corresponding fit by Stixrude et al. [58]. As we
illustrated in Fig. 5, our melting temperatures are similar up to
a pressure of 1100 GPa but then are lower for higher pressures.

Currently, the initial temperature profile of a forming
planet is not well characterized because no observations have
been made. The temperature is controlled by the influx of
the planetesimals and radiative energy exchange with the
surrounding disk [81,87]. Many interior processes, like core-
mantle differentiation and radioactive decay matter during the
magma ocean phase cooling, are expected to be orders of
magnitude faster than after mantle has solidified. Overall, the
evolution of terrestrial planets is a complicated process, and as
evidenced by the Earth-Venus paradox, it is not a unique pro-
cess. This is particularly true for rocky exoplanets that have a
significant amount of ice, as the presence of rock-ice mixtures
can lead to nonlayered interiors [88–90]. With this paper, we
aim to improve our understanding of one just element: the
state of the iron core.

V. CONCLUSIONS

With DFT-MD simulations, we derived Gibbs free energy
of solid and liquid iron and determined its melting curve in
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TABLE II. Melting temperatures of iron obtained in this study
using the PAW-14 pseudopotential.

P (GPa) T (K)

300 6468.74 ± 11.64
330 6746.95 ± 13.68
500 8023.67 ± 42.19
1000 11169.52 ± 25.75
2000 15252.75 ± 43.14
3000 18841.64 ± 36.46
4000 21784.41 ± 39.48
5000 24996.29 ± 59.80

the pressure range from 300 to 5000 GPa. We discuss the
implications for ramp compression experiments and predict
that they generate solid-liquid mixtures over a wide range in
pressure. At 5000 GPa, we predict a melting temperature of
25 000 K, which is 5000 K higher than predicted from the
extrapolation of earlier melting curves. We suggest that the
initial temperature profiles in Super-Earth evolution models
be investigated in more detail. For some of the published
models, our melting results imply that the iron cores start
out in solid form and remain frozen for the entire planet’s
lifetime. In this case, they would not generate a strong mag-
netic fields but they might still be generated in the mantles
of Super-Earths [91,92]. On the other hand if the interior
temperature profiles are high, the cores of Super-Earths would
initially be liquid and would eventually start to crystallize
from their centers. Our results also imply, if elemental iron
were present in the cores of Jupiter and Saturn, it would occur
in solid form (see Fig. 7). However, thermodynamic calcula-
tions [45,46] and recent models for Jupiter’s interior [93,94]
imply that core of giant planets have been eroded and all heavy
elements have been mixed with the surrounding metallic
hydrogen.
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FIG. 8. Convergence of the energies with respect to k-point sam-
pling in thermodynamic integration simulations.

APPENDIX A: MELTING TEMPERATURES

The resulting melting temperatures of this study obtained
from thermodynamic integration using the PAW-14 pseudopo-
tential for iron are listed in Table II.

APPENDIX B: PSEUDOPOTENTIAL EFFECTS

Our free energy calculations using PAW-14, where the
3p inner electrons are included explicitly, give a melting
temperature of 6747 K at 330 GPa, which is 688 K higher
than the melting temperature we obtain at the same pres-
sure using the PAW-8 pseudopotential. The differences in
the predicted melting temperatures between PAW-14 and
PAW-16 are small, but very large when compared to pre-
dictions from PAW-8 pseudopotential, which shows that the
treatment of inner 3p electrons of iron at Earth core pres-
sures and higher is extremely important, as they lead to
very different predictions for the melting temperatures of
iron at these conditions. We summarize these results in
Table III.

APPENDIX C: CONVERGENCE WITH RESPECT
TO k POINTS

We repeated a calculation at ρ = 12.97 g cm−3

(∼300 GPa) and 6000 K using a 2 × 2 × 2 k-point grid
in our 144-atoms cells for every λ-point. As we can see in the
Fig. 8, the differences in the term 〈VKS − Vcl〉 are in general
smaller than 10 meV for any given λ, which introduces a

TABLE III. Pseudopotentials effects on the melting temperature (no Frenkel correction) at 330 GPa. Our results are compared with findings
by Sun et al. if available.

PAW-8 PAW-14 PAW-16

Tm (K) (our paper) 6059 ± 29 6747 ± 14 6534 ± 10
Tm (K) (Sun et al. 2018) 5730 ± 200 6170 ± 200
�Sm (kB/atom) (our paper) 1.08 ± 0.02 1.06 ± 0.02 1.06 ± 0.02
�Sm (kB/atom) (Sun et al. 2018) 1.14 ± 0.03 1.09 ± 0.03
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FIG. 9. Phonon-dispersion relations (top panel) of iron at three
different volumes. The phonon frequencies at 6.96 Å3/atom are in re-
markable agreement with those reported by Alfè [61]. The resulting
free energies, obtained from QHA, are compared to those obtained
from TDI in the bottom panel.

resulting error in �F after the thermodynamic integration
that is smaller than 10 meV/atom.

APPENDIX D: PHONON CALCULATIONS

We also obtained the phonon-dispersion relations and the
free energy of the hcp crystal within the quasi-harmonic
approximation (QHA) to compare it with our free energies
derived from thermodynamic integration. In Fig. 9, we can see
that our phonon frequencies are in remarkable agreement with
those derived by Alfè [61]. We also compare our Helmholtz
free energies at 3000 K derived from our phonon calculations
to those derived from TDI, as a function of pressure. While
the trend looks consistent, the differences are much larger
than 10 meV/atom, indicating the presence of anharmonic
effects.

FIG. 10. Effects of the Frenkel correction of the free energy
of an Einstein crystal with a fixed center of mass on the melting
temperature.

FIG. 11. Classical pair potentials for solid (top) and liquid (bot-
tom) iron at different pressures fitted to the DFT-MD trajectories
using the force matching method [49].
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FIG. 12. Evolution of pressure as a function of time for two
typical DFT-MD simulations at low (300 GPa) and high pressures
(4000 GPa). Both samples are solid, as depicted by the hcp crys-
tal in the inset. The corresponding average values of pressure are
298.243 ± 0.155 GPa and 3998.249 ± 1.071 GPa.

APPENDIX E: THE FRENKEL CORRECTION

In order to correct the free energy of the Einstein crystal
to one that has a fixed center of mass, as in our DFT-MD
simulations, we initially assumed the correction provided in
the book by Frenkel and Ladd [51], but the recent studies of
the Einstein crystal with a fixed center of mass by Navascués
et al. [52] showed that this correction was overestimated.
This leads to an artificial overstabilization of the solid and,
hence, higher melting temperatures. After we applied the cor-
rection provided by Navascués et al., which is so small that
is effectively equivalent to applying no correction at all, our
melting temperatures became lower than those where the free
energy of the solid included the Frenkel correction. We can
see the differences in the resulting melting temperatures of

FIG. 13. Evolution of the difference (VDFT − Vcl ) for five values
of λ during thermodynamic integration of liquid iron at 29.166
g cm−3and 27 500 K. The average value for each λ has a standard
errors σx̄ = σ/

√
n � 2 meV/atom.

FIG. 14. Energy and pressure in molecular dynamics simulations
of solid iron at 12.938 g cm−3 and 6000 K (∼290 GPa) in the hcp
phase. The DFT-MD simulations were performed using the PAW-16
pseudopotential, and the ML potential was trained on these simula-
tions. The inset shows a zoom-in to the fluctuation in a time window
of 400 fs.

iron after including the Frenkel and Navascués correction in
Fig. 10.

APPENDIX F: CLASSICAL POTENTIALS FOR
THERMODYNAMIC INTEGRATION

The intermediate systems in our thermodynamic integra-
tion procedure are governed by a classical pair potential,
V (r), that we construct for every density and temperature by
matching the forces along the DFT-MD trajectories. For every
volume V and temperature T that we choose for calculating a
new value of the free energy F (V, T ), we fit a new classical
potential using the force matching method of Izvekov and
Parrinello [49]. Thus, for every single thermodynamic condi-
tion, this simple, tabulated pair potential is designed to match
as close as possible the forces of the DFT-MD trajectory at
those particular thermodynamic conditions. The potentials are
designed to vanish for distances larger to the cutoff radius,
which is set to half the length of the smallest simulation cell
side. We show some of these potentials in Fig. 11.
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FIG. 15. Pressure and internal energy of iron derived from ma-
chine learning MD simulations at 6000 K and 12.938 g cm−3using
supercells with different numbers of atoms, N .

For some conditions, such as 300 GPa and 6000 K, we have
repeated the thermodynamic integration procedure with a dif-
ferent classical potential for each phase, which was refitted to
match the forces at a sightly different volume. With the new
classical potentials for the solid and the liquid phases, we were
able to reobtain �G, yielding a new value that differs from the
previous one by less than 2 meV/atom, which about the size
of our error bars. Thus, we demonstrate that our results are not
sensitive to the classical potential used for the intermediate
system.

APPENDIX G: CONVERGENCE OF THERMODYNAMIC
PROPERTIES

In order to ensure the convergence of the thermodynamic
quantities, such as pressure and energy, we must run each sim-
ulations long enough to allow the system to reach equilibrium,
with a well defined mean value and error bars that are small
enough to reach the precision we require for thermodynamic
integration. In Fig. 12, we show the evolution of the pressure
of the solid in two typical simulations of iron using supercells
with 144 atoms. These simulations were are part of a set
of simulations using thermodynamic integration using λ = 1
(forces and energies correspond to the DFT system).

FIG. 16. Evolution of the cell dimensions of our supercell
with 1296 atoms at constant pressure of P0 = 289.204 GPa. The
simulation cell vectors a = (a1, a2, a3), b = (b1, b2, b3), and c =
(c1, c2, c3) remained perpendicular, on average, and their lengths
remained oscillating around the values of the NV T simulation that
led to the same average pressure.

As we smoothly switch off the classical forces with in-
creasing λ, the behavior of the energies is much more gradual
and, overall, weakly dependent on λ, as we can see in Fig. 13.

APPENDIX H: MACHINE LEARNING AND
CONVERGENCE WITH RESPECT TO SYSTEM SIZE

We used the capabilities of VASP 6.4 to generate on-
the-fly machine learning force fields, as implemented in
Refs. [95,96]. We trained the force field on a supercell of 144
iron atoms in the hcp phase using the PAW-16 pseudopoten-
tial at 12.938 g cm−3and 6000 K, which resulted in a mean
pressure of 289.204 ± 0.143 GPa and a Mermin free energy
of −6.3124 ± 0.0036 eV/atom. The simulation was carried
out at constant volume in the canonical ensemble using the
Nosé-Hoover thermostat.

As we can see in Fig. 14, we can already get a well-defined
average of these quantities by simulating only 3.5 ps (7000
steps with a timestep of 0.5 fs). Even 2 ps of a DFT-MD
simulation are enough to get the energy converged within
1 meV/atom. After generating a force field for solid iron at
290 GPa and 6000 K using this on-the-fly machine learning
training process, we were able to simulate 50 000 steps in just
12 minutes in one node of 36 cores using the same 144 atoms
supercell, which corresponds to a speedup of ×2000. Then,
we used the same force field to perform a simulation of iron
at the same conditions but in a much larger cell, containing
of 1296 atoms (9 × 6 × 6 replicas of an orthorhombic, four-
atoms unit cell of hcp). In both cases, 144 and 1296 atoms,
we obtained basically the same mean value of the energy from
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these simulations, with a difference of less than 16 meV/atom
with respect to the smaller 144-atoms simulation, demonstrat-
ing convergence with respect to time and system size. The
standard deviation decreased considerably when the system
size was increased, as expected.

In Fig. 15, we show how the pressure and energy of iron
change as function of the number of iron atoms in the su-
percell N . As we can see, a size of 144 atoms is more than
enough to converge the energy and pressure with respect to the
system size, considering that the associated error in fitting the
machine learning potential leads to energy differences about
10 meV/atom. While larger system sizes can be reached by
careful supercell design [97], the convergence with respect to
system size shown in Fig. 15 demonstrates that 144 is enough
to obtain reliable values of pressure and energy.

In addition, we carried simulations at constant pressure in
the NPT ensemble to test the stability against fluctuations in
the cell volume. Fixing the pressure in our NPT simulations

to P0 = 289.204 GPa in the 1296 atoms cell, which was the
average pressure in our NV T simulation at 12.938 g cm−3,
resulted in an average density of 12.924 ± 0.0019 g cm−3,
consistent with our NV T simulations. In Fig. 16, we show the
fluctuations in the simulation cell dimensions, which shows
that the simulation cell remained orthorhombic on average.
The lattice constants of the hcp lattice varied by less than
0.05% during the constant-pressure simulation.

APPENDIX I: EQUATION OF STATE

In Tables IV and V, we provide the tabulated values of
the total energy (E ) and free energy (F = E − T S) per iron
atom, together with the pressure (P) obtained at the different
densities (ρ) and temperatures (T ) explored in this study. The
pseudopotential used for each calculation is listed on the last
column.

TABLE IV. Free energies of solid iron obtained from thermodynamic integration, including PAW-14, PAW-8, and PAW-16 calculations.
No Frenkel correction included.

Sim. ID Size V (Å3/Fe) ρ (g/cc) T (K) P (GPa) E (Ha/Fe) FDFT (Ha/Fe) Pseudopotential

Fe132 144Fe 3.1220 29.7035 25000 5002.0470 ± 1.2800 1.36241449 ± 0.00053736 0.22674882 ± 0.00016832 PAW-14
Fe158 144Fe 3.3969 27.2991 24000 4004.2820 ± 1.9630 1.10375957 ± 0.00101313 −0.01069262 ± 0.00027722 PAW-14
Fe181 144Fe 3.4270 27.0598 27500 3998.6110 ± 1.8630 1.14044400 ± 0.00089354 −0.20447284 ± 0.00023952 PAW-14
Fe192 144Fe 3.7288 24.8695 18000 3000.9080 ± 0.4810 0.77143696 ± 0.00029430 −0.00576626 ± 0.00014488 PAW-14
Fe197 144Fe 3.7490 24.7352 20000 2998.8650 ± 1.0860 0.79315727 ± 0.00065187 −0.10782697 ± 0.00014370 PAW-14
Fe211 144Fe 3.4129 27.1716 26000 4000.6750 ± 1.1330 1.12366198 ± 0.00053203 −0.11916665 ± 0.00019601 PAW-14
Fe216 144Fe 3.7747 24.5670 22500 2999.6220 ± 1.6640 0.82230909 ± 0.00092247 −0.24003435 ± 0.00015664 PAW-14
Fe222 144Fe 4.2707 21.7137 15000 1999.7790 ± 0.8590 0.45548402 ± 0.00059509 −0.18243960 ± 0.00009119 PAW-14
Fe228 144Fe 5.2509 17.6603 10000 1002.2180 ± 0.2520 0.09743111 ± 0.00019527 −0.29959525 ± 0.00006325 PAW-14
Fe238 144Fe 3.4062 27.2247 25000 3998.2490 ± 1.0710 1.11256370 ± 0.00054860 −0.06493623 ± 0.00018534 PAW-14
Fe258 144Fe 5.3234 17.4198 12500 1000.2380 ± 0.6510 0.12551121 ± 0.00051435 −0.42066479 ± 0.00011793 PAW-14
Fe292 108Fe 3.1392 29.5400 27500 5002.3540 ± 1.9610 1.38950296 ± 0.00074986 0.09236150 ± 0.00025881 PAW-14
Fe297 180Fe 3.1388 29.5439 27500 5000.5090 ± 2.4170 1.38682803 ± 0.00096903 0.09124313 ± 0.00018293 PAW-14
Fe302 144Fe 3.1570 29.3740 30000 5007.0660 ± 3.3620 1.41703321 ± 0.00137374 −0.04816252 ± 0.00029513 PAW-14
Fe307 180Fe 3.1564 29.3791 30000 4999.5140 ± 3.1610 1.41365554 ± 0.00125622 −0.04903847 ± 0.00023336 PAW-14
Fe312 144Fe 4.3467 21.3343 20000 1998.1110 ± 1.3740 0.51421616 ± 0.00090800 −0.44407262 ± 0.00022690 PAW-14
Fe317 144Fe 4.2043 22.0565 10000 2000.8180 ± 0.3240 0.40091463 ± 0.00020407 0.04437866 ± 0.00004676 PAW-14
Fe326 144Fe 3.1288 29.6384 26000 5005.1770 ± 3.3600 1.37435667 ± 0.00139792 0.17264269 ± 0.00021850 PAW-14
Fe326b 144Fe 3.1288 29.6384 26000 5001.7210 ± 2.2630 1.37284909 ± 0.00094515 0.17264269 ± 0.00021850 PAW-14
Fe336 144Fe 4.3121 21.5050 18000 2002.3420 ± 0.9590 0.49108057 ± 0.00069255 −0.33514170 ± 0.00027937 PAW-14
Fe352 144Fe 3.1391 29.5411 27500 5000.5930 ± 1.2290 1.38805776 ± 0.00051781 0.09045971 ± 0.00021674 PAW-14
Fe352b 144Fe 3.1391 29.5411 27500 4599.8520 ± 1.9010 1.31409420 ± 0.00114013 −0.01177143 ± 0.00045358 PAW-16
Fe382 144Fe 6.4844 14.3009 10000 499.5060 ± 0.5180 −0.06089824 ± 0.00041825 −0.50226257 ± 0.00008988 PAW-14
Fe392 144Fe 6.3598 14.5810 7500 496.0940 ± 0.3710 −0.09161250 ± 0.00030201 −0.38322890 ± 0.00005614 PAW-14
Fe402 144Fe 5.2509 17.6603 5000 926.2860 ± 0.3630 0.02205019 ± 0.00025909 −0.12522222 ± 0.00005397 PAW-14
Fe407 144Fe 5.2509 17.6603 10000 1001.3900 ± 0.8850 0.09673063 ± 0.00063141 −0.29922919 ± 0.00005513 PAW-14
Fe412 144Fe 4.3467 21.3343 5000 1729.6300 ± 0.3300 0.27295287 ± 0.00020617 0.14058670 ± 0.00001633 PAW-14
Fe417 144Fe 4.3467 21.3343 10000 1809.5270 ± 0.2650 0.34402896 ± 0.00020900 −0.01757263 ± 0.00005306 PAW-14
Fe422 144Fe 4.3467 21.3343 15000 1899.7030 ± 0.9140 0.42609068 ± 0.00068361 −0.21664794 ± 0.00011602 PAW-14
Fe427 144Fe 3.7490 24.7352 5000 2712.9960 ± 0.1400 0.56126400 ± 0.00008166 0.43901659 ± 0.00003294 PAW-14
Fe432 144Fe 3.7490 24.7352 10000 2797.8540 ± 0.1780 0.62949501 ± 0.00010542 0.29264426 ± 0.00004862 PAW-14
Fe437 144Fe 3.7490 24.7352 15000 2894.5630 ± 0.7400 0.70877573 ± 0.00046598 0.10525315 ± 0.00013912 PAW-14
Fe442 144Fe 3.7490 24.7352 20000 2998.6800 ± 0.6260 0.79301115 ± 0.00040425 −0.10723980 ± 0.00017022 PAW-14
Fe447 144Fe 3.7490 24.7352 25000 3110.5910 ± 1.2710 0.88091386 ± 0.00075225 −0.34233930 ± 0.00019887 PAW-14
Fe452 144Fe 3.4129 27.1716 5000 3554.7130 ± 0.3230 0.79548147 ± 0.00017300 0.67919462 ± 0.00002016 PAW-14
Fe457 144Fe 3.4129 27.1716 10000 3644.4760 ± 0.4350 0.86253555 ± 0.00024222 0.53851253 ± 0.00004462 PAW-14
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TABLE IV. (Continued.)

Sim. ID Size V (Å3/Fe) ρ (g/cc) T (K) P (GPa) E (Ha/Fe) FDFT (Ha/Fe) Pseudopotential

Fe462 144Fe 3.4129 27.1716 15000 3746.9450 ± 1.0410 0.93977031 ± 0.00060024 0.35905608 ± 0.00013588 PAW-14
Fe467 144Fe 3.4129 27.1716 20000 3857.0670 ± 2.7440 1.02171218 ± 0.00148469 0.15494616 ± 0.00015556 PAW-14
Fe472 144Fe 3.4129 27.1716 25000 3976.5440 ± 1.5960 1.10669747 ± 0.00085197 −0.07196681 ± 0.00020872 PAW-14
Fe477 144Fe 3.1391 29.5411 5000 4480.7580 ± 0.2510 1.04119815 ± 0.00012140 0.92990730 ± 0.00001813 PAW-14
Fe482 144Fe 3.1391 29.5411 10000 4575.7660 ± 0.2230 1.10618381 ± 0.00012237 0.79550764 ± 0.00005372 PAW-14
Fe487 144Fe 3.1391 29.5411 15000 4684.4490 ± 0.1900 1.18159857 ± 0.00006687 0.62363888 ± 0.00008125 PAW-14
Fe492 144Fe 3.1391 29.5411 20000 4803.3550 ± 1.2350 1.26186769 ± 0.00055901 0.42612893 ± 0.00009158 PAW-14
Fe497 144Fe 3.1391 29.5411 25000 4933.2620 ± 1.3770 1.34608126 ± 0.00058927 0.20655488 ± 0.00022616 PAW-14
Fe506 144Fe 7.3106 12.6847 7500 297.6820 ± 0.3610 −0.15282630 ± 0.00031065 −0.46805598 ± 0.00007787 PAW-14
Fe516 144Fe 7.0530 13.1481 5000 306.2070 ± 0.3960 −0.17999521 ± 0.00031351 −0.35356506 ± 0.00002606 PAW-14
Fe654 144Fe 7.1486 12.9722 6000 302.7040 ± 0.0950 −0.16968387 ± 0.00008015 −0.39701455 ± 0.00004103 PAW-14
Fe654b 144Fe 7.1486 12.9722 6000 302.1560 ± 0.5300 −0.16996346 ± 0.00042359 −0.39799846 ± 0.00005319 PAW-14
Fe1500 72Fe 7.2136 12.8553 6000 299.9850 ± 0.3770 −0.16556906 ± 0.00031260 −0.39782377 ± 0.00007332 PAW-14
Fe1554 128Fe 7.1914 12.8949 6000 302.2360 ± 0.2380 −0.16406270 ± 0.00021160 −0.39817751 ± 0.00007724 PAW-14, bcc
Fe1559 144Fe 5.2509 17.6603 15000 1088.9610 ± 1.0210 0.18409984 ± 0.00078342 −0.51665947 ± 0.00022193 PAW-14
Fe1564 144Fe 4.7562 19.4973 15000 1458.8090 ± 1.1870 0.29512118 ± 0.00088340 −0.37346472 ± 0.00017142 PAW-14
Fe1569 144Fe 8.1170 11.4246 5000 167.9520 ± 0.4510 −0.21964194 ± 0.00037517 −0.41022439 ± 0.00006894 PAW-14
Fe1574 144Fe 5.2509 17.6603 7500 962.3650 ± 0.1980 0.05757173 ± 0.00015628 −0.20606046 ± 0.00003455 PAW-14
Fe1579 144Fe 4.3467 21.3343 7500 1767.9870 ± 0.1460 0.30659877 ± 0.00010308 0.06758909 ± 0.00002409 PAW-14
Fe1584 144Fe 3.7490 24.7352 7500 2754.0380 ± 0.0750 0.59384081 ± 0.00006234 0.37153358 ± 0.00004128 PAW-14
Fe1589 144Fe 3.4129 27.1716 7500 3597.6510 ± 0.2330 0.82712261 ± 0.00013281 0.61439034 ± 0.00004447 PAW-14
Fe1594 144Fe 3.1391 29.5411 7500 4526.7070 ± 0.1680 1.07211731 ± 0.00008620 0.86819281 ± 0.00003206 PAW-14
Fe1599 144Fe 8.1170 11.4246 3000 143.3960 ± 0.2810 −0.24982281 ± 0.00022501 −0.34160172 ± 0.00007540 PAW-14
Fe1604 144Fe 7.0530 13.1481 3000 282.4770 ± 0.3400 −0.20735695 ± 0.00026905 −0.29108615 ± 0.00004376 PAW-14
Fe1609 144Fe 5.2509 17.6603 3000 900.6000 ± 0.0490 −0.00237970 ± 0.00003057 −0.07211377 ± 0.00002110 PAW-14
Fe1614 144Fe 4.3467 21.3343 3000 1701.9980 ± 0.0560 0.24945992 ± 0.00002903 0.18763142 ± 0.00002746 PAW-14
Fe1619 144Fe 3.7490 24.7352 3000 2683.5580 ± 0.0360 0.53828166 ± 0.00001686 0.48232480 ± 0.00002056 PAW-14
Fe1624 144Fe 3.4129 27.1716 3000 3525.3430 ± 0.1520 0.77321886 ± 0.00008714 0.71988427 ± 0.00003886 PAW-14
Fe1629 144Fe 3.1391 29.5411 3000 4447.4470 ± 0.0550 1.01927423 ± 0.00003464 0.96891875 ± 0.00001872 PAW-14
Fe1691 144Fe 7.1108 13.0410 6000 301.0390 ± 0.2430 −0.16248956 ± 0.00026066 −0.39379509 ± 0.00004845 PAW-8
Fe1696 144Fe 7.1023 13.0568 6000 301.1550 ± 0.1670 −0.16576437 ± 0.00016003 −0.39437747 ± 0.00005134 PAW-16
Fe1711 144Fe 7.1175 13.0288 7500 321.1710 ± 0.6700 −0.13624500 ± 0.00071198 −0.45531385 ± 0.00012403 PAW-8
Fe1716 144Fe 7.2431 12.8029 7500 301.4050 ± 0.9700 −0.14575419 ± 0.00084822 −0.46486354 ± 0.00019217 PAW-16
Fe1757 144Fe 7.2053 12.8701 7000 298.9310 ± 0.5100 −0.15073766 ± 0.00049705 −0.43999349 ± 0.00008585 PAW-8
Fe1774 144Fe 3.7288 24.8695 18000 2787.6920 ± 1.6330 0.72616662 ± 0.00105179 −0.06149729 ± 0.00018966 PAW-16
Fe1784 144Fe 3.7490 24.7352 20000 2796.1790 ± 2.1000 0.75344528 ± 0.00134326 −0.16497802 ± 0.00027758 PAW-16
Fe1828 144Fe 3.0182 30.7250 25000 4991.6250 ± 1.5260 1.38162456 ± 0.00092571 0.23701548 ± 0.00030088 PAW-16
Fe1867 144Fe 3.0105 30.8031 24000 4995.7640 ± 1.6320 1.37096405 ± 0.00102727 0.29077679 ± 0.00019947 PAW-16
Fe1877 144Fe 2.9982 30.9294 22000 4997.4480 ± 1.1160 1.34952943 ± 0.00068124 0.39382166 ± 0.00016130 PAW-16
Fe1908 144Fe 2.9982 30.9294 22000 5102.5590 ± 2.0770 1.30720018 ± 0.00086007 0.36679353 ± 0.00012131 PAW-16
Fe1918 144Fe 3.0105 30.8031 24000 5105.8930 ± 1.4560 1.32809782 ± 0.00062514 0.26580492 ± 0.00015849 PAW-16
Fe1964 144Fe 3.0437 30.4674 26000 5024.6870 ± 2.2280 1.32981573 ± 0.00098073 0.13591155 ± 0.00034626 PAW-16
Fe1974 144Fe 7.2431 12.8029 6000 278.3290 ± 0.7290 −0.21682174 ± 0.00057238 −0.44668290 ± 0.00005743 PAW-16
Fe1995 144Fe 7.1656 12.9413 6000 301.3840 ± 0.8010 −0.17060139 ± 0.00067861 −0.39911113 ± 0.00009833 PAW-14
Fe2018 144Fe 7.1656 12.9413 6000 292.7290 ± 0.6260 −0.16250620 ± 0.00060229 −0.39531888 ± 0.00010678 PAW-8
Fe2040 144Fe 7.1175 13.0288 7500 323.9620 ± 1.1510 −0.13147742 ± 0.00118934 −0.45243563 ± 0.00006543 PAW-8
Fe2066 144Fe 7.1175 13.0288 6000 299.8120 ± 0.2050 −0.16296362 ± 0.00021914 −0.39419602 ± 0.00003693 PAW-8
Fe2076 144Fe 7.2431 12.8029 7000 292.6330 ± 0.4320 −0.19941357 ± 0.00036696 −0.48657459 ± 0.00008262 PAW-16
Fe2107 144Fe 7.1048 13.0520 6000 300.7960 ± 0.0940 −0.16625995 ± 0.00010906 −0.39410815 ± 0.00003795 PAW-16
Fe2136 144Fe 7.1975 12.8840 7000 300.0730 ± 0.3860 −0.15360782 ± 0.00035618 −0.44028802 ± 0.00006881 PAW-16
Fe2182 72Fe 7.1547 12.9612 6000 303.3010 ± 0.2700 −0.16803025 ± 0.00021536 −0.39702179 ± 0.00006292 PAW-14
Fe2187 144Fe 7.1547 12.9612 6000 301.8710 ± 0.1660 −0.16980924 ± 0.00014472 −0.39721826 ± 0.00002788 PAW-14
Fe2213 72Fe 7.2583 12.7762 7000 300.4490 ± 1.2080 −0.15689469 ± 0.00096960 −0.44891337 ± 0.00034021 PAW-14
Fe2218 144Fe 7.2583 12.7762 7000 299.1820 ± 0.3440 −0.15824775 ± 0.00029151 −0.44389744 ± 0.00008045 PAW-14
Fe2273 144Fe 6.9688 13.3068 6400 330.6620 ± 0.4840 −0.14854349 ± 0.00047329 −0.39953347 ± 0.00004784 PAW-8
Fe2285 144Fe 6.9688 13.3069 5800 322.3020 ± 0.1710 −0.15898574 ± 0.00017826 −0.37623477 ± 0.00003874 PAW-8
Fe2309 144Fe 6.9579 13.3277 6400 329.9970 ± 0.2930 −0.15214403 ± 0.00027193 −0.39924485 ± 0.00004408 PAW-16
Fe2322 144Fe 6.9579 13.3277 6400 331.7660 ± 0.8560 −0.15063528 ± 0.00067257 −0.39892130 ± 0.00006174 PAW-16
Fe2346 144Fe 6.9901 13.2663 6800 329.7810 ± 0.1310 −0.14729481 ± 0.00012174 −0.41714551 ± 0.00003415 PAW-16
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TABLE IV. (Continued.)

Sim. ID Size V (Å3/Fe) ρ (g/cc) T (K) P (GPa) E (Ha/Fe) FDFT (Ha/Fe) Pseudopotential

Fe2510 240Fe 7.1486 12.9722 6000 294.1930 ± 0.0830 −0.16743435 ± 0.00007922 −0.39660917 ± 0.00002765 PAW-16
Fe2521 144Fe 3.3975 27.2948 22500 3963.9380 ± 0.6200 1.07635597 ± 0.00030220 0.05804421 ± 0.00011865 PAW-14
Fe2531 144Fe 3.3975 27.2948 21000 3929.0480 ± 0.4200 1.05128671 ± 0.00019931 0.12540926 ± 0.00009196 PAW-14
Fe2555 144Fe 3.1288 29.6384 24000 4949.8090 ± 0.4130 1.33964555 ± 0.00018650 0.26378325 ± 0.00015575 PAW-14

TABLE V. Free energies of liquid iron obtained from thermodynamic integration, including PAW-14, PAW-8, and PAW-16 calculations.

Sim. ID Size V (Å3/Fe) ρ (g/cc) T (K) P (GPa) E (Ha/Fe) FDFT (Ha/Fe) Pseudopotential

Fe137 144Fe 3.1614 29.3332 25000 4994.5650 ± 2.7170 1.38479858 ± 0.00106238 0.17943049 ± 0.00001857 PAW-14
Fe145 144Fe 3.1938 29.0351 30000 5007.9720 ± 3.5170 1.44132592 ± 0.00141143 −0.10495769 ± 0.00001696 PAW-14
Fe153 144Fe 3.4349 26.9969 24000 3988.1780 ± 5.9030 1.12152401 ± 0.00267823 −0.05078026 ± 0.00002871 PAW-14
Fe163 144Fe 3.4416 26.9449 25000 4000.7970 ± 1.8340 1.13675779 ± 0.00081318 −0.10642470 ± 0.00001837 PAW-14
Fe169 144Fe 3.4627 26.7807 27500 4002.0410 ± 1.5090 1.16500124 ± 0.00070896 −0.25205535 ± 0.00003592 PAW-14
Fe176 144Fe 3.7681 24.6102 18000 3003.7140 ± 1.2470 0.79803740 ± 0.00069791 −0.03033306 ± 0.00001706 PAW-14
Fe187 144Fe 3.7894 24.4715 20000 2997.8620 ± 1.5440 0.81790452 ± 0.00082425 −0.13888427 ± 0.00002032 PAW-14
Fe243 144Fe 3.8126 24.3225 22500 2998.8610 ± 1.1200 0.84526326 ± 0.00062363 −0.27711739 ± 0.00002306 PAW-14
Fe248 144Fe 3.4501 26.8787 26000 4003.7820 ± 1.0790 1.14916957 ± 0.00044746 −0.16414014 ± 0.00002201 PAW-14
Fe253 144Fe 3.1795 29.1655 27500 4992.6830 ± 3.4370 1.41111355 ± 0.00140851 0.03805688 ± 0.00001880 PAW-14
Fe263 144Fe 5.4556 16.9978 15000 1002.9640 ± 0.9430 0.17261043 ± 0.00064642 −0.57582821 ± 0.00001580 PAW-14
Fe268 144Fe 4.3218 21.4568 15000 1991.9220 ± 0.9920 0.47639170 ± 0.00063315 −0.20554667 ± 0.00001182 PAW-14
Fe277 144Fe 4.3892 21.1274 20000 1995.1590 ± 1.2540 0.53272689 ± 0.00081538 −0.47654951 ± 0.00000876 PAW-14
Fe282 144Fe 5.3919 17.1984 12500 1000.1030 ± 0.6110 0.14367437 ± 0.00047424 −0.44050786 ± 0.00001165 PAW-14
Fe287 144Fe 5.3178 17.4381 10000 1001.1900 ± 0.7270 0.11524986 ± 0.00054356 −0.31198404 ± 0.00001449 PAW-14
Fe331 144Fe 3.1649 29.3007 26000 5008.0340 ± 1.5740 1.39845057 ± 0.00068356 0.12898360 ± 0.00002199 PAW-14
Fe341 144Fe 4.3577 21.2802 18000 2002.6880 ± 1.4430 0.51390640 ± 0.00090219 −0.36292281 ± 0.00001439 PAW-14
Fe387 144Fe 6.5982 14.0542 10000 495.2240 ± 0.6730 −0.04979512 ± 0.00053784 −0.52084874 ± 0.00001104 PAW-14
Fe397 144Fe 6.4943 14.2790 7500 487.9890 ± 0.5980 −0.08007985 ± 0.00042708 −0.39732172 ± 0.00001605 PAW-14
Fe511 144Fe 7.4248 12.4895 7500 301.0270 ± 0.2830 −0.14073431 ± 0.00025056 −0.47934377 ± 0.00002126 PAW-14
Fe546 144Fe 5.2509 17.6603 20000 1203.3940 ± 0.8670 0.29313533 ± 0.00057666 −0.78405026 ± 0.00001900 PAW-14
Fe551 144Fe 5.2509 17.6603 25000 1282.3370 ± 2.1000 0.37634504 ± 0.00148936 −1.06297750 ± 0.00002574 PAW-14
Fe556 144Fe 5.2509 17.6603 30000 1357.2050 ± 1.8840 0.45815764 ± 0.00132139 −1.35826514 ± 0.00004197 PAW-14
Fe561 144Fe 5.2509 17.6603 35000 1437.7080 ± 1.7860 0.54488289 ± 0.00129396 −1.66765944 ± 0.00003203 PAW-14
Fe566 144Fe 4.3467 21.3343 20000 2055.2270 ± 1.4780 0.55202040 ± 0.00091484 −0.45666389 ± 0.00002033 PAW-14
Fe571 144Fe 4.3467 21.3343 25000 2145.3340 ± 1.9330 0.63378784 ± 0.00113016 −0.71796153 ± 0.00002126 PAW-14
Fe576 144Fe 4.3467 21.3343 30000 2237.8690 ± 2.2970 0.71739046 ± 0.00129994 −0.99596488 ± 0.00002032 PAW-14
Fe581 144Fe 4.3467 21.3343 35000 2323.4660 ± 2.6250 0.79720395 ± 0.00147022 −1.28800616 ± 0.00003412 PAW-14
Fe586 144Fe 3.7490 24.7352 20000 3081.3070 ± 3.0230 0.83928305 ± 0.00157459 −0.11106951 ± 0.00002872 PAW-14
Fe591 144Fe 3.7490 24.7352 25000 3196.3900 ± 3.1010 0.92697628 ± 0.00152422 −0.35856289 ± 0.00002558 PAW-14
Fe596 144Fe 3.7490 24.7352 30000 3301.8890 ± 2.5880 1.01007444 ± 0.00141635 −0.62300188 ± 0.00004320 PAW-14
Fe601 144Fe 3.7490 24.7352 35000 3412.1420 ± 3.5960 1.09452698 ± 0.00178233 −0.90139361 ± 0.00003122 PAW-14
Fe606 144Fe 3.4129 27.1716 20000 3932.7980 ± 6.2970 1.05719951 ± 0.00304946 0.15819153 ± 0.00003120 PAW-14
Fe611 144Fe 3.4129 27.1716 25000 4093.6890 ± 3.2310 1.16120103 ± 0.00148126 −0.07947885 ± 0.00003069 PAW-14
Fe616 144Fe 3.4129 27.1716 30000 4216.4690 ± 2.9370 1.24622781 ± 0.00133193 −0.33526810 ± 0.00003069 PAW-14
Fe621 144Fe 3.4129 27.1716 35000 4330.6370 ± 3.5570 1.32679803 ± 0.00169335 −0.60519396 ± 0.00002880 PAW-14
Fe626 144Fe 3.1391 29.5411 20000 4945.7730 ± 2.8080 1.32102202 ± 0.00104327 0.43463867 ± 0.00002665 PAW-14
Fe631 144Fe 3.1391 29.5411 25000 5072.6720 ± 3.4600 1.40160252 ± 0.00132154 0.20642203 ± 0.00002505 PAW-14
Fe636 144Fe 3.1391 29.5411 30000 5217.3800 ± 4.2370 1.48893244 ± 0.00157442 −0.04076836 ± 0.00002883 PAW-14
Fe641 144Fe 3.1391 29.5411 35000 5362.7730 ± 5.5330 1.57634956 ± 0.00197599 −0.30273840 ± 0.00002940 PAW-14
Fe649 144Fe 7.2526 12.7861 6000 308.0450 ± 0.3290 −0.15596147 ± 0.00028097 −0.40257560 ± 0.00001598 PAW-14
Fe867 144Fe 9.2743 9.9989 6000 110.6070 ± 0.2530 −0.21241066 ± 0.00020615 −0.49141685 ± 0.00003883 PAW-14
Fe872 144Fe 8.0861 11.4682 6000 200.5660 ± 0.4660 −0.18866025 ± 0.00035505 −0.45033815 ± 0.00002590 PAW-14
Fe877 144Fe 7.2983 12.7060 6000 300.9020 ± 0.7610 −0.15829104 ± 0.00061190 −0.40581291 ± 0.00001712 PAW-14
Fe882 144Fe 6.9916 13.2635 6000 348.8240 ± 0.3670 −0.14530885 ± 0.00029260 −0.59584650 ± 0.00002318 PAW-14
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TABLE V. (Continued.)

Sim. ID Size V (Å3/Fe) ρ (g/cc) T (K) P (GPa) E (Ha/Fe) FDFT (Ha/Fe) Pseudopotential

Fe887 144Fe 9.7809 9.4810 7500 100.6080 ± 0.5980 −0.19510321 ± 0.00042568 −0.57699824 ± 0.00002437 PAW-14
Fe892 144Fe 8.2653 11.2195 7500 199.7080 ± 0.4610 −0.17164311 ± 0.00037906 −0.52688551 ± 0.00001901 PAW-14
Fe897 144Fe 7.4352 12.4722 7500 296.9100 ± 0.7750 −0.14344256 ± 0.00060390 −0.48007862 ± 0.00001676 PAW-14
Fe902 144Fe 6.8621 13.5137 7500 401.3540 ± 0.7810 −0.10841761 ± 0.00063068 −0.43446457 ± 0.00001782 PAW-14
Fe907 144Fe 6.4453 14.3878 7500 500.4130 ± 0.5350 −0.07647014 ± 0.00041369 −0.39167697 ± 0.00001568 PAW-14
Fe912 144Fe 6.1186 15.1560 7500 596.7540 ± 0.7330 −0.04555322 ± 0.00058047 −0.35227894 ± 0.00001736 PAW-14
Fe917 144Fe 5.8446 15.8664 7500 699.3100 ± 0.3520 −0.01152307 ± 0.00026830 −0.31207356 ± 0.00002318 PAW-14
Fe922 144Fe 10.3115 8.9931 10000 99.9320 ± 0.2760 −0.16297881 ± 0.00020634 −0.72316237 ± 0.00002079 PAW-14
Fe927 144Fe 8.5592 10.8343 10000 201.2630 ± 0.6070 −0.14042419 ± 0.00051669 −0.66549267 ± 0.00001740 PAW-14
Fe932 144Fe 7.6485 12.1243 10000 298.2830 ± 0.6770 −0.11305211 ± 0.00059249 −0.61418828 ± 0.00001613 PAW-14
Fe937 144Fe 7.0387 13.1748 10000 398.0160 ± 0.7070 −0.08143554 ± 0.00058507 −0.56575552 ± 0.00001821 PAW-14
Fe942 144Fe 6.5776 14.0982 10000 500.8780 ± 0.5210 −0.04769901 ± 0.00037344 −0.51837729 ± 0.00001638 PAW-14
Fe947 144Fe 6.2301 14.8845 10000 599.3030 ± 1.0080 −0.01561978 ± 0.00075236 −0.47481493 ± 0.00002028 PAW-14
Fe952 144Fe 5.9460 15.5959 10000 699.2870 ± 0.6110 0.01709919 ± 0.00048242 −0.43251015 ± 0.00002443 PAW-14
Fe957 144Fe 5.7037 16.2583 10000 801.6590 ± 0.6230 0.05106139 ± 0.00044795 −0.39087926 ± 0.00001965 PAW-14
Fe962 144Fe 5.3157 17.4452 10000 989.2210 ± 1.5860 0.10638949 ± 0.00110732 −0.31164326 ± 0.00002042 PAW-14
Fe967 144Fe 10.9011 8.5067 12500 99.0520 ± 0.4050 −0.12899630 ± 0.00029286 −0.88229780 ± 0.00003628 PAW-14
Fe972 144Fe 8.9010 10.4182 12500 196.9180 ± 0.6650 −0.11133173 ± 0.00051380 −0.81736528 ± 0.00002980 PAW-14
Fe977 144Fe 7.8781 11.7710 12500 297.5090 ± 0.8760 −0.08251134 ± 0.00069266 −0.76040812 ± 0.00002270 PAW-14
Fe982 144Fe 7.1995 12.8804 12500 397.7450 ± 0.7840 −0.05289107 ± 0.00068426 −0.70680015 ± 0.00002517 PAW-14
Fe987 144Fe 6.7031 13.8344 12500 502.0520 ± 0.7090 −0.01915899 ± 0.00055923 −0.65568176 ± 0.00002108 PAW-14
Fe992 144Fe 6.3374 14.6327 12500 601.3840 ± 0.9750 0.01329944 ± 0.00077478 −0.60951041 ± 0.00001791 PAW-14
Fe997 144Fe 6.0294 15.3801 12500 706.5020 ± 0.7900 0.04850180 ± 0.00057878 −0.56346953 ± 0.00001378 PAW-14
Fe1002 144Fe 5.7694 16.0732 12500 810.5450 ± 0.9520 0.08215410 ± 0.00069380 −0.51837126 ± 0.00001729 PAW-14
Fe1007 144Fe 11.5261 8.0455 15000 97.7030 ± 0.3870 −0.09387886 ± 0.00033007 −1.05192122 ± 0.00002258 PAW-14
Fe1012 144Fe 6.8603 13.5174 15000 498.0860 ± 0.7770 0.00955313 ± 0.00061628 −0.80555141 ± 0.00001642 PAW-14
Fe1017 144Fe 5.8791 15.7733 15000 798.6650 ± 0.9780 0.10605700 ± 0.00067551 −0.66287041 ± 0.00001969 PAW-14
Fe1022 144Fe 5.4598 16.9848 15000 1000.4780 ± 1.0290 0.17159009 ± 0.00068289 −0.57683003 ± 0.00001435 PAW-14
Fe1027 144Fe 5.1370 18.0519 15000 1198.6120 ± 1.0060 0.23363252 ± 0.00073686 −0.49565547 ± 0.00001297 PAW-14
Fe1032 144Fe 4.8742 19.0252 15000 1404.7700 ± 1.0330 0.29979882 ± 0.00069222 −0.41734259 ± 0.00001258 PAW-14
Fe1037 144Fe 4.7638 19.4663 15000 1500.9290 ± 1.2860 0.32866491 ± 0.00086047 −0.38060305 ± 0.00001371 PAW-14
Fe1042 144Fe 3.7689 24.6046 15000 2915.4580 ± 4.3900 0.73354280 ± 0.00252823 0.09950743 ± 0.00002282 PAW-14
Fe1047 144Fe 12.1392 7.6391 18000 102.2910 ± 0.5290 −0.04965161 ± 0.00040023 −1.26321950 ± 0.00002649 PAW-14
Fe1052 144Fe 7.0330 13.1854 18000 495.7880 ± 1.1860 0.04435750 ± 0.00092524 −0.99339361 ± 0.00002133 PAW-14
Fe1057 144Fe 5.5496 16.7098 18000 996.5420 ± 1.3920 0.20418588 ± 0.00099772 −0.75218488 ± 0.00001185 PAW-14
Fe1062 144Fe 4.8202 19.2382 18000 1499.2890 ± 1.0540 0.36140892 ± 0.00074136 −0.54688333 ± 0.00001760 PAW-14
Fe1067 144Fe 4.3587 21.2753 18000 1997.0520 ± 1.7590 0.51070639 ± 0.00113278 −0.36315238 ± 0.00001535 PAW-14
Fe1072 144Fe 4.2141 22.0056 18000 2199.5150 ± 2.1060 0.57079408 ± 0.00133188 −0.29365967 ± 0.00001285 PAW-14
Fe1077 144Fe 4.0272 23.0264 18000 2495.4840 ± 1.1770 0.65526805 ± 0.00073232 −0.19337047 ± 0.00001457 PAW-14
Fe1082 144Fe 12.4502 7.4483 20000 106.2290 ± 0.7780 −0.02100781 ± 0.00069991 −1.40732822 ± 0.00002067 PAW-14
Fe1087 144Fe 7.1304 13.0052 20000 498.2900 ± 1.3180 0.06944099 ± 0.00097431 −1.12188554 ± 0.00001379 PAW-14
Fe1092 144Fe 5.6001 16.5590 20000 999.6020 ± 1.1830 0.22839574 ± 0.00087949 −0.87201306 ± 0.00001175 PAW-14
Fe1097 144Fe 4.8594 19.0833 20000 1499.6940 ± 0.9580 0.38469879 ± 0.00065332 −0.66334418 ± 0.00001263 PAW-14
Fe1102 144Fe 4.3858 21.1439 20000 2001.6430 ± 1.4670 0.53510860 ± 0.00090677 −0.47481361 ± 0.00001211 PAW-14
Fe1107 144Fe 4.2396 21.8728 20000 2195.0350 ± 1.9470 0.59023132 ± 0.00121534 −0.40447630 ± 0.00001747 PAW-14
Fe1112 144Fe 4.0454 22.9228 20000 2505.7610 ± 1.6210 0.68110210 ± 0.00101806 −0.29990972 ± 0.00001103 PAW-14
Fe1117 144Fe 3.7433 24.7727 20000 3092.0770 ± 1.6970 0.84168437 ± 0.00091070 −0.10674354 ± 0.00002060 PAW-14
Fe1122 144Fe 12.8592 7.2114 22500 112.2010 ± 0.7820 0.01607825 ± 0.00074141 −1.59361861 ± 0.00003311 PAW-14
Fe1127 144Fe 7.2553 12.7814 22500 503.4930 ± 0.8880 0.10305469 ± 0.00068836 −1.28806918 ± 0.00001251 PAW-14
Fe1132 144Fe 5.6752 16.3400 22500 999.3560 ± 1.4260 0.25817100 ± 0.00101661 −1.02965824 ± 0.00001640 PAW-14
Fe1137 144Fe 4.4248 20.9575 22500 2000.9210 ± 1.1840 0.56402757 ± 0.00067394 −0.62175718 ± 0.00001747 PAW-14
Fe1142 144Fe 4.0770 22.7455 22500 2500.9760 ± 2.1570 0.70709430 ± 0.00126354 −0.44330308 ± 0.00001987 PAW-14
Fe1147 144Fe 3.8129 24.3207 22500 3000.5080 ± 1.5720 0.84622135 ± 0.00086023 −0.27723308 ± 0.00001598 PAW-14
Fe1152 144Fe 3.6018 25.7466 22500 3495.1180 ± 1.7920 0.97857565 ± 0.00094681 −0.12051517 ± 0.00001560 PAW-14
Fe1157 144Fe 3.4293 27.0411 22500 3985.8590 ± 2.3070 1.10750579 ± 0.00107289 0.02710375 ± 0.00001873 PAW-14
Fe1162 144Fe 13.1975 7.0265 24000 112.2740 ± 0.7060 0.03692891 ± 0.00068499 −1.71027396 ± 0.00005099 PAW-14
Fe1167 144Fe 5.7151 16.2261 24000 1001.2130 ± 1.0790 0.27652244 ± 0.00079987 −1.12563140 ± 0.00002294 PAW-14
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TABLE V. (Continued.)

Sim. ID Size V (Å3/Fe) ρ (g/cc) T (K) P (GPa) E (Ha/Fe) FDFT (Ha/Fe) Pseudopotential

Fe1172 144Fe 4.4462 20.8564 24000 1998.6380 ± 1.6920 0.57945927 ± 0.00111339 −0.71134848 ± 0.00001524 PAW-14
Fe1177 144Fe 3.8273 24.2293 24000 3001.1320 ± 1.7710 0.86273218 ± 0.00094484 −0.36283512 ± 0.00001881 PAW-14
Fe1182 144Fe 3.6130 25.6661 24000 3500.4500 ± 1.5680 0.99653747 ± 0.00079357 −0.20371660 ± 0.00002742 PAW-14
Fe1187 144Fe 3.4348 26.9978 24000 4001.8920 ± 1.8060 1.12697040 ± 0.00087811 −0.05069922 ± 0.00001927 PAW-14
Fe1192 144Fe 3.2831 28.2451 24000 4507.1210 ± 1.9380 1.25537372 ± 0.00083926 0.09724833 ± 0.00001481 PAW-14
Fe1197 144Fe 3.1550 29.3926 24000 4994.7340 ± 2.3990 1.37465053 ± 0.00089825 0.23626271 ± 0.00001781 PAW-14
Fe1202 144Fe 13.9386 6.6530 25000 100.2030 ± 0.6010 0.04895646 ± 0.00056361 −1.80171181 ± 0.00004037 PAW-14
Fe1207 144Fe 5.7480 16.1330 25000 1000.1930 ± 0.9850 0.28842748 ± 0.00073726 −1.19201993 ± 0.00001350 PAW-14
Fe1212 144Fe 4.4600 20.7920 25000 2002.3010 ± 1.6330 0.59273872 ± 0.00102731 −0.77182278 ± 0.00001281 PAW-14
Fe1217 144Fe 3.8377 24.1635 25000 2999.0810 ± 1.4840 0.87272175 ± 0.00082447 −0.42148465 ± 0.00001306 PAW-14
Fe1222 144Fe 3.6196 25.6196 25000 3502.9100 ± 2.1680 1.00748325 ± 0.00114810 −0.25932146 ± 0.00001553 PAW-14
Fe1227 144Fe 3.4433 26.9311 25000 3986.9290 ± 2.0520 1.13123659 ± 0.00099514 −0.10807006 ± 0.00001846 PAW-14
Fe1232 144Fe 3.2935 28.1562 25000 4493.5490 ± 2.1550 1.26197214 ± 0.00085018 0.03723897 ± 0.00001524 PAW-14
Fe1237 144Fe 14.2321 6.5158 26000 100.4670 ± 0.5160 0.06336277 ± 0.00049456 −1.88318264 ± 0.00002015 PAW-14
Fe1242 144Fe 5.7797 16.0445 26000 998.3670 ± 0.8300 0.29967693 ± 0.00060268 −1.25888542 ± 0.00001812 PAW-14
Fe1247 144Fe 4.4730 20.7315 26000 2003.1390 ± 1.4880 0.60385638 ± 0.00089237 −0.83270405 ± 0.00001567 PAW-14
Fe1252 144Fe 3.8484 24.0965 26000 2995.1740 ± 1.4030 0.88227495 ± 0.00077699 −0.48107979 ± 0.00001978 PAW-14
Fe1257 144Fe 3.6299 25.5472 26000 3493.7270 ± 2.0890 1.01479485 ± 0.00107837 −0.31850358 ± 0.00001703 PAW-14
Fe1262 144Fe 3.4505 26.8749 26000 4001.1740 ± 2.5860 1.14808601 ± 0.00120571 −0.16473290 ± 0.00002240 PAW-14
Fe1267 144Fe 3.2995 28.1053 26000 4493.1060 ± 2.3820 1.27151573 ± 0.00101249 −0.01743444 ± 0.00001787 PAW-14
Fe1272 144Fe 3.1641 29.3073 26000 5014.4590 ± 1.9940 1.40065227 ± 0.00073584 0.12940059 ± 0.00002647 PAW-14
Fe1277 144Fe 14.4938 6.3981 27500 102.7820 ± 0.8650 0.08450022 ± 0.00086251 −2.00236847 ± 0.00003227 PAW-14
Fe1282 144Fe 5.8239 15.9227 27500 1000.4200 ± 1.9550 0.31917914 ± 0.00149408 −1.35973833 ± 0.00001591 PAW-14
Fe1287 144Fe 4.4962 20.6247 27500 2001.0960 ± 1.6160 0.62026382 ± 0.00100317 −0.92695312 ± 0.00001338 PAW-14
Fe1292 144Fe 3.8647 23.9951 27500 2996.5510 ± 2.0110 0.90010773 ± 0.00107174 −0.57177558 ± 0.00002098 PAW-14
Fe1297 144Fe 3.6436 25.4510 27500 3500.5900 ± 2.9330 1.03484980 ± 0.00145977 −0.40758280 ± 0.00001951 PAW-14
Fe1302 144Fe 3.4622 26.7844 27500 3999.2540 ± 2.6830 1.16314781 ± 0.00119496 −0.25177356 ± 0.00002629 PAW-14
Fe1307 144Fe 3.3095 28.0205 27500 4504.3510 ± 2.9760 1.29181480 ± 0.00130799 −0.10326406 ± 0.00002068 PAW-14
Fe1312 144Fe 3.1777 29.1820 27500 4994.3330 ± 2.6980 1.41042427 ± 0.00106874 0.03999365 ± 0.00003147 PAW-14
Fe1317 144Fe 15.0352 6.1677 30000 103.5390 ± 0.7900 0.11647770 ± 0.00084756 −2.20694368 ± 0.00002693 PAW-14
Fe1322 144Fe 5.8984 15.7217 30000 1002.4880 ± 1.0820 0.35106620 ± 0.00084638 −1.53137188 ± 0.00001191 PAW-14
Fe1327 144Fe 4.5341 20.4523 30000 2001.2660 ± 1.7510 0.64908634 ± 0.00101871 −1.08689006 ± 0.00001715 PAW-14
Fe1332 144Fe 3.8878 23.8520 30000 3002.6660 ± 2.7090 0.92998594 ± 0.00142882 −0.72315187 ± 0.00001969 PAW-14
Fe1337 144Fe 3.6651 25.3018 30000 3498.2040 ± 2.2180 1.06033572 ± 0.00109558 −0.55765868 ± 0.00001506 PAW-14
Fe1342 144Fe 3.4817 26.6346 30000 3992.8100 ± 2.0560 1.18696596 ± 0.00085843 −0.40028514 ± 0.00001785 PAW-14
Fe1347 144Fe 3.1954 29.0208 30000 4999.7660 ± 2.7300 1.43912689 ± 0.00111562 −0.10671397 ± 0.00001753 PAW-14
Fe1352 144Fe 3.0755 30.1526 30000 5500.5670 ± 4.1750 1.55625225 ± 0.00158784 0.03767278 ± 0.00002441 PAW-14
Fe1495 72Fe 7.3281 12.6544 6000 299.8190 ± 0.4690 −0.15700300 ± 0.00039989 −0.40760628 ± 0.00001990 PAW-14
Fe1507 72Fe 7.4349 12.4727 7500 300.6500 ± 0.4570 −0.14090327 ± 0.00038482 −0.48021161 ± 0.00002017 PAW-14
Fe1534 144Fe 5.3921 17.1979 12500 999.4480 ± 1.0210 0.14288948 ± 0.00073316 −0.44044867 ± 0.00001774 PAW-14
Fe1539 144Fe 5.1165 18.1244 12500 1172.5120 ± 0.7990 0.19755914 ± 0.00055587 −0.37211371 ± 0.00002112 PAW-14
Fe1544 144Fe 4.8980 18.9329 12500 1336.3640 ± 0.7540 0.24814360 ± 0.00051671 −0.30912624 ± 0.00001645 PAW-14
Fe1549 144Fe 4.8037 19.3044 12500 1421.9480 ± 0.7990 0.27669477 ± 0.00056023 −0.27953167 ± 0.00001313 PAW-14
Fe1701 144Fe 7.2228 12.8388 6000 300.9640 ± 0.4360 −0.14996427 ± 0.00047953 −0.40202946 ± 0.00001820 PAW-8
Fe1706 144Fe 7.2285 12.8288 6000 300.9580 ± 0.4200 −0.15402131 ± 0.00031245 −0.40248728 ± 0.00002152 PAW-16
Fe1721 144Fe 7.3579 12.6032 7500 296.6390 ± 0.2770 −0.13454817 ± 0.00028220 −0.47711681 ± 0.00001536 PAW-8
Fe1726 144Fe 7.3565 12.6056 7500 300.1770 ± 0.6280 −0.13740160 ± 0.00049032 −0.47656776 ± 0.00001828 PAW-16
Fe1762 144Fe 7.2994 12.7042 7000 300.7470 ± 0.3820 −0.13847183 ± 0.00031978 −0.45052934 ± 0.00002238 PAW-8
Fe1779 144Fe 3.7681 24.6102 18000 2780.8540 ± 1.4090 0.74916681 ± 0.00087344 −0.09185207 ± 0.00007477 PAW-16
Fe1789 144Fe 3.7894 24.4715 20000 2778.4260 ± 2.2510 0.77027928 ± 0.00147026 −0.20008385 ± 0.00008027 PAW-16
Fe1833 144Fe 3.0548 30.3566 26000 4965.3940 ± 1.9080 1.41709354 ± 0.00108817 0.13687378 ± 0.00013653 PAW-16
Fe1838 144Fe 3.0539 30.3650 25000 4948.4370 ± 2.0240 1.40316566 ± 0.00116214 0.18634249 ± 0.00011257 PAW-16
Fe1872 144Fe 3.0385 30.5193 24000 4988.6890 ± 1.1750 1.40323395 ± 0.00072053 0.25260624 ± 0.00002210 PAW-16
Fe1882 144Fe 3.0315 30.5897 22000 4957.8750 ± 2.9070 1.37004188 ± 0.00168137 0.35496216 ± 0.00001667 PAW-16
Fe1913 144Fe 3.0315 30.5897 22000 5127.0950 ± 3.4680 1.34041362 ± 0.00133051 0.33628661 ± 0.00007810 PAW-16
Fe1923 144Fe 3.0385 30.5193 24000 5136.0320 ± 1.7150 1.35993043 ± 0.00062473 0.23507708 ± 0.00017890 PAW-16
Fe1969 144Fe 3.0744 30.1632 26000 5044.6020 ± 4.5200 1.35891949 ± 0.00183729 0.09861322 ± 0.00004582 PAW-16
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TABLE V. (Continued.)

Sim. ID Size V (Å3/Fe) ρ (g/cc) T (K) P (GPa) E (Ha/Fe) FDFT (Ha/Fe) Pseudopotential

Fe1979 144Fe 7.2322 12.8222 6000 298.6240 ± 0.5590 −0.19858725 ± 0.00046751 −0.44546912 ± 0.00003008 PAW-16
Fe2000 144Fe 7.2978 12.7069 6000 301.0990 ± 0.3040 −0.15968117 ± 0.00024929 −0.40673097 ± 0.00001770 PAW-14
Fe2023 144Fe 7.2978 12.7069 6000 288.7090 ± 0.4700 −0.15232204 ± 0.00045275 −0.40480089 ± 0.00003323 PAW-8
Fe2045 144Fe 7.3579 12.6032 7500 297.7200 ± 0.2890 −0.13145497 ± 0.00028365 −0.47493516 ± 0.00001862 PAW-8
Fe2071 144Fe 7.3646 12.5917 6000 279.5640 ± 0.3850 −0.15685761 ± 0.00040333 −0.41134303 ± 0.00001708 PAW-8
Fe2081 144Fe 7.3704 12.5817 7000 291.6620 ± 0.5480 −0.18879212 ± 0.00048830 −0.49756670 ± 0.00002928 PAW-16
Fe2131 144Fe 7.2440 12.8014 6000 299.7200 ± 0.3540 −0.15414264 ± 0.00030562 −0.40293620 ± 0.00001479 PAW-16
Fe2141 144Fe 7.3231 12.6630 7000 299.9620 ± 0.2140 −0.14272089 ± 0.00017800 −0.45118193 ± 0.00001626 PAW-16
Fe2192 72Fe 7.3111 12.6839 6000 301.3090 ± 0.4120 −0.15710184 ± 0.00030987 −0.40630997 ± 0.00002101 PAW-14
Fe2197 144Fe 7.3111 12.6839 6000 293.1560 ± 0.3470 −0.16327470 ± 0.00025719 −0.40671380 ± 0.00001916 PAW-14
Fe2278 144Fe 7.0665 13.1228 6400 332.4490 ± 0.4440 −0.13435863 ± 0.00043563 −0.40753682 ± 0.00002394 PAW-8
Fe2290 144Fe 7.0665 13.1228 5800 323.8130 ± 0.4800 −0.14500165 ± 0.00045659 −0.38300921 ± 0.00002735 PAW-8
Fe2314 144Fe 7.0783 13.1011 6400 329.9800 ± 0.4830 −0.13984677 ± 0.00039814 −0.40785271 ± 0.00002037 PAW-16
Fe2327 144Fe 7.0783 13.1011 6400 327.5630 ± 0.6170 −0.14211343 ± 0.00037852 −0.40801792 ± 0.00002263 PAW-16
Fe2351 144Fe 7.1165 13.0307 6800 329.7150 ± 0.3970 −0.13478741 ± 0.00033083 −0.42770143 ± 0.00002306 PAW-16
Fe2516 240Fe 7.2526 12.7861 6000 298.3120 ± 0.1690 −0.15471623 ± 0.00014274 −0.40384922 ± 0.00001060 PAW-16
Fe2526 144Fe 3.4300 27.0355 22500 3972.0310 ± 3.9020 1.10160091 ± 0.00187088 0.02658335 ± 0.00001801 PAW-14
Fe2536 144Fe 3.4300 27.0355 21000 3945.9130 ± 1.3740 1.08085845 ± 0.00063280 0.09713137 ± 0.00002119 PAW-14
Fe2560 144Fe 3.1716 29.2381 24000 4931.4310 ± 2.8960 1.35992420 ± 0.00119428 0.21687020 ± 0.00003299 PAW-14
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