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Meta analysis
Effects of anesthetic depth on pos
toperative pain and delirium: a
meta-analysis of randomized controlled trials with trial sequential
analysis
Yuqin Long1,2, Xiaomei Feng3, Hong Liu4, Xisheng Shan1,2, Fuhai Ji1,2, Ke Peng1,2

1Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China;
2Institute of Anesthesiology, Soochow University, Suzhou, Jiangsu 215006, China;
3Department of Anesthesiology, University of Utah Health, Salt Lake City, UT, USA;
4Department of Anesthesiology and Pain Medicine, University of California Davis Health, Sacramento, CA.
Abstract
Background: Whether anesthetic depth affects postoperative outcomes remains controversial. This meta-analysis aimed to
evaluate the effects of deep vs. light anesthesia on postoperative pain, cognitive function, recovery from anesthesia, complications,
and mortality.
Methods: PubMed, EMBASE, and Cochrane CENTRAL databases were searched until January 2022 for randomized controlled
trials comparing deep and light anesthesia in adult surgical patients. The co-primary outcomes were postoperative pain and
delirium (assessed using the confusion assessment method). We conducted a meta-analysis using a random-effects model. We
assessed publication bias using the Begg’s rank correlation test and Egger’s linear regression. We evaluated the evidence using
the trial sequential analysis and Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology.
We conducted subgroup analyses for pain scores at different postoperative time points and delirium according to cardiac or non-
cardiac surgery.
Results:A total of 26 trials with 10,743 patients were included. Deep anesthesia compared with light anesthesia (a mean difference
in bispectral index of �12 to �11) was associated with lower pain scores at rest at 0 to 1 h postoperatively (weighted mean
difference = �0.72, 95% confidence interval [CI] = �1.25 to �0.18, P= 0.009; moderate-quality evidence) and an increased
incidence of postoperative delirium (24.95% vs. 15.92%; risk ratio = 1.57, 95% CI = 1.28–1.91, P< 0.0001; high-quality
evidence). No publication bias was detected. For the exploratory secondary outcomes, deep anesthesia was associated with
prolonged postoperative recovery, without affecting neurocognitive outcomes, major complications, or mortality. In the subgroup
analyses, the deep anesthesia group had lower pain scores at rest and on movement during 24 h postoperatively, without
statistically significant subgroup differences, and deep anesthesia was associated with an increased incidence of delirium after non-
cardiac and cardiac surgeries, without statistically significant subgroup differences.
Conclusions:Deep anesthesia reduced early postoperative pain but increased postoperative delirium. The current evidence does not
support the use of deep anesthesia in clinical practice.
Keywords: Anesthetic depth; GRADE level of evidence; Postoperative delirium; Postoperative pain; Trial sequential analysis
Introduction

Monitoring and maintaining brain function are important
in daily anesthesia practice.[1,2] The brain functional
indices derived from a processed electroencephalogram,
such as bispectral index (BIS), auditory evoked potential
index, and spectral entropy, have been utilized to evaluate
the depth of anesthesia. The advantages of using these
indices include prevention of intraoperative awareness,
avoidance of excessive anesthetic depth, reduction of
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hypnotic agents used, and acceleration of postoperative
recovery.[3-6]

Effective pain management is crucial to patients’ rehabili-
tation after surgery. Whether deep anesthesia alleviates
postoperative pain remains unclear. Faiz et al[7] reported
that deep anesthesia (BIS values of 35–44) vs. light
anesthesia (BIS values of 45–55) led to better pain
outcomes after laparoscopic cholecystectomy. However,
other studies argued that deep anesthesia did not produce
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clinically useful analgesic effects.[8,9] There has not yet
been a meta-analysis of postoperative pain in relationship
with the depth of general anesthesia. Furthermore,
postoperative pain and opioid-based analgesia are the
risk factors for postoperative delirium (POD).[10]

Perioperative neurocognitive disorders are common and
serious complications, particularly in elderly patients
undergoing surgery. A consensus has been developed
for perioperative cognitive changes, including acute events
such as POD and cognitive decline up to 30 days
postoperatively (delayed neurocognitive recovery
[DNR]) and up to 12 months (postoperative neuro-
cognitive disorder).[11] The effects of anesthesia depth on
neurocognitive function are controversial in previous
randomized controlled trials (RCTs).[8,12] Moreover, the
results from meta-analyses are also conflicting,[13-15]

without incorporating recently published trials.[16,17]

Regarding postoperative mortality, observational studies
and relevant meta-analyses showed that intraoperative
low BIS was associated with increased postoperative
mortality,[18-21] but a recent RCT did not demonstrate
such a causal link.[22]

Therefore, we conducted this systematic review and meta-
analysis to evaluate the effects of deep vs. light anesthesia
on postoperative pain, cognitive function, recovery from
anesthesia, complications, and mortality. We performed
the trial sequential analysis (TSA) to assess the primary
results and utilized the Grading of Recommendations
Assessment, Development and Evaluation (GRADE)
approach to evaluate the quality of evidence of this study.
Methods

Protocol and registration

We prospectively registered the review protocol at
PROSPERO International Prospective Register of System-
atic Reviews (identifier: CRD42019127973) on April 8,
2019. We conducted this systematic review and meta-
analysis by following the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses statement [Sup-
plementary Table 1, http://links.lww.com/CM9/B335].[23]
Search strategy

Two review authors independently performed the litera-
ture search in PubMed, EMBASE, and Cochrane CEN-
TRAL databases from inception to February 20, 2021,
and the search results were updated on January 6, 2022.
We used the following search strategy for PubMed:
((((((((bispectral index [Title/Abstract]) OR (bispectral
index monitor [Title/Abstract])) OR (anesthesia depth
[Title/Abstract])) OR (anesthetic depth [Title/Abstract]))
OR (spectral entropy [Title/Abstract])) OR (depth of
anesthesia [Title/Abstract])) OR (bis [Title/Abstract]))
AND ((((((((((postoperative outcome) OR (postoperative
complication)) OR (complications)) OR (pain)) OR
(death)) OR (mortality)) OR (cognitive)) OR (cognition))
OR (delirium)) OR (POCD))) AND “Randomized
Controlled Trial”[pt]. The search strategies for all data-
bases are shown in Supplementary Table 2, http://links.
2806
lww.com/CM9/B335. We did not use language or other
restrictions for the literature search.Wemanually checked
the references of included studies to identify additional
records.
Trial selection

We included studies that met the following criteria: (1)
study design: RCT; (2) participants: adult patients
undergoing cardiac or non-cardiac surgery; (3) interven-
tion: light anesthesia vs. deep anesthesia (a mean between-
group difference ≥5 in BIS [0–100] or ≥3 in auditory
evoked potential index [0–60]); and (4) postoperative
outcomes: pain intensity, cognitive function, postopera-
tive nausea and vomiting (PONV), time to emergence
from anesthesia, time to extubation from anesthesia,
length of stay, postoperative major complications, and
mortality. The exclusion criteria were: (1) non-RCT, (2)
duplicate publications, (3) surgical procedures under
sedation other than general anesthesia, or (4) no specific
results. Any discrepancy during the trial selection process
was resolved by re-evaluation of the study and group
discussion with other review authors.
Data extraction

Two review authors independently extracted data from
each study, including the first author’s name, publication
year, region, type of surgery, type of anesthesia with
anesthetic doses, intervention groups, mean age, number of
patients, mean or median BIS values, and main outcomes
reported. Any discrepancy during the data extraction
process was resolved by re-checking the study data and
group discussion.
Primary outcomes

The co-primary outcomes were postoperative pain scores
at rest at 0–1 h postoperatively and the incidence of
POD up to 1 week postoperatively or until discharge.
Postoperative pain was measured using the visual
analogue scale (VAS, 0–10). POD was assessed using
the confusion assessment method. The definitions of
perioperative neurocognitive disorders (NCDs, including
POD, DNR, and postoperative NCD) are listed in
Supplementary Table 3, http://links.lww.com/CM9/B335.
Secondary outcomes

The secondary outcomes were exploratory, including
postoperative VAS pain scores at 8 h and 24 h
postoperatively, intraoperative sufentanil consumption,
postoperative rescue analgesia, persistent pain during 3 to
12 months postoperatively, DNR during 1 to 7 days
postoperatively, NCD during 1 to 3 months postopera-
tively, Mini-mental State Examination (MMSE) scores,
time to emergence from anesthesia, time to extubation
from anesthesia, orientation recovery time, length of post-
anesthesia care unit (PACU) stay, length of intensive care
unit stay, length of hospital stay, quality of recovery on
postoperative day 1, 90-day physical and mental recovery
scores, clinically significant hypotension (necessitating
fluid and/or drug intervention), PONV, any major
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complication, such as myocardial infarction, sepsis,
stroke, and wound infection, intraoperative awareness,
1-year cancer recurrence, mortality within 30 to 90 days
postoperatively, and 1-year mortality.
Quality assessment

Two review authors independently conducted quality
assessments using the Cochrane evaluation tool.[24,25] We
evaluated the risk of bias for each study in seven domains:
random sequence generation, allocation concealment,
blinding of participants and personal information, blind-
ing of outcome assessment, incomplete outcome data,
selective reporting, and other biases. After a judgment of
low, high, or unclear risk of bias in each domain, we rated
the study to be at a low risk of bias (if all domains were at
low risk), a high risk of bias (if high risk in ≥1 domain), or
unclear risk of bias (if unclear risk in ≥1 domain without
any domain at a high risk). Furthermore, we assessed the
quality of evidence for the main outcomes using the
GRADE approach.[26,27] We assessed the certainty of
evidence in six domains: study design, risk of bias,
inconsistency, indirectness, imprecision, and other con-
siderations. Based on the assessment, we rated the level of
evidence as high, moderate, low, or very low. Any
discrepancy during the quality assessment process was
resolved by group discussion with other review authors.
Figure 1: Flowchart of literature inclusion criteria of studies oneffects of anesthetic depth on
postoperative pain and delirium. BIS: Bispectral index; RCT: Randomized controlled trials.
Statistical analysis

Weconducted themeta-analysisusing theRevMansoftware
(version 5.4, Cochrane Collaboration, Copenhagen,
Denmark). For dichotomous outcomes, risk ratios (RRs)
with95%confidence intervals (CIs)wereanalyzedusing the
Mantel–Haenszel method. For continuous outcomes,
weighted mean differences (WMDs) with 95% CIs were
analyzed using the Inverse Variance method. Considering
clinical heterogeneities, we applied a random-effects model
for data pooling.[28] We used the I2 statistic test to evaluate
heterogeneity among studies, with I2> 50% indicating
significant heterogeneity.[25,29] We assessed publication
bias using the Begg’s rank correlation test and Egger’s
linear regression test with the STATA software (version
14.0, StataCorp, College Station, TX,USA).[27,30,31] Begg’s
funnel plot was also generated for visual inspection. For the
two co-primary outcomes, we performed multiple testing
using the Bonferroni method, with P< 0.025 indicating a
statistical significance (i.e., 0.05/2).Weconducted subgroup
analyses for pain scores at different postoperative time
points and POD according to cardiac or non-cardiac
surgery. For the exploratory secondary outcomes, no
multiple testing correction was applied.

We assessed the reliability of two primary results using the
TSA viewer software (version 0.9.5.5 beta, Copenhagen
Trial Unit, Centre for Clinical Intervention Research,
Rigshospitalet, Copenhagen, Denmark).[27,32] In a TSA
diagram, a Z-curve crossing the trial sequential monitor-
ing boundary or futility boundary suggests that the current
evidence is sufficient for a conclusion and that further
studies are unlikely to change the inference. On the
contrary, aZ-curve not crossing any boundary suggests an
insufficient level of evidence. To calculate the monitoring
2807
and futility boundaries, the following parameters were
used: conventional test boundary (boundary type: two-
sided; Type I error = 5%), Alpha-spending boundaries
(hypothesis testing [boundary type: two-sided; Type I
error = 5%; a-spending function: O’Brien-Fleming;
Information axis: sample size], inner wedge [b-spending
function: O’Brien-Fleming; Power = 80%], and required
information size [information size: estimate; Power =
80%; Heterogeneity correction: model variance based]),
and law of the Iterated logarithm (boundary type: two-
sided; Type I error = 5%; Penalty = 2.0). We also reported
the adjusted 95% CIs by TSA for each outcome.
Results

Literature search

We initially identified a total of 2996 publications. After
excluding duplicates and irrelevant articles, 99 studies
were included for full-text review. Thereafter, we
excluded 73 articles due to non-RCT, pediatric use, BIS
not used in the control group, lack of specific outcomes, or
surgery performed under sedation and spinal anesthesia.
Finally, we included a total of 26 RCTs in this meta-
analysis [Figure 1].[7-9,12,16,17,33-52]

http://www.cmj.org


Chinese Medical Journal 2022;135(23) www.cmj.org
Trial characteristics

Table 1 shows the trial characteristics. These RCTs were
published between 1997 and 2021, involving 10,743
patients undergoing cardiac or non-cardiac surgery.
Among 22 trials on non-cardiac surgery, 9 trials used
volatile-based anesthesia (sevoflurane, isoflurane, or
desflurane),[9,33-36,38-41] 8 trials used total intravenous
anesthesia with propofol,[7,8,42,44-48] and 5 trials used
propofol anesthesia combined with volatiles.[12,49-52] Two
studies included both cardiac and non-cardiac surgeries
using volatile-based anesthesia.[16,17] Two studies includ-
ed patients undergoing cardiac surgery; isoflurane anes-
thesia was used in one study and propofol anesthesia was
used in the other study.[37,43]

Supplementary Figure 1, http://links.lww.com/CM9/B334
depicts the risk of bias in the included studies. Of these, 12
RCTs had a low risk of bias, 13 had an unclear risk of bias,
and one had a high risk of bias.
Primary outcomes

The VAS pain score at rest at 0–1 h postoperatively was
significantly lower in the deep anesthesia group than
that in the light anesthesia group (WMD=�0.72, 95%CI
= �1.25 to �0.18, P= 0.009, I2= 33%; Supplementary
Figure 2: Deep vs. light anesthesia on postoperative pain at rest at 0–1 h postoperatively. (A) fo
10). Red lines indicate the trial sequential monitoring boundary; green lines indicate the futility
CI: Confidence interval; IV: Inverse variance; RIS: Required information size; SD: Standard dev
difference.
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Table 4, http://links.lww.com/CM9/B335 and Figure 2A),
with amoderate level of GRADE evidence [Supplementary
Table 5, http://links.lww.com/CM9/B335]. The mean
difference of BIS values between groups was �12 in the
included studies. There was no publication bias with the
Begg’s funnel plot (P= 1.000; Figure 2B) or Egger’s test
(P= 0.894). In the TSA diagram, the Z-curve (blue)
crossed the trial sequential monitoring boundary (red) and
conventional benefit boundary (brown), suggesting suffi-
cient evidence for this result [Figure 2C]. For this pain
outcome, the adjusted 95% CI by TSA was from�1.32 to
�0.12.

The deep anesthesia group had a significantly higher
incidence of POD (24.95%) compared with the light
anesthesia group (15.92%; risk ratio [RR]= 1.57, 95% CI
= 1.28–1.91,P< 0.0001, I2= 0%; SupplementaryTable 4,
http://links.lww.com/CM9/B335 and Figure 3A), with a
high level of GRADE evidence [Supplementary Table 5,
http://links.lww.com/CM9/B335]. The mean difference of
BIS values between groups was �11. We did not detect
significant publication bias in the Begg’s funnel plot
(P= 0.308; Figure 3B) or Egger’s test (P= 0.196). In the
TSAdiagram, theZ-curvecrossed themonitoringboundary
and conventional benefit boundary, suggesting that
the current evidence is sufficient [Figure 3C]. For the
PODoutcome, the adjusted95%CIbyTSAwas1.17–2.09.
rest plot; (B) Begg’s funnel plot; and (C) TSA. Pain intensity was assessed using the VAS (0–
boundary; brown lines indicate the conventional benefit boundary; blue line is the Z-curve;
iation; TSA: Trial sequential analysis; VAS: Visual analogue scale; WMD: Weighted mean
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Figure 3: Deep vs. light anesthesia on the incidence of POD. (A) forest plot; (B) Begg’s funnel plot; and (C) TSA. Red lines indicate the trial sequential monitoring boundary; green lines
indicate the futility boundary; brown lines indicate the conventional benefit boundary; blue line is the Z-curve. CI: Confidence interval; M-H: Mantel-Haenszel; POD: Postoperative delirium;
RIS: Required information size; RR: Risk ratio; TSA: Trial sequential analysis.
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Secondary outcomes

For the secondary pain outcomes [Supplementary Table 4,
http://links.lww.com/CM9/B335], the deep anesthesia
group had lower VAS pain scores at rest at 8 h (WMD =
�1.16, 95% CI = �1.74 to �0.57, P = 0.0001) and 24 h
postoperatively (WMD=�0.50,95%CI=�0.94 to�0.06,
P= 0.03) andonmovement at 8 h postoperatively (WMD=
�1.25, 95%CI=�1.88 to�0.61,P= 0.0001). Therewere
no between-group differences in VAS pain scores on
movement at 24 h postoperatively, intraoperative sufentanil
consumption, need for rescue analgesia, and persistent pain
during 3–12 months postoperatively. For the secondary
cognitive function outcomes [SupplementaryTable 4, http://
links.lww.com/CM9/B335], the two anesthesia groupswere
comparable in terms of the incidence of DNR during 1–7
days postoperatively (very low-quality evidence; Supple-
mentary Table 5, http://links.lww.com/CM9/B335), NCD
during 1–3 months postoperatively (moderate-quality
evidence; Supplementary Table 5, http://links.lww.com/
CM9/B335), MMSE scores on postoperative day 1, and
MMSE scores during 3–5 days postoperatively.
Regarding postoperative recovery [Supplementary Table
4, http://links.lww.com/CM9/B335], the deep anesthesia
group had prolonged time to emergence from anesthesia
(WMD = 3.65min, 95% CI = 1.94–5.36 min,
P < 0.0001), time to extubation (WMD = 3.64min,
95% CI = 1.39–5.90 min, P = 0.002), and orientation
2811
recovery time (WMD=4.51min,95%CI=1.61–7.40min,
P = 0.002). In addition, the deep anesthesia group had
prolonged lengthof PACUstay (WMD=5.85min, 95%CI
= 2.30–9.41 min P = 0.001; very low-quality evidence;
Supplementary Table 5, http://links.lww.com/CM9/B335)
and length of hospital stay (WMD = 1.00 day, 95% CI =
0.14–1.86 days, P = 0.02; low-quality evidence; Supple-
mentary Table 5, http://links.lww.com/CM9/B335).

As for postoperative complications and mortality [Supple-
mentary Table 4, http://links.lww.com/CM9/B335], there
were no between-group differences in clinically significant
hypotension, PONV, any major complication, myocardial
infarction, sepsis, stroke, wound infection, intraoperative
awareness, 1-year cancer recurrence, mortality within 30–
90 days postoperatively, and 1-year mortality. Clinically
significant hypotension which necessitated fluid and/or
drug intervention was recorded in 23.8% (209/878) and
19.5% (172/881) of patients in the deep and light
anesthesia groups, respectively. Two patients in the light
anesthesia group experienced intraoperative awareness.
Subgroup analyses

Data on postoperative pain were reported from studies in
non-cardiac surgeryonly.We conducted subgroup analyses
for pain scores at different postoperative time points. The
VAS pain scores at rest during 24 h postoperatively were
significantly lower in the deep anesthesia group than that in

http://links.lww.com/CM9/B335
http://links.lww.com/CM9/B335
http://links.lww.com/CM9/B335
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the lightanesthesiagroup(WMD=�0.69,95%CI=�0.97
to �0.40, P< 0.0001, I2 = 31%), without statistically
significant subgroupdifferences (P= 0.210; Supplementary
Figure 2, http://links.lww.com/CM9/B334). The VAS pain
scores on movement during 24 h postoperatively were
also significantly lower in the deep anesthesia group than
that in the lightanesthesiagroup(WMD=�0.78,95%CI=
�1.26 to�0.30,P= 0.002, I2= 43%),without statistically
significant subgroupdifferences (P= 0.110; Supplementary
Figure 3, http://links.lww.com/CM9/B334).

For the outcome of POD, the subgroup analysis according
to cardiac and non-cardiac surgeries showed that deep
anesthesia was associated with a higher incidence of POD
after non-cardiac surgery (RR = 1.54, 95% CI = 1.26–
1.89, P< 0.0001, I2= 0%) and cardiac surgery (RR =
8.20, 95% CI = 1.07–62.6, P= 0.04), without significant
subgroup differences (P= 0.11; Supplementary Figure 4,
http://links.lww.com/CM9/B334).
Discussion

This meta-analysis included 26 RCTs with 10,743
patients to demonstrate the effects of deep vs. light
anesthesia on postoperative pain, cognitive function,
postoperative recovery, complications, and mortality.
We found that deep anesthesia led to lower postoperative
pain but a higher incidence of POD when compared with
light anesthesia. The TSA results suggest that the current
evidence is sufficient for the two primary outcomes. Based
on the GRADE methodology, the level of evidence was
moderate for the VAS pain scores and was high for POD.
For the secondary outcomes, the deep anesthesia group
had reduced pain up to 24 h postoperatively, prolonged
recovery from anesthesia, and prolonged hospital stay,
without between-group differences in the incidence of
DNR, NCD during 1 to 3 months postoperatively, other
major complications, or mortality.

Surgical patients experience a peak of acute postoperative
pain during the first 24 h after surgery.[53,54] In our meta-
analysis, deep anesthesia provided maximum pain relief at
8 h postoperatively, both at rest (a mean reduction of 1.16
points on the 0–10 VAS) and on movement (a mean
reduction of 1.25 points). For these pain outcomes, we did
not detect significant heterogeneity among the studies.
Generally, these effects are not that large, but the
comparable intraoperative sufentanil consumption sug-
gested the differences were mainly attributable to the
depth of anesthesia. A possible explanation is that general
anesthetics such as sevoflurane and propofol attenuate
noxious stimuli.[55-59] In addition, our previous meta-
analysis did not support that propofol-based anesthesia
significantly reduced postoperative pain than volatile-
based anesthesia.[60] Therefore, it is the depth of
anesthesia, other than the choice of general anesthetics,
that plays a part in postoperative analgesic effects.

Perioperative NCD are often characterized by impairment
in attention, memory, mental status, and psychomotor
function in patients who are undergoing surgical proce-
dures.[11,61] As a form of the acute event, POD typically
occurs from hours to days after surgery, increasing the
2812
risks of morbidities and reducing the quality of daily
living.[62,63] As for the effects of deep vs. light anesthesia
on neurocognitive function after surgery, previous meta-
analyses have yielded conflicting results.[14,64,65] Lu
et al[14] investigated the association between anesthetic
depth and postoperative cognitive impairment based on
four studies. However, only one study was included for
POD, comparing depth of sedation (BIS value of 50 vs. BIS
values ≥80) during spinal anesthesia.[66] In our meta-
analysis, we excluded studies on different depths of
sedation, because we believed that pooling studies with
sedation and those with general anesthesia would
introduce significant heterogeneities. Miao et al[64] in-
cluded nine RCTs to suggest that the use of BISmonitoring
was not associatedwith reduced incidences of POD,DNR,
and postoperative NCD in older patients. In their study,
two trials had a mean difference of BIS values<5 between
the BIS-guided and usual care groups.[67,68] In contrast,
our meta-analysis included studies with clinically signifi-
cant separation between BIS values between groups.
Regarding long-term neurocognitive outcomes, a recent
meta-analysis of 10 RCTs suggested that light vs. deep
anesthesia was associated with a reduction in postopera-
tive NCD at 90 days after surgery.[15] As the authors
mentioned, their results should be treated with caution
due to heterogeneity of outcome measures. In our present
meta-analysis, we found no between-group differences in
the incidences of DNR during 1–7 days postoperatively
and NCD during 1 to 3 months postoperatively. We
noted that the included studies used different neuro-
cognitive tests, which introduced significant heterogene-
ities. Thus, more studies are required to investigate the
impact of anesthesia depth on long-term postoperative
neurocognitive function.

This meta-analysis has several limitations. First, the BIS
targets in the deep and light anesthesia groups were not
uniform among the included studies, which may have
introduced heterogeneities. To better discriminate the
deep and light anesthesia groups, we emphasized a mean
between-group difference≥5 in BIS values in our eligibility
criteria. Second, the diagnosis of DNR orNCDduring 1–3
months postoperatively was based on different neuropsy-
chological tests, whichmay have confounded these results.
Third, while the VAS pain outcomes and POD have a low
heterogeneity, several outcomes (including DNR, postop-
erative recovery, length of PACU and hospital stays,
hypotension, and any major complication) are significant-
ly heterogenous, possibly due to different intravenous or
inhalational anesthetics used, varied surgical procedures,
anddifferentpatient populations.Fourth, individualpatient
data were not available for our meta-analysis. Finally,
although there aremoderate tohigh level of evidence for our
primary outcomes, the numbers of included studies and
patients are relatively small. Hence, we encourage further
studies with a large sample size to ascertain these findings.

In conclusion, deep anesthesia compared with light
anesthesia was associated with a moderately reduced
pain during the early postoperative period but led to an
increased incidence of POD. From the current evidence,
the risks of maintaining deep anesthesia outweigh its
benefits for patients undergoing surgical procedures.
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