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Abstract
As materials data sets grow in size and scope, the role of data mining and statistical learning methods to 
analyze these materials data sets and build predictive models is becoming more important. This 
manuscript introduces matminer, an open-source, Python-based software platform to facilitate data-
driven methods of analyzing and predicting materials properties. Matminer provides modules for 
retrieving large data sets from external databases such as the Materials Project, Citrination, Materials 
Data Facility, and Materials Platform for Data Science. It also provides implementations for an extensive 
library of feature extraction routines developed by the materials community, with 44 featurization 
classes that can generate thousands of individual descriptors and combine them into mathematical 
functions. Finally, matminer provides a visualization module for producing interactive, shareable plots. 
These functions are designed in a way that integrates closely with machine learning and data analysis 
packages already developed and in use by the Python data science community. We explain the structure 
and logic of matminer, provide a description of its various modules, and showcase several examples of 
how matminer can be used to collect data, reproduce data mining studies reported in the literature, and 
test new methodologies.

Keywords: data mining; open source software; machine learning; materials informatics

1 Introduction
Recently, the materials community has placed a renewed emphasis in collecting and organizing large 
data sets for research, materials design, and the eventual application of statistical or "machine learning" 
techniques. For example, the mining of databases comprised of density functional theory (DFT) 
calculations has been used to identify materials for batteries,[1,2] to aid the design of metal alloys,[3,4] 
and for many other applications[5]. Importantly, such data sets present new opportunities to develop 
predictive models through machine learning techniques: rather than designing and programming such 
models manually, such techniques produce predictive models by learning from a body of examples. 
Machine learning models have been demonstrated to predict properties of crystalline materials much 
faster than DFT,[6–9] estimate properties that are difficult to access via other computational tools,
[10,11] and guide the search for new materials.[12–16] With the continued development of general-
purpose data mining methods for many types of materials data[17–19] and the proliferation of material 
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property databases,[20] this emerging field of "materials informatics" is positioned to have a continued 
impact on materials design.

In this paper, we describe a new software library, "matminer", for applying data-driven techniques to the
materials domain. The main roles of matminer are depicted in Error: Reference source not found: 
matminer assists the user in retrieving large data sets from common databases, extracts features to 
transform the raw data into representations suitable for machine learning, and produces interactive 
visualizations of the data for exploratory analysis. We note that matminer does not itself implement 
common machine learning algorithms; industry-standard tools (e.g., scikit-learn or Keras) are already 
developed and maintained by the larger data science community for this purpose. Instead, matminer's 
role is to connect these advanced machine learning tools to the materials domain.

Matminer solves many problems encountered when conducting data-driven research. For example, 
learning the Application Programming Interface (API) for each data source and preprocessing retrieved 
data adds significant complexity to the task of building new machine learning models. Matminer 
provides a simplified interface that abstracts the details of these API interactions, making it easy for the 
user to query and organize large data sets into the standard pandas[21] data format used by the Python 
data science community. Furthermore, as we will further discuss later in the text, matminer implements 
a suite of 39 distinct feature extraction modules capable of producing thousands of physically relevant 
descriptors that can be leveraged by machine learning algorithms to more efficiently determine input-
output relationships. Although many such feature extraction methods are reported in the literature, 
many lack an open source implementation. Matminer not only implements these domain-specific 
feature extraction methods but provides a unified interface for their use, making it trivial to reproduce or
compare (and, eventually, extend) these methods. Finally, matminer contains many pre-defined recipes 
of visualizations for exploring and discovering different data relationships. In aggregate, these features 
allow for cutting edge materials informatics research to be conducted with a high-level, easy-to-use 
interface.

We 
note 
that 
prior 
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Figure 0. Overview of the capabilities of matminer. Matminer aids the user in constructing a data pipeline for 
materials informatics and is composed of three main components: (1) tools for retrieving data from a variety 
of materials databases, (2) tools for extracting features (or descriptors) from materials data, and (3) re-
useable and customizable recipes for visualizing materials data. Data is retrieved and processed in a way that 
makes it simple to integrate matminer with external machine learning libraries such as scikit-learn and Keras.



efforts have produced software for computing features for materials (e.g., Magpie[22,23], pyMKS[24]), 
building deep learning models of molecular materials (e.g., deepchem[25,26]), providing turnkey 
machine learning estimates of various properties, or integrating machine learning with other software
[27–29]. In contrast to these prior efforts (which have their own intended applications and scope), 
matminer is designed to interact and integrate with standard Python data mining tools such as pandas 
and scikit-learn[30], implements a library of feature generation methods (“featurizers”) for a wide variety
of materials science entities (e.g., compositions, crystal structures, and electronic structures), and 
includes tools to assist with data retrieval and visualization.

The source code for the version of matminer described in this manuscript (currently version 0.3.0) and 
examples of its use are available as supplementary information. Updated versions are regularly 
published to the Python Package Index (https://pypi.python.org/pypi/matminer). The actively developed
version of matminer is available on GitHub at https://github.com/hackingmaterials/matminer. Matminer
also includes a dedicated repository of examples and tutorials (many in an interactive, runnable Jupyter 
notebook format[31]) for using the data retrieval, featurization, and visualization tools, located at  
https://github.com/hackingmaterials/matminer_examples. Full documentation for matminer is also 
available from https://hackingmaterials.github.io/matminer/. The matminer code currently contains 109 
unit tests to ensure the integrity of the code, which are run automatically with each code commit 
through a continuous integration process. A help forum for matminer is available at: 
https://groups.google.com/forum/#!forum/matminer.

2 Software architecture and design principles
A guiding principle of matminer is to integrate domain-specific knowledge and data about materials into 
larger ecosystem of Python data analysis software. The Python community has developed a rich suite of 
interoperable tools for data science, which are broadly used across the data science community and 
occasionally known as the “PyData” or “SciPy” stacks.[32] These libraries include NumPy and Scipy,[33] 
which provide a suite of high-performance numerical methods, and Jupyter,[31] which facilitates 
interactive data analysis. Matminer is designed to allow users to leverage these professional-level data 
science libraries for materials science studies.

A central tool in the PyData stack is the pandas DataFrame, which is a tabular representation of data 
similar to (but more powerful than) a virtual spreadsheet.[21] Pandas makes it possible, for example, to 
load a data set and perform many common data post-processing procedures, such as filtering, grouping, 
joining, computing rolling averages, and producing descriptive statistics. Additionally, data formatted into
a pandas DataFrame can be easily used with other Python data analysis libraries, such as scikit-learn, 
numpy, and matplotlib. DataFrames can also be visualized as interactive tables within Jupyter notebooks.
They can also be serialized into multiple formats to allow them to be archived and shared. Because of all 
the benefits and features that are achieved by transforming data into the DataFrame format, matminer's 
data retrieval API automatically formats data that it retrieves from external sources into this format. Data
retrieved through matminer is thus immediately ready for a wide variety of tasks, including data 
cleaning, data exploration, data transformations, data visualization, and machine learning. As described 
in later sections, all data extraction, featurization, and visualization tools in matminer can generate or 
operate on pandas DataFrame objects. 

Matminer is also designed to integrate closely with the scikit-learn machine learning library.[30] Scikit-
learn is the de facto standard machine learning library for Python. In addition to its rich suite of machine 
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learning algorithms, scikit-learn contains utilities useful for all aspects of the machine learning process 
(e.g., data preprocessing, model selection, hyperparameter tuning). Other machine learning libraries, 
such as Keras[34] and TensorFlow[35], also provide scikit-learn-compatible wrappers for their models, 
which further motivates the importance of making matminer easily compatible with scikit-learn. 
Matminer achieves integration with scikit-learn in two ways. First, the pandas DataFrame objects 
produced by matminer are tightly integrated with scikit-learn through the interoperability built in to the 
PyData stack. Second, the feature extraction methods implemented by matminer follow the same model 
(and, more formally, subclass) scikit-learn’s preprocessing methods. This allows matminer feature 
extraction methods to be used with scikit-learn's Pipeline functionality and makes it easy to combine 
data processing methods present in the two libraries.

Matminer also heavily leverages the pymatgen[36] materials science library. Matminer's use of the 
pymatgen library makes it unnecessary to recreate complex or materials-science-specific algorithms 
(e.g., space group determination) when implementing new feature extraction methods. Overall, the 
software architecture of matminer is designed to bridge the gap between the professional-level data 
science tools developed by the Python community and the tools, techniques, and data specific to the 
materials domain.

3 Components of matminer
We now describe the main functions of matminer. We describe each of the three major components. 
data retrieval, featurization, and visualization, separately.

3.1 Data Retrieval
The first step in data mining is to obtain a data set that is ideally large and diverse. There are several 
efforts underway in the materials community to build such databases of materials properties.[37–44] 
However, while the proliferation of databases is a great benefit to materials informatics, the use of these 
data sources is complicated by the fact that each database implements a different API, authentication 
method, and schema. One core function of matminer is to provide a consistent API around different 
databases and return the data in a form that is suitable for use in data mining tools. 

At the time of writing, matminer supports data retrieval from four commonly used materials databases: 
Citrination,[40,43] Materials Project (MP),[39] Materials Data Facility (MDF),[44] and Materials Platform 
for Data Science (MPDS).[45]  In addition, a generic MongoDB interface supports data retrieval from any 
MongoDB resource.[46]  Below, we describe these data retrieval tools in detail: 

(i) Citrination, developed by Citrine Informatics [40], is a centralized database that contains a 
variety of materials data, including experimental measurements and computational results, all in
a common data schema – the “pif”.[47] The matminer data retrieval tool uses Citrine’s 
citrination-client library to retrieve data from Citrination, and then converts the data from the 
hierarchical pif format to a tabular DataFrame format. In the process of converting the pif 
records, matminer retrieves all details describing a material (e.g., composition), its known 
properties, and how these properties were determined.

(ii) The Materials Project (MP) [39] primarily contains DFT [48,49] computed properties for over 
60,000 compounds. In a similar fashion to the Citrination data extractor, matminer uses the 
existing MP API[50] (as implemented in the “MPRester” class of the Python Materials Genomics 
(pymatgen) library [36]) to query the database. MPDataRetrieval allows users to access a wide 

-4-



variety of properties of crystalline materials, including their crystal structures, electronic band 
structure, phonon dispersion, piezoelectric, dielectric and elastic constants. 

(iii) The Materials Data Facility (MDF) is geared towards enabling researchers to publish their 
own data sets across a wide array of data types and materials subdisciplines. Matminer contains 
an MDFDataRetrieval class that uses the MDF's own Forge library[51] to perform the bulk of the 
search function but assists the user in formatting the final data to a standardized pandas 
DataFrame object.

(iv) The Materials Platform for Data Science (MPDS)[45] is a commercial database that includes 
phase diagram data (~60,000 entries), crystal structure data (~400,000 entries), and materials 
property values (~800,000 entries). The MPDSDataRetrieval class in matminer can retrieve and 
format information from this database.

(v)  MongoDB is a popular tool in the data mining community due to its efficient and flexible data
model.[46] For example, data generated through the atomate[52] computational suite is stored 
in such databases. The “MongoDataRetrieval” class of matminer converts MongoDB documents 
to rows of a pandas DataFrame. 

All database tools are consistent in that they (i) contain a “get_dataframe” method that makes a query to
the database and (ii) returns the data in a Pandas DataFrame object. The input to the “get_dataframe” 
operation and the authentication mechanism used vary depending on the database; however, matminer 
standardizes the output such that data mining tools written for one database can be easily applied to 
another. One benefit of the uniformity of the APIs and output formats provided by matminer is that 
these features make it easy to combine data from multiple sources. The data merging tools built into the 
pandas DataFrame object facilitate this procedure. For example, it is straightforward to retrieve 
experimental band gap energies from Citrination and then easily compare those values with computed 
band gap energies from Materials Project or the OQMD (this specific example is described in detail in 
Section 4.2).

Matminer also contains several built-in datasets that can be loaded directly with a single line of Python 
and do not require external database calls or setting any options. These built-in datasets include: 1181 
DFT-based elastic tensors[53], 941 DFT-based piezoelectric tensors[54], 1056 DFT-based dielectric 
constants[55], and 3938 DFT-based formation energies[39,56]. The built-in data sets make it simple to 
begin testing and developing data mining methods.

Finally, a user can load their own data set using the built-in tools of the pandas library, which can load 
data from CSV, Excel, or various other formats. This process can be conducted independently of 
matminer but the final data format will be compatible with the subsequent data featurization tools of 
matminer.

3.2 Data Featurization: transforming materials-related quantities into 
physically relevant descriptors

Typically, machine learning employs an intermediate step between compiling raw data and applying a 
machine learning algorithm. This step converts data from a raw format (often specialized for parsing by a
particular software package or formatted for human readability) into a numerical representation that is 
useful for visualization or machine learning software. This process is called "feature extraction", 
“featurization”, or generating "descriptors". Featurization transforms or augments the raw data (which 
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might have a very complicated and difficult to learn relationship between inputs and outputs) into a set 
of physically relevant quantities that reflect the relationships between the input and output variables. 
The feature extraction step is one of the main ways in which one can exploit domain knowledge to vastly 
improve the performance of a machine learning algorithm. For example, common features that are 
extracted from a chemical composition include the differences in electronegativities of the component 
elements or the sum of atomic radii of the various elements.

Many generalizable featurization approaches have been proposed in the literature for different types of 
materials data.[18,22,25,56–61] However, the software required to use them are often unavailable, not 
open-source, or are distributed across many repositories. The lack of published software means that 
employing these methods in practice requires a significant time investment. Through matminer, we 
make these community developments in machine learning available to the community by providing 
open-source implementations of various featurization methods. Furthermore, despite the diversity of 
methodologies, matminer provides a uniform interface to all featurizers, freeing researchers to rapidly 
iterate through different approaches and determine the method best suited to their application.

All featurizer classes in matminer follow a common code-design pattern by inheriting from a base class, 
BaseFeaturizer, which defines the template for all featurization classes. BaseFeaturizer prescribes the 
four methods that must be implemented by each new featurizer:

1. The “featurize” method does the core work. It transforms materials data (e.g., a 
composition) into the desired feature values (e.g., element properties such as atomic weight,
atomic radii, and Mendeleev number). 

2. The “feature_labels” method provides descriptive labels that correspond to the feature 
values computed in the “featurize” method. These feature_labels can be thought of as 
column labels for the various features (and are indeed used as column labels when 
featurizing an entire DataFrame).

3. The “citations” method returns a list of BibTex-formatted references that a user should read 
to fully understand the features and cite if they are used. The citations method thus provides
background and context for the featurizers and appropriate attribution to the original 
developers of the methodology.

4. The “implementors” method provides the name of the person(s) who implemented and are 
responsible for maintaining the featurizer.  This is useful if one has a question, comment, or 
suggestion regarding the specific implementation details of a featurization method.
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BaseFeaturizer provides additional functions that a user can call once these four methods are 
implemented. For example, the “featurize_dataframe” method uses the “featurize” and “feature_labels” 
operations to add the features to an entire pandas DataFrame. That is, featurize_dataframe will process 
potentially thousands or millions of rows of data, exploiting Python's multiprocess functionality to 
parallelize over available cores. The BaseFeaturizer class also follows the pattern used by featurizers in 
the scikit-learn machine learning library, which allows matminer featurization classes to be integrated 
easily with existing scikit-learn tools. For example, one can build a data processing pipeline that mixes 
some of the data normalization tools present in scikit-learn with the materials-specific features 
implemented in matminer.

Matminer contains, at the time of writing, a total of 44 featurizers that support the generation of 
features for diverse types of materials data. Each of these featurizers can produce many individual 
features/descriptors, such that it is possible to generate thousands of total features with the matminer 
code. For example, the ElementProperty featurizer will convert a chemical composition into various 
summary statistics of the properties of that composition's component elements (e.g., average ionic 
radius or standard deviation of elemental melting points). The BandFeaturizer will convert a complex 
electronic band structure into quantities such as band gap and the norm of k point coordinates at which 
the conduction band minimum and valence band maximum occur.

We have grouped the featurizers into five different Python modules based on the input data type: (i) 
composition, (ii) (crystal) structure, (iii) density of (electronic) states, (iv) band structure, and (v) (atomic) 
site. The featurizers available in matminer in each module are presented in Error: Reference source not 
found. In Table 0, we briefly describe each featurizer and provide the canonical reference(s). The 
complete source code for each featurizer is available in matminer such that users can employ, fully 
inspect, and modify the implementations of these methods.

In addition to these individual featurizers, we provide a FunctionFeaturizer that combines individual 
features into functions such as products, quotients, logarithms, or any arbitrary mathematical 
expression. This procedure allows one to generate a large space of candidate features from even a small 
number of initial input features and has been observed to be useful in several previous works in the 
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Figure 0. Overview of the 39 featurizers that are currently available in five different modules (composition, site, structure, 
bandstructure, dos) of matminer. Each featurizer can generate one or hundreds of features, such that matminer as a 
whole is capable of producing thousands of individual features.



materials domain[18,62]. The implementation in matminer leverages the sympy library[63] which can 
eliminate symbolically redundant features.

Featurizer Description Refere
nce

composition.py
AtomicOrbitals Highest occupied molecular orbital (HOMO) and lowest 

unoccupied molecular orbital (LUMO) using orbital energies from
NIST.

[64]

BandCenter Estimation of absolute position of band center using geometric 
mean of electronegativity.

[65]

CationProperty Element property attributes of cations in a composition [66]

CohesiveEnergy Cohesive energy per atom of a compound by adding known 
elemental cohesive energies from the formation energy of the 
compound.

[67]

ElectronAffinity Average electron affinity times formal charge of anion elements. [66]
ElectronegativityDiff Statistics on electronegativity difference between anions and 

cations.
[66]

ElementFraction Fraction of each element in a composition. -
ElementProperty Statistics of various element properties [22,36,

66]
IonProperty Maximum and average ionic character, whether a composition is 

charge-balanced
[22]

Miedema Formation enthalpies of intermetallic compounds, solid 
solutions, and amorphous phases using semi-empirical Miedema
model (and some extensions).

[68–
70]

OxidationStates Statistics of oxidation states. [66]
Stoichiometry Lp norm-based stoichiometric attributes. [22]
TMetalFraction Fraction of magnetic transition metals. [66]
ValenceOrbital Valence orbital attributes such as the mean number of electrons 

in each shell.
[22,66]

structure.py
BagofBonds Representation where each structure is represented based on 

the types of and distances between each pair of sites
[71]

BondFraction Fraction of nearest neighbors between each element (e.g., C-O 
vs C-C) bonds 

[71]

ChemicalOrdering How much the ordering of species in the structure differs from 
random

[6]

ColoumbMatrix Coulomb matrix (Mij = Zi Zj /|Ri – Rj| for i≠j, Zi
2.4/2 for i=j, with Zi 

and Ri the nuclear charge and the position of atom i).
[7]

ElectronicRadialDistribu
tionFunction 

RDF in which the positions of neighboring sites are weighted by 
electrostatic interactions inferred from atomic partial charges.

[72]

Ewald Energy Energy from Coulombic interactions based on charge states of 
each site

[73]

GlobalSymmetryFeature Symmetry information such as spacegroup number and –

-8-



s (enumerated) crystal system type.
MaximumPackingEfficie
ncy

Maximum possible packing efficiency of this structure [6]

MinimumRelativeDistan
ces

Closest neighbor distances for all sites, where relative distance 
are used fij=rij/ (ri

atom+rj
atom) with ri

atom being radius of atom or ion i.
[74]

OrbitalFieldMatrix Average of the 32 by 32 matrix descriptions of the chemical 
environment of each atom in the unit cell, based on the group 
numbers, row numbers (optional), distances of coordinating 
atoms, and Voronoi Polyhedra weights.

[75]

PartialRadialDistribution
Function

Frequency of bonds across varied ranges of length between 
certain pairs of elements 

[58]

RadialDistributionFuncti
on

Conventional radial distribution function (RDF) of a crystal 
structure.

–

RadialDistributionFuncti
onPeaks

Distances of the largest peaks in the RDF of a structure –

StructuralHeterogeneity Variance in the bond lengths and atomic volumes in a structure [6]
SineCoulombMatrix Same as the CoulombMatrix, except the nondiagonal elements 

are weighted by ‖B∙ ∑
k={x, y , z }

êksin
2[π êkB

−1∙ rij ]‖2
−1

, where 

rij is the vector between atoms i and j and B is the lattice matrix, 
rather than 1/rij.

[56]

SiteStatsFingerprint Generates features pertaining to an entire structure by 
computing statistics across the features of all sites in the unit cell

–

bandstructure.py
BandFeaturizer Non-zero band gap, direct band gap, k-point degeneracy, relative 

energy to CBM/VBM at arbitrary list of k-points and at 
conduction/valence bands.

–

BranchPointEnergy Branch-point energy by averaging the energy of arbitrary 
number of conduction and valence bands throughout the full 
Brillouin zone.

[76]

dos.py  
DOSFeaturizer The top N contributors to the density of states at the valence and

conduction band edges. Includes chemical specie, orbital 
character, and orbital location information.

–

site.py
AGNIFingerprints Fingerprints based on integrating the distances product of the 

radial distribution function with a gaussian window function
[77]

AngularFourierSeries Encodes both radial and angular information about site 
neighbors. Each feature is a sum of the product of two distance 
functions between atoms that share the central site and the 
cosine of the angle between them.

[17]
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ChemEnvSiteFingerprint Local site environment fingerprint computed with the chemenv 
module in pymatgen.

[78,79]

ChemicalSRO Chemical short-range ordering features to evaluate deviation of 
local chemistry with the nominal composition of entire structure.

[80]

CoordinationNumber Number of first nearest neighbors of a site [74]
CrystalSiteFingerprint Coordination number percentage and local structure order 

parameters computed from the neighbor environment of a site; 
Voronoi decomposition-based neighbor finding.

[74]

GaussianSymmFunc Gaussian radial and angular symmetry functions originally 
proposed for fitting machine learning potentials.

[28,81]

GeneralizedRadialDistrib
utionFunction

A radial distribution function where the bins do not need to act 
in a "histogram" mode. The bins can be any arbitrary function 
such as Gaussians, Bessel functions, or trig functions.

[17]

LocalPropertyDifference Differences in elemental properties between site and its 
neighboring sites

[6]

OPSiteFingerprint Local structure order parameters computed from the neighbor 
environment of a site; distance-based neighbor finding.

[74,79]

VoronoiFingerprint Voronoi indices, i-fold symmetries and statistics of Voronoi facet 
areas, sub-polyhedron volumes and distances derived by Voronoi
tessellation analysis.

[80]

Table 0. A list of the featurizers currently implemented in matminer. Each row in the table provides the 
name of the relevant Python class, a concise description of the features it computes, and the appropriate
references to the original methodology.

3.3 Data Visualization
A crucial step of a materials informatics workflow is visualizing data, which is helpful in understanding 
outliers, selecting features, and guiding the machine learning process. Many data-driven materials 
studies generate a standard suite of similar charts, such as heatmaps or two-dimensional scatter plots, 
which condense multiple complex relationships into simple, informative figures. For example, visualizing 
distributions of data (such as histograms and violin plots) at intermediate steps in the workflow process 
is a useful tool for pruning data and identifying outliers. Matminer drastically simplifies making many 
common visualizaitons.
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Although there exist several excellent plotting libraries in Python (e.g., matplotlib[82] and seaborn[83]), 
these libraries are not designed to generate interactive plots that are also easy to share and serialize to a 
raw data format. Fortunately, the Plotly library[84] provides the needed functionality; however, its 
integration with standard Python data libraries such as pandas remains minimal. Thus, to accelerate 
visualization, matminer includes its own module, FigRecipes, that provides a set of pre-defined methods 
for creating well-formatted, common figures (Error: Reference source not found).  Plotly was selected as 
the backend of FigRecipes because (1) its interactivity enables the rapid identification (via Plotly 
"hoverinfo") of outliers in data sets, which are frequently the most important data points in materials 
informatics studies, and (2) it uses a portable JSON representation of Plotly plots, which enables 
FigRecipes to output fine-tunable Plotly figure templates with a few lines of code. Furthermore, 
interactive Plotly figures can be shared easily on the web via URL, which facilitates making figures 
collaboratively.

The PlotlyFig class in matminer's FigRecipes module supports seven types of plots:  x-y plots, scatter 
matrices, histograms, bar charts, heatmaps, parallel plots, and violin plots. FigRecipes also facilitates 
generating often-overlooked figures, such as parallel coordinate plots[85], which have been found to be 
useful in materials science applications as they provide a technique for representing relationships 
between variables in high dimensional spaces.  PlotlyFig can generate several plots using the same 
DataFrame content, automatically determining relevant labels and legend information from DataFrame 
column headers. PlotlyFig can also automatically bin and tranform data to be compatible with the 
selected plot type; for example, PlotlyFig can automatically bin data in a DataFrame to create a heatmap 
and can generate multiple violin plots from a DataFrame lacking an explicit 'group' column. PlotlyFig's 
succinct syntax and automatic conversions provide robust extensions of Plotly's plotting functionality. 

PlotlyFig interfaces with several Plotly options for visualization, such as interactive offline plotting, static 
images, and the online Plotly interface. All figures generated with FigRecipes can be returned as a 
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Figure 0. Examples of plots based on a built-in data set of elastic tensors[53] and generated through the FigRecipes interface. 
Clockwise from top-left: a scatter matrix, a heat map, a violin plot, and an x-y plot with color dimension that represents 
Poisson ratio.



PlotlyDict object, a JSON-like dict representation of a figure that can be serialized and stored for 
reproducibility and sharing. This ability makes FigRecipes a useful plotting tool for creating scientific 
representations of data; complex data can first be easily converted into a PlotlyDict template, and this 
figure template specifically edited to create custom-made publication-quality images. 

4 Examples of using matminer
Next, we present four usage examples that showcase the capabilities of matminer. The source code for 
these and other examples are available as part of the matminer_examples GitHub repository 
(https://github.com/hackingmaterials/matminer_examples). Users can download, inspect, and execute 
the full code for these examples themselves and modify them for their own applications.

4.1 Retrieving data sets and visualizing them
In our first example, we use matminer's CitrineDataRetrieval tool to collect the experimental 
thermoelectric materials properties reported by Gaultois et al.[86] and compiled in the Citrine database. 
We then, with the help of FigRecipes, visualize this data in just a few lines of code. An example output is 
depicted in Figure , in which electrical conductivity, Seebeck coefficient, thermal conductivity and the 
figure of merit of thermoelectric materials (zT) are visualized in a single plot. This example effectively 
recreates Figure 3 of Ref. [86] but allows the user to process the data locally, perhaps adding in their own
data filtering or featurization procedure. Once the data set is loaded into a DataFrame called "df_te", re-
creating this figure can be accomplished by two Python commands, as follows:

pf = PlotlyFig(df_te, x_scale='log', x_title='Electrical Resistivity (cm/S)',
               y_title='Seebeck Coefficient (uV/K)',
               colorbar_title='Thermal Conductivity (W/m.K)')
pf.xy(('Electrical resistivity', 'Seebeck coefficient'),
      labels='chemicalFormula', sizes='zT',
      colors='Thermal conductivity', color_range=[0, 5]) 
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Figure 0. Thermoelectric properties of nearly 1000 materials compiled by Gaultois et al. [86] and as retrieved and visualized 
with matminer. The marker size is scaled according to the figure of merit, zT.

https://github.com/hackingmaterials/matminer_examples


The first line defines the data used by the charts and names for the axes. The second line defines the 
data being plotted. Further details are handled automatically. For example, zT values are normalized for 
better visualization. In addition, because the user specified a color_range of [0, 5] for the thermal 
conductivity values, all thermal conductivity values equal or greater than 5 are denoted by a bright 
yellow color with a "5+" tick label is automatically added to the colorbar. Thus, FigRecipes includes both 
automatic and customizable options that balance speed and flexibility of visualization.

4.2 Comparing experiment and theory data
In another example, we retrieve all the experimental band gap data available in Citrine and compare 
them with the calculated values available in the Materials Project.[39] Comparing data from two 
different sources is often complicated by the need to match records from one system to another. In this 
example, we need to find records in Materials Project with the same composition. As many entries in 
Citrination lack an associated crystal structure, we match each band gap to the ground-state structure 
with the same composition in Materials Project. Owing to the CitrineDataRetrieval class, the Material 
Project API and Pandas, merging the two data sources requires only 9 lines of code:

c = CitrineDataRetrieval() # Create an adapter to the Citrine Database.
df = c.get_dataframe(prop='band gap', data_type='EXPERIMENTAL', 
                     show_columns=['chemicalFormula', 'Band gap'])
mpr = MPRester()
def get_MP_bandgap(formula):
  formula = Composition(formula).get_integer_formula_and_factor()[0]
  strcs = mpr.get_data(formula)
  if strcs:
    return sorted(strcs, key=lambda e: e[‘energy_per_atom’])[0][‘band_gap’]
df[‘DFT Band gap’] = data[‘chemicalFormula’].apply(get_MP_bandgap)

As shown in Error: Reference source not found, most computed DFT band are lower than the 
experimental values, which is a known drawback of DFT calculations performed using LDA or GGA 
functionals.[87–89] Because the comparison is performed automatically, minimal human effort is 
required to update the result as new experimental band gaps are added to Citrination or new 
calculations are performed by Materials Project. As exemplified by this example, the tools matminer 
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Figure 0. Comparison of experimentally-measured band gap energies retrieved from the Citrine database to DFT-PBE computed 
electronic band gaps retrieved from the Materials Project. As expected, the data set demonstrates that computed band gaps 
underestimate experimental values.[87–89]



provides to automate data-driven analyses can make reproducing data-driven materials studies much 
simpler.

4.3 Building a machine learning model using OQMD data
To demonstrate how matminer can facilitate the process of machine learning, we recreate a machine 
learning model from a 2016 paper by Ward et al.[22] In this work, the authors trained a machine 
learning model using data from the Open Quantum Materials Database (OQMD) to predict the formation
enthalpy of crystalline materials given their composition. 

The first step is to retrieve the OQMD data used by Ward et al., which is available through the Materials 
Data Facility.[44] We can use matminer’s  data retrieval tools to access this data directly with only three 
lines of code:

mdf = retrieve_MDF.MDFDataRetrieval(anonymous=True) 
query_string = 'mdf.source_name:oqmd_v3 AND (oqmd_v3.configuration:static OR 

oqmd_v3.configuration:standard) AND dft.converged:True'
data = mdf.get_dataframe_by_query(query_string, unwind_arrays=False)

The next step is to process the dataset to create a suitable training set: removing errors, duplicates, and 
outliers. For example, removing all entries which lack a computed formation enthalpy can be achieved in 
a single line of Python: 

data = data[~ data['oqmd_v3.delta_e.value'].isnull()]

The third step in building a machine learning model is computing a representation. We have 
implemented the techniques developed by Ward et al. into matminer as Featurizer classes. These 
Featurizers, which operate on DataFrame objects, are also simple to run:

featurizer = MultipleFeaturizer([
cf.Stoichiometry(), cf.ElementProperty.from_preset("magpie"),
cf.ValenceOrbital(props=['avg']), cf.IonProperty()])

featurizer.featurize_dataframe(data, col_id='composition_obj')

These two lines of code generate the 145 features used by Ward et al. and store them within the 
DataFrame object. At this point, the data are in a form that is compatible with existing machine learning 
libraries, such as scikit-learn or Keras. After using scikit-learn’s Random Forest implementation and cross-
validation utilities, we find that our model achieves a MAE of 0.071 eV/atom in 10-fold cross-validation, 
which is consistent with the results reported by Ward et al. (as low as 0.088 eV/atom using a different 
tree-based ML method). Overall this example serves to demonstrate how matminer, combined with 
community-standard data analysis and machine learning libraries, facilitates the construction of machine
learning models from materials data.

4.4 Comparing crystal structure featurization methods
Another benefit of matminer is that it simplifies comparing machine learning methods. To illustrate, we 
used matminer to compare three methods for predicting the formation energy for a given crystal 
structure: the Sine Coulomb Matrix (SCM),[56] the Orbital Field Matrix (OFM),[75] and a recent 
modification to the OFM in development that also includes the row of each element in the periodic table
in addition to the column (OFMR).

The first step in comparing the models is to gather training sets. For this task, we use the original 3938 
structures selected by Faber et al. from the Materials Project (FLLA)[56] and a dataset of all 7735 stable 
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ternary oxides in the Materials Project with unit cell size at most 30 atoms (TER_OX). Gathering the data 
is simple with matminer. The FLLA data set is built into matminer and the TER_OX dataset can be 
gathered with a single MPDataRetrieval query:

from matminer.data_retrieval.retrieve_MP import MPDataRetrieval
mpr = MPDataRetrieval()
criteria = '*-*-O'
properties = ['structure', 'nsites', 'formation_energy_per_atom',
'e_above_hull']
df = mpr.get_dataframe(criteria=criteria, properties=properties)
df = df[df['e_above_hull'] < 0.1]
df = df[df['nsites'] <= 30]

Table 0. Performance (in terms of both accuracy and time needed to featurize) of several machine learning methods on two 
different datasets: the FLLA[56] and TER_OX datasets. We compare the Sine Coulomb Matrix (SCM),[56] Orbital Field Matrix 
(OFM),[75]and Orbital Field Matrix + row in periodic table (OFMR). The performance scores are for each model in 5-fold cross-
validation.  Each model was run on 24, 2.3 GHz processor cores on a system with 64 GB of RAM.

Dataset Descriptor
MAE

(eV/atom)
RMSE

(eV/atom)
r2 Featurize

Time (s)
Cross-validation
Time (h:mm:ss)

FLLA

SCM 0.387 0.575 0.708 2.0 0:07:42

OFM 0.229 0.346 0.894 138. 0:50:40

OFMR 0.171 0.277 0.932 138. 1:20:14

TER_OX

SCM 0.123 0.220 0.917 5.0 0:30:16

OFM 0.090 0.140 0.967 366. 4:30:16

OFMR 0.059 0.100 0.983 363. 7:06:42

Each of the three methods use Kernel Ridge Regression (KRR) as the machine learning algorithm; we 
employ the implementation of this method from scikit-learn. scikit-learn includes a well-optimized 
implementation of KRR, and has a tool – GridSearchCV – for easily selecting the optimum kernel and 
regularization parameter for KRR.[30] We tested each method using five-fold cross validation, and used 
four-fold cross-validation when selecting optimizing hyperparameters for each fold. We tested Laplacian 
and RBF (radial basis function) kernels for both features, and used the r2 value of the formation energy 
per atom predictions to score each hyperparameter set.[30]

The orbital field matrix can be time consuming to calculate for a large dataset because of its size; 
however, the process can be accelerated by the parallelization feature of matminer. Matminer 
automatically runs in parallel across all available CPU cores using Python’s multiprocessing package. The 
following code computes the OFM representation and automatically runs in parallel:

from matminer.featurizers.structure import OrbitalFieldMatrix
ofm = OrbitalFieldMatrix()
df = ofm.featurize_dataframe(df, 'structure')

The cross-validation results for the FLLA and TER_OX datasets are presented in Table 0. We find very 
close agreement between the Mean Absolute Error (MAE) reported by Faber et al. for the SCM (0.37 
eV/atom) and our result with matminer of 0.387 eV/atom, despite minor differences in the cross-
validation procedure.[56] This demonstrates that we are able to reproduce the methodology of a 
published machine learning paper and compare it with a new featurization method (OFMR) with very 
little effort.
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Our results indicate that for both data sets, the OFMR outperforms the OFM featurizer, which in turn 
outperforms the SCM (Table 0). All methods perform better on the TER_OX dataset than the FLLA 
dataset, demonstrating that the specific data set influences both absolute and relative model 
performance. Featurization and evaluation of the OFM and OFMR take much longer than for the SCM 
because of the size of the descriptors, which may result in a time-accuracy tradeoff in some applications. 
We also note that Faber et al. have been developing updated structure representations[90] that in the 
future might be further compared to the current results. Being able to probe the applicability of different
featurization methods for different data sets is significantly simplified by the ability to easily swap out 
different machine learning methods and datasets within a machine learning pipeline. This allows for 
rapid testing of new methods against various data sets.

5 Conclusion
Performing materials informatics requires developing a data pipeline that encompasses data retrieval, 
feature extraction, and visualization prior to the actual machine learning step. The matminer software 
described in this manuscript is designed to facilitate the development, reuse, and reproducibility of data 
pipelines for materials informatics applications. We have designed matminer to connect the domain-
specific aspects of materials informatics (i.e., materials data extraction, feature extraction of materials 
science concepts, common plotting routines) with the professional level machine learning and data 
processing software already developed and in use by the Python community.  It is our hope that 
matminer can serve as a community repository for new materials data analytics techniques as they 
become available such that researchers can rapidly develop and test new methods against standard 
techniques, accelerating the use of data mining in the materials community at large.
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