
UC Berkeley
UC Berkeley Previously Published Works

Title
Matminer: An open source toolkit for materials data mining

Permalink
https://escholarship.org/uc/item/6jn170sr

Authors
Ward, Logan
Dunn, Alexander
Faghaninia, Alireza
et al.

Publication Date
2018-09-01

DOI
10.1016/j.commatsci.2018.05.018

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6jn170sr
https://escholarship.org/uc/item/6jn170sr#author
https://escholarship.org
http://www.cdlib.org/

Matminer: An Open Source Toolkit for Materials Data
Mining
Logan Ward1,2, Alexander Dunn3,4, Alireza Faghaninia,3 Nils E.R. Zimmermann3, Saurabh Bajaj3,55, Qi Wang3,
Joseph Montoya3, Jiming Chen6, Kyle Bystrom4, Maxwell Dylla7, Kyle Chard,1,8 Mark Asta4, Kristin A.
Persson3, G. Jeffrey Snyder7, Ian Foster1, 2, Anubhav Jain3

1Computation Institute, University of Chicago, Chicago, IL, 60637
2Data Science and Learning Division, Argonne National Laboratory, Argonne, IL 60439
3Lawrence Berkeley National Laboratory, Energy Technologies Area, 1 Cyclotron Road, Berkeley, CA 94720
4Department of Materials Science and Engineering, University of California, Berkeley CA 94720
University of California, Berkeley, CA 94720
5Citrine Informatics, Redwood City, CA 94063
6Department of Chemical Engineering, University of Illinois, Urbana, IL, 61801
7Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
8Computing, Environment and Life Sciences, Argonne National Laboratory, Argonne, IL 60439

Abstract
As materials data sets grow in size and scope, the role of data mining and statistical learning methods to
analyze these materials data sets and build predictive models is becoming more important. This
manuscript introduces matminer, an open-source, Python-based software platform to facilitate data-
driven methods of analyzing and predicting materials properties. Matminer provides modules for
retrieving large data sets from external databases such as the Materials Project, Citrination, Materials
Data Facility, and Materials Platform for Data Science. It also provides implementations for an extensive
library of feature extraction routines developed by the materials community, with 44 featurization
classes that can generate thousands of individual descriptors and combine them into mathematical
functions. Finally, matminer provides a visualization module for producing interactive, shareable plots.
These functions are designed in a way that integrates closely with machine learning and data analysis
packages already developed and in use by the Python data science community. We explain the structure
and logic of matminer, provide a description of its various modules, and showcase several examples of
how matminer can be used to collect data, reproduce data mining studies reported in the literature, and
test new methodologies.

Keywords: data mining; open source software; machine learning; materials informatics

1 Introduction
Recently, the materials community has placed a renewed emphasis in collecting and organizing large
data sets for research, materials design, and the eventual application of statistical or "machine learning"
techniques. For example, the mining of databases comprised of density functional theory (DFT)
calculations has been used to identify materials for batteries,[1,2] to aid the design of metal alloys,[3,4]
and for many other applications[5]. Importantly, such data sets present new opportunities to develop
predictive models through machine learning techniques: rather than designing and programming such
models manually, such techniques produce predictive models by learning from a body of examples.
Machine learning models have been demonstrated to predict properties of crystalline materials much
faster than DFT,[6–9] estimate properties that are difficult to access via other computational tools,
[10,11] and guide the search for new materials.[12–16] With the continued development of general-
purpose data mining methods for many types of materials data[17–19] and the proliferation of material

-1-

property databases,[20] this emerging field of "materials informatics" is positioned to have a continued
impact on materials design.

In this paper, we describe a new software library, "matminer", for applying data-driven techniques to the
materials domain. The main roles of matminer are depicted in Error: Reference source not found:
matminer assists the user in retrieving large data sets from common databases, extracts features to
transform the raw data into representations suitable for machine learning, and produces interactive
visualizations of the data for exploratory analysis. We note that matminer does not itself implement
common machine learning algorithms; industry-standard tools (e.g., scikit-learn or Keras) are already
developed and maintained by the larger data science community for this purpose. Instead, matminer's
role is to connect these advanced machine learning tools to the materials domain.

Matminer solves many problems encountered when conducting data-driven research. For example,
learning the Application Programming Interface (API) for each data source and preprocessing retrieved
data adds significant complexity to the task of building new machine learning models. Matminer
provides a simplified interface that abstracts the details of these API interactions, making it easy for the
user to query and organize large data sets into the standard pandas[21] data format used by the Python
data science community. Furthermore, as we will further discuss later in the text, matminer implements
a suite of 39 distinct feature extraction modules capable of producing thousands of physically relevant
descriptors that can be leveraged by machine learning algorithms to more efficiently determine input-
output relationships. Although many such feature extraction methods are reported in the literature,
many lack an open source implementation. Matminer not only implements these domain-specific
feature extraction methods but provides a unified interface for their use, making it trivial to reproduce or
compare (and, eventually, extend) these methods. Finally, matminer contains many pre-defined recipes
of visualizations for exploring and discovering different data relationships. In aggregate, these features
allow for cutting edge materials informatics research to be conducted with a high-level, easy-to-use
interface.

We
note
that
prior

-2-

Figure 0. Overview of the capabilities of matminer. Matminer aids the user in constructing a data pipeline for
materials informatics and is composed of three main components: (1) tools for retrieving data from a variety
of materials databases, (2) tools for extracting features (or descriptors) from materials data, and (3) re-
useable and customizable recipes for visualizing materials data. Data is retrieved and processed in a way that
makes it simple to integrate matminer with external machine learning libraries such as scikit-learn and Keras.

efforts have produced software for computing features for materials (e.g., Magpie[22,23], pyMKS[24]),
building deep learning models of molecular materials (e.g., deepchem[25,26]), providing turnkey
machine learning estimates of various properties, or integrating machine learning with other software
[27–29]. In contrast to these prior efforts (which have their own intended applications and scope),
matminer is designed to interact and integrate with standard Python data mining tools such as pandas
and scikit-learn[30], implements a library of feature generation methods (“featurizers”) for a wide variety
of materials science entities (e.g., compositions, crystal structures, and electronic structures), and
includes tools to assist with data retrieval and visualization.

The source code for the version of matminer described in this manuscript (currently version 0.3.0) and
examples of its use are available as supplementary information. Updated versions are regularly
published to the Python Package Index (https://pypi.python.org/pypi/matminer). The actively developed
version of matminer is available on GitHub at https://github.com/hackingmaterials/matminer. Matminer
also includes a dedicated repository of examples and tutorials (many in an interactive, runnable Jupyter
notebook format[31]) for using the data retrieval, featurization, and visualization tools, located at
https://github.com/hackingmaterials/matminer_examples. Full documentation for matminer is also
available from https://hackingmaterials.github.io/matminer/. The matminer code currently contains 109
unit tests to ensure the integrity of the code, which are run automatically with each code commit
through a continuous integration process. A help forum for matminer is available at:
https://groups.google.com/forum/#!forum/matminer.

2 Software architecture and design principles
A guiding principle of matminer is to integrate domain-specific knowledge and data about materials into
larger ecosystem of Python data analysis software. The Python community has developed a rich suite of
interoperable tools for data science, which are broadly used across the data science community and
occasionally known as the “PyData” or “SciPy” stacks.[32] These libraries include NumPy and Scipy,[33]
which provide a suite of high-performance numerical methods, and Jupyter,[31] which facilitates
interactive data analysis. Matminer is designed to allow users to leverage these professional-level data
science libraries for materials science studies.

A central tool in the PyData stack is the pandas DataFrame, which is a tabular representation of data
similar to (but more powerful than) a virtual spreadsheet.[21] Pandas makes it possible, for example, to
load a data set and perform many common data post-processing procedures, such as filtering, grouping,
joining, computing rolling averages, and producing descriptive statistics. Additionally, data formatted into
a pandas DataFrame can be easily used with other Python data analysis libraries, such as scikit-learn,
numpy, and matplotlib. DataFrames can also be visualized as interactive tables within Jupyter notebooks.
They can also be serialized into multiple formats to allow them to be archived and shared. Because of all
the benefits and features that are achieved by transforming data into the DataFrame format, matminer's
data retrieval API automatically formats data that it retrieves from external sources into this format. Data
retrieved through matminer is thus immediately ready for a wide variety of tasks, including data
cleaning, data exploration, data transformations, data visualization, and machine learning. As described
in later sections, all data extraction, featurization, and visualization tools in matminer can generate or
operate on pandas DataFrame objects.

Matminer is also designed to integrate closely with the scikit-learn machine learning library.[30] Scikit-
learn is the de facto standard machine learning library for Python. In addition to its rich suite of machine

-3-

https://pypi.python.org/pypi/matminer
https://groups.google.com/forum/#!forum/matminer
https://hackingmaterials.github.io/matminer/
https://github.com/hackingmaterials/matminer_examples
https://github.com/hackingmaterials/matminer

learning algorithms, scikit-learn contains utilities useful for all aspects of the machine learning process
(e.g., data preprocessing, model selection, hyperparameter tuning). Other machine learning libraries,
such as Keras[34] and TensorFlow[35], also provide scikit-learn-compatible wrappers for their models,
which further motivates the importance of making matminer easily compatible with scikit-learn.
Matminer achieves integration with scikit-learn in two ways. First, the pandas DataFrame objects
produced by matminer are tightly integrated with scikit-learn through the interoperability built in to the
PyData stack. Second, the feature extraction methods implemented by matminer follow the same model
(and, more formally, subclass) scikit-learn’s preprocessing methods. This allows matminer feature
extraction methods to be used with scikit-learn's Pipeline functionality and makes it easy to combine
data processing methods present in the two libraries.

Matminer also heavily leverages the pymatgen[36] materials science library. Matminer's use of the
pymatgen library makes it unnecessary to recreate complex or materials-science-specific algorithms
(e.g., space group determination) when implementing new feature extraction methods. Overall, the
software architecture of matminer is designed to bridge the gap between the professional-level data
science tools developed by the Python community and the tools, techniques, and data specific to the
materials domain.

3 Components of matminer
We now describe the main functions of matminer. We describe each of the three major components.
data retrieval, featurization, and visualization, separately.

3.1 Data Retrieval
The first step in data mining is to obtain a data set that is ideally large and diverse. There are several
efforts underway in the materials community to build such databases of materials properties.[37–44]
However, while the proliferation of databases is a great benefit to materials informatics, the use of these
data sources is complicated by the fact that each database implements a different API, authentication
method, and schema. One core function of matminer is to provide a consistent API around different
databases and return the data in a form that is suitable for use in data mining tools.

At the time of writing, matminer supports data retrieval from four commonly used materials databases:
Citrination,[40,43] Materials Project (MP),[39] Materials Data Facility (MDF),[44] and Materials Platform
for Data Science (MPDS).[45] In addition, a generic MongoDB interface supports data retrieval from any
MongoDB resource.[46] Below, we describe these data retrieval tools in detail:

(i) Citrination, developed by Citrine Informatics [40], is a centralized database that contains a
variety of materials data, including experimental measurements and computational results, all in
a common data schema – the “pif”.[47] The matminer data retrieval tool uses Citrine’s
citrination-client library to retrieve data from Citrination, and then converts the data from the
hierarchical pif format to a tabular DataFrame format. In the process of converting the pif
records, matminer retrieves all details describing a material (e.g., composition), its known
properties, and how these properties were determined.

(ii) The Materials Project (MP) [39] primarily contains DFT [48,49] computed properties for over
60,000 compounds. In a similar fashion to the Citrination data extractor, matminer uses the
existing MP API[50] (as implemented in the “MPRester” class of the Python Materials Genomics
(pymatgen) library [36]) to query the database. MPDataRetrieval allows users to access a wide

-4-

variety of properties of crystalline materials, including their crystal structures, electronic band
structure, phonon dispersion, piezoelectric, dielectric and elastic constants.

(iii) The Materials Data Facility (MDF) is geared towards enabling researchers to publish their
own data sets across a wide array of data types and materials subdisciplines. Matminer contains
an MDFDataRetrieval class that uses the MDF's own Forge library[51] to perform the bulk of the
search function but assists the user in formatting the final data to a standardized pandas
DataFrame object.

(iv) The Materials Platform for Data Science (MPDS)[45] is a commercial database that includes
phase diagram data (~60,000 entries), crystal structure data (~400,000 entries), and materials
property values (~800,000 entries). The MPDSDataRetrieval class in matminer can retrieve and
format information from this database.

(v) MongoDB is a popular tool in the data mining community due to its efficient and flexible data
model.[46] For example, data generated through the atomate[52] computational suite is stored
in such databases. The “MongoDataRetrieval” class of matminer converts MongoDB documents
to rows of a pandas DataFrame.

All database tools are consistent in that they (i) contain a “get_dataframe” method that makes a query to
the database and (ii) returns the data in a Pandas DataFrame object. The input to the “get_dataframe”
operation and the authentication mechanism used vary depending on the database; however, matminer
standardizes the output such that data mining tools written for one database can be easily applied to
another. One benefit of the uniformity of the APIs and output formats provided by matminer is that
these features make it easy to combine data from multiple sources. The data merging tools built into the
pandas DataFrame object facilitate this procedure. For example, it is straightforward to retrieve
experimental band gap energies from Citrination and then easily compare those values with computed
band gap energies from Materials Project or the OQMD (this specific example is described in detail in
Section 4.2).

Matminer also contains several built-in datasets that can be loaded directly with a single line of Python
and do not require external database calls or setting any options. These built-in datasets include: 1181
DFT-based elastic tensors[53], 941 DFT-based piezoelectric tensors[54], 1056 DFT-based dielectric
constants[55], and 3938 DFT-based formation energies[39,56]. The built-in data sets make it simple to
begin testing and developing data mining methods.

Finally, a user can load their own data set using the built-in tools of the pandas library, which can load
data from CSV, Excel, or various other formats. This process can be conducted independently of
matminer but the final data format will be compatible with the subsequent data featurization tools of
matminer.

3.2 Data Featurization: transforming materials-related quantities into
physically relevant descriptors

Typically, machine learning employs an intermediate step between compiling raw data and applying a
machine learning algorithm. This step converts data from a raw format (often specialized for parsing by a
particular software package or formatted for human readability) into a numerical representation that is
useful for visualization or machine learning software. This process is called "feature extraction",
“featurization”, or generating "descriptors". Featurization transforms or augments the raw data (which

-5-

might have a very complicated and difficult to learn relationship between inputs and outputs) into a set
of physically relevant quantities that reflect the relationships between the input and output variables.
The feature extraction step is one of the main ways in which one can exploit domain knowledge to vastly
improve the performance of a machine learning algorithm. For example, common features that are
extracted from a chemical composition include the differences in electronegativities of the component
elements or the sum of atomic radii of the various elements.

Many generalizable featurization approaches have been proposed in the literature for different types of
materials data.[18,22,25,56–61] However, the software required to use them are often unavailable, not
open-source, or are distributed across many repositories. The lack of published software means that
employing these methods in practice requires a significant time investment. Through matminer, we
make these community developments in machine learning available to the community by providing
open-source implementations of various featurization methods. Furthermore, despite the diversity of
methodologies, matminer provides a uniform interface to all featurizers, freeing researchers to rapidly
iterate through different approaches and determine the method best suited to their application.

All featurizer classes in matminer follow a common code-design pattern by inheriting from a base class,
BaseFeaturizer, which defines the template for all featurization classes. BaseFeaturizer prescribes the
four methods that must be implemented by each new featurizer:

1. The “featurize” method does the core work. It transforms materials data (e.g., a
composition) into the desired feature values (e.g., element properties such as atomic weight,
atomic radii, and Mendeleev number).

2. The “feature_labels” method provides descriptive labels that correspond to the feature
values computed in the “featurize” method. These feature_labels can be thought of as
column labels for the various features (and are indeed used as column labels when
featurizing an entire DataFrame).

3. The “citations” method returns a list of BibTex-formatted references that a user should read
to fully understand the features and cite if they are used. The citations method thus provides
background and context for the featurizers and appropriate attribution to the original
developers of the methodology.

4. The “implementors” method provides the name of the person(s) who implemented and are
responsible for maintaining the featurizer. This is useful if one has a question, comment, or
suggestion regarding the specific implementation details of a featurization method.

-6-

BaseFeaturizer provides additional functions that a user can call once these four methods are
implemented. For example, the “featurize_dataframe” method uses the “featurize” and “feature_labels”
operations to add the features to an entire pandas DataFrame. That is, featurize_dataframe will process
potentially thousands or millions of rows of data, exploiting Python's multiprocess functionality to
parallelize over available cores. The BaseFeaturizer class also follows the pattern used by featurizers in
the scikit-learn machine learning library, which allows matminer featurization classes to be integrated
easily with existing scikit-learn tools. For example, one can build a data processing pipeline that mixes
some of the data normalization tools present in scikit-learn with the materials-specific features
implemented in matminer.

Matminer contains, at the time of writing, a total of 44 featurizers that support the generation of
features for diverse types of materials data. Each of these featurizers can produce many individual
features/descriptors, such that it is possible to generate thousands of total features with the matminer
code. For example, the ElementProperty featurizer will convert a chemical composition into various
summary statistics of the properties of that composition's component elements (e.g., average ionic
radius or standard deviation of elemental melting points). The BandFeaturizer will convert a complex
electronic band structure into quantities such as band gap and the norm of k point coordinates at which
the conduction band minimum and valence band maximum occur.

We have grouped the featurizers into five different Python modules based on the input data type: (i)
composition, (ii) (crystal) structure, (iii) density of (electronic) states, (iv) band structure, and (v) (atomic)
site. The featurizers available in matminer in each module are presented in Error: Reference source not
found. In Table 0, we briefly describe each featurizer and provide the canonical reference(s). The
complete source code for each featurizer is available in matminer such that users can employ, fully
inspect, and modify the implementations of these methods.

In addition to these individual featurizers, we provide a FunctionFeaturizer that combines individual
features into functions such as products, quotients, logarithms, or any arbitrary mathematical
expression. This procedure allows one to generate a large space of candidate features from even a small
number of initial input features and has been observed to be useful in several previous works in the

-7-

Figure 0. Overview of the 39 featurizers that are currently available in five different modules (composition, site, structure,
bandstructure, dos) of matminer. Each featurizer can generate one or hundreds of features, such that matminer as a
whole is capable of producing thousands of individual features.

materials domain[18,62]. The implementation in matminer leverages the sympy library[63] which can
eliminate symbolically redundant features.

Featurizer Description Refere
nce

composition.py
AtomicOrbitals Highest occupied molecular orbital (HOMO) and lowest

unoccupied molecular orbital (LUMO) using orbital energies from
NIST.

[64]

BandCenter Estimation of absolute position of band center using geometric
mean of electronegativity.

[65]

CationProperty Element property attributes of cations in a composition [66]

CohesiveEnergy Cohesive energy per atom of a compound by adding known
elemental cohesive energies from the formation energy of the
compound.

[67]

ElectronAffinity Average electron affinity times formal charge of anion elements. [66]
ElectronegativityDiff Statistics on electronegativity difference between anions and

cations.
[66]

ElementFraction Fraction of each element in a composition. -
ElementProperty Statistics of various element properties [22,36,

66]
IonProperty Maximum and average ionic character, whether a composition is

charge-balanced
[22]

Miedema Formation enthalpies of intermetallic compounds, solid
solutions, and amorphous phases using semi-empirical Miedema
model (and some extensions).

[68–
70]

OxidationStates Statistics of oxidation states. [66]
Stoichiometry Lp norm-based stoichiometric attributes. [22]
TMetalFraction Fraction of magnetic transition metals. [66]
ValenceOrbital Valence orbital attributes such as the mean number of electrons

in each shell.
[22,66]

structure.py
BagofBonds Representation where each structure is represented based on

the types of and distances between each pair of sites
[71]

BondFraction Fraction of nearest neighbors between each element (e.g., C-O
vs C-C) bonds

[71]

ChemicalOrdering How much the ordering of species in the structure differs from
random

[6]

ColoumbMatrix Coulomb matrix (Mij = Zi Zj /|Ri – Rj| for i≠j, Zi
2.4/2 for i=j, with Zi

and Ri the nuclear charge and the position of atom i).
[7]

ElectronicRadialDistribu
tionFunction

RDF in which the positions of neighboring sites are weighted by
electrostatic interactions inferred from atomic partial charges.

[72]

Ewald Energy Energy from Coulombic interactions based on charge states of
each site

[73]

GlobalSymmetryFeature Symmetry information such as spacegroup number and –

-8-

s (enumerated) crystal system type.
MaximumPackingEfficie
ncy

Maximum possible packing efficiency of this structure [6]

MinimumRelativeDistan
ces

Closest neighbor distances for all sites, where relative distance
are used fij=rij/ (ri

atom+rj
atom) with ri

atom being radius of atom or ion i.
[74]

OrbitalFieldMatrix Average of the 32 by 32 matrix descriptions of the chemical
environment of each atom in the unit cell, based on the group
numbers, row numbers (optional), distances of coordinating
atoms, and Voronoi Polyhedra weights.

[75]

PartialRadialDistribution
Function

Frequency of bonds across varied ranges of length between
certain pairs of elements

[58]

RadialDistributionFuncti
on

Conventional radial distribution function (RDF) of a crystal
structure.

–

RadialDistributionFuncti
onPeaks

Distances of the largest peaks in the RDF of a structure –

StructuralHeterogeneity Variance in the bond lengths and atomic volumes in a structure [6]
SineCoulombMatrix Same as the CoulombMatrix, except the nondiagonal elements

are weighted by ‖B∙ ∑
k={x, y , z }

êksin
2[π êkB

−1∙ rij]‖2
−1

, where

rij is the vector between atoms i and j and B is the lattice matrix,
rather than 1/rij.

[56]

SiteStatsFingerprint Generates features pertaining to an entire structure by
computing statistics across the features of all sites in the unit cell

–

bandstructure.py
BandFeaturizer Non-zero band gap, direct band gap, k-point degeneracy, relative

energy to CBM/VBM at arbitrary list of k-points and at
conduction/valence bands.

–

BranchPointEnergy Branch-point energy by averaging the energy of arbitrary
number of conduction and valence bands throughout the full
Brillouin zone.

[76]

dos.py
DOSFeaturizer The top N contributors to the density of states at the valence and

conduction band edges. Includes chemical specie, orbital
character, and orbital location information.

–

site.py
AGNIFingerprints Fingerprints based on integrating the distances product of the

radial distribution function with a gaussian window function
[77]

AngularFourierSeries Encodes both radial and angular information about site
neighbors. Each feature is a sum of the product of two distance
functions between atoms that share the central site and the
cosine of the angle between them.

[17]

-9-

ChemEnvSiteFingerprint Local site environment fingerprint computed with the chemenv
module in pymatgen.

[78,79]

ChemicalSRO Chemical short-range ordering features to evaluate deviation of
local chemistry with the nominal composition of entire structure.

[80]

CoordinationNumber Number of first nearest neighbors of a site [74]
CrystalSiteFingerprint Coordination number percentage and local structure order

parameters computed from the neighbor environment of a site;
Voronoi decomposition-based neighbor finding.

[74]

GaussianSymmFunc Gaussian radial and angular symmetry functions originally
proposed for fitting machine learning potentials.

[28,81]

GeneralizedRadialDistrib
utionFunction

A radial distribution function where the bins do not need to act
in a "histogram" mode. The bins can be any arbitrary function
such as Gaussians, Bessel functions, or trig functions.

[17]

LocalPropertyDifference Differences in elemental properties between site and its
neighboring sites

[6]

OPSiteFingerprint Local structure order parameters computed from the neighbor
environment of a site; distance-based neighbor finding.

[74,79]

VoronoiFingerprint Voronoi indices, i-fold symmetries and statistics of Voronoi facet
areas, sub-polyhedron volumes and distances derived by Voronoi
tessellation analysis.

[80]

Table 0. A list of the featurizers currently implemented in matminer. Each row in the table provides the
name of the relevant Python class, a concise description of the features it computes, and the appropriate
references to the original methodology.

3.3 Data Visualization
A crucial step of a materials informatics workflow is visualizing data, which is helpful in understanding
outliers, selecting features, and guiding the machine learning process. Many data-driven materials
studies generate a standard suite of similar charts, such as heatmaps or two-dimensional scatter plots,
which condense multiple complex relationships into simple, informative figures. For example, visualizing
distributions of data (such as histograms and violin plots) at intermediate steps in the workflow process
is a useful tool for pruning data and identifying outliers. Matminer drastically simplifies making many
common visualizaitons.

-10-

Although there exist several excellent plotting libraries in Python (e.g., matplotlib[82] and seaborn[83]),
these libraries are not designed to generate interactive plots that are also easy to share and serialize to a
raw data format. Fortunately, the Plotly library[84] provides the needed functionality; however, its
integration with standard Python data libraries such as pandas remains minimal. Thus, to accelerate
visualization, matminer includes its own module, FigRecipes, that provides a set of pre-defined methods
for creating well-formatted, common figures (Error: Reference source not found). Plotly was selected as
the backend of FigRecipes because (1) its interactivity enables the rapid identification (via Plotly
"hoverinfo") of outliers in data sets, which are frequently the most important data points in materials
informatics studies, and (2) it uses a portable JSON representation of Plotly plots, which enables
FigRecipes to output fine-tunable Plotly figure templates with a few lines of code. Furthermore,
interactive Plotly figures can be shared easily on the web via URL, which facilitates making figures
collaboratively.

The PlotlyFig class in matminer's FigRecipes module supports seven types of plots: x-y plots, scatter
matrices, histograms, bar charts, heatmaps, parallel plots, and violin plots. FigRecipes also facilitates
generating often-overlooked figures, such as parallel coordinate plots[85], which have been found to be
useful in materials science applications as they provide a technique for representing relationships
between variables in high dimensional spaces. PlotlyFig can generate several plots using the same
DataFrame content, automatically determining relevant labels and legend information from DataFrame
column headers. PlotlyFig can also automatically bin and tranform data to be compatible with the
selected plot type; for example, PlotlyFig can automatically bin data in a DataFrame to create a heatmap
and can generate multiple violin plots from a DataFrame lacking an explicit 'group' column. PlotlyFig's
succinct syntax and automatic conversions provide robust extensions of Plotly's plotting functionality.

PlotlyFig interfaces with several Plotly options for visualization, such as interactive offline plotting, static
images, and the online Plotly interface. All figures generated with FigRecipes can be returned as a

-11-

Figure 0. Examples of plots based on a built-in data set of elastic tensors[53] and generated through the FigRecipes interface.
Clockwise from top-left: a scatter matrix, a heat map, a violin plot, and an x-y plot with color dimension that represents
Poisson ratio.

PlotlyDict object, a JSON-like dict representation of a figure that can be serialized and stored for
reproducibility and sharing. This ability makes FigRecipes a useful plotting tool for creating scientific
representations of data; complex data can first be easily converted into a PlotlyDict template, and this
figure template specifically edited to create custom-made publication-quality images.

4 Examples of using matminer
Next, we present four usage examples that showcase the capabilities of matminer. The source code for
these and other examples are available as part of the matminer_examples GitHub repository
(https://github.com/hackingmaterials/matminer_examples). Users can download, inspect, and execute
the full code for these examples themselves and modify them for their own applications.

4.1 Retrieving data sets and visualizing them
In our first example, we use matminer's CitrineDataRetrieval tool to collect the experimental
thermoelectric materials properties reported by Gaultois et al.[86] and compiled in the Citrine database.
We then, with the help of FigRecipes, visualize this data in just a few lines of code. An example output is
depicted in Figure , in which electrical conductivity, Seebeck coefficient, thermal conductivity and the
figure of merit of thermoelectric materials (zT) are visualized in a single plot. This example effectively
recreates Figure 3 of Ref. [86] but allows the user to process the data locally, perhaps adding in their own
data filtering or featurization procedure. Once the data set is loaded into a DataFrame called "df_te", re-
creating this figure can be accomplished by two Python commands, as follows:

pf = PlotlyFig(df_te, x_scale='log', x_title='Electrical Resistivity (cm/S)',
 y_title='Seebeck Coefficient (uV/K)',
 colorbar_title='Thermal Conductivity (W/m.K)')
pf.xy(('Electrical resistivity', 'Seebeck coefficient'),
 labels='chemicalFormula', sizes='zT',
 colors='Thermal conductivity', color_range=[0, 5])

-12-

Figure 0. Thermoelectric properties of nearly 1000 materials compiled by Gaultois et al. [86] and as retrieved and visualized
with matminer. The marker size is scaled according to the figure of merit, zT.

https://github.com/hackingmaterials/matminer_examples

The first line defines the data used by the charts and names for the axes. The second line defines the
data being plotted. Further details are handled automatically. For example, zT values are normalized for
better visualization. In addition, because the user specified a color_range of [0, 5] for the thermal
conductivity values, all thermal conductivity values equal or greater than 5 are denoted by a bright
yellow color with a "5+" tick label is automatically added to the colorbar. Thus, FigRecipes includes both
automatic and customizable options that balance speed and flexibility of visualization.

4.2 Comparing experiment and theory data
In another example, we retrieve all the experimental band gap data available in Citrine and compare
them with the calculated values available in the Materials Project.[39] Comparing data from two
different sources is often complicated by the need to match records from one system to another. In this
example, we need to find records in Materials Project with the same composition. As many entries in
Citrination lack an associated crystal structure, we match each band gap to the ground-state structure
with the same composition in Materials Project. Owing to the CitrineDataRetrieval class, the Material
Project API and Pandas, merging the two data sources requires only 9 lines of code:

c = CitrineDataRetrieval() # Create an adapter to the Citrine Database.
df = c.get_dataframe(prop='band gap', data_type='EXPERIMENTAL',
 show_columns=['chemicalFormula', 'Band gap'])
mpr = MPRester()
def get_MP_bandgap(formula):
 formula = Composition(formula).get_integer_formula_and_factor()[0]
 strcs = mpr.get_data(formula)
 if strcs:
 return sorted(strcs, key=lambda e: e[‘energy_per_atom’])[0][‘band_gap’]
df[‘DFT Band gap’] = data[‘chemicalFormula’].apply(get_MP_bandgap)

As shown in Error: Reference source not found, most computed DFT band are lower than the
experimental values, which is a known drawback of DFT calculations performed using LDA or GGA
functionals.[87–89] Because the comparison is performed automatically, minimal human effort is
required to update the result as new experimental band gaps are added to Citrination or new
calculations are performed by Materials Project. As exemplified by this example, the tools matminer

-13-

Figure 0. Comparison of experimentally-measured band gap energies retrieved from the Citrine database to DFT-PBE computed
electronic band gaps retrieved from the Materials Project. As expected, the data set demonstrates that computed band gaps
underestimate experimental values.[87–89]

provides to automate data-driven analyses can make reproducing data-driven materials studies much
simpler.

4.3 Building a machine learning model using OQMD data
To demonstrate how matminer can facilitate the process of machine learning, we recreate a machine
learning model from a 2016 paper by Ward et al.[22] In this work, the authors trained a machine
learning model using data from the Open Quantum Materials Database (OQMD) to predict the formation
enthalpy of crystalline materials given their composition.

The first step is to retrieve the OQMD data used by Ward et al., which is available through the Materials
Data Facility.[44] We can use matminer’s data retrieval tools to access this data directly with only three
lines of code:

mdf = retrieve_MDF.MDFDataRetrieval(anonymous=True)
query_string = 'mdf.source_name:oqmd_v3 AND (oqmd_v3.configuration:static OR

oqmd_v3.configuration:standard) AND dft.converged:True'
data = mdf.get_dataframe_by_query(query_string, unwind_arrays=False)

The next step is to process the dataset to create a suitable training set: removing errors, duplicates, and
outliers. For example, removing all entries which lack a computed formation enthalpy can be achieved in
a single line of Python:

data = data[~ data['oqmd_v3.delta_e.value'].isnull()]

The third step in building a machine learning model is computing a representation. We have
implemented the techniques developed by Ward et al. into matminer as Featurizer classes. These
Featurizers, which operate on DataFrame objects, are also simple to run:

featurizer = MultipleFeaturizer([
cf.Stoichiometry(), cf.ElementProperty.from_preset("magpie"),
cf.ValenceOrbital(props=['avg']), cf.IonProperty()])

featurizer.featurize_dataframe(data, col_id='composition_obj')

These two lines of code generate the 145 features used by Ward et al. and store them within the
DataFrame object. At this point, the data are in a form that is compatible with existing machine learning
libraries, such as scikit-learn or Keras. After using scikit-learn’s Random Forest implementation and cross-
validation utilities, we find that our model achieves a MAE of 0.071 eV/atom in 10-fold cross-validation,
which is consistent with the results reported by Ward et al. (as low as 0.088 eV/atom using a different
tree-based ML method). Overall this example serves to demonstrate how matminer, combined with
community-standard data analysis and machine learning libraries, facilitates the construction of machine
learning models from materials data.

4.4 Comparing crystal structure featurization methods
Another benefit of matminer is that it simplifies comparing machine learning methods. To illustrate, we
used matminer to compare three methods for predicting the formation energy for a given crystal
structure: the Sine Coulomb Matrix (SCM),[56] the Orbital Field Matrix (OFM),[75] and a recent
modification to the OFM in development that also includes the row of each element in the periodic table
in addition to the column (OFMR).

The first step in comparing the models is to gather training sets. For this task, we use the original 3938
structures selected by Faber et al. from the Materials Project (FLLA)[56] and a dataset of all 7735 stable

-14-

ternary oxides in the Materials Project with unit cell size at most 30 atoms (TER_OX). Gathering the data
is simple with matminer. The FLLA data set is built into matminer and the TER_OX dataset can be
gathered with a single MPDataRetrieval query:

from matminer.data_retrieval.retrieve_MP import MPDataRetrieval
mpr = MPDataRetrieval()
criteria = '*-*-O'
properties = ['structure', 'nsites', 'formation_energy_per_atom',
'e_above_hull']
df = mpr.get_dataframe(criteria=criteria, properties=properties)
df = df[df['e_above_hull'] < 0.1]
df = df[df['nsites'] <= 30]

Table 0. Performance (in terms of both accuracy and time needed to featurize) of several machine learning methods on two
different datasets: the FLLA[56] and TER_OX datasets. We compare the Sine Coulomb Matrix (SCM),[56] Orbital Field Matrix
(OFM),[75]and Orbital Field Matrix + row in periodic table (OFMR). The performance scores are for each model in 5-fold cross-
validation. Each model was run on 24, 2.3 GHz processor cores on a system with 64 GB of RAM.

Dataset Descriptor
MAE

(eV/atom)
RMSE

(eV/atom)
r2 Featurize

Time (s)
Cross-validation
Time (h:mm:ss)

FLLA

SCM 0.387 0.575 0.708 2.0 0:07:42

OFM 0.229 0.346 0.894 138. 0:50:40

OFMR 0.171 0.277 0.932 138. 1:20:14

TER_OX

SCM 0.123 0.220 0.917 5.0 0:30:16

OFM 0.090 0.140 0.967 366. 4:30:16

OFMR 0.059 0.100 0.983 363. 7:06:42

Each of the three methods use Kernel Ridge Regression (KRR) as the machine learning algorithm; we
employ the implementation of this method from scikit-learn. scikit-learn includes a well-optimized
implementation of KRR, and has a tool – GridSearchCV – for easily selecting the optimum kernel and
regularization parameter for KRR.[30] We tested each method using five-fold cross validation, and used
four-fold cross-validation when selecting optimizing hyperparameters for each fold. We tested Laplacian
and RBF (radial basis function) kernels for both features, and used the r2 value of the formation energy
per atom predictions to score each hyperparameter set.[30]

The orbital field matrix can be time consuming to calculate for a large dataset because of its size;
however, the process can be accelerated by the parallelization feature of matminer. Matminer
automatically runs in parallel across all available CPU cores using Python’s multiprocessing package. The
following code computes the OFM representation and automatically runs in parallel:

from matminer.featurizers.structure import OrbitalFieldMatrix
ofm = OrbitalFieldMatrix()
df = ofm.featurize_dataframe(df, 'structure')

The cross-validation results for the FLLA and TER_OX datasets are presented in Table 0. We find very
close agreement between the Mean Absolute Error (MAE) reported by Faber et al. for the SCM (0.37
eV/atom) and our result with matminer of 0.387 eV/atom, despite minor differences in the cross-
validation procedure.[56] This demonstrates that we are able to reproduce the methodology of a
published machine learning paper and compare it with a new featurization method (OFMR) with very
little effort.

-15-

Our results indicate that for both data sets, the OFMR outperforms the OFM featurizer, which in turn
outperforms the SCM (Table 0). All methods perform better on the TER_OX dataset than the FLLA
dataset, demonstrating that the specific data set influences both absolute and relative model
performance. Featurization and evaluation of the OFM and OFMR take much longer than for the SCM
because of the size of the descriptors, which may result in a time-accuracy tradeoff in some applications.
We also note that Faber et al. have been developing updated structure representations[90] that in the
future might be further compared to the current results. Being able to probe the applicability of different
featurization methods for different data sets is significantly simplified by the ability to easily swap out
different machine learning methods and datasets within a machine learning pipeline. This allows for
rapid testing of new methods against various data sets.

5 Conclusion
Performing materials informatics requires developing a data pipeline that encompasses data retrieval,
feature extraction, and visualization prior to the actual machine learning step. The matminer software
described in this manuscript is designed to facilitate the development, reuse, and reproducibility of data
pipelines for materials informatics applications. We have designed matminer to connect the domain-
specific aspects of materials informatics (i.e., materials data extraction, feature extraction of materials
science concepts, common plotting routines) with the professional level machine learning and data
processing software already developed and in use by the Python community. It is our hope that
matminer can serve as a community repository for new materials data analytics techniques as they
become available such that researchers can rapidly develop and test new methods against standard
techniques, accelerating the use of data mining in the materials community at large.

6 Acknowledgements
This code was intellectually led and primarily developed using funding provided by U.S. Department of
Energy, Office of Basic Energy Sciences, Early Career Research Program, which funded the efforts of AJ,
AD, AF, SB, and QW. LW and IF were supported by financial assistance award 70NANB14H012 from U.S.
Department of Commerce, National Institute of Standards and Technology as part of the Center for
Hierarchical Material Design (CHiMaD), by the National Science Foundation as part of the Midwest Big
Data Hub under NSF Award Number: 1636950 "BD Spokes: SPOKE: MIDWEST: Collaborative: Integrative
Materials Design (IMaD): Leverage, Innovate, and Disseminate,” and by the Department of Energy
contract DE-AC02-06CH11357. NER, JM, MA, and KAP were funded by the U.S. Department of Energy,
Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under
Contract No. DE-AC02-05-CH11231 : Materials Project program KC23MP. JC and KC were supported by
NSF, United States grant 1541450 (CC*DNI DIBBS: Merging Science and Cyberinfrastructure Pathways:
The Whole Tale). KWB acknowledges the University of California, Berkeley College of Chemistry for a
summer research stipend. MD and GJS were funded by NSF DMR program Grant nos. 1334713 and
1333335.

This research used the Savio computational cluster resource provided by the Berkeley Research
Computing program at the University of California, Berkeley (supported by the UC Berkeley Chancellor,
Vice Chancellor for Research, and Chief Information Officer). This research used resources of the
National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by
the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

-16-

We thank all those in the materials community who have contributed code commits to matminer,
including Ashwin Aggarwal, Evgeny Blokhin, Jason Frost, Matthew Horton, Kiran Mathew, Shyue Ping
Ong, Sayan Rowchowdhury, and Donny Winston.

7 References
[1] H. Chen, G. Hautier, A. Jain, C. Moore, B. Kang, R. Doe, L. Wu, Y. Zhu, Y. Tang, G. Ceder, Chem.

Mater. 24 (2012) 2009.

[2] M. Aykol, S. Kim, V.I. Hegde, D. Snydacker, Z. Lu, S. Hao, S. Kirklin, D. Morgan, C. Wolverton, Nat.
Commun. 7 (2016) 13779.

[3] C. Nyshadham, C. Oses, J.E. Hansen, I. Takeuchi, S. Curtarolo, G.L.W. Hart, Acta Mater. 122 (2017)
438.

[4] S. Kirklin, J.E. Saal, V.I. Hegde, C. Wolverton, Acta Mater. 102 (2016) 125.

[5] A. Jain, K.A. Persson, G. Ceder, APL Mater. 4 (2016) 53102.

[6] L. Ward, R. Liu, A. Krishna, V.I. Hegde, A. Agrawal, A. Choudhary, C. Wolverton, Phys. Rev. B 96
(2017) 24104.

[7] M. Rupp, A. Tkatchenko, K.-R. Müller, O.A. von Lilienfeld, Phys. Rev. Lett. 108 (2012) 58301.

[8] J. Carrete, W. Li, N. Mingo, S. Wang, S. Curtarolo, Phys. Rev. X 4 (2014) 11019.

[9] L. Ward, C. Wolverton, Curr. Opin. Solid State Mater. Sci. 21 (2017) 167.

[10] J.C. Mauro, A. Tandia, K.D. Vargheese, Y.Z. Mauro, M.M. Smedskjaer, Chem. Mater. 28 (2016)
4267.

[11] E.W. Bucholz, C.S. Kong, K.R. Marchman, W.G. Sawyer, S.R. Phillpot, S.B. Sinnott, K. Rajan, Tribol.
Lett. 47 (2012) 211.

[12] T.D. Sparks, M.W. Gaultois, A. Oliynyk, J. Brgoch, B. Meredig, Scr. Mater. 111 (2015) 10.

[13] R. Yuan, Z. Liu, P. V Balachandran, D. Xue, Y. Zhou, X. Ding, J. Sun, D. Xue, T. Lookman, Adv. Mater.
1702884 (2018) 1702884.

[14] A. Mannodi-Kanakkithodi, A. Chandrasekaran, C. Kim, T.D. Huan, G. Pilania, V. Botu, R.
Ramprasad, Mater. Today (2017). doi: 10.1016/j.mattod.2017.11.021

[15] F.A. Faber, A. Lindmaa, O.A. von Lilienfeld, R. Armiento, Phys. Rev. Lett. 117 (2016) 135502.

[16] F. Ren, L. Ward, T. Williams, K.J. Laws, C. Wolverton, J. Hattrick-Simpers, A. Mehta, Sci. Adv. 4
(2018) eaaq1566.

[17] A. Seko, H. Hayashi, K. Nakayama, A. Takahashi, I. Tanaka, Phys. Rev. B 95 (2017) 144110.

[18] R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, C. Kim, Npj Comput. Mater. 3 (2017)
54.

[19] S.R. Kalidindi, ISRN Mater. Sci. 2012 (2012) 1.

[20] J. Hill, G. Mulholland, K. Persson, R. Seshadri, C. Wolverton, B. Meredig, MRS Bull. 41 (2016) 399.

-17-

[21] W. McKinney, Proc. 9th Python Sci. Conf. 1697900 (2010) 51.

[22] L. Ward, A. Agrawal, A. Choudhary, C. Wolverton, Npj Comput. Mater. 2 (2016) 16028.

[23] http://bitbucket.org/wolverton/magpie

[24] W. Daniel, B. David, F. Tony, K. Surya, R. Andrew, PyMKS: Materials Knowledge System in Python,
(2014). doi:10.6084/m9.figshare.1015761.

[25] Z. Wu, B. Ramsundar, E.N. Feinberg, J. Gomes, C. Geniesse, A.S. Pappu, K. Leswing, V. Pande,
Chem. Sci. 9 (2018) 513.

[26] Https://github.com/deepchem/deepchem

[27] E. Gossett, C. Toher, C. Oses, O. Isayev, F. Legrain, F. Rose, E. Zurek, J. Carrete, N. Mingo, A.
Tropsha, S. Curtarolo, (2017) doi:arXiv:1711.10744v1.

[28] A. Khorshidi, A.A. Peterson, Comput. Phys. Commun. 207 (2016) 310.

[29] https://github.com/libAtoms/QUIP

[30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.
Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M.
Perrot, E. Duchesnay, J. Mach. Learn. Res. 12 (2011) 2825.

[31] F. Perez, B.E. Granger, Comput. Sci. Eng. 9 (2007) 21.

[32] K.J. Millman, M. Aivazis, Comput. Sci. Eng. 13 (2011) 9.

[33] S. van der Walt, S.C. Colbert, G. Varoquaux, Comput. Sci. Eng. 13 (2011) 22.

[34] https://github.com/keras-team/keras

[35] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M.
Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M.
Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B.
Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P.
Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, (2015). https://www.tensorflow.org/.

[36] S.P. Ong, W.D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V.L. Chevrier, K.A.
Persson, G. Ceder, Comput. Mater. Sci. 68 (2013) 314.

[37] A. Frantzen, J. Scheidtmann, G. Frenzer, W.F. Maier, J. Jockel, T. Brinz, D. Sanders, U. Simon,
Angew. Chemie Int. Ed. 43 (2004) 752.

[38] Y. Xu, M. Yamazaki, P. Villars, Jpn. J. Appl. Phys. 50 (2011) 11RH02.

[39] A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G.
Ceder, K.A. Persson, APL Mater. 1 (2013) 11002.

[40] https://citrination.com

[41] S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R.H. Taylor, L.J. Nelson, G.L.W. Hart, S. Sanvito,
M. Buongiorno-Nardelli, N. Mingo, O. Levy, Comput. Mater. Sci. 58 (2012) 227.

[42] J.E. Saal, S. Kirklin, M. Aykol, B. Meredig, C. Wolverton, JOM 65 (2013) 1501.

-18-

[43] J. O’Mara, B. Meredig, K. Michel, JOM 68 (2016) 2031.

[44] B. Blaiszik, K. Chard, J. Pruyne, R. Ananthakrishnan, S. Tuecke, I. Foster, JOM 68 (2016) 2045.

[45] https://mpds.io/

[46] https://www.mongodb.com/

[47] K. Michel, B. Meredig, MRS Bull. 41 (2016) 617.

[48] P. Hohenberg, W. Kohn, Phys. Rev. 136 (1964) B864.

[49] L.O. Wagner, T.E. Baker, E.M. Stoudenmire, K. Burke, S.R. White, Phys. Rev. B 90 (2014) 45109.

[50] S.P. Ong, S. Cholia, A. Jain, M. Brafman, D. Gunter, G. Ceder, K.A. Persson, Comput. Mater. Sci. 97
(2015) 209.

[51] https://github.com/materials-data-facility/forge

[52] K. Mathew, J.H. Montoya, A. Faghaninia, S. Dwarakanath, M. Aykol, H. Tang, I. Chu, T. Smidt, B.
Bocklund, M. Horton, J. Dagdelen, B. Wood, Z.-K. Liu, J. Neaton, S.P. Ong, K. Persson, A. Jain,
Comput. Mater. Sci. 139 (2017) 140.

[53] M. De Jong, W. Chen, T. Angsten, A. Jain, R. Notestine, A. Gamst, M. Sluiter, C.K. Ande, S. Van Der
Zwaag, J.J. Plata, C. Toher, S. Curtarolo, G. Ceder, K. a Persson, M. Asta, Sci. Data (2015) 1.

[54] M. de Jong, W. Chen, H. Geerlings, M. Asta, K.A. Persson, Sci. Data 2 (2015) 150053.

[55] I. Petousis, W. Chen, G. Hautier, T. Graf, T.D. Schladt, K.A. Persson, F.B. Prinz, Phys. Rev. B 93 (2016)
115151.

[56] F. Faber, A. Lindmaa, O.A. von Lilienfeld, R. Armiento, Int. J. Quantum Chem. 115 (2015) 1094.

[57] T. Fast, S.R. Kalidindi, Acta Mater. 59 (2011) 4595.

[58] K.T. Schütt, H. Glawe, F. Brockherde, A. Sanna, K.R. Müller, E.K.U. Gross, Phys. Rev. B 89 (2014)
205118.

[59] A. Seko, A. Takahashi, I. Tanaka, Phys. Rev. B 90 (2014) 24101.

[60] O. Isayev, C. Oses, C. Toher, E. Gossett, S. Curtarolo, A. Tropsha, Nat. Commun. 8 (2017) 15679.

[61] K.T. Schütt, F. Arbabzadah, S. Chmiela, K.R. Mu, A. Tkatchenko, Nat. Commun. 8 (2017) 13890.

[62] L.M. Ghiringhelli, J. Vybiral, S. V Levchenko, C. Draxl, M. Scheffler, Phys. Rev. Lett. 114 (2015)
105503.

[63] A. Meurer, C.P. Smith, M. Paprocki, O. Čertík, S.B. Kirpichev, M. Rocklin, Am. Kumar, S. Ivanov, J.K.
Moore, S. Singh, T. Rathnayake, S. Vig, B.E. Granger, R.P. Muller, F. Bonazzi, H. Gupta, S. Vats, F.
Johansson, F. Pedregosa, M.J. Curry, A.R. Terrel, Š. Roučka, A. Saboo, I. Fernando, S. Kulal, R.
Cimrman, A. Scopatz, PeerJ Comput. Sci. 3 (2017) e103.

[64] S. Kotochigova, Z.H. Levine, E.L. Shirley, M.D. Stiles, C.W. Clark, Phys. Rev. A 55 (1997) 191.

[65] M.A. Butler, J. Electrochem. Soc. 125 (1978) 228.

[66] A.M. Deml, R.O. Hayre, C. Wolverton, V. Stevanovic, Phys. Rev. B 93 (2016) 85142.

-19-

[67] C. Kittel, Introduction to Solid State Physics, 8th ed., Wiley, 2005.

[68] F.R. de Boer, Cohesion in Metals: Transition Metal Alloys, North-Holland, Amsterdam, 1988.

[69] R.F. Zhang, S.H. Zhang, Z.J. He, J. Jing, S.H. Sheng, Comput. Phys. Commun. 209 (2016) 58.

[70] L.J. Gallego, J.A. Somoza, J.A. Alonso, J. Phys. Condens. Matter 2 (1990) 6245.

[71] K. Hansen, F. Biegler, R. Ramakrishnan, W. Pronobis, O.A. Von Lilienfeld, K.-R.R. Müller, A.
Tkatchenko, J. Phys. Chem. Lett. 6 (2015) 2326.

[72] E.L. Willighagen, R. Wehrens, P. Verwer, R. de Gelder, L.M.C. Buydens, Acta Crystallogr. Sect. B
Struct. Sci. 61 (2005) 29.

[73] P.P. Ewald, Ann. Phys. 369 (1921) 253.

[74] N.E.R. Zimmermann, M.K. Horton, A. Jain, M. Haranczyk, Front. Mater. 4 (2017) 1.

[75] T. Lam Pham, H. Kino, K. Terakura, T. Miyake, K. Tsuda, I. Takigawa, H. Chi Dam, Sci. Technol. Adv.
Mater. 18 (2017) 756.

[76] A. Schleife, F. Fuchs, C. Rödl, J. Furthmüller, F. Bechstedt, Appl. Phys. Lett. 94 (2009) 12104.

[77] V. Botu, R. Ramprasad, Phys. Rev. B 92 (2015) 94306.

[78] D. Waroquiers, X. Gonze, G.-M. Rignanese, C. Welker-Nieuwoudt, F. Rosowski, M. Göbel, S.
Schenk, P. Degelmann, R. André, R. Glaum, G. Hautier, Chem. Mater. 29 (2017) 8346.

[79] N.E.R. Zimmermann, A. Jain, in preparation

[80] A. Okabe, B. Boots, K. Sugihara, S.N. Chiu, Spatial Tesselations, 2009.

[81] J. Behler, J. Chem. Phys. 134 (2011) 74106.

[82] J.D. Hunter, Comput. Sci. Eng. 9 (2007) 90.

[83] M. Waskom, O. Botvinnik, D. O’Kane, P. Hobson, S. Lukauskas, D.C. Gemperline, T. Augspurger, Y.
Halchenko, J.B. Cole, J. Warmenhoven, J. de Ruiter, C. Pye, S. Hoyer, J. Vanderplas, S. Villalba, G.
Kunter, E. Quintero, P. Bachant, M. Martin, K. Meyer, A. Miles, Y. Ram, T. Yarkoni, M.L. Williams, C.
Evans, C. Fitzgerald, Brian, C. Fonnesbeck, A. Lee, A. Qalieh, (2017). doi:10.5281/ZENODO.883859

[84] https://plot.ly/

[85] J.M. Rickman, Npj Comput. Mater. 4 (2018) 5.

[86] M.W. Gaultois, T.D. Sparks, C.K.H. Borg, R. Seshadri, W.D. Bonificio, D.R. Clarke, Chem. Mater. 25
(2013) 2911.

[87] J.P. Perdew, M. Levy, Phys. Rev. Lett. 51 (1983) 1884.

[88] L.J. Sham, M. Schlüter, Phys. Rev. Lett. 51 (1983) 1888.

[89] M.K.Y. Chan, G. Ceder, Phys. Rev. Lett. 105 (2010) 196403.

[90] F.A. Faber, A.S. Christensen, B. Huang, O.A. von Lilienfeld, J. Chem. Phys. 148 (2018) 241717.

-20-

	Abstract
	1 Introduction
	2 Software architecture and design principles
	3 Components of matminer
	3.1 Data Retrieval
	3.2 Data Featurization: transforming materials-related quantities into physically relevant descriptors
	3.3 Data Visualization

	4 Examples of using matminer
	4.1 Retrieving data sets and visualizing them
	4.2 Comparing experiment and theory data
	4.3 Building a machine learning model using OQMD data
	4.4 Comparing crystal structure featurization methods

	5 Conclusion
	6 Acknowledgements
	7 References

