
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Complex band structure under plane-wave nonlocal pseudopotential Hamiltonian of 
metallic wires and electrodes

Permalink
https://escholarship.org/uc/item/6jn3f5h7

Author
Yang, Chao

Publication Date
2010
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6jn3f5h7
https://escholarship.org
http://www.cdlib.org/


Complex band structure under plane-wave nonlocal pseudopotential Hamiltonian of

metallic wires and electrodes

M. G. Vergniory1, C. Yang1, A. Garcia-Lekue2 and Lin-Wang Wang1

1 Computational Research Division, Lawrence Berkeley National Laboratory, California 94720, USA
2Donostia International Physics Center (DIPC) , Basque Country, Spain

(Dated: July 17, 2009)

We present a practical approach to calculate the complex band structure of an electrode for
quantum transport calculations. This method is designed for plane wave based Hamiltonian with
nonlocal pseudopotentials and the auxiliary periodic boundary condition transport calculation ap-
proach. Currently there is no direct method to calculate all the evanescent states for a given energy
for systems with nonlocal pseudopotentials. On the other hand, in the auxiliary periodic boundary
condition transport calculation, there is no need for all the evanescent states at a given energy. The
current method fills this niche. The method has been used to study copper and gold nanowires and
bulk electrodes.

PACS numbers: 71.15.-m, 71.15.Dx, 73.20.At, 73.22.-f

I. INTRODUCTION

As the traditional CMOS device is reaching its length
limit, there is a flurry of research activities to find alter-
native materials, designs, or even completely new systems
(like the molecular electronics, and nanotubes) to replace
the traditional Si based CMOS. Due to the small scales
of all these proposed new devices, quantum mechanical
transport calculations are essential in their simulations.
The elastic quantum mechanical transport can be calcu-
lated using nonequilibrium Green’s function technique,
or via the scattering states calculations. In both ap-
proaches, the complex k-point band structure of the elec-
trodes, which includes both the running wave states and
evanescent states, are needed. In practice, the compu-
tation of the electrode complex band structure can be a
big part of the overall transport calculation. It might
not be so straightforward for many of the electrodes, es-
pecially when the electrode is not just a supercell of the
bulk system. The computation becomes especially chal-
lenging when plane wave basis set is used, and nonlocal
pseudopotential exist in the Hamiltonian, as there is no
direct methods to yield all the evanescent states for a
given energy level. On the other hand, in our new auxil-
iary periodic boundary condition approach for quantum
transport calculation it is not necessary to get all the
evanescent states for a given energy in order to get the
scattering states. Thus, it is desirable to find new prac-
tical ways to calculate the complex band structures.

There are long established methods for complex band
structure calculations. Suppose H(k) is the Hamiltonian
matrix under a basis set with Bloch vector k, here k has
both real and imaginary parts. The complex band struc-
ture problem can be posed as one that seeks a value of k

for which Hamiltonian H(k) has a prescribed eigenenergy
E. A straightforward approach to tackle this problem is
to solve det|H(k) − E| = 0 for k. For example, one can
scan a range of values of k until det|H(k)− E| becomes
negligibly small. However, this approach might not be
very efficient because the evaluation of H(k) for each new

k is time consuming, and k is complex (computationally
is a 2 dimensional variable). Using a simple tight-binding
model, we may obtain an analytical expression for H(k).
In this case, it can be shown that det|H(k) − E| is an
Nth degree polynomial of ξ = exp(ikza). Here complex
kz is the z (the direction of the electrode for which the
band structure is calculated) component of k, and a is an
interlayer atomic distance in the z direction. The degree
N is proportional to the number of neighboring layers in
the tight binding model multiplied by the atomic orbitals
in those layers. In practice, N+1 determinants are first
calculated. This calculation yields N+1 polynomial coef-
ficients from which the roots of the complex polynomial
are then searched.1 However, this method becomes nu-
merically unstable when the dimension of the system is
large.

In another method,2 the original complex band struc-
ture eigenvalue matrix equation H(k)C = EC is ex-
panded into a bigger eigenvalue matrix equation many
times of its original size. For example, in a tight-binding
formalism, due to the analytical expression of the role of
kz inside H(k), the original equation can be rewritten
as H2m(E)C′

2m = exp(ikza)C′
2m. Here m is the number

of neighboring layers in the tight-binding Hamiltonian,
and the subscript 2m indicates that the dimension of the
matrix H2m(E) is 2m times the original matrix H(k).
To obtain H2m(E), the inverse of matrices H(σ) − E
(σ = −m, m) must be first calculated. Because these ma-
trices may become nearly singular, the inversion of these
matrices must be done carefully. The generalized matrix
equation H2m(E)C′

2m = exp(ikza)C′
2m is then diagonal-

ized, and the corresponding complex eigenvalues will give
us the corresponding kz . The same thing can be worked
out for plane wave pseudopotential Hamiltonian without
the nonlocal part. In a plane wave Hamiltonian without
nonlocal potential, the k only appear in the kinetic en-
ergy operator, thus there are terms like kz and k2

z . As
a result, the matrix eigenvalue equation can be rewrit-
ten as H ′(E)C = kzC, where the dimension of H ′(E) is
twice of that in the original plane wave basis set. Again,
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the complex eigenvalue of this equation gives directly the
complex value of kz .

Unfortunately, such nice analytical expression for the
role of kz does not exist when there is a nonlocal poten-
tial. As a result, none of the above techniques can be
applied, except the direct evaluation of det|H(k) − E|,
which can be expensive to calculate and difficult to search
for the zeros. In a paper by Choi and Ihm,3 a transfer
matrix method was proposed to deal with the nonlocal
pseudopotential. In this method, the wave function for a
given energy E is propagated following the solutions of
the Schrodinger’s equation. The phase and amplitude of
the wave function can be used to give the value of kz. In
a complicated band structure, the Bloch wave function
boundary condition is enforced by a linear combination of
many propagating wave functions. Such transfer matrix
method relies on the local Laplacian operator in the z
direction. Thus the nonlocal potential poses a challenge.
In Ref.3, this difficulty is resolved by a linear combina-
tion of general solutions of the Schrodinger’s equation
(homogeneous linear equation) without the nonlocal po-
tential term, plus the particular solutions of the nonho-
mogeneous linear equation with the nonlocal potential as
the nonhomogeneous part. For every nonlocal potential
components (atoms and angular momentum), one needs
to solve the corresponding particular solution. Thus the
total calculation can be expensive and messy for large
systems. There are also typical issues for numerical sta-
bility for the transfer matrix techniques. Moreover, by
expanding the wave function in (x, y) cross section us-
ing plane wave basis while treating z direction with real
space transfer matrix method, we do not have a pure
plane wave basis set method. Many of the above methods
solve for all possible kz for a given E. That is necessary
for many of the transport calculation methods. But in
our new auxiliary periodic boundary condition transport
calculation, only a few small Im(kz) evanescent states are
needed. This calls for development of new approaches to
calculate the complex band structures.

In the last few years, we have developed a scattering
state calculation method using purely plane wave basis
set.4–6 The scattering states are calculated via an aux-
iliary periodic boundary condition. The method trans-
forms an open boundary condition scattering state prob-
lem into a conventional closed periodic boundary condi-
tion problem. As a result, the conventional numerical
methods such as the conjugated gradient method can be
used to solve the related wave functions (called system
states). In order for this method to work, one has to de-
compose the system states in an electrode unit into the
electron running wave and evanescent states for a given
energy. Thus, we need the complex band structure of the
electrode under the pure plane wave basis. However, we
only need evanescent states with relativity small Im(kz).
In most cases, the atoms of the electrodes are represented
by nonlocal pseudopotentials.

In this paper, we present a simple procedure to calcu-
late the complex band structure for a general plane wave

non-local pseudopotential Hamiltonian. Instead of us-
ing sophisticated formalisms such as methods discussed
above, the method we propose will be based on the origi-
nal Hamiltonian H(k). Instead of searching for the values
of k’s for a given E, we will search for Im(kz) for a given
Re(kz), so the Im(E) is zero. The purpose of this paper
is several fold: (1) to demonstrate that it is practical to
use this simple approach to calculate the complex band
structures of the typical electrodes used in transport cal-
culations; (2) to present the computational scaling of di-
agonalizating a generalized matrix under the plane wave
basis set using the PARPACK package;7 (3) to show that
how a simple anticrossing model can be used to aid the
finding of k for yielding-real E.

The paper is organized as follows. In Sec. II we de-
scribe the full ab initio treatment of the band structure of
a generic wire using a plane wave Hamiltonian. Within
this section we will introduce the methodology to calcu-
late the evanescent states. The computational method
we use to calculate the complex band structure will be
presented in Sec. III. In Sec. IV we will present our re-
sults of the complex band structure of 9 atoms unit-cell
of Cu and a 3×3 electrode of Au. We draw a few conclu-
sions in Sec. IV. Unless otherwise stated, we use atomic
units throughout the paper, i.e., e2=~=me=1.

II. THE FORMALISM OF COMPLEX BAND
STRUCTURE CALCULATIONS

A conventional band structure is obtained by solving
the Hamiltonian for a fixed real k vector, which yields
the well known E(k) relationship. For the complex band
structure we consider a generalized Bloch state in real
space,

φk = Un,k(r)eikr−κz , (1)

where k is the real part of the complex vector and κ is
the imaginary part of the wave vector. In this study, we
will ignore the transverse real k component k⊥, thus the
vector k will be in the z direction, which is the direction
of propagation of the electrons.

Our single particle plane wave Hamiltonian is written
as,

H = [−
1

2
∇2 + V (r) + Vnonloc], (2)

where Vnonloc is the nonlocal part of the Hamiltonian.
Then the Schrödinger equation becomes:

HUn,k(r)eik·r−κz = EUn,k(r)eik·r−κz . (3)

Switching to the reciprocal space, the generalized Bloch
states are written as,

Un,keik·r−κz =
∑

G

Cn,keiGreik·r−κz. (4)
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In the reciprocal space we can define the following Hamil-
tonian matrix

Hk

G,G′ = 〈eikr+κzeiGr|H |eikr−κzeiG′
r〉. (5)

Thus the generalized matrix Hamiltonian under the gen-
eralized plane wave basis eikr+iGr−κz becomes

Hk

G,G′ = −
1

2
[i(G− k)− ẑκ]2δG,G′+

V (G−G
′) + V k

nonloc(G,G′). (6)

The nonlocal part of the Hamiltonian can be calcu-
lated using the Kleinman and Bylander (KB) projectors.8

Mathematically, the angular dependent pseudopotential
can be written as:

V̂nonloc(r) =
∑

l

|l〉∆Vl(r)〈l|, (7)

where |l〉 is an angular momentum projection operator
and ∆Vl(r) is the nonlocal potential for each angular mo-
mentum l.

Under the KB approximation, V̂ (r) can be rewritten
as

V̂nonloc(r) =
∑

lm

|∆VlφlYlm〉〈∆VlφlYlm|

〈φl|∆Vl|φl〉
, (8)

here m is the azimuthal angular momentum, Ylm is the
solid angle spherical harmonic and φl are the atomic ra-
dial pseudo wave functions for angular l. If we define the
following projector,

Φl =
∑

m

|∆VlφlYlm〉
√

〈φl|∆Vl|φl〉
, (9)

the nonlocal potential can then be written as

V̂nonloc(r) =
∑

l

|Φl〉〈Φl|. (10)

Following Eq. (5) the KB nonlocal potential can be rep-
resented in G space as:

V k

nonloc(G,G′) =
∑

l

〈eikr+iGr+κz|Φl〉〈Φl|e
ikr+iG′

r−κz〉. (11)

Finally the eigenenergy can be solved from the follow-
ing general eigenvalue equation:

∑

G′

Hk

G,G′Cn,k(G′) = En,kCn,k(G), (12)

where Hk

G,G′ are elements of a complex non-Hermitian
matrix. The size of this matrix for realistic systems can
be as large as 100,000 × 100,000. Such matrix size is too
large for a standard serial numerical routines like LA-
PACK to handle. On the other hand there is no parallel

version of the LAPACK routines which can be used to
solve the general eigenvalue problem. Furthermore, in
our case, we are only interested in a very small portion
of the eigenstates. Thus it might not be most efficient to
use the direct methods. We have thus decided to use the
PARPACK library,7 which is a parallel library based on
the iterative Arnoldi/Lanzos method. The detail of this
method will be explained in Sec. III. One additional ad-
vantage of this iterative method is that the large Hamil-
tonian matrix Hk

G,G′ does not need to be written down
explicitly, instead we only need to apply the Hamilto-
nian H to a wave function, as a result the conventional
methods such as the fast Fourier transform can be used
to speed up this calculation.

According to previous studies on complex band struc-
ture, we know that if one draws a horizontal line for a
given real energy E in the graph of a band structure,
the number of band structure lines (both real and com-
plex) crossing this horizontal line will not change as the
energy E raises from the bottom. As a result, the com-
plex branches of the band structure lines start from the
valley points of the real band structure En(k), where
dEn(k)/dk = 0|k=ke

. Here the subscript e stands for
evanescent states. For the systems we are studying (Au
and Cu) this occurs at the k = 0 (Γ point) and at k = π/a
(X ′ point), where a is the unit-cell length in the z direc-
tion (6.822 a.u. and 7.790 a.u. for Cu and Au respec-
tively). This also happens when two real bands anticross
each other and form a gap in the middle of the band
structure zone. The complex band originated at Γ and
X ′ points will be called first and second imaginary bands
respectively. The complex bands lying in the anticross-
ing gap will be called ”generalized complex bands”. The
first imaginary band runs downward starting from a Γ
point on the real band structure. The second imaginary
band and the generalized complex bands form close loops
connecting two real k states at the opposite edges of an
energy gap. A detail description of the complex band
structure can be found in Refs. 1 and 9.

Within the calculation scheme described above, the
first and second imaginary bands can be obtained by
first fixing k at 0 or π/a, respectively. Once k is fixed
the imaginary κ axis can be scanned using the Newton’s
method for zero Im(E) and the real energy eigenvalue is
used as the complex band states.

The situation becomes more complicated for general-
ized complex bands. These bands lie between two anti-
crossing states. For this case we first find the maxima and
minima of the real band structure. The minimum points
are matched with the maximum points one by one by cal-
culating the overlaps between their Bloch wave functions.
We dont want to scan the whole {k, κ} space, that would
be very expensive. We need to have a reference to know
where the {k, κ} should be. The center of k for the com-
plex band structure branch is at kc = (kmax + kmin)/2.
But we do not know what is the value of κ. To help us
to find {k, κ}, we have developed the following model to
describe the complex band structure for the anticrossing
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case. The two bands involved in an anticrossing can be
described by a 2×2 model Hamiltonian:

H =

(

C1k a
a −C2k

)

, (13)

This Hamiltonian describes the bands for both the real
band structure (real k) and complex band structure
(complex k). The C1 and C2 are the slopes of the asymp-
totes of the parabolas lines passing through the center
point, (see Fig. (1) and a is half of the size of the gap.

0.2 0.22 0.24 0.26 0.28

k (a.u.)

0

0.5

1

1.5

E
(e

V
)

C
1

C
2

2a

A

B

Figure 1: Plot of the energy states of the real band structure
of a Cu(001) electrode, these states are represented by thick
solid lines. The dashed line are the asymptotes of the states
in the anticrossing gap where complex bands exist, 2a is the
gap between the lower and upper band lines.

Diagonalizing this matrix by setting det(H − E)=0
yields the following equation

E = −
1

2
(C2 − C1)k±

√

1

4
(C2 − C1)2k2 + (C1C2k2 + a). (14)

Here the k is complex. Thus we have: k = kR + iκ. In
general, we also have complex energy: E = ER + iEi.
We are looking for solutions where Ei = 0. If we plot
ER and Ei as functions of kR and κ, we get Fig. (2) and
Fig. (3) repectively. We can identify the maxima (point
A) and minima (point B). From Fig. (3), we first see a
straight (dashed) line at κ = 0 which gives us Ei = 0.
This corresponds to the real band structure (the solid
line in Fig. (1) and the the thin black lines in Fig. (2)).
Now we also see a loop which gives Ei = 0 in Fig. (3).
This loop (thick black lines in Fig. (2) and Fig. (3))
corresponds to the complex band structure. Guided by
theses pictures, it is easy to search for the values of κ of
associated with a given k that gives the real E from Eq.
(14).

(eV)!

(a.u.)! (a.u.)!k 

A 

B 

Figure 2: Plot of the real part of the Energy ER, in function
of kR and κ. The dashed line in the surface above the point A
represents the n = 11 energy state and the one in the surface
behind the point B represents the n = 5 energy state, both
of the real band structure of Cu(001). The thick solid line
represents the first few points with a κ 6= 0 but Ei = 0.

(eV) 

(a.u.) 

(a.u.) k 

A B 

= 0 

Figure 3: Plot of the imaginary part of the Energy Ei,in
function of kR and κ. The point A represents the minima
of the n = 11 energy state and the point B the maxima of
the n = 5 energy state, both of the real band structure of
Cu(001). The thick black line represents the solution of the
Hamiltonian for a κ 6= 0 but Ei = 0. And the dashed line the
κ=0 axis.

Once we have the pairs {kR, κ} we diagonalize the Hamil-
tonian of Eq. (7) and select the eigenenergy with small
Ei within a numerical cut off, and with ER within the an-
tocrossing band gap. This procedure is very robust and
general so that it can be applied to other Hamiltonian
(e.g., tight-binding). For our plane wave calculations we
can solve for any metallic system and we can afford large
energy cutoffs.
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III. IMPLICIT RESTARTED ARNOLDI
METHOD (IRAM)

PARPACK is used to compute selected eigenvalues
and the corresponding eigenvectors of the general Hamil-
tonian H . PARPACK is a parallel implementation of
the implicitly restarted Arnoldi (IRA) algorithm.10 In
IRA, the standard Arnoldi procedure11 is used to project
an n × n Hamiltonian matrix H into a low-dimensional
Krylov subspace of the form S = {v0, Hv0, ..., H

ℓ−1v0},
where ℓ≪ n. This procedure produces what is called an
Arnoldi factorization of H , which can be described by

HV = V T + ε (15)

where V ∈ Cn×ℓ contains an orthonormal basis of S,
T ∈ Cℓ×ℓ is a upper Hessenberg matrix, and ε is the
residual.

If S, or equivalently v0, is chosen appropriately, de-
sired eigenvalues of H can be obtained by computing the
eigenvalues of T . That is, if Ts = θs, then z = V s is an
approximate eigenvector of H with the same eigenvalue
θ.

The IRA speeds up the convergence of Eq. (15) by
applying the implicitly shifted QR algorithm12,13 to T to
yield

H(V Q) = (V Q)(Q∗TQ) + εQ (16)

where Q = Q1Q2 · · ·Qp and T − µiI = QiRi (i =
1, 2, ..., p, p < ℓ−1) are QR factorizations14 of the shifted
matrices T − µiI (i = 1, 2, ..., p) for some appropriately
chosen shifts µi’s.

It can be shown that (16) leads to a new Arnoldi fac-
torization (update of Eq. (15)):

HV̂ = V̂ T̂ + ε′, , (17)

where

(H − µ1I)(H − µ2I) · · · (H − µpI)V e1 = V̂ e1γ, (18)

for some scalar γ. Equation (18) suggests that the up-
dated Arnoldi factorization (17) is equivalent to a factor-
ization produced from a new starting vector

v̂0 = (H − µ1I)(H − µ2I) · · · (H − µpI)v0.

This can be very advantageous. If the shifts µ1, µ2,
..., µp are chosen to be close to the eigenenergies of the
unwanted eigenstates, we can filter out these undesired
spectral components from v0, thereby making θ converges
quickly to the eigenenergies we want to obtain. During
the iterations, these undesired µp can be obtained via the
eigenvalues of T outside a pre-selected desired eigenvalue
window.

The update described by Eq. (16) can be performed
repeatedly until the Krylov subspace associated with Eq.
(17) contains an invariant subspace associated with the
desired eigenvectors of H .

In our calculation, we chose ℓ = 100 and p = 50. The
shifts µi are chosen to be eigenvalues of T that have large
real or imaginary part. We need 57 updates in the case
of Cu and 84 updates in the case of Au. Because ℓ and p
are small compared to the dimension of H , the compu-
tational cost of IRA is dominated by the matrix vector
multiplications of the form y ← Hx, which is parallelized
in out computation. The computational time is around
3 min per k point in the case of Cu and 6min per k point
in the case of Au. In Fig. 4 we can find a progression of
inverse of the requested time as a function of the number
of nodes.

Figure 4: Plot of the inverse of the time requested to diago-
nalize the Hamiltonian matrix of the Au(001) at k=(0.5,0.02)
a.u.

IV. RESULTS AND DISCUSSION

We have tested three electrodes, all have been used in
transport calculations. The first system is a Cu nanowire,
as shown in Fig. (5) (in the lower right corner). The unit
cell of the electrode has 9 Cu atoms, but it is surrounded
by a large volume of vacuum. The second electrode is a
Au nanowire, with the same geometry of the Cu nanowire
shown in Fig. (6). The third electrode is a bulk Au in
(001) directions, with a cross section of 3×3 of the unit
cells. It is shown in Fig. (7). For both Cu and Au
atoms, we have treated the d electrons in the core. This
is reasonable as the d electrons are completely occupied,
and they are 2 eV below the Fermi level. Thus they will
not affect the transport in most experiments.

An energy cutoff Ecut is used to select the plane-wave
vector G entering Eqs. (4), (5), (6) and (12), where
G = (G⊥, Gz) contains the components of the recipro-
cal vectors perpendicular and parallel to the direction
of propagation z, respectively. If conventional spheri-
cal plane wave cut off method :12 |G|

2 < Ec is used, we
will have a problem of describing the decay of evanes-
cent states in z direction. The exponential decay of the
evanescent states in the z direction cannot be described
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by a truncated plane wave basis set in that direction.
As a result, we have used cylindrical plane-wave selec-
tion rule: the plane wave basis vectors will lie inside the
cylinder 1

2 |G⊥|
2 < Ec, and no cutoff is associated with

Gz .

Figure 5: (Color on line) Complex band structure of Cu along
(001). The Fermi energy of the electrode is at 0.189 eV. The
nanowire is sourrounded with vacuum in the calculation.

Calculations are performed using norm-conserving pseu-
dopotentials and a 30-Ry and 60-Ry cutoff for Cu and
Au respectively.

The calculated complex band structures of Cu and Au
wires are shown in Fig. (5) and (6) as well as the 3×3
electrode of Au in Fig. (7). The real band structure is
represented in the middle panel. The lines in the left and
right panels are the first and second imaginary bands,
respectively. In the case of Cu(001) (Fig. (5)) the curve
connecting bands 5 and 11 in the middle panel represents
the generalized complex band lying in the 0.5 eV gap
of the real band structure. The imaginary part of this
curve is shown as the red loop near the X ′-point vertical
line. In the case of Au(001) (Fig. (6)) the generalized
complex band lies between the 7,8 and 18,20 bands of

Figure 6: (Color on line) Complex band structure of Au along
(001). The Fermi energy of the electrode is at -1.431 eV. The
nanowire is sourrounded with vacuum in the calculation.

Figure 7: (Color on line) Complex band structure of 3×3
electrode of Au. The Fermi energy of the electrode is at 4.121
eV.

the real band structure. In the case of 3×3 electrode of
Au (Fig. (7)) we do not find any generalizing complex
bands. There is no second imaginary bands at the X ’
point, either.

V. SUMMARY AND CONCLUSIONS

We have present a practical method to calculate the
complex band structure of an electrode for quantum
transport calculations. In this method, a generalized
Hamiltonian is constructed for a given complex vec-
tor k. The Hamiltonian is then diagonalized using im-
plicit restarted arnoldi method as implemented in the
PARPACK code. For typical electrodes used in quantum
transport calculations, practical procedures are designed
to search for the complex κ which yield the zero imag-
inary eigenenergy Im(E). Especially for the generalized
complex bands in the middle of the Brillouine zone, a
two band anticrossing model is used to aid the search of
the {kR, κ} point which yields real energy E. The use of
this model can significantly improve the efficiency of this
approach.

As there is no direct methods which yields the cor-
responding {kR, κ} for a given real energy E for plane
wave Hamitlonian with nonlocal pseudopotentials, the
approach presented in the current paper might be the
only option. Our work indicates that it is quite practi-
cal to use this straight forward approach for most elec-
trodes used in quantum transport calculations, provided
that the iterative generalized eigensolver is used and the
model is used to help the search of {kR, κ}. This is
particularly suitable for our auxiliary periodic boundary
condition method to calculate the scattering states. In
this method, only a few evanescent states with relatively
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small κ are needed in the wave function decomposition
analysis. Thus, unlike many other methods, there is no
need to get all the evanescent states in the Hamiltonian
for a given energy E. Thus, in the actual calculations,
the band structures (including the real band structures
and complex band structures) of an electrode is pre-
calculated with a finite number of kR and κ points (e.g.,
100 points), and their energies and wave functions are
stored. In the scattering state calculation for a given en-
ergy E, the relevant running wave and evanescent Bloch
states (the states crossing a horizontal line of E in the
band structure figures 5,6,7) are obtained via interpola-
tion between the neighoring kR and κ grid points which

have already been calculated (and stored).
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