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Negative differential mobility of weakly driven particles in models of glass formers
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We study the response of probe particles to weak constant driving in kinetically constrained
models of glassy systems, and show that the probe’s response can be non-monotonic and give rise to
negative differential mobility: increasing the applied force can reduce the probe’s drift velocity in the
force direction. Other significant non-linear effects are also demonstrated, such as the enhancement
with increasing force of the probe’s fluctuations away from the average path, a phenomenon known
in other contexts as giant diffusivity. We show that these results can be explained analytically by
a continuous-time random walk approximation where there is decoupling between persistence and
exchange times for local displacements of the probe. This decoupling is due to dynamic heterogeneity
in the glassy system, which also leads to bimodal distributions of probe particle displacements. We
discuss the relevance of our results to experiments.

I. INTRODUCTION

Dynamic heterogeneity manifests complex correlated
atomic motions in structural glass forming systems [1].
It is a ubiquitous feature that gives rise to a variety of
behaviors peculiar to glassy dynamics. In this paper,
we consider phenomena associated with one such behav-
ior – the negative response of a particle’s velocity to an
applied force. Earlier experiments and computer simula-
tions have studied how particles in glass forming systems
respond to external forces [2, 3, 4, 5, 6]. A range of effects
have been found, including the appearance of a thresh-
old force [2] and non-linear velocity/force relations [2, 3],
the vanishing of the linear response regime at low tem-
peratures [4], the self-organisation of forced particles [5],
and negative response to chemical potential gradients [6].
Here, we study the response of a probe particle [7] to a
weak external force with numerical simulations and with
analytic methods. The numerical work employs kinet-
ically constrained models of glass formers [8, 9]. The
analytical work employs a continuous time random walk
model [10], specifically the model [11] introduced to treat
effects due to decoupling between persistence and ex-
change processes [7, 12]. While originally constructed
in the context of kinetically constrained lattice models,
essential features of dynamics that justify this analyti-
cal model have been demonstrated in atomistic models
of glass formers [13, 14, 15].

Experimental context for our results is shown in Fig. 1:
we compare results from one of our model systems with
results for a colloidal system near to its glass transition.
In order to make contact between model systems and ex-
periments, we plot the probe velocity v and the applied
force F in dimensionless units. The velocity is normalised
by v0 = (D/σ) where σ is the particle diameter, and D is
the diffusion constant of the probe in the absence of the
externally applied force. The reduced velocity |v|/v0 is
proportional to the ‘modified Peclet number’ of Ref.[2].
The reduced force is f = (Fσ/kBT ), where T is the tem-
perature and kB is Boltzmann’s constant. In these units,
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FIG. 1: Experimental context. We plot force-velocity
relationships in rescaled units, identifying three regimes, as
discussed in the main text. The linear response (Einstein)
relation, v = v0f , is represented by the dashed line. At
small forces, the predictions of linear response apply. At
large forces, the experimental system exhibits a threshold
force that represents the limit of applicability of the TLG
model. In the intermediate force regime, both the experimen-
tal and TLG velocities are much smaller than those predicted
by linear response, and the response in the TLG model is
non-monotonic. The experimental curve shows the behaviour
observed in the colloidal fluid of Ref. [2]: we plot the fitting
function v = vt[(F/Ft) − 1]α used in [2], with Ft = 0.6 pN,
vt = 2×10−1µm s−1, and α = 2.5. For the experimental data,
a reduced force of unity corresponds to (kBT/σprobe) ≃ 1 fN,
and v0 = (D/σ) ≃ 10−5µm s−1. The data for the TLG model
was obtained at filling fraction ρ = 0.6.

the linear response formula for the probe velocity is Ein-
stein’s relation for small forces, v = v0f [16]. Estimating
these reduced quantities using data from Refs. [2, 17, 18],
we sketch the force-velocity relationship for the colloidal
system in Fig. 1, where v = |v| and f = |f |.

The experimental data of Ref. [2] has several impor-
tant features. The most striking is the so-called threshold
force, above which the velocity increases rapidly with ap-
plied force. On the other hand, for small enough forces,
the Einstein relation must apply, although experimental
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constraints meant that this regime was not accessible in
Ref. [2]. Interestingly, for the experimentally accessible
forces below the threshold, the velocity is much smaller
than the prediction of linear response: in fact, it was
smaller than the experimental resolution limit. We can
therefore identify a regime of intermediate force, where
the force is much smaller than the threshold, and the
response is much smaller than that predicted by the Ein-
stein relation.

According to our theoretical predictions, this regime,
which has not yet been investigated experimentally, ex-
hibits new and interesting phenomenology. Figure 1 illus-
trates our predictions by showing results from our simula-
tions of a kinetically constrained model (details are given
below). At small forces, the Einstein relation is obeyed,
while the response saturates at larger forces. This sat-
uration represents a non-linear response that is consis-
tent with the small sub-threshold responses observed in
Ref. [2]. Our use of kinetically constrained models to
describe the colloidal fluid rests on the assumption that
glassy behaviour occurs when the motion of particles is
constrained by their neighbours. We will see that sat-
uration of the sub-threshold responses is a natural con-
sequence of this assumption. However, it is clear from
Fig. 1 that the TLG model does not reflect the experi-
mental observation of a threshold force. Our interpreta-
tion of the experimental data is that, as the applied force
is increased through the threshold, the force on the probe
particle becomes stronger than the constraint forces im-
posed by its neighbours. As a result, the structure of the
colloidal fluid is disrupted by the forced probe. Thus the
threshold force represents the limit of applicability of the
kinetically constrained model [19]. For this reason, we
concentrate in this article on the regime of intermediate
forces, where the kinetically constrained model should
be applicable. In this regime, we find a surprising effect:
increasing the applied force reduces the velocity of the
pulled particle. This phenomenon and associated results
are the focus of this paper.

II. MODELS AND PARTICLE DRIVING

PROTOCOLS

We begin by describing the models we use in numeri-
cal simulations. Two are “particle” models, in the sense
that the material in which the probe moves is described
in terms of particles on a lattice with specified dynamical
rules. The other is a “field” model in the sense that the
material is described in terms of a so-called “mobility”
field. The value of that field at a point on the lattice
specifies whether or not motion is possible at that point.
The specific field model is one of many possibilities, each
representing a coarse grained approximation to a particle
model [20]. The continuous-time random walk model [11]
used later in this paper describes the coupling of the mo-
bility field to particle motion.

A. Particle models

We consider a two-dimensional (i.e., square) version
of Kob and Andersen’s (KA) lattice model [21, 22], and
the closely related triangular lattice gas (TLG) model
of Jäckle and Krönig [23, 24]. These constrained lattice
gases are assumed to capture effects of local jamming
in a supercooled liquid. They have only excluded vol-
ume interactions, so, for a given filling fraction ρ, all
allowed configurations are equally likely. They exhibit
non-trivial effects of correlated dynamics at filling frac-
tions ρ >∼ 0.5. Dynamical heterogeneity is manifested as
a clustering of mobile particles, and different transport
properties decouple from one another (for example, the
translation diffusion coefficient does not scale inversely
with the structural relaxation time [24]). These effects
arise from constraints on the dynamics.

For the KA model [21, 22], specifically the (2,2) vari-
ant, particles live on a square lattice, with zero or single
occupancy of lattice sites, and a particle may move to
adjacent vacant sites only if the particle is adjacent to
two vacant sites in both the initial and final sites. Simi-
larly, for Jäckle and Krönig’s TLG model, there is single
or zero occupancy on a triangular lattice, and a parti-
cle may move to vacant sites only if both of the mutual
nearest neighbours of the initial and final sites are vacant.
Accordingly, we refer to this model as the (2)-TLG [24].
Its dynamical rules can be motivated on physical grounds
by associating hard-cores to the particles, the diameter
of which is equal to the lattice spacing, and by insisting
that particles move along the lines connecting the points
on the lattice. From that picture, it is seen that the dy-
namical rule is a straightforward steric effect – there is
not enough room for a particle to pass to an empty near-
est neighbor site unless the two common adjacent sites
are also vacant.

In the absence of applied forces, all allowed processes
happen with rate γ, which sets the fundamental unit of
time. We implement the dynamics using asynchronous
Monte Carlo updates.

In order to introduce a force F on a single “probe” par-
ticle, we first consider that particle in an empty lattice.
It would correspond to a single colloidal particle alone in
a solvent. In the absence of the applied force, this par-
ticle has a bare diffusion constant (σ2γz/2d) where z is
the co-ordination number of the lattice, and we iden-
tify the particle diameter σ with the lattice spacing.
We denote the force-dependent rates for translational
moves of displacement ∆R by W (∆R,F ). We assume
that these rates obey a local form of detailed balance,
W (∆R,F ) = ef ·∆rW (−∆R,F ), where ∆r = ∆R/σ is
a reduced displacement. To ensure that an isolated probe
obeys the Einstein relation for all forces, we use the rates

W (∆R,F ) = 2γ
g(f · ∆r)

1 + exp(−f · ∆r)
, (1)
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where the dimensionless function g(E) is given by

g(E) ≡ E/[2 tanh(E/2)]. (2)

We have g(0) = 1, so that W (∆R,0) = γ. An alterna-
tive choice would be to use Glauber dynamics [g(E) = 1
for all E], but in that case, the Einstein relation applies
only for small velocities, and there is an unphysical sat-
uration at large forces. This saturation is an artifact of
using a lattice to describe continuous space [25]: by us-
ing the rates of Equ. (1), we ensure that the velocity
of a single particle does not saturate. Hence, the satu-
rating response that we do observe is a physical effect,
which appears as the motion of the probe particle be-
comes increasingly constrained by other particles in the
system. We have also checked that while the data pre-
sented in this article do depend quantitatively on the
choice of g(E), their qualitative features are preserved if
we instead use Glauber dynamics. Thus, while there is
some arbitrariness in our use of Eq. (1), we are confident
that this choice does not affect our main conclusions.

Throughout this article, we consider a single probe in a
large system of unforced particles, ignoring the collective
behaviour arising from interactions between forced par-
ticles [5, 6], and the effect of finite current densities [6].
To enhance statistics, we simulate large systems with a
few probe particles in each, and we verify that our re-
sults are independent of the number of probes. Due to
the underlying lattice, our models are not isotropic, so
there is some dependence on the direction of the force
compared to the lattice axes (for example, see [3]). How-
ever, we find that the results are qualitatively similar for
all angles.

B. Mobility field model

We also consider the one-dimensional one spin facili-
tated Fredrickson-Andersen (FA) model [8, 26, 27]. In
this model the local structure is described by a binary
variable ni ∈ {0, 1}. Sites with ni = 1 are ‘mobile’, or
excited: particles in these regions are able to move; those
with ni = 0 are ‘jammed’, so that motion is very unlikely.
Sites may change their state only if they are adjacent to
a site with ni = 1. In that case they flip from 0 to 1
with rate c = e−β and from 1 to 0 with rate unity (this
choice sets the unit of time in this model), where β is a
dimensionless inverse temperature. The dynamics obey
detailed balance, with an energy function E =

∑

i ni, so
the equilibrium state has no correlations between sites.
This model exhibits effects of non-trivial correlated dy-
namics for β >∼ 1.

While the relaxation time of the FA model exhibits
Arrhenius temperature dependence [9], in d = 1 and at
low temperature, the model has significant fluctuation
effects. These are manifested by stretched exponential
relaxation [9] and transport decoupling [7]. Other kinet-
ically constrained models of mobility fields, such as the
East model [9, 28] exhibit similar phenomenology in all

dimensions, but the 1d FA model is sufficient to capture
the essential physical effects discussed in this article [29].

In Ref. [7], probe particles were coupled to the FA
model. Probes were allowed to hop between adjacent
sites only when both initial and final sites were mobile.
With this choice, the dynamical rules for the ni do not
depend on the positions of the probe particle. While the
forced probe is affected by its environment, there is no
mechanism for a back-reaction, where the effect of the
force feeds back onto the ni variables. Thus, an excita-
tion in an FA model can pass through this type of probe
particle without any knowledge of the probe’s presence.
We therefore refer to the probes of Ref. [7] as ‘ghost’
probes.

For particle-based models, including the KCMs intro-
duced above, forced probe particles do have significant
effects on their environment. For this reason we intro-
duce an alternative set of rules for probe particles in the
FA model, which allow us to model this back-reaction.
In particular, since the presence of a probe reduces the
available free volume, we imagine that its presence is suf-
ficient to render the site immobile. Thus, we modify the
model of Ref. [7] by assuming probes cannot occupy mo-
bile sites. In this case, the probe moves through the
system by swapping places with mobility excitations. If
the probe position is x, then the allowed moves are

(x = i, ni = 0, ni±1 = 1) → (x = i± 1, ni = 1, ni±1 = 0)

Clearly, the dynamics of the FA model itself are now
coupled to those of the probes. We therefore refer to
these as ‘fully coupled probes’. The rates for attempted
moves of both coupled and ghost probes are given by
Eq.(1), with γ = 1/2.

III. FORCE-DEPENDENCE OF THE PROBE

VELOCITY

A. Negative differential mobility

The drift velocity of the probe is

v = lim
t→∞

t−1〈∆rprobe(t)〉, (3)

where ∆rprobe(t) is the displacement of the probe in time
t, and the average is taken in the presence of the applied
force. In Fig. 2(a) we plot this velocity as a function of
force in the (2)-TLG and (2,2)-KA models, at densities
above their onsets to cooperative dynamics. The linear
response (i.e., Einstein) relation is v = (D/σ)f , where
D is the zero-force diffusion constant,

D = lim
t→∞

(2dt)−1〈|∆rprobe(t)|2〉f=0. (4)

At densities above the onset, ρ >∼ 0.5, D is much
smaller than its bare value (σ2γz/2d). The striking result
of negative response, i.e., negative differential mobility,
dv/df < 0, is found for f >∼ 2.
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FIG. 2: (a) Non-monotonic velocity-force relationships in par-
ticle models, illustrating negative differential mobility. The
data for the Jäckle-Krönig TLG model were obtained at fill-
ing fraction ρ = 0.6, with a force applied along a lattice axis.
In the corresponding KA model, the force was applied at 45◦

to the axes, at filling fraction ρ = 0.88. The long time limit
in the definition of v necessitates the use of long trajectories
(typically 104τα). (b) Comparison of ghost and fully coupled
probes in the FA model in one dimension, at β = 3. Only the
fully coupled probes show a negative differential mobility, in-
dicating that this effect arises from a reaction of the mobility
field to the forced probe.

A similar effect is shown in Fig. 2(b) for the fully cou-
pled probes in the FA model. However, negative differen-
tial mobility does not occur for the ghost probes. In that
case, non-linear effects only lead to a saturation of the
drift velocity with force [30]. In Fig. 3, we show how this
response depends on the temperature. Keeping the re-
duced force f fixed, the velocity decreases monotonically
as the temperature is reduced. At high temperatures,
the dependence on the force is monotonic; negative dif-
ferential mobility appears below the onset temperature,
β >∼ 1. For these temperatures, the linear response (small
force) regime is f <∼ 1, and negative differential mobility
is observed near f = 1, below the onset temperature.

The lack of non-monotonic behavior for ghost parti-
cles shown in Fig. 2(b) points to the mechanism for non-
monotonic behavior. We use Fig. 4 to illustrate the mech-
anism. In particular, we show how applying a large force
to a probe particle can prevent the movement of neigh-
bouring particles or mobility excitations. For example,
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FIG. 3: Data showing the temperature dependence of the
velocity-force relationship in the FA model with fully-coupled
probes. Non-monotonic response occurs in the low tempera-
ture regime β >∼ 1.

Fig. 4(c) shows a configuration in the (2)-TLG for which
the probe can make progress in the direction of the force,
but only if it first moves backwards, allowing the neigh-
bouring particles to move out of its way. In the FA model,
Fig. 4(b), illustrates how a single excitation may allow a
single probe to make several steps along the direction
of the force [7]. However, this process is suppressed at
large forces, since it also involves steps in which the probe
moves against the force. At large forces, most encoun-
ters between probe and excitation are of the form shown
in Fig. 4(a), and the probe makes only one step in each
such encounter. In both cases, the forced probe acts to
suppress local relaxation, and the force acts to slow down
the motion of the probe particle.

The results of Ref. [6] for KA models show a non-
monotonic response similar to that of Fig. 2. In that
case, all particles attain a finite drift velocity due to force
gradients applied to many particles, and large scale den-
sity changes result. The effects found in that work are
related to those we present here, but in contrast to Ref.
[6], the effect we consider arises from forces on a sin-
gle forced particle that produce no large scale density
changes. Non-monotonic response of a drift velocity has
also been demonstrated for systems with quenched dis-
order [31], but the origin of these phenomena is different
from those that underlie the results of Ref. [6] and of
Fig. 2, where the mechanisms involve the dynamics of
the medium.

Finally, we note that the saturation velocity is finite
in all of the models that we consider. This is to be con-
trasted with systems with large numbers of forced parti-
cles, in which their velocity may appear to vanish at large
forces [6]. For single forced particles, our results suggest
that the saturation velocity will be finite as long as the
unbiased diffusion constant is finite. [In KCMs with glass
transitions at finite densities (or temperatures) [32], all
particles are localised in the glass phase: we expectD = 0
and v(f) = 0 for all f .]
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FIG. 4: (Color online) Sample mechanisms for reduced velocity at large forces. (a,b) Sketch of two trajectories in the FA model.
Excited sites, ni = 1, are shown in gray (or brown), the trajectory of the probe in black, and time evolves from left to right.
(a) A probe moves a single step on encountering an excitation line. (b) An excitation line can facilitate several hops for the
probe, increasing its diffusion constant. However, this mechanism requires steps in which the probe moves against the force,
so it is suppressed for large forces. (c) A sequence of four configurations that illustrate a co-operative move in the (2)-TLG.
The probe (coloured black) responds to the force by eventually moving upwards, but this requires an initial step in which it
moves downwards, against the force, to allow the neighbouring particles which are blocking it to move out of the way. Thus
the response is again suppressed at large F .

IV. CONTINUOUS TIME RANDOM WALK

ANALYSIS

To further elucidate the mechanism for the non-
monotonic responses described above, we use a
continuous-time random walk (CTRW) analysis [10]. We
use the model of [11], which exploits the existence of
two separate timescales in glassy systems, corresponding
to two different physical processes: exchange and persis-
tence events [11, 12, 14]. Recently, Rubner and Heuer [15]
analysed how motion on an underlying energy landscape
can result in particle motion that resembles a CTRW.
Earlier applications of CTRWs to glassy materials in-
clude trapping models such as [33], and mostly focussed
on the physical consequences of diverging time scales. In
the following, we will assume that all time scales are fi-
nite, ensuring that we recover the physical limit of simple
diffusion at long times.

A. Theoretical framework

Consider a single probe particle, which makes a series
of uncorrelated steps through a fluctuating environment.
The force on the probe enters as a bias on the direction
of these steps. The probe’s environment is dynamically
heterogeneous, with space-time permeated with entan-
gled excitation lines [7, 12, 26]. The probe moves only
where it is intersected by these lines. In this way, the time
between successive steps acquires large fluctuations. We
denote the distribution of these times by ψ(t), so that
the distribution of time intervals between a randomly se-
lected initial time and the first step made by a particle
is [34]

p(t) =

∫ ∞

t
dt′ψ(t′)

∫ ∞

0 dt′t′ψ(t′)
. (5)

Following [7, 12], we refer to ψ(t) as the distribution of
exchange times and p(t) as the distribution of persistence
times. The probability that the particle has made no
steps between time 0 and time t, the so-called “persis-
tence” function, is

P (t) =

∫ ∞

t

dt′p(t′). (6)

Now, let G(r, t) be the distribution of the position
r of the probe particle, given that it was at the ori-
gin a time t earlier. The number of hops made by the
probe in that time is randomly distributed, so G(r, t)
contains a contribution from every possible number of
hops. Since successive hops are assumed to be inde-
pendent, the Fourier-Laplace representation of the sum
over these contributions has a closed form: we define
F̂ (k, s) =

∫ ∞

0
dt

∫

ddrG(r, t)e−ik·r−st, and arrive at the
Montroll-Weiss equation [10, 11]

F̂ (k, s) = P̂ (s) +
1 − ψ̂(s)

s

Γ(k)

1 − ψ̂(s)Γ(k)
p̂(s). (7)

The functions ψ̂(s), P̂ (s) and p̂(s) are the Laplace trans-
forms of ψ(t), P (t) and p(t), respectively. The function
Γ(k) is the generating function for the statistics of a sin-
gle random walk step, ∆R,

Γ(k) ≡ e−ik·∆R, (8)

where the overbar indicates an average over the possible
values of ∆R. For small wave-vectors, Γ(k) = 1−iσδ·k−
(σ2/2)|k|2+O(k3), where the invariance of the quadratic
term under rotation ensures that unforced diffusion is
isotropic, while in the presence of a force there is a non-
trivial bias δ = ∆R/σ. The length scale σ would refer to
a particle diameter in continuous force models, and here
refers to the lattice spacing of our KCMs.
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The behaviour of the probe particle at long times is
given by the behaviour of F̂ (k, s) at small k and s. We
denote the mean exchange and persistence times by τx
and τα respectively (we identify the average persistence
time of the probe with the structural relaxation time τα of

the embedding medium [35]). From (5), we have ψ̂(s) =
1− sτxp̂(s), and we expand at small s, arriving at p̂(s) =

1 − sτα + . . . and ψ̂(s) = 1 − sτx + s2τxτα + . . ..
The drift velocity is then

v = lim
s→0

is2∇kF̂ (k, s)|k=0 = (σ/τx)δ, (9)

where we used v = limt→∞ t−1
∫

dr rG(r, t). Physically,
the drift velocity is given by the product of the mean
displacement per hop, σδ, and the mean hop frequency,
τ−1
x .
Similarly, the asymptotic mean square fluctuation in

the probe displacement per unit time is given by

D(f) = (2d)−1 lim
t→∞

t−1
[

〈|r(t)|2〉 − |〈r(t)〉|2
]

= (2d)−1 lim
s→0

[

−s2∇2
k logF (k, s)|k=0 − (|v|2/s)

]

= (2dτx)
−1

{

σ2 + 2|δ|2σ2 [(τα/τx) − 1]
}

.

(10)

Hence, the unforced diffusion constant is

D = D(0) =
σ2

2dτx
. (11)

B. Effect of forcing

From Eq.(9), we see that the probe drift velocity de-
pends on the bias δ and the mean exchange time τx.
These quantities depend upon the force. In one dimen-
sion, the local form of detailed balance relates the prob-
abilities for hopping to left and right, and we have

δ = tanh(f/2). (12)

This result is independent of the function g(E) in Eq.(1).
In d > 1, the bias δ is aligned with the force, as long as
diffusion in the unforced case is isotropic. The modulus
of δ increases monotonically with the force, and has a
large-f limit 0 < δmax ≤ 1.

The dependence of the mean exchange time τx on the
force manifests the response of the medium on the probe.
In the case of a ghost particle, there is no effect so that
Eq.(9) gives (in one dimension)

[v(f)]ghost =
σ

τ
(0)
x

tanh(f/2), (13)

where τ
(0)
x denotes the mean exchange time for the

medium in the absence of the forced probe particle. This
drift velocity follows the Einstein relation for small forces,

FIG. 5: (Color online) Scaling of the response with tempera-
ture and density. We plot rescaled transport coefficients as a
function of inverse temperature or chemical potential. (a) FA
model: we show the diffusion constant, the velocity at f = 1
(close to the maximal response v∗) and the velocity at f = 5
(close to the saturation velocity vsat). To investigate the rel-
ative scalings of these quantities, we normalise them all by
the persistence time τ (which varies by around four orders of
magnitude across this temperature range). (b) (2)-TLG, for
a range of filling fractions 0.6 ≤ ρ ≤ 0.75. We normalise by
the structural relaxation time, which increases by a factor of
around 300 across this range of density. We define the chem-
ical potential for vacancies to be µ, so that ρ = (1 + e−βµ)−1

increases from left to right. The maximal and saturation ve-
locities are estimated using f = 3 and f = 10 respectively.

while for larger forces, it saturates at a limiting value of
the order of v0. This is illustrated for the d = 1 FA model
in Fig. 2(b).

More generally, the forced particle does affect its sur-
roundings, and as discussed in Sec. III A and Fig. 4, ap-
plying a large force to a probe particle tends to suppress
the relaxation of the surrounding medium. In the lan-
guage of the CTRW, this local slowing down enters as an
increase of the mean exchange time.

In fact, Fig. 4(a) indicates that, for large forces in the
FA model, the probe typically makes only one step for
each excitation that it encounters. For this model, the

results of [7, 12] indicate that τ
(0)
x is the typical time

between encounters with the same excitation line, while
τα is the typical time between encounters with different
excitation lines. Thus, if the mechanism of Fig 4(a) is
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dominating, we expect τx ≈ τα However, for small forces,
the back reaction of the probe on the medium can be ne-

glected and we expect τx ≈ τ
(0)
x . To interpolate between

these two limits, we combine the rates for the two pro-
cesses using the simple functional form:

1

τx
≈ 1 − |δ|

τ
(0)
x

+
|δ|
τα
. (14)

(We choose this form for simplicity, noting that analyses
based on it are mostly qualitative, and do not depend on
the precise form used.) Using (14) in (9) we then obtain
(for d = 1),

v(f) ≈ (2D/σ) tanh(f/2)

[

1 − τα − τ
(0)
x

τα
tanh |f/2|

]

.

(15)

The velocity v is non-monotonic in f , with a maximum
at f = O(1). This is the non-monotonic behaviour of
the drift velocity observed in Fig. 2. The peak value v∗

scales with D while the large-force limit of the veloc-
ity, vsat, scales with the inverse of τα. Thus we expect
v∗ to scale with D, while vsatτα depends only weakly
on temperature and density. Figure 5(a) shows that the
behavior of the fully coupled probe in the FA model is
consistent with this analysis. (We have rescaled by the
persistence time τ of the excitations ni, which has the
same scaling as the mean persistence time of the probes
τα [7].) Generalizing (15) to d > 1 leads to a similar
prediction of non-monotonic response; the scaling of the
maximal and saturation velocities is shown in Fig. 5(b),
and the qualitative features are again consistent with the
CTRW analysis.

C. Force-dependent fluctuations: Giant diffusivity

The analysis also allows us to estimate fluctuations
around the average path. In particular, Eqs. (10) and
(12) give the force-dependent diffusivity in d = 1,

D(f) =
σ2

2τx

[

1 + 2 tanh2(f/2)

(

τα
τx

− 1

)]

. (16)

Equation (16) shows that increasing the force on the
probe particle increases the diffusivity. That is, it leads
to larger fluctuations around the average path. For d > 1,
the functional form of D(f) depends on the relationship
between the force f and the bias δ, but the qualitative
picture remains the same as in d = 1. Moreover, the ratio
τα/τx is related to the Fickian length of [11]:

ℓF ≡
√

Dτα = σ

√

τα

2dτ
(0)
x

. (17)

In the deeply supercooled regime this length scale can
become large, ℓF ≫ σ [11], and the diffusivity D(f) may
increase by orders of magnitude as the force is applied.

FIG. 6: (Color online) (a) Distribution of the probe displace-
ment parallel to the force, G(x, t), in the FA model at β = 5
with ‘ghost’ probes, showing a bimodal structure. The force
is f = 0.5 and the times are given in terms of the persis-
tence time τ = 1.15 × 106 MC sweeps. At the earliest time,
the peak at x = 0 extends beyond the top of the figure. (b)
The force dependent diffusivity D(f) at β = 3 in the FA
model, comparing ghost probes (triangles) with fully coupled
probes (squares). The force increases the diffusivity of the
ghost probes. For the fully coupled probes, the mechanisms
responsible for the negative differential mobility also reduce
the diffusivity at large forces.

Fig. 6(b) shows the increase of D(f) with force in the
FA model with ‘ghost’ probes. Even at the mildly super-
cooled conditions shown in the figure, the diffusivity in-
creases by at least an order of magnitude. A significantly
smaller increase is found for the case of fully coupled
probes. The difference between the two models arises
because τx increases with increasing force, Eq. (14), so
that the contribution of the second term in Eq. (16) is
suppressed.

As the relaxation slows in these systems, and fluctu-
ations grow, these non-linear fluctuation effects become
important even at small forces. From (16), we can iden-
tify the force at which the corrections to the diffusivity
become important as Fnl ≈ (kBT/ℓF) = (kBT/

√
Dτα).

Again, the Fickian length grows with decreasing temper-
ature or increasing density, due to the increasing decou-
pling between diffusion and structural relaxation, and so
Fnl decreases progressively as the system becomes more
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supercooled. A similar criterion was proposed in Ref. [4]
for the onset of non-linear effects on probe velocities,
Fem ≈ (kBT/

√
Dtc), where tc is a relaxation time be-

yond which certain probability distributions converge to
Gaussian forms. The results of that article also indicate
a decrease of the threshold force with decreasing temper-
ature.

Finally, the intermittent motion of our forced particle
leads to a two-peaked structure in the distribution of the
probe displacement, as shown for the FA model in Fig. 6.
Similar distributions were observed in the atomistic sim-
ulations of Ref. [4] and the experiments of Ref. [37]. They
can be interpreted in our dynamical facilitation picture
[12, 26] in that the two peaks come from segregation of
active populations and inactive populations. Indeed, to
a good approximation [11, 36], Eq. (7) gives

G(x, t) ≈ P (t)δ(x) +
1 − P (t)

√

4πtD(f)
exp

{

− [x− tv(f)]2

4tD(f)

}

,

(18)
where x is the displacement in the direction of the force.
[Recall that the persistence function P (t) is the fraction
of probe particles that have not moved at all between
time zero and time t.] This equation for the distribu-
tion of probe displacements shows how the decoupling of
exchange and persistence times in dynamically heteroge-
neous materials [12] leads to bimodal distributions such
as those of Fig. 6, and hence to the large fluctuations of
the sort that in other contexts have been termed “giant
diffusivity” [37].

V. OUTLOOK

We have shown in this article that weak forcing of
probe particles in KCMs produces surprising non-linear
responses such as negative differential mobility and giant
diffusivity. The origins of these non-linear effects are the
heterogeneity [7, 9] in the dynamics of the probe’s host
fluid; the decoupling between local exchange and per-
sistence times [7, 12]; and the consequent intermittency
[7, 11] in the motion of the probe. These same mecha-
nisms naturally give rise to transport decoupling in the
absence of external forcing (for example, probe diffusion
constants and structural relaxation times have different
scalings at low temperature [7]). In comparison with
other theoretical treatments of transport decoupling [38],
ours seems distinguished by the unifying connections it
elucidates between the broad distributions of exchange

and persistence times and various observed effects, now
including negative response.

All our results are for low-dimensional KCMs. We
end with a discussion of how they generalise to three
dimensions, and to atomistic or colloidal glass-formers.
In explaining the fluctuation phenomena of Sec. IVC,
we assumed only that exchange and persistence times
decouple from one another. This effect occurs in three-
dimensional KCMs in which fluctuations are large (for
example, variants of the KA or TLG models). It was
also recently demonstrated in three-dimensional atom-
istic glass-formers [14], and so we expect giant diffusivity
to be observed in those systems also. We have discussed
how the results of Sec. IV C connect to previous atom-
istic simulations [4], and experiments would also seem
feasible [37].

In addition to decoupling of exchange and persistence
times, negative differential mobility depends on a sup-
pression of the local exchange time by the applied force,
as discussed in Sec. III A and Sec. IVB. This feature
seems to be generic in KCMs, and so we again expect
that it would generalise to three-dimensional KA and
TLG models. However, such a suppression of the ex-
change time has not yet been observed in three dimen-
sional atomistic or colloidal systems: we are not aware
of experiments that probe the relevant regime (recall
Fig. 1). As discussed in Ref. [2], only the large force
regime is accessible using that system, since responses
below the threshold are smaller than the experimental
resolution limits. It seems that experiments with reduced
forces f ≃ 1 will require the development of new meth-
ods. However, searches for giant diffusivity and negative
differential mobility, in simulations of glass-formers and
in experiments, would provide a further test of the ex-
tent to which simple kinetically constrained models can
be used to explain and predict the peculiar transport
properties of supercooled liquids.
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