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Estimating Carbon Dioxide Emissions in Two California
Cities Using Bayesian Inversion and Satellite Measurements
Sofia D. Hamilton1 , Dien Wu2, Matthew S. Johnson3, Alex Turner4 , Marc L. Fischer1 ,
Nikhil Dadheech4 , and Seongeun Jeong1

1Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA,
2Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA, 3Earth Science
Division, NASA Ames Research Center, Moffett Field, CA, USA, 4Department of Atmospheric Sciences, University of
Washington, Seattle, WA, USA

Abstract NASA's Orbiting Carbon Observatories (OCO‐2 and OCO‐3) provide measurements of column‐
averaged carbon dioxide concentrations (XCO2) with sufficient spatial resolution and precision to constrain
bottom‐up estimates of CO2 fluxes at regional scales. We use Bayesian inversion methods assimilating satellite
retrievals to improve estimates of CO2 fluxes in the South Coast Air Basin (SoCAB) which surrounds Los
Angeles, and in the San Francisco Bay Area Air Basin (SFBA). We study 2020 to understand the impact of the
COVID‐19 lockdowns and an active wildfire season. Our results indicated that a 50% (30%) reduction in CO2

emissions relative to 2015 during the COVID‐19 lockdown period was consistent with OCO measurements for
SFBA (SoCAB). We find that posterior wildfire emissions differed significantly from the prior at the scale of
individual wildfires, though with large uncertainties, and that wildfire emissions in SFBA are significant,
attributing 72% of the region's CO2 emissions during August 2020 to wildfires.

Plain Language Summary Satellites can measure variations in carbon dioxide concentrations over
urban areas. These measurements can be combined with models of the atmosphere to validate estimates of
carbon dioxide emissions. We use this approach to better understand emissions in and around San Francisco and
Los Angeles, the two major cities in California. We study the year 2020 to see how emissions changed in
response to COVID‐19 lockdowns and to observe emissions from wildfires. The satellite measurements
combined with the atmospheric model provide us with updated emission estimates that more closely match the
measurements and provide greater certainty than our initial estimate of emissions. We also observe reduced
emissions during lockdowns in both cities, updated emissions at the scale of individual wildfires, and large
emissions from wildfires during peak wildfire season in the San Francisco Bay Area.

1. Introduction
Urban areas cover only ∼3% of Earth's surface but are responsible for ∼70% of global fossil fuel carbon dioxide
(CO2) emissions (Seto et al., 2014). Accurate emission inventories of greenhouse gases (GHGs) including CO2

are crucial for ensuring that climate goals are met. Using in situ atmospheric observations to constrain bottom‐up
emission inventories is important because bottom‐up inventories are time‐consuming to develop and can have
large uncertainties at urban scales, with increasing uncertainty at finer spatial scales (Brophy et al., 2019;
Gately & Hutyra, 2017; D. Wu et al., 2018). These inventories often underestimate emissions or have missing
sources (Gurney et al., 2021) and can lag several years behind (Roten et al., 2023). Previous studies have used
networks of ground‐based CO2 sensors to constrain emissions in urban areas including Los Angeles (Yadav
et al., 2021) (LA) and San Francisco (Asimow et al., 2024; Turner, Kim, et al., 2020), and subnational regions
(Nayagam et al., 2024). Outside of some US cities (e.g., Bares et al., 2019; Davis et al., 2017; Karion et al., 2020;
Shusterman et al., 2016; Verhulst et al., 2017), ground‐based CO2 measurement networks are sparse (National
Oceanic and Atmospheric Administration: Global Monitoring Laboratory, 2024; D. Wu et al., 2018). However,
satellite measurements are now able to characterize GHG emissions not just at the city‐scale but even within a
city, from space, providing global coverage, a large number of retrievals, and a data set covering many years (D.
Wu et al., 2018).

In 2014 NASA launched the Orbiting Carbon Observatory (OCO‐2) (Crisp et al., 2008) which collects continuous
high‐resolution spaceborne measurements of global CO2 concentrations. Low‐Earth orbiting satellites like OCO‐
2, and OCO‐3, retrieve the atmospheric column‐averaged dry‐air mole fraction of CO2 (XCO2). Observations
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from these satellites have been used to identify CO2 enhancements around and within urban areas (Hakkarainen
et al., 2016; Kort et al., 2012). New scanning modes, such as OCO‐3's Snapshot Area Map (SAM), which was
specifically designed to measure anthropogenic emissions, capture a greater spatial region and resolve CO2

gradients within an urban area (Kiel et al., 2021).

When combined with an atmospheric transport model and emission inventories, these measurements can be used
in an inversion framework to constrain emissions. Lagrangian particle dispersion models provide surface in-
fluence footprints, which link surface fluxes and measurements of atmospheric CO2 concentrations. The Column
Stochastic Time‐Inverted Lagrangian Transport (XSTILT) model is specifically designed for column‐averaged
satellite measurements (D. Wu et al., 2018). XSTILT has previously been used in conjunction with OCO‐2
measurements to constrain city‐wide emissions over Riyadh (D. Wu et al., 2018), Lahore (Lei et al., 2021)
and the Nile delta region (Shekhar et al., 2020). Observing system simulation experiments (OSSEs) have been
used to quantify the ability of satellite measurements to determine true emission fluxes in an inversion framework.
These studies generate synthetic satellite measurements from a “true” emission inventory and then use these
synthetic measurements and a perturbed emission inventory to estimate the true emission inventory. Previous
studies have achieved posterior emissions that are within 7%–30% of the true emissions (Pillai et al., 2016; K.Wu,
Palmer, et al., 2023; K. Wu, Yang, et al., 2023). Measurements from OCO‐3 are now being used to constrain
urban emissions. Roten et al. (2023) used SAM measurements from OCO‐3 to constrain CO2 emissions in LA,
separated by source sector, and quantify emissions reductions during the 2020 COVID‐19 lockdowns (Roten
et al., 2023).

In this study, we use measurements from OCO‐2 and OCO‐3 in a Bayesian inversion framework to constrain CO2

fluxes around the San Francisco Bay Area (SFBA) and Los Angeles. To our knowledge, this is the first study to
use satellite measurements of CO2 to constrain emissions in SFBA in an inversion framework. The SFBA is
smaller in geographic size and emissions magnitude than megacities like LA, resulting in a smaller signal‐to‐noise
ratio for atmospheric CO2 measurements needed for inversions. The year 2020 was unusual due to anthropogenic
emissions reductions due to the COVID‐19 lockdowns (Yañez et al., 2022), large biomass burning emissions due
to a particularly active wildfire season (Jerrett et al., 2022; Safford et al., 2022) and severe drought (Steel
et al., 2023). These 2020 disruptions to business‐as‐usual emissions involve atypical changes in emissions in
space and time, making them difficult to estimate with bottom‐up inventory methods. Satellite measurements can
instantly capture the impacts of changing emissions and provide insights into if emissions reductions goals are
being met.

2. Methods
We estimate CO2 fluxes at 0.1° × 0.1° resolution by combing a prior emission inventory and satellite observations
in an atmospheric inversion framework. We construct an emission inventory of CO2 sources (Section 2.1) and use
satellite observations to determine urban enhancements and clean background concentrations (Section 2.2). We
calculate surface influence footprints that relate surface fluxes to satellite sounding receptors (Section 2.3) and use
Bayesian inversion to obtain posterior estimates of fluxes and associated uncertainty (Section 2.4).

2.1. Prior Emission Inventory

Emission inventories were constructed for CO2 fluxes from the biosphere, fossil fuels and cement production,
wildfires, and the ocean. We re‐gridded the inventories from their native resolutions to the 0.1° × 0.1° and hourly
resolution over our domain, which covers 20°N to 59.9°N and 130°W to 105.1°W. Figure 1 shows annual average
CO2 fluxes from all sources combined.

2.1.1. Fossil Fuels and Cement Production

Fossil fuel CO2 emission inventories were constructed from a combination of the Vulcan inventory (Gurney
et al., 2020a, 2020b) and emission estimates from the California Air Resources Board (CARB) (California Air
Resources Board, 2022). The Vulcan inventory (version 3.0) provides a spatially (1 km2) and temporally (hourly)
resolved emission inventory for the entire US, but the most recent year available is 2015. CARB provides an
annual emissions total for the entire state through 2021, which is not spatially or temporally resolved. To create a
spatially and temporally resolved 2020 inventory, the CARB inventory was used to calculate scaling factors for
emissions in 2020 compared to 2015, and the Vulcan inventory was multiplied by these scaling factors (see Table
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S1 in Supporting Information S1). Both Vulcan and CARB provide sector‐level emissions estimates, so the
scaling was done for each emission sector separately.

Additional monthly scaling factors were applied to sectors most affected by lockdown restrictions (onroad,
aviation, and commercial marine vessels), because COVID‐19 lockdowns caused emissions to vary widely
throughout the year but scaling using the CARB inventory only provides an estimate of the change in total annual
emissions. For example, onroad emissions were significantly reduced when lockdowns were first imposed but
recovered by the end of 2020 (Harkins et al., 2021; US DOT Federal Highway Administration, 2020). Activity
data was used to calculate monthly scaling factors, equal to the ratio of the given month's activity to the annual
average. We used vehicle miles traveled in California from the CalTrans Performance Measurement System

Figure 1. Annual average carbon dioxide emissions (μmol m− 2 s− 1; 0.1° × 0.1°) from the prior emission inventory, overlaid with the CARB‐defined San Francisco Bay
Area (SFBA) and South Coast (SoCAB) air basins.
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(California Department of Transportation, 2022) to estimate activity for the transportation sector. Previous work
found that estimations of traffic reductions during the COVID‐19 pandemic based on vehicle counts agree well
with estimates based on fuel sales (Harkins et al., 2021). For aviation, the number of flights into and out of
California from the OpenSky air traffic data set was used (Strohmeier et al., 2021), and for commercial marine
vessels, the combined container throughput at the Ports of Oakland, Los Angeles and Long Beach was used (Port
of Long Beach, 2022; Port of Oakland, 2022; The Port of Los Angeles, 2022). Scaling factors derived from these
data are shown in Table S2 in Supporting Information S1. For all other sectors this ratio is equal to 1.

Emissions for 2020 (VM
2020) are estimated using 2015 Vulcan emissions (VM

2015), the ratio of CARB emissions for
2020 to 2015 for the given sector (RCARB

2020/2015), and the ratio of monthly activity to annual average activity for the
given sector (RM) as: VM

2020 = VM
2015 · R

CARB
2020/2015 · R

M. This updating of the most recent available inventory (e.g.,
2015) was done to ensure that our prior knowledge of emissions was as accurate as possible even before
incorporating them into the inversion framework.

2.1.2. Non‐Fossil Sources

Ocean fluxes were regridded from the CarbonTracker model (National Oceanic and Atmospheric Administration
Global Monitoring Laboratory: Earth System Research Laboratories, 2023). CarbonTracker provides fluxes at
1° × 1° spatial resolution every 3 hours. Wildfire emissions were adapted from a modified Global Fire Emissions
Database version 4 (GFED4) which uses MODerate resolution Imaging Spectroradiometer (MODIS) burned area
and fire detection data to map wildfire emissions at 500 m resolution (van Wees et al., 2022).

Fluxes of CO2 from the biosphere, that is, net ecosystem exchange (NEE), were mapped from the Solar‐Induced
Fluorescence for Modeling Urban biogenic Fluxes (SMUrF) model (D. Wu, Lin, et al., 2021). NEE is the dif-
ference between CO2 release through ecosystem respiration (Reco) and uptake from gross primary production
(GPP). The SMUrF model combines space‐based measurements of solar‐induced fluorescence (a GPP proxy)
with eddy‐covariance CO2 flux measurements and machine learning techniques to provide hourly estimates of
GPP and Reco that fill in gaps in flux estimates in and around urban areas, at 0.05° × 0.05° resolution. NEE fluxes
from this model were evaluated against independent urban eddy‐covariance measurements and radiocarbon data
(Madsen et al., 2024; D. Wu, Lin, et al., 2021; Zazzeri et al., 2023). Previous inversion studies have used this
inventory to estimate fluxes from the biosphere (Roten et al., 2023; K. Wu, Palmer, et al., 2023).

2.2. Satellite Observations

We used XCO2 observations from both OCO‐2 and OCO‐3 for all of 2020, from nadir and land glint observing
modes with good quality flags. We excluded ocean glint observations and overpasses with less than 5 soundings
that passed quality check flags. There were no acceptable overpasses for January, so this month was excluded
from the analysis.

2.2.1. Filtering and Aggregation

Previous work has shown that even with the bias correction and quality flags implemented by the OCO team,
residual biases and noise remain in the OCO retrievals, due to the impacts of aerosols, changing solar and
observational geometry, and varying surface properties (Bell et al., 2023; Worden et al., 2017; Wunch
et al., 2011). Past studies have employed schemes to filter, bin, and average the soundings before including them
in analyses (Crowell et al., 2019; Torres et al., 2019). In order to smooth the noise in the observations and more
clearly observe spatial patterns in XCO2 concentrations we employ the following filtering and aggregation
scheme, illustrated in Figures 2a and 2b:

• Step 1 (filtering): OCO measurements were binned by 0.5° × 0.5° latitude and longitude. The mean and
standard deviation of each bin was calculated. Any measurements more than two standard deviations from the
mean were filtered out. The bins were shifted by 0.25° latitude and longitude, and the filtering was repeated.

• Step 2 (smoothing): A moving average was calculated for each measurement location, defined as the average
of all measurements within a 25 km radius of each measurement location.

• Step 3 (aggregation): The smoothed measurements were aggregated into bins of 0.1° × 0.1° latitude and
longitude.
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The second filtering step was determined to be necessary because with only one filter pass, it was possible for
extreme OCO observation values to end up in their own bin and escape filtering, resulting in highly variable pixel‐
to‐pixel values which are not physically realistic. Two filtering steps were preferable to setting a minimum
number of measurements needed per bin because this alternative would risk removing reasonable values near the
edges of the OCO swath. The filtering, smoothing, and aggregation illuminate general spatial patterns in XCO2

concentrations while reducing the impacts of noise. Though it is not mathematically necessary for the obser-
vations to match the emission/footprint grid resolution, since we cannot resolve fine‐scale details at the level of
individual soundings within each grid cell, the aggregation allows us to assimilate one representative value per
cell (Crowell et al., 2019).

2.2.2. Background Concentrations

Obtaining an accurate estimate of the background concentration is crucial for inferring emissions using inverse
modeling, since we are interested in the concentration enhancement above background due to emissions within
our inversion domain. Column enhancements over Los Angeles range from 0 to 6 ppm with a median
enhancement of 2 ppm (Kiel et al., 2021), while total XCO2 exceeds 400 ppm. Around SFBA, enhancements are
smaller, since emissions there are less than in LA (see Figure 1). An error in the estimated background con-
centration of just 1 ppm could potentially cancel out the entire concentration enhancement, despite being a
relatively small fractional error in total background concentration. To ensure consistency between estimated
background concentrations and measured enhancements, OCO observations were used to define clean back-
ground concentrations. Particle trajectories fromXSTILT runs were used to observe the upwind direction for each
overpass. If the OCO overpass included measurements outside the urban area in this upwind region, the average of
those measurements was used as the background concentration. Figure 2c shows an example of this case. When
upwind measurements were not available, OCO measurements over locations with modeled fossil fuel en-
hancements of less than 0.05 ppm were used. If no OCO measurements of this type were available, the back-
ground measurements from the nearest (in time) overpass were used. About 71% of overpasses had measurements
from the same day that could define the background concentration and about 20% used measurements from within
one to 7 days. Similar methods have been used previously for establishing clean background using satellite
measurements (Janardanan et al., 2016; D. Wu et al., 2018).

2.3. Surface Influence Footprints

The XSTILTmodel was used to calculate surface influence footprints that relate surface fluxes with concentration
enhancements in the OCO soundings. Meteorology from the Weather Research and Forecasting model (Ska-
marock et al., 2021) was used to drive the XSTILT simulations. The meteorological modeling and evaluation are
described in the Section S1.1 in Supporting Information S1.

Figure 2. Example of OCO measurements (ppm) used in filtering/aggregation and defining background concentrations. (a) OCO‐2 bias‐corrected XCO2 measurements
near the SFBA domain on 10 February 2020 with good quality flag. (b) Aggregated XCO2 measurements from panel (a), after filtering and averaging. Note the reduced
range of the color scale. (c) OCO‐3 XCO2 soundings from 31 July 2020. The soundings outside the inversion domain (dashed line box) are averaged to define the
background concentration for soundings inside the inversion domain.
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The XSTILT model was run for each sounding with a “good” quality flag in every OCO‐2 and OCO‐3 overpass in
2020. XSTILT was run backward in time for 5 days, obtaining hourly surface influence footprints for each
sounding at 0.1° × 0.1° spatial resolution. These footprints were then convolved with the hourly emission in-
ventories to generate predicted XCO2 enhancements for each OCO sounding. For our inversion application,
footprints were calculated over the inversion domain for SFBA or LA, to calculate only the XCO2 enhancement
due to emissions within our inversion domain.

2.4. Bayesian Inversion

2.4.1. Posterior Fluxes

A Bayesian inversion was used to obtain posterior CO2 fluxes at hourly resolution for each grid cell within our
domain. Posterior fluxes (x̂) were calculated from prior fluxes (xa), the surface influence footprint matrix (H), the
prior error covariance matrix (B), the model‐data mismatch error covariance matrix (R) and measurements (y), as
shown in Equation 1.

x̂ = xa + (HB)T(HBHT + R)− 1 (y − Hxa) (1)

The inversion was implemented by adapting the method from Turner et al. (2020a). Following Yadav and
Michalak (2013), the prior error covariance matrix was treated as a separable Kronecker product of the spatial and
temporal error covariance matrices, in order to improve computational efficiency. The model‐data mismatch error
covariance matrix (R) includes instrument error, background error, and model error, which are added in quad-
rature. The instrument error was taken from the XCO2 uncertainty reported in the OCO measurements for each
sounding. The reported uncertainty is the posterior uncertainty for the retrieval, including measurement error,
smoothing error, interference error, and forward model error (C. W. O'Dell et al., 2012). Instrument errors were
added in quadrature for aggregation. The average instrument error across all soundings was 1.03 ppm. Back-
ground error was taken from the standard deviation of the OCO measurements used to define the background
concentration for that sounding. Since the background concentration and error are the same for all soundings in a
given overpass, this error was not aggregated, but simply assigned to the aggregated sounding. The average
background error was 1.19 ppm. For model error, we use a combination of stochastic model error (0.06 ppm),
boundary layer height error (0.20 ppm), and horizontal wind error (1.00), added in quadrature (D. Wu
et al., 2018). For the prior emissions we assume 50% uncertainty on the total CO2 emissions.

2.4.2. Posterior Covariance

The posterior covariance (Vŝ) is calculated from the surface influence footprint matrix (H), the prior error
covariance matrix (B), and the model‐data mismatch error covariance matrix (R), following Equation 2. This
method was adapted from Yadav and Michalak to directly calculate posterior covariance for each grid cell on
aggregated (monthly) time scales (Yadav & Michalak, 2013). This results in significant computational cost and
memory savings over calculating posterior covariance for each hour and then aggregating.

Vŝ = B − (HB)T(HBHT + R)− 1HB (2)

3. Results
3.1. Prior and Posterior Column Enhancements

The inversion was conducted for each domain for each month of 2020 (excluding January for which no acceptable
observations were available). The resulting posterior fluxes were used to calculate updated predicted column
enhancements (i.e., concentrations; see Figures S5–S8 in Supporting Information S1) for the receptors used in the
inversion. These were compared to the measured enhancements from OCO, as well as the predictions using the
prior fluxes. Including the entire year of soundings, the RMSE was reduced by 16% and 32% and the correlation
coefficient was increased by 44% and 30% in the SFBA and SoCAB domains, respectively. Though we cannot
validate the inversion with these assimilated observations, this result suggests that the posterior fluxes from our
inversions are more aligned with the observations than the prior estimates.
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3.2. Satellite Constraints on Total Emissions for Each Air Basin

Total prior and posterior emissions, and associated uncertainty, were calculated for the CARB‐defined air basin
corresponding to each urban area: San Francisco Bay Air Basin (SFBA) and South Coast Air Basin (SoCAB). Air
basin outlines are shown in Figure 1. Generally, the total emissions were similar between the prior and posterior,
and the uncertainties were reduced in the posterior estimates. Past studies have used the Vulcan data for the year
2015 as the prior, and thus see larger deviations in the posterior (Roten et al., 2023; Yadav et al., 2021). Other
studies validated the patterns in time in the posterior emissions in 2020 against activity data (Roten et al., 2023),
while we adjusted the prior before inversions. Consequently, even the enhancements predicted from our prior
emission inventory have good agreement with observations, and deviations from the prior are not so large. To test
that this is the case, we ran four months of the inversion using 2015 fossil fuel emissions in the prior, and we
observe larger changes between the prior and posterior, particularly in SoCAB where there are more observations
available to constrain fluxes, see Figure S9 in Supporting Information S1.

Figure 3. Total CO2 emissions (Tg Cmonth− 1) in SFBA (top) and SoCAB (bottom) for 2015 inventory, prior 2020 inventory,
and posterior 2020 estimates, including uncertainty bars (one standard deviation). The error bars for the 2020 prior and the
2015 inventory assume 50% uncertainty.
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Figure 3 compares the total monthly prior and posterior emissions, as well as 2015 emissions. The 2015 inventory
is the sum of the 2015 Vulcan fossil fuel emissions (Gurney et al., 2020a, 2020b), SMUrF NEE fluxes (D. Wu,
Lin, et al., 2021), and fire emissions from CarbonTracker (National Oceanic and Atmospheric Administration
Global Monitoring Laboratory: Earth System Research Laboratories, 2023). Note that the adaptation of the prior
using the 2020 activity data results in large changes from the 2015 inventory, which are consistent in the posterior.
The impact of the lockdowns can be clearly seen in the posterior compared to 2015. For example, in April 2020, at
the height of the lockdown, emissions are reduced by 50% and 30% compared to 2015 in SFBA and SoCAB,
respectively. A notable exception to the consistency between our prior and posterior is during wildfire events in
SFBA in August and September, where more noticeable changes between the prior and posterior were found, and
posterior uncertainty was increased. The fires emitted huge quantities of CO2, dwarfing emissions in any other
month. In August, when the wildfires were active in SFBA, wildfire emissions account for about 72% of total
monthly CO2 emissions in SFBA.

These very large emissions are sporadic and co‐emitted with aerosols, leading to limited observational coverage
from space which contributes to the large uncertainty. When observations are few or there is a discrepancy be-
tween the prior fluxes and observations, the posterior uncertainty can be larger than prior uncertainty (Euskirchen
et al., 2022; van de Schoot et al., 2014). The SoCAB domain typically has more observations than SFBA,
resulting in relatively smaller posterior uncertainties, and posterior uncertainty that is smaller than prior uncer-
tainty in all non‐wildfire months. This underscores the value of these observations, which will be increasingly
important for validating emissions as more satellites are launched and more observations are acquired. Figure S9
in Supporting Information S1, which compares four months of the inversion using 2015 fossil fuel emissions in
the prior, also illustrates how the posterior uncertainty is larger for the prior with 2015 emissions than the prior
with 2020 emissions (when there is a larger discrepancy between the prior and the observations), highlighting the
importance of the emissions scaling in order to obtain as accurate a prior as possible, and thus reduce posterior
uncertainty.

These results indicate that challenges still exist with satellite observations during large wildfires, and sparsely‐
observed urban areas, highlighting the need for further research to address these uncertainties. In terms of the
annual (excluding January) totals, our mean posterior emissions were reduced by 1% and 3% compared to the
priors in SFBA and SoCAB, respectively. In SoCAB (SFBA), our prior Feb‐Dec total of 32.2 ± 16.1 (15.6 ± 7.8)
Tg Cwas reduced to 31.3± 3.0 (15.5± 35.5) Tg C. As discussed, the large wildfires in SFBA introduce very large
posterior uncertainties.

3.3. Wildfire Emissions

The posterior emissions show noticeable changes to emissions within the wildfire boundaries in SFBA, as shown
in Figure S10 in Supporting Information S1. OCO overpasses during fire season were sensitive to wildfire
emissions, with modeled XCO2 enhancements from fires as high as ∼0.35 ppm. However, these overpasses had
fewer retrievals with good quality flags, likely due to the influence of aerosols present in wildfire smoke. Figure
S11 in Supporting Information S1 shows an example of an overpass with sensitivity to wildfire emissions during
wildfire activity, where the surface influence footprint covers the fire area. Our posterior emissions show that the
prior inventory overpredicted wildfire emissions, though the uncertainty on emissions in these wildfire grid cells
is large (see Table S5 in Supporting Information S1). In general, the presence of large emissions due to wildfires is
associated with increased posterior uncertainty throughout our domain, especially in grid cells containing
wildfires. Figures S12 and S13 in Supporting Information S1 demonstrate the difference in posterior uncertainty
for an active fire month (August) and non‐fire month (December). This suggests that OCO can provide useful
information about the central estimates for wildfire emissions, but that the uncertainty associated with those
estimates pose challenges for inverse modeling using OCO data, especially for this type of high‐resolution, pixel‐
based inversion with a large number of parameters. Source inversion with only a few parameters (i.e., one scaling
factor for each source sector) maybe be useful to reduce uncertainty. This challenge is partially due to the fact that
there are not many other observations that can constrain suburban wildfire emissions. One previous study
examining the southwestern US found large carbon losses from the terrestrial biosphere due to wildfires in 2020
using OCO‐2 measurements (Chen et al., 2024), but future studies are needed to better understand the ability of
OCO data to constrain fire emissions at higher spatial resolution. Wildfires were also present in our SoCal
domain, with smaller emissions magnitudes but still large uncertainty (see Figure S14 and Table S5 in Supporting
Information S1).
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4. Conclusions and Discussion
NASA's OCO‐2 and OCO‐3 satellites are useful for validating updated emission inventories at urban scales.
Satellite measurements can help identify sporadic sources that threaten progress in emissions reductions, such as
emissions from wildfires. Although we found large uncertainties in wildfire grid cells within our domain, a future
with more frequent satellite measurements over large wildfires could help reduce this uncertainty and better
understand sources like wildfires that are becoming increasingly important in our changing climate, as well as
smaller cities like San Francisco which have not yet been a focus area for satellite observations. The posterior
inventory from this study is validated by close agreement with the results found in Yadav et al. (2021), with
differences in monthly CO2 emissions in the South Coast Air Basin between these two studies within 6%–17%
(see Figure S15 in Supporting Information S1). Multiple studies have now observed the impacts of the COVID‐19
lockdowns in Los Angeles on emissions using satellite data (Roten et al., 2023; Yadav et al., 2021). This study
adds to this body of work by using similar methods to observe emissions in the San Francisco Bay Area. Previous
studies up until this point have generally focused on megacities, but these results indicate that these newer
scanning modes can be useful for smaller cities, as more data becomes available. As more of these satellites are
launched and more data is collected, this methodology can be used more widely to validate emissions estimates
more quickly than with bottom‐up estimates.

Data Availability Statement
OCO‐3 Level 2 v10.4r and OCO‐2 Level 2 v11r data are available from (NASA EarthData, 2024). Vulcan version
3.0 data set is available at (Gurney et al., 2020a, 2020b). The CARB GHG Emission inventory is available at
(California Air Resources Board, 2022). CalTrans PeMS data is available at (California Department of Trans-
portation, 2022). OpenSky Network data is available at (Olive et al., 2022). Container throughput counts are
available for the Port of Oakland at (Port of Oakland, 2022), Port of Los Angeles at (The Port of Los
Angeles, 2022), and Port of Long Beach at (Port of Long Beach, 2022). CarbonTracker fluxes are available from
(NOAAGlobal Monitoring Laboratory, 2024). SMUrF model data are available from (Wu, Lin, et al., 2021). Fire
emissions data is available from (vanWees et al., 2022b). The inversion code is available at (Turner et al., 2020b).
Posterior covariance code is available from the Supplement at (Yadav & Michalak, 2013).
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