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ABSTRACT OF THE DISSERTATION

Navigating Microseismicity Characterization

with Backprojection, Matched-filter, and Deep Learning

by

Tian Feng

Doctor of Philosophy in Geophysics and Space Physics

University of California, Los Angeles, 2022

Professor Lingsen Meng, Chair

Benefiting from the recent deployments of dense seismic arrays, seismologists have the

opportunity to detect earthquakes of small magnitudes (M < 2), referring to the occurrence

of these events as microseismicity. The characterization of microseismicity is essential in

solving many geophysical problems, such as probing fault structures, investigating the pro-

cess of hydraulic fracturing, and imaging the preseismic, coseismic, and postseismic slip of

megathrust earthquakes. Traditionally, earthquakes are identified by picking seismic phases

on continuous waveforms using the short-time average to long-time average ratio, kurto-

sis and skewness, waveform polarization, Akaike information criterion, and discrete wavelet

transforms. These single-station methods, however, may fail to detect microseismicity with

weak phase arrivals hidden in the noise.

This thesis introduces three new approaches to detecting microseismicity with multi-

station data: backprojection, matched-filter, and deep learning. The backprojection ap-

proach tracks and back-projects the coherent seismic pulses to the target region to deter-

mine the timing and location of any microseismic earthquakes. The matched-filter approach

searches for similar patterns of existing template earthquakes in the continuous recordings as

suggestive of a new event. We characterize the aftershock sequence of the 2011 M 9 Tohoku

earthquake with the backprojection and matched-filter methods. Based on the spatial con-
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sistency between aftershock-depleted zones and large coseismic slip, we identify a possible

large coseismic slip zone in the near-trench region offshore Fukushima. The deep learning

approach is data-driven and it learns to characterize microseismicity with a neural network

based on a large number of microseismicity recordings. We trained a Deep Learning Phase-

picking model named EdgePhase with a Southern California dataset and applied it to detect

the early aftershocks following the 2020 M 7 Samos, Greece earthquake. Compared to a

local earthquake catalog, EdgePhase showed 190% more detections with an event distribu-

tion that is more conformative to a planar fault interface, suggesting higher fidelity in event

locations. In addition to characterizing microseismicity, backprojection can also improve

the prediction of earthquake ground motions. We propose a high-frequency distance metric

based on backprojection, which outperforms traditional distance metrics in predicting the

ground shaking intensity of megathrust earthquakes in Japan and Chile.
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CHAPTER 1

Introduction

1.1 Importance of Microseismicity

Through the development of dense seismic arrays and new detection techniques, humans

are now able to detect earthquakes of magnitudes lower than zero. Although these newly

detected microseismic events (M < 2) can’t be felt by humans, they are still essential in

mitigating earthquake hazards, monitoring industry production, and answering scientific

questions.

Based on the Gutenberg-Richter law (Gutenberg & Richter, 1944), as earthquake magni-

tude increases, the number of earthquakes above that magnitude in a given year decreases.

This indicates that mega earthquakes are quite rare compared with microseismic ones. There-

fore, a modern seismic catalog contains dozens of times more events than an early catalog,

due to numerous detectable microseismic events. Furthermore, this results in a reduction

of the magnitude of completeness (Mc) of the catalog, leading to the advancement of sta-

tistical seismology (e.g., b value, p value, Epidemic Aftershock-Type Sequence model). In

Chapter 2, we build a more accurate aftershock catalog for the 2011 M9 Tohoku Earthquake

by decreasing Mc to 1.0 on land and 2.0 near the trench as compared to the Japan Meteo-

rological Agency (JMA) catalog. The presence of large b values (≥ 1.2) is found near large

aftershocks, possibly indicative of localized pockets of small differential stresses. Near the

trench, the p values (0.93–1.11) tend to be higher than those in the inland area (0.64–0.85).

This may be due to the larger coseismic slip and hence larger stress drop of the outer-rise

normal-faulting events compared to the deeper thrust-faulting events. Microseismicity is also

a significant precursor to large earthquakes. A number of large interplate earthquakes have
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been preceded by increased seismic activity in the months to days preceding the mainshock

(Bouchon, Durand, Marsan, Karabulut, & Schmittbuhl, 2013).

Along with its direct improvements to statistical seismology, microseismicity is also widely

used for monitoring anthropogenic earthquakes (e.g., hydrocarbon extraction, geothermal

production, CO2 sequestration, and underground mining; Matzel et al., 2014; T. Chen &

Huang, 2020; Warpinski, Du, & Zimmer, 2012; Williams-Stroud et al., 2020). Hydraulic

fracturing is an important technique used to enhance the productivity of oil and gas wells.

It involves the generation or opening of small fractures by injecting pressurized fluid. Ac-

cording to recent studies, hydraulic fracturing is strongly associated with microseismicity

(Ellsworth, 2013; Yin, 2017; Langenbruch & Zoback, 2016). For assessing the performance

of hydraulic fracturing, it is essential to track the associated microseismicity in real time.

Small to moderate earthquakes may also be induced at nearby faults by the injection ac-

tivities, posing a seismic hazard to nearby residents. As a result, real-time knowledge of

induced microseismicity is crucial for assessing the hazard associated with anthropogenic

earthquakes.

Geothermal reservoirs use the thermal energy of the Earth’s crust to produce CO2-free

energy and contribute to the development of green economies. Monitoring geothermal reser-

voirs can also be accomplished through induced microseismicity. The seismic front maps the

stress concentration at the tips of aseismic slip, which is primarily caused by an increase in

fluid pressure (De Barros, Wynants-Morel, Cappa, & Danré, 2021). Therefore, distance-time

plots can be used to monitor the seismogenic state of a reservoir. Furthermore, Holtzman,

Paté, Paisley, Waldhauser, and Repetto (2018) find that events with different spectral prop-

erties are related to changes in the rate of water injection into the geysers’ geothermal reser-

voir, which indicates that changes in acoustic properties and faulting processes correlate with

changes in thermomechanical state.

In addition, microseismicity is used to study rocky slopes (Spillmann et al., 2007; Salvoni

& Dight, 2016; Xu et al., 2014) and ice streams (E. Smith, Smith, White, Brisbourne, &

Pritchard, 2015; Kufner et al., 2021). It can also help us answer some scientific questions,
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such as what is the structure of fault zones, which portion of the fault is ruptured during

the duration of a large earthquake, how fluid migrates in the fault system, and what are the

magmatic processes before and after a volcanic eruption.

1.1.1 Fault Structure and Rupture Process

Geologists often find it difficult to identify the surface expression of the fault due to sediments,

buildings, and vegetation. Surface traces of faults should be interpreted cautiously in regions

with complex inherited tectonics (Courboulex et al., 2003). Other than field and satellite

Images, the spatial distribution of microseismicity can delineate detailed fault structures and

hidden faults (Inbal, Clayton, & Ampuero, 2015; Courboulex et al., 2003; Schaff, Bokelmann,

Beroza, Waldhauser, & Ellsworth, 2002; Pananont & Pornsopin, 2020; Wolfson-Schwehr,

Boettcher, McGuire, & Collins, 2014). A thorough understanding of fault characteristics

(e.g., position, length, strike, dip) is critical for assessing seismic hazards, especially in highly

populated areas. An effective means of constraining fault depth is to determine the maximum

depth of seismic activity. This helps to understand the thickness of the seismogenic zone,

which is important to the study of long-term fault slips (Jiang & Lapusta, 2017). Through

examining the focal mechanism of microseismicity, we can also calculate the stress field on

the fault planes (Boese, Townend, Smith, & Stern, 2012; Urbancic, Trifu, & Young, 1993;

De Matteis et al., 2012).

In addition, aftershocks resulting from a large earthquake may be used to observe the

rupture process. When Interferometric Synthetic Aperture Radar (InSAR) and Global Po-

sitioning System (GPS) observations are unclear or unavailable, it can be difficult to dis-

tinguish the fault plane and auxiliary plane from the mainshock focal mechanism. It is

possible to determine the fault plane that participated in the mainshock by examining the

distribution of aftershocks with focal mechanisms similar to those of the mainshock. As such,

microseismicity is complementary to other observations (e.g., on-site, InSAR) in determining

the fault plane.

In addition, microseismicity provides vital information to understand the pre-, co-, and
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post-seismic slip processes of large earthquakes (e.g. Frank, Poli, & Perfettini, 2017; L. Meng,

Zhang, & Yagi, 2016; Kato et al., 2012; Huang, Meng, et al., 2017; Huang, Xu, Meng,

Bürgmann, & Baez, 2017; Uchida & Matsuzawa, 2013; Lengliné, Enescu, Peng, & Shiomi,

2012). According to our findings in Chapter 2, a large coseismic slip zone is possibly present

in the near-trench region offshore Fukushima because the aftershock-depleted zones planarly

correspond with the zone of large coseismic slip. In general, microseismicity helps to study

fault zones and the rupture process associated with large earthquakes.

1.1.2 Monitoring Fluid Migration and Volcanoes

As we learned previously, hydraulic fracturing stages could be monitored through induced

microseismicity. In a similar manner, we can also examine the migration pattern of flu-

ids based on natural seismicity, specifically earthquake swarms. Earthquake swarms are

sequences of natural seismicity without clear mainshocks. They are frequently associated

with areas of high heat flow and are believed to be caused primarily by external processes

such as fluid flow or aseismic slip, rather than earthquake triggers connected with stress

transfer(Ross, Cochran, Trugman, & Smith, 2020). A study by Ross, Cochran, et al. (2020)

of a 4-year-long earthquake swarm at a fault zone in southern California indicates that fluids

are naturally injected into the fault zone and diffuse through strike-parallel channels while

triggering earthquakes. Initially, a permeability barrier limits up-dip swarm migration but is

ultimately circumvented. Observation of the spatiotemporal distribution (migration speed)

of microseismicity provides high-resolution constraints on the process by which the swarm

initiates, grows, and stops. In addition, Darcy’s law can be used to estimate hydrological

properties (e.g., diffusivity, permeability) related to fluid migration.

The magma in the volcano chamber also has the property of liquid, and its movement

can cause changes in pressure and, consequently, seismicity (McNutt & Roman, 2015; Rubin,

Gillard, & Got, 1998; Titos, Bueno, Garcia, & Benitez, 2018). The seismicity of long-period,

hybrid, and volcano-tectonic events are useful indicators for tracking the evolution of volcanic

processes (Cui, Li, & Huang, 2021; Ripepe et al., 2015). While the magnitudes of these
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volcanic earthquakes are typically small, they can illuminate magma reservoirs, monitor

magma discharge rates, and predict volcanic eruptions. In some cases, volcano eruptions

may be preceded by an upward migration of seismicity associated with magmatic recharge

(Lengliné, Duputel, & Ferrazzini, 2016; Cui et al., 2021).

Furthermore, the repeated cycles of uplift and subsidence of the Yellowstone caldera

can be explained by the frequent earthquake swarms (Shelly et al., 2013). The occurrence

of swarms was the result of the rupture of a zone of confined high-pressure aqueous fluids

within a preexisting crustal fault system, causing release of accumulated stresses. As a

consequence of the high pressure fluid injection, there may have been hybrid shear and

dilatational failures, which are common to hydrothermally affected fault zones that have

been exhumed. The above process has likely occurred repeatedly in Yellowstone’s history as

aqueous fluids migrated into the brittle crust as they were exsolved by magma, and it may

have contributed to observed cycles of caldera uplift and subsidence.

This section introduced microseismicity and its applications in research, hazard mitiga-

tion, and industrial production. These applications accelerate the development of techniques

for characterization of microseismicity. Yet, detecting microseismicity remains challenging

in some cases, such as the low signal-to-noise ratio (SNR) of seismograms and sparse station

distribution. Next, we will summarize the development history of microseismicity detection

methods.

1.2 Conventional Microseismicity Detection Methods

The conventional method of detecting microseismicity consists of phase picking, phase asso-

ciation, earthquake location, and magnitude estimation. The first of these steps, phase pick-

ing, is fundamental and has a direct bearing upon the credibility of subsequent research on

microseismicity (for example, event identification and source mechanisms). Historically, re-

liable phase arrivals were selected by seismologists with decades of experience and enormous

capabilities of the human brain (Trnkoczy, 2009). Since the late 1970s, automatic phase

5



picking algorithms have flourished largely due to the rapid development of microcomput-

ers. Thanks to microcomputers and automatic phase-picking algorithms, earthquake study

evolved into a new era. It frees seismologists from the heavy labor of phase picking and in-

creases the productivity of seismology research (Saragiotis, Hadjileontiadis, & Panas, 2002).

It also eliminates the time-consuming and subjective (human experts pick phases based on

their individual experiences) issues associated with manual picks. Nevertheless, developing

a phase picking algorithm that can rival human analysts was a challenge, and numerous

algorithms and methods have been proposed since the 1970s to the present day. Specifically,

we introduce a few widely used methods, such as short-time-average over long-time-average

trigger (STA/LTA), polarization analysis, skewness, kurtosis, Akaike information criterion

(AIC), and the discrete wavelet transform (DWT).

1.2.1 STA/LTA

The STA/LTA method is the most widely used energy detector technique in detecting mi-

croseismic activity (R. V. Allen, 1978; R. Allen, 1982; Ruud & Husebye, 1992; Earle &

Shearer, 1994; Saari, 1991; Baer & Kradolfer, 1987). It continuously calculates the average

absolute amplitude of seismic trace (acceleration, velocity, or displacement) over two consec-

utive sliding windows. Short time windows (STA) are sensitive to seismic events, whereas

long time windows (LTA) are sensitive to the temporal amplitude of the seismic noise at

the site (Trnkoczy, 2009). The baseline (zero) for amplitude is determined by band-pass

trigger filters, which should generally accommodate the frequencies of the maximum energy

of expected seismic events (Trnkoczy, 2009). In practice, the length of the short and long

windows is 30 seconds and one second, respectively. When the STA/LTA ratio exceeds an

empirically determined threshold, a tentative event is declared. Assuming that the arrival of

a phase is signaled by a change in the frequency content and amplitude in the seismic time

series Xi, characteristic functions (CF) are applied on the seismograms to highlight these

changes. In previous practices, different CFs were applied to seismic traces before calculating

the average of windows, such as the absolute value of the input series |Xi|, the square of
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the derivative of the input series |X ′2
i |, etc. Here is the original version of CF (R. V. Allen,

1978).

CFi = X2
i +X ′2

i +K

where X ′
i is the derivative of seismic trace and K is a constant. This CF monitors the

change of the envelope of the seismic signal and it performs well in the routine detection

of earthquakes. As the choice of CF (Akram, Peter, & Eaton, 2018) and parameters in

STA/LTA are case-dependent and important for achieving optimal results, numerous versions

are in use in various research institutions.

1.2.2 Polarization Analysis

In the polarization analysis method, earthquakes are detected by identifying the highly

polarized initial arrivals of seismic phases (Vidale, 1986; Jurkevics, 1988; Magotra, Ahmed,

& Chael, 1987, 1989; S. Anderson & Nehorai, 1996; Kurzon, Vernon, Rosenberger, & Ben-

Zion, 2014; Ross & Ben-Zion, 2014). The polarization of a 3-component M-sample sequence

can be determined based on the covariance matrix S.

Sjk =
XXT

M
=

1

M

M∑
i=1

xijxik

where xij is the ith sample of component j. The x has removed the mean value along the

channel. The covariance matrix S is a 3 ∗ 3, semidefinite matrix, whose eigenvalues are real

and non-negative.

S =

∣∣∣∣∣∣∣∣∣∣∣
Szz Szn Sze

Snz Snn Sne

Sez Sen See

∣∣∣∣∣∣∣∣∣∣∣
.

The corresponding eigenvalues (λ1 ≥ λ2 ≥ λ3) and eigenvector matrix (u1, u2, u3) can

be calculated through singular value decomposition (Kurzon et al., 2014; Ross & Ben-Zion,

2014). These eigenvalues and eigenvectors provide information on the propagation direction

and perpendicular direction of the P wave (The eigenvector u1 with the largest eigenvalue λ1
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points to the P wave propagation direction). There are two common measures used to detect

seismic phases: the first is rectilinearity, which measures the degree of linear polarization,

which theoretically equals 1 for a pure body wave.

r = 1− (
λ2 + λ3

2λ1

) ∈ [0, 1]

The other measure is the apparent vertical incidence angle ϕ.

ϕ = cos−1|u11|

The value of cos(ϕ) is close to 1 and 0 for P- and S-phases, respectively. By combining

these two measures, Ross and Ben-Zion (2014) construct polarization filters to identify P-

and S-phases from seismograms. The P-phase filter has the function of p = rcos(ϕ) and the

S-phase filter has the function of s = r(1−cos(ϕ)). As the P- and S-phase filters enhance and

depress the signal in the wavefront propagation direction, respectively, they can highlight P-

and S-phases (Fig. 1.1).

1.2.3 Skewness and Kurtosis

One way to identify phases is through the use of higher-order statistics in seismograms

(Yung & Ikelle, 1997; Saragiotis et al., 2002; Saragiotis, Hadjileontiadis, & Panas, 1999).

Two common statistics are introduced here: the skewness and the kurtosis, which are third-

and fourth-order statistics, respectively.

skewness =

∑M
i=1(X(i)− m̂X)

3

(M − 1)σ̂X
3

kurtosis =

∑M
i=1(X(i)− m̂X)

4

(M − 1)σ̂X
4 − 3

where m̂X and σ̂X are the estimates of the mean and standard deviation of the M-sample

finite sequence X(i). The skewness measures the symmetry, and the kurtosis measures the

heaviness of the tails in the distribution of sequences. The estimates of skewness and kurtosis

are zero if the data is Gaussian. Integrating skewness and kurtosis, the phase-picking model
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PAI-S/K (Saragiotis et al., 2002) can identify signals with asymmetrical distributions and

heavy tails (non-Gaussian signals). By assuming that earthquake signals are non-Gaussian

while noise is Gaussian, the transition between Gaussianity and non-Gaussianity coincides

with the onset of the seismic event (Fig. 1.2; Saragiotis et al., 2002).

1.2.4 AIC picker

The Akaike information criterion (AIC) can be used to divide a single time series into two

portions (early and late) under the assumption that each portion exhibits distinct but sta-

tionary characteristics. AIC can be used to detect P and S-phase onsets by assuming that

the variance of the time series in the seismogram is different before and after the P and S

wave arrivals (Maeda, 1985; Sleeman & Van Eck, 1999). The onset occurs when the AIC

has a minimum value (Fig. 1.3).

AIC(k) = k ∗ log(var(x[1, k])) + (N − k − 1) ∗ log(var(x[k + 1, N ]))

where x is the seismogram of length N , and k ∈ [1, N − 1]. The AIC picker was later

improved by incorporating the autoregressive process (AR) (Sleeman & Van Eck, 1999;

Leonard & Kennett, 1999; Leonard, 2000; H. Zhang, Thurber, & Rowe, 2003). To be more

precise, the two stationary time series are fitted with AR processes.

For real-world applications, AIC pickers have several shortcomings since the phase onset

is always picked up at the minimum. Even if a window only contains noise, the AIC pickers

will define an ”onset”. Moreover, AIC pickers generate several local minima in low SNR

conditions, and the P wave arrival can be located at one of the local minima.

1.2.5 DWT

Discrete wavelet transforms (DWT) have been extensively employed for improving seismic

data resolution (Chakraborty & Okaya, 1995), for compressing seismic data (Lervik, Rosten,

& Ramstad, 1996), and for picking up seismic phases (H. Zhang et al., 2003). DWT is

superior to the Fourier transform in its ability to characterize the signal structure locally
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and according to its scale. In particular, DWT displays coarse (low frequency) features on

large scales while fine (high frequency) features appear at small scales (H. Zhang et al., 2003).

Due to the ability to analyze seismic signals at different resolutions, DWT is widely used in

the preceding phase-picking methods. A few examples are Anant and Dowla (1997), which

combine DWT and polarization; Saragiotis et al. (1999), which combine DWT with high-

order statistics; H. Zhang et al. (2003), which combine DWT and AIC picker; Rodriguez

(2011), which combine DWT with STA/LTA; and X. Li, Shang, Wang, Dong, and Weng

(2016), which combine DWT with STA/LTA and kurtosis. These hybrid methods improve

the accuracy of phase picking at low SNR conditions, and have become increasingly popular

since the 2000s.

No matter how complex the mathematical transformations they performed, the con-

ventional phase-picking method can only analyze information from a single station. Some

seismic phases, however, are difficult to identify at a single station due to a low SNR. In

the manual phase picking process, humans typically rely on the consistency of waveforms

from multiple stations in order to determine whether ambiguous cases should be classified as

seismic phases. In this instance, a multi-station approach utilizing the waveform consistency

between neighboring stations should improve phase picking and microseismicity detection.

The following is an introduction to two such approaches based on waveform similarity and

machine learning, respectively.

1.3 Models Based on Waveform Similarity

Since the early 2000s, a number of waveform-similarity-based multi-station methods have be-

come popular for microseismicity detection as a result of the development of central process-

ing units (CPUs) and the deployment of dense arrays (e.g., backprojection, matched-filter,

autocorrelation, and neighboring-station coherence; Z. Li, Peng, Hollis, Zhu, & McClellan,

2018). The primary advantage of these methods is that they utilize the coherency and sim-

ilarity of waveforms in dense arrays, which is potentially better suited to detecting smaller

events than the traditional single-station methods are, but at the cost of additional compu-
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tation resources.

1.3.1 Backprojection

Backprojection (BP) is a recently-developed earthquake rupture imaging technique based on

coherent teleseismic P-wave recordings (e.g. Rost & Thomas, 2002; Ishii, Shearer, Houston,

& Vidale, 2005; Krüger & Ohrnberger, 2005; L. Meng, Ampuero, Luo, Wu, & Ni, 2012;

Kiser & Ishii, 2017). Back-tracking of seismic waves recorded by dense arrays allows BP to

determine the timing and location of the energy source that generates the strongest seismic

radiations. Tracking these energy sources allows us to visualize the spatiotemporal properties

(length, direction, speed, and segmentation) of the rupture process. The development of

large-scale dense seismic networks has enabled BP to image the rupture process of large

earthquakes in recent decades. Contrary to conventional finite-fault modeling, BP is an

imaging procedure which does not require detailed knowledge of Green’s functions or the

solution of an inverse problem. The fact that BP does not attempt to deterministically fit

seismic waves, but instead relies on the coherent phase of seismic array signals, allows BP

to be applied to high-frequency (HF) wavefields (f ≥ 1Hz).

Several recent studies have demonstrated the effectiveness of using BP method to detect

missing early aftershocks that are otherwise masked by the mainshock coda wave (Kiser &

Ishii, 2013; Fan & Shearer, 2016). Kiser and Ishii (2013), for instance, back-projected the

first 25 hours of continuous recordings following the 2011 Mw 9.0 Tohoku earthquake which

resulted in 300 new aftershock detections. It is noteworthy that the BP-detected events

augment the JMA earthquake catalog by providing evidence of significantly more active

seismicity offshore, particularly near the trench. The BP technique determines the origin

time, epicenter, and magnitude of a detected microseismic event based on the spatiotem-

poral distribution of energy, which is why BP is an end-to-end technique. Using a network

of seismograms as input, it outputs microseismicity characters directly. In chapter 2, we

investigate the ability to detect the offshore microseismic activity near Japan by conducting

continuous BP in a more efficient manner. Additionally, we propose an objective threshold to
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identify earthquakes, perform spatial calibration to improve epicenter accuracy, and perform

temporal calibration to correct the origin time.

The capability of BP to image high-frequency sources is critical in improving the predic-

tion of strong ground motion, since the typical frequency range of intense shaking is between

1 and 10 Hz (e.g., J. Anderson, 2007; Sokolov & Chernov, 1998). The natural frequency

of building response falls in this particular frequency band: A rule of thumb is that the

building period equals the number of stories divided by 10, so the 1 to 10 Hz band is roughly

responsible for the shaking of 1 to 10 story residential and commercial buildings. Our chap-

ter 4 presents a high-frequency distance metric (Rhf ) based on observations from the BP.

Our study of five Mw > 7.2 megathrust earthquakes in Japan and Chile finds that the Rhf

distance metric outperforms the conventional distance metric (Rrup) in predicting the ground

shaking intensity between 0.5 and 4 Hz. Rhf can be used as a complementary measure to

the conventional ground motion prediction equation (GMPE) distance metrics, which is a

more accurate predictor of ground motion in many cases.

1.3.2 Matched-filter and Autocorrelation

The aforementioned BP method detects microseismicity by identifying high-frequency (HF)

radiators, and here we present another detection method named template matching or

matched-filter (MF), which is based on the waveform similarity of close events. If the

event sources are close together relative to their common distance from the station, then

the seismicograms are assumed to be similar, as the focal mechanism, ray path, and site

effects are similar. This method searches for a pattern similar to existing template events

within continuous recordings that suggests the possibility of a new event. By stacking the

multi-channel cross-correlation coefficients (CCs) between the template waveforms and the

continuous recordings, the MF method is capable of detecting ∼ 4 − 10 times more events

than those listed in the routine catalogs, and thus reduces the magnitude of completeness by

∼ 0.6 − 1.0 (e.g. Turin, 1960; Gibbons & Ringdal, 2006; Shelly, Beroza, & Ide, 2007; Peng

& Zhao, 2009; Kato et al., 2012; Huang, Meng, et al., 2017).
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The drawback of the MF method is that it relies on known earthquake templates. In

situations where templates are unavailable or we are interested in exploring new types of

events, the autocorrelation method may be an option. The basic concept is similar to MF,

but the templates are generated from sliding windows of continuous waveforms rather than

known event windows. The numerous templates make scanning months of data almost un-

affordable, as the computational cost increases dramatically with the size of the dataset. By

scanning through 1-hour seismic data from 6 Hi-Net stations in Japan, Brown, Beroza, and

Shelly (2008) has identified both previously known and unknown low frequency earthquakes.

According to the computation efficiency, MF is more commonly used than autocorrelation

in long term earthquake detection tasks.

In Chapter 2, we presented a combination of the BP and MF approaches (BP-MF), which

incorporates those BP-detected events as additional template events into the MF detection

in order to retrieve a more complete picture of offshore seismicity, particularly in the shallow

parts of the subduction zone. We conducted BP-MF analysis within 600 days of the 2011

M 9.0 Tohoku earthquake. This study finds 44.2% more offshore events than those listed in

the JMA catalog. Near the trench, we detect 213% more events.

1.4 Machine Learning Models

1.4.1 Differences between physics-based and machine learning models

Data-driven models learn to deal with a certain task through data or experience, as their

name implies. If the learning process is performed by a machine or by a computer, we refer to

it as machine learning (ML). As opposed to physics-based models, ML models are based solely

on the statistical distribution of data without assuming any physical assumptions. Physics-

based models typically utilize simple mathematical functions because physical equations are

simple and beautiful, and humans can only effectively adjust dozens of parameters at one

time. Conversely, ML models allow for greater flexibility in expression, depending on the

task. With a standard scheme of learning, several to billions of parameters can be efficiently

13



tuned in an ML model.

We use the movement of Mars as an example to highlight the difference between physics-

based models and ML models. Newton’s law of universal gravitation can be used as a

starting point for constructing a physics-based model that predicts Mars’ movement. It

illustrates the relationship between gravity force and masses, as well as the relationship

between force and acceleration. Using a force analysis, it is possible to approximate the

movement of Mars given the initial conditions (e.g., position and velocity of the planet).

Most of the parameters in the model have physics meanings with constant values, such

as the gravitational constant, the mass of Mars, and the mass of the Sun. In practice, it

is difficult to make all physical conditions and assumptions valid in real applications (for

example, dark matter is not considered in force analysis; Newton’s law works for slow speed

conditions, however not for high speed conditions).

Physics-based modeling requires an in-depth understanding of physical systems; in con-

trast, a ML (statistical) model can be used to estimate the movement path of Mars without

having to know any laws of physics and physical information. The ML model can be de-

scribed with a function ŷ = fθ(x), where x is the time, ŷ is the predicted position of Mars,

f is a category of functions with parameters θ. These parameters do not have clear physical

meanings and are initialized with random values. During the training process, the optimizer

decreases the misfit between observations y and predictions ŷ by tuning these parameters.

Misfit is often referred to as loss function or target function, which indicates how well the

model is performing. ML models are assumed to learn the distribution of training data when

the loss function reaches a global minimum or maximum. A trained model can be used to

predict future data generated by the same or a similar process (the physical system in this

example).

A ML model may sometimes appear as a black box, displaying good performance in

real-world applications, but no one knows what the physics or rules are. This phenomenon

is not unique, as people have used electrical appliances for decades before the discovery of

electrons. Our society is currently in an era where the application of machine learning comes
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much earlier than its understanding. For instance, the face recognition system was applied

to the latest telephones, but the meaning of millions of parameters in the model is still hard

to explain.

1.4.2 Categories of Machine Learning Models

Within this section, we will discuss three different methods for categorizing ML models (task,

learning approach, and algorithms) and their application to seismology. The ML model can

be categorized according to the problems it solves: regression, classification, and clustering.

The aforementioned Mars example is a regression task, whose prediction is numerical data.

If the prediction is categorical data, it would be classified as a classification task. Another

common type is the clustering task in which the dataset is clustered into groups.

Aside from the difference in task types, ML models can also be classified according to

their learning characteristics. The aforementioned Mars example is using supervised learning,

which is most common in the applications of machine learning. The observation y represents

the correct answer (label) for the training sample x, and it guides the model to update its

parameters during supervised learning.

In addition to supervised learning, there is unsupervised learning, semi-supervised learn-

ing, self-supervised learning, and reinforcement learning. In an unsupervised learning task,

the dataset has no labels, but the model learns a pattern to cluster the samples with meth-

ods such as K-means, density-based spatial clustering of applications with noise (DBSCAN),

and Gaussian Mixture models (GMM). It has been applied to searching for precursors during

laboratory seismic cycles (Bolton et al., 2019), clustering rupture directivity modes (Ross,

Trugman, Azizzadenesheli, & Anandkumar, 2020), and clustering seismic signals (Seydoux

et al., 2020).

The semi-supervised learning is one between the unsupervised and supervised learning,

whose dataset is partially labeled. The model is trained with labeled samples and then

predicts unlabeled samples. The procedure includes labeling the samples of high prediction

confidence with pseudo-labels, and then continue training the model using these pseudo-
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labeled samples. The method has been used to detect rockfalls and volcano-tectonic events

in continuous waveform data (Köhler, Ohrnberger, & Scherbaum, 2010).

The self-supervised learning approach uses the samples x themselves as labels. The

method has been applied to the removal of spatially incoherent noise from seismic field

datasets (Birnie, Ravasi, Liu, & Alkhalifah, 2021) and fiber-optic Distributed Acoustic Sens-

ing (DAS) datasets (M. van den Ende et al., 2021).

Finally, reinforcement learning uses intelligent agents to learn how to take action in a

given environment so as to maximize the cumulative rewards (Kaelbling, Littman, & Moore,

1996). During training, the model should find a balance between exploration (uncharted

territory) and exploitation (current knowledge). It has been widely used in robotics ma-

nipulation, games (e.g. AlphaGo; Silver et al., 2016), and self-driving systems (Kiran et

al., 2021). Furthermore, it has been used in dynamic threshold selections for single-station

earthquake detectors (Draelos et al., 2018), in seismic control systems (online tuning of a

mass-drive system; Khalatbarisoltani, Soleymani, & Khodadadi, 2019) and in minimizing

seismicity in industrial projects (Papachristos & Stefanou, 2021).

Finally, ML models can also be categorized by the algorithm they employ. Numer-

ous algorithms have been developed over the years, and here we present only some of the

most popular algorithms and their applications in seismic analysis. Support vector machine

(SVM) has been applied to predict earthquake early warning magnitudes (Reddy & Nair,

2013; Ochoa, Niño, & Vargas, 2018), earthquake casualties (Xing, Zhonglin, & Shaoyu,

2015), earthquake-induced liquefaction potential of soil (J. Zhou, Huang, Wang, & Qiu,

2021), and mantle convection processes (Shahnas, Yuen, & Pysklywec, 2018). The random

forest (Breiman, 2001)has been applied to earthquake catalogs declustering (Aden-Antoniów,

Frank, & Seydoux, 2022), earthquake early warning (Z. Li, Meier, Hauksson, Zhan, & An-

drews, 2018), earthquake-induced landslides (Miao & Wang, 2015), and ground motion pre-

diction (Trugman & Shearer, 2018). The Markov Chain Monte Carlo approach has been

applied to seismic tomography (Bodin & Sambridge, 2009; X. Zhang, Curtis, Galetti, &

De Ridder, 2018; Piana Agostinetti, Giacomuzzi, & Malinverno, 2015), the estimation of
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earthquake source temporal functions (Debski, 2008), and the prediction of tsunamigenic

earthquake magnitudes (Shin, Chen, & Kim, 2015).

Aside from these algorithms, neural networks have become particularly popular in the

2010s and have found great success in many fields such as computer vision and natural

language processing. As a result of technologies such as graphics processing units (GPUs)

and Tensor Processing Units (TPUs), people are able to build neural networks with numerous

layers and millions of parameters. These large, complex neural networks are known as deep

learning (DL) models. The applications of DL in seismology have flourished since 2017,

including earthquake detection (Reynen & Audet, 2017; Perol, Gharbi, & Denolle, 2018;

Z. Li, Meier, et al., 2018; Meier et al., 2019; Saad & Chen, 2020; Saad et al., 2021), earthquake

location (Mousavi, Zhu, Sheng, & Beroza, 2019; J. D. Smith, Ross, Azizzadenesheli, & Muir,

2022; M. P. van den Ende & Ampuero, 2020; W. Zhu, Tai, Mousavi, Bailis, & Beroza,

2021), earthquake magnitude estimation (M. P. van den Ende & Ampuero, 2020; Mousavi &

Beroza, 2020), focal mechanism determination (Kuang, Yuan, & Zhang, 2021), and polarity

determination (Tian et al., 2020). This technique has also been used to detect tremors

(Nakano, Sugiyama, Hori, Kuwatani, & Tsuboi, 2019) and moonquakes (Civilini, Weber,

Jiang, Phillips, & Pan, 2021).

Next, we will discuss the application of DL to the phase-picking task as well as the history

of model development. DL models require a large amount of data, and the high volume of

microseismic recordings makes the phase-picking process appropriate for DL models.

1.4.3 Artificial, Convolutional, and Recurrent Neural Networks

The ”neural network” algorithm mimics the behavior of neuron cells, hence its name. Here,

we take a neuron as an analogy of the smallest computing unit in neural networks. A

neuron’s dendrites receive signals X from its environment or from other neurons. Different

dendrites may have different sensitivities, which can be represented by weightings W for

each branch. Before transferring the signals received from all dendrites to other neurons, the

selected neuron processes the summarized signal (X ∗W ) with a bias B and an “activation
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function”. This activation function functions like a filter that is only sensitive to certain

signals. Rectified Linear Unit (ReLU) is one of the default activation functions in the state-

of-the-art neural networks with the format of ReLU(x) = max(0, x) and here we use it as an

example. The processed signal Y = ReLU(X ∗W +B) is then transferred to other neurons,

with positive values for exciting instructions and zero values for unexciting instructions. A

neural network is composed of layers of these neuron-like computing units.

Early versions of neural networks were known as artificial neural networks (ANNs). These

were popular in the 1990s (Van der Baan & Jutten, 2000; Poulton, 2002). The neurons in an

ANN network are connected to each other and the number of parameters is approximately

proportional to the number of connections. Because of the limited computational resources

available in the 1990s, ANN applications on the phase-picking task generally utilize a few

layers (usually one hidden layer) and hundreds of parameters. These ANN models use raw

waveforms (Dai & MacBeth, 1995, 1997; Y. Zhao & Takano, 1999) or extracted features

(such as the ratio between short-term average and long-term average, the ratio between

horizontal power and total power, and the short-axis incidence angle of the polarization

ellipsoid; J. Wang & Teng, 1995) as input and predict the probability of seismic phases with

a moving (sliding) window. Many of these models are underfitted due to the small number

of training samples, which ranges from hundreds to thousands. Although its performance is

not the best, the ANN has been used in MyShake, a global smartphone seismic network due

to its low computational cost (Kong, Allen, Schreier, & Kwon, 2016).

In the 2010s, thanks to the rapid development of GPU technology, deep networks were

soon able to be trained, and a wide variety of network variants developed since then, such as

the Convolutional Neural Network (CNN; LeCun, Haffner, Bottou, & Bengio, 1999), Recur-

rent Neural Network (RNN), and Graph Neural Network (GNN). Various neural networks

have been designed for the processing of different types of data (e.g. CNN for images, RNN

for audio, GNN for social network data). While some literature considers CNN to be a

variant of ANN, we specify that the neurons in ANN are fully connected, while the neurons

in CNN are partially connected with a fixed kernel. The kernel slides on the neurons in the
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previous layer and processes signals that the kernel can perceive as ANN does. The following

equation shows the transformation process from signal X l−1 at layer l − 1 to signal X l at

layer l with a 1D kernel K with size of m and activation function δ.

X l
i = δ(

m−1∑
a=0

Ka ∗X l−1
i+a)

The kernel has a similar function as the filter in the seismic data processing. By applying

multiple kernels to the same input, we can achieve different transformed signals (such as

high-pass and low-pass) and store them in multiple channels. Compared with ANN, CNN

uses much fewer parameters with repetitive weights, thus numerous deep CNN models with

dozens of layers were applied on the seismic phase picking task (Ross, Meier, Hauksson,

& Heaton, 2018; W. Zhu & Beroza, 2019; L. Zhu et al., 2019; Ross, Meier, & Hauksson,

2018; J. Wang, Xiao, Liu, Zhao, & Yao, 2019; Woollam, Rietbrock, Bueno, & De Angelis,

2019). The performance of these models are on par with human analysts, with an accuracy

of ∼ 90%.

Meanwhile, some researchers incorporate RNN into their models (Mousavi, Ellsworth,

Zhu, Chuang, & Beroza, 2020; Mousavi, Zhu, et al., 2019; Y. Zhou, Yue, Kong, & Zhou,

2019; Wiszniowski, Plesiewicz, & Trojanowski, 2014) because it can interpret temporal data

and seismograms as sequential data. Generally, models that incorporate RNN outperform

models built purely with CNN, because the RNN stores and utilizes seismogram context

information. However, RNNs cannot be stacked into very deep models in practice due to

the vanishing and exploding gradient problems (Hochreiter, 1998). Specifically, the gradient

of the parameters would be either too large or too small to update in the training process.

One common solution is to incorporate Long Short-Term Memory (LSTM; Hochreiter &

Schmidhuber, 1997; Magana-Zook & Ruppert, 2017) or Gated recurrent units (GRU; Cho,

Van Merriënboer, Bahdanau, & Bengio, 2014) in RNNs. It is worth noting that they have

been successful in dealing with complex sequential data, such as seismograms, DNA se-

quences, articles, dialogues, and voices (Liu et al., 2019; Wen et al., 2015; Lehner, Widmer,

& Bock, 2015).
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1.4.4 Graph Neural Network

The CNN and RNN phase-picking models have produced promising results in some real-

world applications, but there is still room for improvement. Early CNN and RNN models

either used a single station or a network with a fixed configuration (Zheng, Harris, Li, &

Al-Rumaih, 2020; Yang, Hu, Zhang, & Liu, 2021), since the input channels of CNN and RNN

should have a fixed size and order. The former models can’t benefit from the waveform con-

sistency between multiple stations, like the conventional single-station phase-picking models.

The latter models are trained and tested on the same station configuration and region, which

limits their generalization capability to other station networks or tectonic settings. A solu-

tion for establishing communications between multiple stations is to use the Graph Neural

Network (GNN; Gori, Monfardini, & Scarselli, 2005; Scarselli, Gori, Tsoi, Hagenbuchner, &

Monfardini, 2008; J. Zhou et al., 2020). GNN is the neural model that captures the depen-

dence of graphs via message passing between the nodes of graphs (J. Zhou et al., 2020). GNN

can freely exchange information between multiple stations, which can handle the irregular

structures of graphs with a fixed model architecture (Z. Zhang, Cui, & Zhu, 2020). It has

been successfully implemented in seismic source characterization (M. P. van den Ende &

Ampuero, 2020; McBrearty & Beroza, 2022) and phase association problems (McBrearty &

Beroza, 2021).

There are numerous model architectures in the GNN family and they can be catego-

rized into five categories: Graph Recurrent Neural Networks, Graph Convolutional Net-

works (GCN), Graph Autoencoders, Graph Reinforcement Learning, and Graph Adversarial

Methods (Z. Zhang et al., 2020). This thesis only focuses on one specific type of GCN net-

work referred to as graph message passing network (Gilmer, Schoenholz, Riley, Vinyals, &

Dahl, 2017), which is suitable for the phase-picking task. It enables exchange of information

between neighboring nodes, which enhances the relevant signals shared by adjacent nodes.

In Chapter 3, we build a multi-station phase-picking model named EdgePhase by incor-

porating a graph message passing network into a state-of-the-art single-station phase-picking

model, EQTransformer (Mousavi et al., 2020). The EQTransformer contains the CNN and
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RNN modules described above. As compared to EQTransformer, EdgePhase improves both

precision and recall by 5% on our training and test sets for Southern California earthquakes.

In our study of early aftershocks following the M7.0 earthquake in Samos, Greece in 2020, the

EdgePhase model demonstrated a strong regional generalization ability. When compared to

a local earthquake catalog, EdgePhase detected 190% more events with a distribution that

is closer to a planar fault interface. Through a GNN framework, the seismograms and geo-

graphic locations of multiple stations are treated as a graph. The communication between

stations through GNN has taken the DL phase-picking model into a new era, where phase

detection is not only dependent on seismograms from one station, but also on the waveform

consistency in a seismic network.
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Figure 1.1: An application of polarization analysis to separate a seismogram into P and S

phases. Adapted from Ross and Ben-Zion (2014). (a-c) North, east, and vertical component

velocity seismograms. (d) A P-polarization filter based on a covariance matrix with high

values during the P wave and low values during the S wave. (e) A corresponding polarization

filter based on the covariance matrix. (f) A P-polarized vertical trace (red) plotted together

with the S-polarized east–west trace (blue).
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Figure 1.2: Skewness and kurtosis of the waveforms in the sliding windows. Adapted from

Saragiotis et al. (2002).
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Figure 1.3: Seismograms and the corresponding AIC values. Adapted from H. Zhang et al.

(2003).
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CHAPTER 2

Detecting Offshore Seismicity: Combining

Backprojection Imaging and Matched-filter Detection

Originally published in Feng, T., Meng, L., & Huang, H. (2020). Detecting Offshore Seis-

micity: Combining Backprojection Imaging and Matched-filter Detection. Journal of Geo-

physical Research: Solid Earth, 125(8), e2020JB019599. I contributed to the experiments

and writing of the paper. Linsen provides instructions on Backprojection and paper revision.

Hui provides instructions on the Matched-filter.

Note: the supplementary materials are included in Appendix A.

Abstract

An important manifestation of the background or coseismic deformation surrounding megath-

rust earthquakes is the offshore microseismicity, which are difficult to be directly detected by

land-based seismic instruments. Here, we improve the capability of detecting offshore events

by combining two popular techniques: backprojection imaging (BP) and matched-filter de-

tection (MF). The BP method is effective in retrieving offshore seismicity (Mw > 4.5) buried

in the coda wave of large earthquakes. The capability of the MF method depends on the

availability of the template pool, therefore the BP-inferred events can be used as additional

templates to expand the MF detections (BP-MF). We performed the BP-MF approach in

the period within 600 days after the 2011 Mw 9.0 Tohoku earthquake. We find overall

44.2% more offshore events than those listed in the Japan Meteorological Agency (JMA)
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catalog. In the near-trench area, we detect 213% more events. Among the newly detected

Mw > 4 events, the BP-template contributions are twice more than those matched by the

JMA templates. Based on the spatial consistency between aftershock-depleted zones and

large coseismic slip, we identify a possible large-coseismic-slip zone in the near-trench region

offshore Fukushima. Large b values (≥ 1.2) are found close to large aftershocks, possibly indi-

cating localized pockets of small differential stresses. At several locations close to the trench,

p values (0.93 - 1.11) are higher than those in the inland area (0.64 - 0.85). This may be

due to the larger coseismic slip and hence larger stress drop of the outer-rise normal-faulting

events compared to the deeper thrust-faulting events.

2.1 Introduction

Megathrust earthquakes occur along the plate interface of subduction zones with the large

coseismic slip generally distributed in the offshore region. In contrast to the less frequent

megathrust earthquakes, small offshore earthquakes occur much more frequently accord-

ing to the Gutenberg–Richter law (Gutenberg & Richter, 1944). The small offshore earth-

quakes carry key information in understanding the pre-, co- and post-seismic slip processes

of megathrust earthquakes (e.g. Frank et al., 2017; L. Meng et al., 2016; Kato et al., 2012;

Huang, Meng, et al., 2017; Huang, Xu, et al., 2017; Uchida & Matsuzawa, 2013; Lengliné et

al., 2012). Small offshore earthquakes are also important to monitor the seafloor crustal de-

formation (Tadokoro et al., 2006; Bungum, Lindholm, & Faleide, 2005), activities of offshore

faults (Uchida, Shimamura, Matsuzawa, & Okada, 2015), and gas injection at the offshore

platform (Cesca et al., 2014). However, due to the lack of nearby stations, the complete

characterization of offshore earthquakes is still challenging.

Earthquakes are detected by identifying the prominent seismic phases in the continuous

waveforms. The phase identification is commonly achieved by examining the short-time

average to long-time average ratio (R. V. Allen, 1978; Earle & Shearer, 1994), kurtosis

and skewness (Saragiotis et al., 2002), waveform polarization (Vidale, 1986; Ross & Ben-

Zion, 2014), Akaike information criteria (Akaike, 1998; Sleeman & Van Eck, 1999; Leonard
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& Kennett, 1999; Leonard, 2000) and discrete wavelet transform (Anant & Dowla, 1997;

H. Zhang et al., 2003). These methods, however, may fail to detect small events with weak

arrivals hidden in the noise or overlapping phases within a short time period.

The matched-filter (MF) method searches for similar patterns of existing template events

in the continuous recordings as suggestive of a new event. By stacking the multi-channel

cross-correlation coefficients (CCs) between the template waveforms and the continuous

recordings, the MF method is capable of detecting ∼ 4 − 10 times more events than those

listed in the routine catalogs, and thus reduces the magnitude of completeness by ∼ 1.0

(e.g. Turin, 1960; Gibbons & Ringdal, 2006; Shelly et al., 2007; Peng & Zhao, 2009; Kato

et al., 2012; Huang, Meng, et al., 2017). However, the MF method relies on known template

waveforms, which limits its power in detecting offshore events where the template pool is

highly incomplete.

The back-projection (BP) method has been widely employed to image the earthquake

rupture process based on coherent teleseismic P phases (e.g. Rost & Thomas, 2002; Ishii et

al., 2005; Krüger & Ohrnberger, 2005; L. Meng et al., 2012; Kiser & Ishii, 2017). Recent

studies have also demonstrated the effectiveness of the BP method in detecting missing

early aftershocks that are otherwise masked by the mainshock coda wave (Kiser & Ishii,

2013; Fan & Shearer, 2016). For example, Kiser and Ishii (2013) back-projects the first

25-hour continuous recordings following the 2011 Mw 9.0 Tohoku earthquake, resulting in

300 newly detected aftershocks. These BP-detected events are complementary to the JMA

earthquake catalog, revealing significantly more active offshore seismicity, especially near

the trench. This study motivates our work to combine the BP and MF approaches (BP-

MF), which incorporates the BP-detected events as additional template events into the MF

detection, with the aim to retrieve a more complete picture of offshore seismicity, especially

in the shallow part of the subduction zone.

In section 2, we introduce the continuous BP method and demonstrate its effectiveness

to detect aftershocks of the 2011 Mw 9.0 Tohoku earthquake. Section 3 shows the MF

detection based on the combined template pool. The result illustrates the improvement in
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mapping the offshore seismicity, and in refining the b and p value statistics. In section 4, we

discuss the relationship between the aftershock-depleted area with the large-slip area of the

Tohoku mainshock, the advantages, challenges, and the further development of the BP-MF

method.

2.2 Backprojection-imaged Aftershocks of the 2011 Mw 9.0 To-

hoku Earthquake

2.2.1 Continuous Backprojection

In the previous applications, BP was usually performed in seconds to minutes (e.g., for

imaging the rupture properties of large earthquakes). Here, for the purpose of aftershock

detections, we conduct continuous BP in a time span of 600 days following the 2011 Mw

9.0 Tohoku earthquake. To efficiently perform continuous BP, we adopt the conventional

beamforming (linear stacking) instead of more sophisticated methods such as coherency

stacking, MUSIC or compressive sensing (Fletcher, Spudich, & Baker, 2006; L. Meng et al.,

2012; Yao, Gerstoft, Shearer, & Mecklenbräuker, 2011) . These techniques are more capable

of separating simultaneous earthquake sources, which are essential in imaging rupture details.

However, since the detection of aftershocks is less sensitive to the imaging resolution, we

choose linear stacking which is more computationally efficient and also provides undistorted

amplitude information to constrain the event magnitudes (Kiser & Ishii, 2013).

We obtain the vertical velocity seismograms recorded by 460 broadband stations in North

America (Fig. 2.1c) located between 40◦ and 90◦ away from the epicenter. We then align the

waveforms by the initial P arrivals and filter the data between 0.8 - 2 Hz, the same frequency

range as that used in Kiser and Ishii (2013). Considering the waveform coherence in the

network, the filtering step is necessary. In the following manuscript, we use the abbreviation

‘KI-2013’ when referring to their study. The seismogram of each station is normalized by

the standard deviation of the 1500-sec window after the initial P arrival of the mainshock.

We back-project the 600-day continuous waveforms onto a 7◦ by 7◦ source area, with a grid
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spacing of 0.1◦ (Fig. 2.1a). The back-projection is performed in a 20-second long sliding

window with a time step of 1 second. The spatial distribution of the beamforming power

(Fig. 2.1d) at time t is calculated by:

si(t) = [
n∑

k=1

uk(t+ tik + δtk)]
2 (2.1)

where si is the beamform power at the ith grid point, uk is the normalized vertical

seismogram at station k, tik is the theoretical travel time based on a 1D velocity model

(IASP91) between the ith grid point and kth station, t is time with respect to a reference

event, and n is the number of stations. δtk is the empirical travel time correction estimated

by cross-correlating the 10-second windows around first P arrivals of the mainshock, which

accounts for travel time errors due to 3D velocity structures (Ishii et al., 2005; L. Meng et

al., 2016).

2.2.2 Aftershock Recognition

The stacking of coherent impulsive energy from earthquakes usually produces a peak in the

BP-power time series. For each peak at time t, we compute its maximum stacked energy

p(t), spatial background energy As(t), temporal background energy At(t). We automatically

scan through the time series of p(t) and select peaks with the width larger than 3 seconds and

the prominence (how much the peak stands out due to its intrinsic height and its location

relative to other peaks) larger than 10−5. These peaks are considered as candidate detections

(Fig. 2.1e).

p(t) = max(si(t)) i ∈ [1,m] (2.2)

As(t) =

∑m
i=1 si(t)

m
(2.3)

At(t) =

∑t+δt
j=t−δt p(j)

2δt
(2.4)

where the total number of grids m is 4,900 and the half-window length δt is 20 seconds,

respectively.
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The strength of a peak is characterized by the temporal signal-to-noise ratio (SNR)

p(t)/At(t), and the spatial SNR p(t)/As(t), which indicates how concentrated the detected

energy pulses appear in the spatial and temporal domain respectively. We expect that

earthquakes have higher p(t)/As(t) and p(t)/At(t) than noise and coda waves. Previously,

KI-2013 identify aftershocks as peaks with p(t)/At(t) > 2. Additional quality control is done

by visually inspecting the spatial energy distributions. Here, in order to avoid the subjective

decisions in the manual picking process, we establish an automated picking procedure based

on both p(t)/As(t) and p(t)/At(t). To determine the detection threshold, we compare the

positions of windows containing earthquakes, background noise, and the coda waves in the

p(t)/As(t) and p(t)/At(t) domain (Fig. 2.2). We randomly select approximately 2 million

20-sec-long windows after the first 24 hours following the mainshock to represent background

noise and 3 thousand windows within the first 24 hours following the mainshock to represent

the coda waves of the mainshock and its intense early aftershocks. Both the noise and

coda windows are taken 60 seconds away from any catalog events to avoid including any

earthquake waveforms. Note that the noise or coda windows we used here could, in theory,

still contain some earthquakes missed by the JMA catalog. However, due to the temporal

sparsity of earthquakes, this effect is negligible.

In Figure 2.2, we find that the majority of large earthquakes (Mw ≥ 4.5) in the JMA

catalog are located in Region I (high p(t)/As(t), high p(t)/At(t)), indicating peaks associated

with earthquakes are strong in both the spatial and temporal domain. A small portion of the

windows are located in Region IV, but very few are located in Region II and III. The noises

are concentrated in Region III (low p(t)/As(t), low p(t)/At(t)), which suggests that most

noise windows do not produce strong spatial or temporal peaks. A significant portion of the

noise are located in Region IV (low p(t)/As(t), high p(t)/At(t))). These “noise” windows may

carry impulsive energy (e.g. microseisms) but can not be coherently stacked by P-wave travel

times in our study area. Most of the Earthquakes smaller than M4.5 are also distributed in

Region IV overlapping with the noise windows (Fig. 2.2b), indicating that they are too small

to produce strong spatial peaks and can not be reliably distinguished from the noise. The
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event detection in KI-2013 only requires large p(t)/At(t) (Region I and IV), which leads to a

high probability of false detections by identifying a large amount of noise windows in Region

IV as earthquakes. Most coda waves are also located in Region III, although some strong

coda waves produce significant spatial peaks in Region II (high p(t)/As(t), low p(t)/At(t)).

These windows might correspond to strong P-wave scatters but since coda waves are not as

impulsive as direct arrivals, they seldom form strong peaks in the time domain. In summary,

we consider that only the signals within Region I (high p(t)/As(t), high p(t)/At(t)) can be

reliably identified as earthquakes.

Next, we determine the boundary of Region I that best separates the earthquakes from

noise and coda waves by minimizing the Shannon information entropy (Shannon, 1948).

This procedure can be considered as a two-nodes classification tree based on two attributes:

p(t)/As(t) and p(t)/At(t). We measure the information entropy (purity) H, which is the

summation of the negative logarithm of the probability mass function for each possible value

(Shannon, 1948).

H = −
∑
i

Pi · log2(Pi) (2.5)

Where Pi is the probability of event i. In our model, the event is either classified as earth-

quakes or noises, which are denoted by the suffix e and n respectively. The entropy before

the classification H0 is:

H0 = −Pe · log2(Pe)− Pn · log2(Pn) (2.6)

The entropy after the classification is the weighted summation of Regions I and II, III, IV.

H1 = −(PeII,III,IV · log2(PeII,III,IV ) + PnII,III,IV
· log2(PnII,III,IV

))× NII,III,IV

N

−(PeI · log2(PeI ) + PnI
· log2(PnI

))× NI

N

(2.7)

The information gain G after segmentation is
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G = H0 −H1 (2.8)

The larger the information gain is, the purer the classification will be. The best solutions

of p(t)/As(t) and p(t)/At(t) by grid search are 3.4 and 1.5 respectively (Fig. 2.2c). However,

some of the noises in Region I possibly are events missed by the JMA catalog. Since our

objective is to detect more missing events by the JMA catalog at a reasonable false-alarm

rate, we chose a slightly lower threshold of p(t)/As(t) > 3 and p(t)/At(t) > 1.2 rather than

the best solution of the purest classification. The temporal peak threshold of p(t)/At(t) > 1.2

is lower than p(t)/At(t) > 2 in KI-2013 in order to detect more events buried under the noise.

Meanwhile, the spatial threshold p(t)/As(t) > 3 ensures strong noise is not misidentified as

earthquakes. Overall, we consider our detection threshold balances the tradeoff between false

positives (0.004) and false negatives (0.208) (Fig. A.1).

The threshold above yields 3,156 detections from continuous BP. We consider a BP

detection matched a known event in the JMA catalog if they occurred within 60 s and 50 km

from each other. Under such matching criteria, we matched approximately 78% M ≥ 4.5

events listed in the JMA catalog. Among the 22% (380) ”unmatched” events, our BP, in fact,

detected 47% of their energy peaks. However, a number of factors prevent us from matching

these energy peaks with events in the JMA catalog. First, the strength of the energy peak is

smaller than the spatial or temporal threshold (Fig. A.2). We used a conservative detection

threshold that keeps a high precision rate (0.999) at the expense of the recall rate (0.792)

(Fig. A.1). Second, the energy peak of the event passes the threshold but can not match with

the events in the JMA catalog due to large differences in location or origin time (Fig. A.3 and

A.4), as a result of the errors of both catalogs. In some rare cases, when two energy peaks

occur in less than 30 sec, our automatic matching program only retains the first detection

and considers the second energy peak represents the S waves of the first event instead of

the P waves of another event (Fig. A.5). For the remaining 53% missing events, the SNR

of the waveforms is too low to produce any energy pulses in the spatial and temporal BP

domain. The low SNR may be attributed to event-specific factors, such as temporary high
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noise levels and low radiated energy in the operating frequency band of BP. We also find

1,090 previously undocumented events (Fig. 2.3a), with a significant portion located in the

offshore region. The mean distance separation between matched events is about 21 km. This

difference mainly comes from uncertainties of the BP locations (Fig. 2.3b). The uncertainty

of the BP locations is up to 30 km based on inspecting the discrepancy of event locations

imaged by different arrays (L. Meng et al., 2016), while the location errors listed in the JMA

catalog are less than 3 km. In the next section, we developed a procedure to calibrate the

epicenter, origin time and magnitude of BP-detected events based on the JMA catalog.

2.2.3 Spatial Calibration

As indicated in Equation 1, BP usually applied a hypocentral alignment to correct travel time

errors due to 3-D velocity structures (Ishii et al., 2005). Such correction presumes that all the

source locations in the imaging domain share the same travel time error with the epicenter.

Apparently, this assumption is valid in the proximity to the epicenter but is less accurate

for more distant sources. Additional in-situ travel time errors can be obtained by inspecting

the time shifts to align the aftershock waveforms. The travel time errors evaluated at each

aftershock location can be either empirically or parametrically interpolated to cover the

entire mainshock rupture zone (Ishii, Shearer, Houston, & Vidale, 2007; Kiser & Ishii, 2017;

Palo, Tilmann, Krüger, Ehlert, & Lange, 2014; L. Meng et al., 2016; L. Meng, Huang, Xie,

Bao, & Dominguez, 2019; Feng & Meng, 2018). However, since the accurate waveform cross-

correlation requires a large SNR, the travel time error estimations are limited to Mw > 5.5

aftershocks recorded at the teleseismic distance. The travel time based on these sparsely

distributed large aftershocks is less effective in capturing the local travel time variation.

Here, instead of calibrating the travel time errors, we decide to directly calibrate the BP

event locations based on linear spatial interpolation. This strategy takes advantage of more

than 2,000 matched aftershocks densely distributed in the 7◦ × 7◦ imaging domain. Many

of these events are below Mw 5.5 and are too small for cross-correlation, but their locations

can be nevertheless imaged with BP and provide better spatial coverage. We presume there
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exists a smooth function that maps the BP-inferred locations and to their corresponding

JMA hypocenters. Without solving the mapping function explicitly, we linearly interpolate

the value of the mapping function at each grid point. We then apply this mapping function

to calibrate the locations of 1,090 newly detected BP events undocumented by the JMA

catalog.

Figures 2.3 (c-d) shows the distribution of newly detected BP events after the spatial

calibration. The mean distance between matched event pairs decreased from 21 km to 11

km (Fig. 2.3d). Before the spatial calibration, the mean location errors of BP events are 4.69

km in the E-W direction and 1.93 km in the N-S direction, respectively (Fig. 2.4a). In other

words, BP locations are systematically biased 5 km northeastward. After the calibration,

the mean error in the EW and NS directions decreased to 0.4 km and 0.12 km, respectively.

The standard deviation of EW and NS errors decreased from 18.95 km and 13.28 km to

12.23 km and 8.08 km, respectively. The smaller spatial errors allow matching 21 additional

BP events with the JMA events.

2.2.4 Temporal Calibration and Magnitude Estimation

We also attempt to calibrate the origin time of the BP events with the JMA catalog. The

accuracy of the earthquake origin time is essential in extracting template waveforms from

the local network recordings. The time errors of the origin time come from two sources:

First, the BP event time corresponds to the peak energy time rather than the event onset

time. The time delay between BP peak energy time and origin time is approximately half

the earthquake duration, ranging from 1 second for Mw 4.5 events to 12 seconds for Mw

6.0 events (Vidale & Houston, 1993). The second error source is the tradeoff between origin

time and earthquake location, especially the depth. BP method is not sensitive to the source

depth, therefore we perform the BP at the constant mainshock depth. However, the depths

of the aftershocks range from 0 to 80 km. Thus the travel time error caused by inaccuracies

in depth is not negligible. The origin time error of matched events ranges from 0 to 40

seconds. On average, the BP origin time is 20 seconds ahead of the JMA event (Fig. 2.4b).
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Simply subtracting the mean value of time error roughly fills the gap between the origin time

and peak energy time. However, this constant time correction does not reduce the variance

of the error. Here, we map the origin time error as a function of the source location and

apply a temporal calibration in a similar manner to the spatial calibration. As a result, the

standard deviation of origin time errors decreased from 10 to 5 seconds (Fig. 2.4b).

Next, we estimate the magnitude of BP events by performing the least squares linear

regression between the magnitudes of matched earthquakes and their corresponding logarith-

mic BP power (Fig. A.6). The empirical relationship between BP energy EBP ( maximum

value of p(t) in the earthquake duration) and magnitude M is shown below:

M = 0.481× log(EBP ) + 4.645 (2.9)

The coefficient of determination is 0.712, which confirms the linear relationship between

the BP energy and the earthquake magnitude. The slope between logarithmic moment and

moment magnitude is about 0.67 according to the definition. Because the BP technique

reveals high-frequency energy burst and large earthquakes tend to have a smaller portion of

high-frequency energy, it is not surprising that the slope of Equation 9 is smaller than 0.67.

In addition, the 95% prediction limit is around 0.6. After the calibration, we consider that

the uncertainty of the epicenter, origin time, and magnitude of BP events after temporal

and spatial calibration is around 10 km, 5 sec, and 0.6 respectively. Our method produces

similar results to that of KI-2013 in the first 25 hours after the mainshock, although we pick

up 10% more events. More detailed comparison between our study and KI-2013 is included

in the supplementary materials (Text. A.1, Fig. A.7 and A.8).

2.3 Offshore Seismicity Imaged by MF Detection

2.3.1 Template Quality Control

We combine the JMA earthquake catalog (M ≥ 4.5) with the BP events (M ≥ 3.8, Fig.

2.5) into our template event dataset. We collect three-component continuous seismograms
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within 600 days after the Tohoku mainshock, which are recorded by 47 Hi-net stations along

the coastline (Fig. 2.1b). Template waveforms are extracted from 10 seconds before to

30 seconds after the theoretical S arrival times. We filter the template waveforms with a

fourth-order Butterworth filter in a frequency band of 1 - 6 Hz. To ensure the high quality

of template waveforms, we first keep the template events with the SNR ratio greater than 5

at least 12 channels. Then we apply the deep-learning-based Generalized Phase Detection

(GPD) to identify the template waveforms with high probability (≥ 98% ) being S phases

(Fig. A.9). The GPD framework is developed based on ∼ 4.5 million training seismograms in

California and is well generalized to phase detections in other regions (Ross, Meier, Hauksson,

& Heaton, 2018).

As a result, we retain 605 out of the 1,080 BP templates and 1,896 out of the 2,201

JMA templates (Fig. 2.5a). Figures A.10 and A.11 show two examples of the BP template

waveforms. The theoretical P and S wave arrivals based on the IASP91 model match the

observed phase arrivals well at regional recordings, confirming the location accuracy of the

BP template events. To investigate how the template dataset is improved by the addition of

BP templates, we divide the fault plane into 9 along-dip segments with a spacing of 40 km

(Fig. 2.5a). Figure A.12 shows the number of BP and JMA templates and the percentage of

BP templates among all templates in every segment. The BP template percentage increases

from ∼ 20% in the near-offshore region to ∼ 30% in the near-trench region, indicating that

the BP technique is especially effective in recovering distant offshore earthquakes missed by

the JMA catalog. By inspecting the origin times of BP templates, we found that 187 of

them (30.9%) occur within the first 24 hours after the Tohoku mainshock. BP templates

are rarely found after 500 days since the mainshock, at the rate of 0.06 events per day (Fig.

A.13). The BP templates in the last 100 days only take up 1% of the total amount, therefore

we stop performing the continuous BP after 600 days since the mainshock.
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2.3.2 Matched-filter Detection

We compute the CC between the template and daily continuous waveforms with a 40-s

sliding window. The CC series in each channel are averaged after accounting for the travel

time differences at different stations. We define positive detections if the mean CC exceeds

9 times the median absolute deviation (MAD) of the background CC on a given day. The

magnitude is inferred based on the median value of the maximum amplitude ratios between

the detected and template event at all channels (Peng & Zhao, 2009; X. Meng, Yu, Peng,

& Hong, 2012). Figure A.14 shows an example of a positive detection that occurred ∼ 6

days after the mainshock. The waveforms of the M4.8 template and the M3.7 detected

event show significant similarity across the 47 stations. After removing self and duplicate

detections by multiple templates, we detected 98,967 new aftershocks within 600 days after

the mainshock, 16,411 of which are matched by the 605 BP template events. Among these

16,411 events, 1,314 (8%) of them are also detected by JMA templates but with smaller CCs,

therefore, they are linked to the BP templates. In the density map of MF detections by BP

templates, 92.1% detections are offshore events and 34.7% events are within 80 km from the

trench (Fig. A.15). In comparison, 55.8% of events are offshore events and 5.7% of events

are within 80 km from the trench in the JMA catalog. We then build the BP-MF catalog by

combining 223,897 JMA catalog events, 82,556 detections matched by JMA templates, and

16,411 detections matched by BP templates.

The number of events in the BP-MF catalog is 44.2% more than the original JMA catalog.

Most of the new detections are within the magnitude range of 0 to 4, with the median near

1.9 (Fig. 2.6a). Among the new detections, ∼ 16.6% are detected by the BP template events

(24.2% of total templates). Even though BP templates do not detect as many events as JMA

templates, they contribute 71.5% of the new detections of earthquakes with magnitudes larger

than 4.0. We then focus on the new detections near the trench (east to the 20 km iso-depth

of the subducting slab). Most of the new detections are within magnitude 1 to 4, with the

median near 2.9 (Fig. 2.6b). Among the new near-trench detections, ∼ 31.5% are matched

by the BP template events. This percentage is almost doubled compared to the BP-matched
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events in the total detections. In conclusion, offshore seismicity detection was significantly

improved by incorporating the BP templates in MF detection.

We compare the event density of the JMA catalog and our BP-MF catalog at 0.2◦− by−

0.2◦ grids (Fig. 2.7). In the JMA catalog, 94.4% aftershocks are located to the west of the

mainshock epicenter and are most densely distributed near the coastline (Fig. 2.7a). The

remaining aftershocks (5.6%) are located near the trench with less than 500 events in each

grid. In comparison, the BP-MF catalog illuminates additional aftershock-rich areas near the

trench (Fig. 2.7b). There are significantly more aftershocks to the east of the mainshock in

the BP-MF catalog (39,812) than those in the JMA catalog (13,117). The ratio of seismicity

density between the BP-MF and the JMA catalogs reaches 3 near the trench (Fig. A.16). The

aftershock activity is intense near the outer trench-slope normal fault zone (gray rectangle

in Fig. 2.7b). Most of the events to the east of the trench are determined as non-interplate

events in the oceanic plate by ocean bottom seismographs (Obana et al., 2012). These events

are likely activated by the Coulomb stress change induced by the mainshock, on the order of

0.15 to 1.5 MPa (Lay, Ammon, Kanamori, Kim, & Xue, 2011; Toda, Lin, & Stein, 2011). The

aftershock density reaches 1,500 events per grid near 40.9◦N, 145.1◦E and 38.3◦N, 144.7◦E,

where vigorous aftershock sequences followed an Mw 6.9 normal-faulting event on 14 March

2012 and an Mw 7.6 event on 11 March 2011. Based on the aftershock density map, we

sketch the aftershock-depleted area (blue line in Fig. 2.7b), with a large portion to the north

of the mainshock hypocenter (Region A) and a long channel in the south (Region C).

2.3.3 b and p Value Statistics of the BP-MF catalog

Based on our new BP-MF catalog, we also attempt to analyze the statistics of seismicity

in the offshore area. We first investigate the frequency-magnitude distribution (FMD) by

fitting our observation with the Gutenberg-Richter law (Gutenberg & Richter, 1944):

log10(N) = a− b ·M (2.10)

where N is the cumulative number of earthquakes with magnitudes larger than M , and
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a and b are constants. The b value can be used to estimate the stress state, slab age, and

fractal dimension of faults (Tormann, Enescu, Woessner, & Wiemer, 2015; Nishikawa & Ide,

2014; Hirata, 1989). To achieve a statistically reliable b value, we remove the events with

magnitudes lower than the magnitude of completeness (Mc), the minimum magnitude above

which all earthquakes are reliably recorded. We grid search the b value and Mc that best

satisfy the log-linear FMD relations. (Wiemer & Wyss, 2000; Woessner & Wiemer, 2005;

Chamberlain et al., 2018). The goodness of fit is estimated by the absolute difference (R) of

the number of events in each magnitude bin between the observed and synthetic distribution

R = 100− (

∑Mmax
Mi

|Bi − Si|∑
i Bi

· 100) (2.11)

where Bi and Si observed and predicted the cumulative number of events in each magni-

tude bin (Wiemer & Wyss, 2000). A larger value of R indicates a better goodness of fit. In

the example shown in Figure A.17, R achieves the maximum value when Mc and b value are

3.8 and 1.09, respectively. We then calculate the Mc and b value at 0.2◦−by−0.2◦ grids. We

keep the results if the number of events is larger than 100 and the R is larger than 90. Since

the BP-MF catalog provides a better fit for the FMD relation than the JMA catalog, we

consider that b value and Mc estimation of the BP-MF catalog is more reliable (Fig. A.18).

The spatial distribution of the Mc is shown in Figure 2.8. We find that the Mc generally

increases from the coastline to the trench in both the JMA and BP-MF catalog. To highlight

the Mc variation in the along-dip direction, we group Mc values into 50 bins according to the

distances to the trench and calculate the median Mc in each bin. We find that the median

Mc of the BP-MF catalog is approximately 1.0 on land, 2.0 between the coastline to the

trench, and 2.5 to the east of the trench (Fig. 2.8b and d). Compared with the original JMA

catalog (Fig. 2.8a and c), the BP-MF catalog illuminates Mc in more regions to the east of

the trench. On average Mc in the BP-MF catalog is ∼ 0.22 smaller than those in the JMA

catalog.

The BP-MF catalog fills the gap in the b value map of the JMA catalog, where the

seismicity is too sparse for reliable b value estimation (Fig. 2.9a). In the overlapping area
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between the two catalogs, the b value distribution is overall consistent but smoother spatially

than the JMA counterpart (Fig. 2.9b). There is no systematic variation of b value in the

along dip-direction (Fig. 2.9c and d). The median b values in most of the bins are between

0.5 and 1 in both catalogs. We also find that the six large aftershocks (Mw ≥ 6.7) are

spatially correlated with the local high b value area (∼ 1.2). This may indicate low local

differential stresses due to the stress released by the large aftershocks.

We also investigate the aftershock decay rate following the six large aftershocks. The

aftershock decay rate is described by the modified Omori’s law (Omori, 1894; Utsu, 1961;

Utsu, Ogata, et al., 1995):

n(t) =
k

(c+ t)p
(2.12)

where n(t) the aftershock rate at time t after the mainshock, and k, p, c are empirical

parameters. The exponent p indicates the aftershock decay rate and is speculated to be

controlled by stress changes (Enescu & Ito, 2002). Three of the large aftershocks (a-c)

located in the nearshore region are associated with low p values (0.64 - 0.85). In contrast,

high p values (0.93 - 1.11) are observed for the other three large aftershocks in the near

trench area (Fig. 2.10). This may be due to the higher coseismic slip and hence larger stress

drop of large normal-faulting events in the outer-rise compared to the deeper thrust-faulting

events (Enescu & Ito, 2002).

2.4 Discussion

The BP-MF method illuminates the trenchward and outer-rise seismicity by doubling the

near-trench events in the original JMA catalog. As a result, the BP-MF catalog provides a

refined image of the seismicity density, magnitude of completeness, and b and p value distri-

bution, especially in the near trench area. In this section, we discuss the relationship between

the aftershock-depleted area with the large-slip area of the mainshock, the advantages, and

the further development of the BP-MF method.
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2.4.1 Comparison of Aftershock-depleted and Large-slip Areas

Almost a decade after the Tohoku earthquake, there is no consensus on the coseismic slip

distribution (Lay, 2018). The uncertainty of the large-slip area remains significant, especially

in the very shallow portion of the megathrust (Tajima, Mori, & Kennett, 2013). In addition

to direct constraints by teleseismic, geodetic, tsunami observations, the coseismic process

of the Tohoku Earthquake can be indirectly inferred by the aftershock distribution. If the

stress is significantly released by the mainshock and the residue stress is concentrated at

the edge of the large-slip zone, the on-fault thrust aftershocks tend to be temporarily shut

off in the large-slip area and instead occur at its fringes (Mendoza & Hartzell, 1988). This

assumption is supported by the systematic deficiency of aftershocks in areas of high coseismic

slip (> 15% peak slip) in 101Mw > 7.0 subduction-zone earthquakes (Wetzler, Lay, Brodsky,

& Kanamori, 2018). Previous studies confirmed that the interplate events are depleted in the

large-slip area of the Tohoku earthquake (Asano et al., 2011; Obana et al., 2013). Kato and

Igarashi (2012) delineates the edges of the interplate coseismic rupture based on the sharp

seismicity-density contrast in the JMA catalog (pink line in Fig. 2.7b). Here, we attempt

to outline a large coseismic-slip zone using our refined BP-MF catalog, which puts further

constraints on the rupture extent in the near-trench area (blue line in Fig. 2.7b).

The spatial distribution of interplate events is necessary to properly delineate the large-

slip area. Since the BP-MF technique does not provide the focal mechanism and depth

information, we are only able to outline the depleted area of aftershocks of all types (Region

A and C, the blue line in Fig. 2.7b). It encloses a wide up-dip region (350 km by 150

km) to the south of the Off-Iwate segment and to the north of the Off-Ibaraki segment.

The Kato’s model is consistent with our aftershock-depleted zone in the Off-Miyagi region

(Region A), but shows an additional narrow and southward rupture zone at the 30 - 40 km

depth range along the plate interface in the Off-Fukushima region (Region D in Fig. 2.7b).

The difference may be caused by two possibilities. First, most aftershocks on the outer

edge of our model are likely non-interplate normal and thrust events as suggested by the

focal mechanism classification using a waveform similarity approach (Nakamura, Uchida, &
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Matsuzawa, 2016). In this case, our model does not include the full extent of the large-slip

area in the deep portion and misses the narrow rupture at the Off-Fukushima region in the

Kato model. Second, it is equally possible that the Kato model misses offshore interplate

events due to the limitation of the JMA catalog and the actual large-slip area is smaller than

their model. Regardless of the differences between our model and the Kato model in the deep

portion (depth > 20km), our model in the near-trench area provides a new constraint. The

Kato model does not provide the boundary of the large-slip area in the shallow portion due

to the incomplete JMA catalog at depth < 10 km. In the BP-MF catalog, the sharp density

contrast is observed at the 20-km iso-depth contour of the plate boundary, switching from 600

to 100 per 0.2◦× 0.2◦ grid. Such drastic contrast indicates that the very shallow near-trench

portion of the Offshore-Fukushima region (Region C, depth < 20m) is a low earthquake-

density area. Due to the shut-off effect after the mainshock, this low earthquake-density

area is likely a large slip area. Alternatively, Region C might be an aseismic region with low

seismic activities both before and after the Tohoku earthquake. The trenchward postseismic

movement derived from ocean-floor geodesy seems to suggest the coseismic slip in Region C

is at least significantly smaller than that of Region A (Sun & Wang, 2015; Honsho, Kido,

Tomita, & Uchida, 2019).

It’s worth noting that most of the shallow near-trench areas are depleted of aftershocks

except an area between 37◦N and 38.2◦N (Region B, black dashed line in Fig. 2.7b). Even

though the aftershock density in this area is relatively high, we suspect that most of these

aftershocks are non-interplate events because they are spatially disconnected from the deeper

interplate seismicity and are consistent with the distribution of previously classified non-

interplate events (Asano et al., 2011; Kato & Igarashi, 2012; Obana et al., 2012; Nakamura

et al., 2016). In addition, almost no interplate aftershocks occur in the shallow subduction

zone (depth < 20km) according to focal mechanisms analysis based on the OBS observations

(Obana et al., 2013). These intraplate near-trench aftershocks occurred both within the

overriding and subducting plates predominantly controlled by tensional stress normal to the

trench axis. We thus consider region B as a portion of the large-slip area which needs to be
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validated by further studies.

We then compare our estimated large-slip area with eight published finite fault source

models (Wei, Graves, Helmberger, Avouac, & Jiang, 2012; Ide, Baltay, & Beroza, 2011;

Shao, Li, Ji, & Maeda, 2011; Ammon, Lay, Kanamori, & Cleveland, 2011; Hayes, 2011,

2017; Yagi & Fukahata, 2011; Yamazaki, Cheung, & Lay, 2018). All the models show

consistent high coseismic slip in the Off-Miyagi region (Region A in Figure 2.7b) but differ

in whether the mainshock ruptured the near-trench Off-Fukushima region. In the models

by Wei et al. (2012), Ide et al. (2011), and Shao et al. (2011), only the shallower portion

of Off-Fukushima is ruptured (Fig. 2.11 a-c). In the models by Ammon et al. (2011) and

Yamazaki et al. (2018), only the deeper portion of Off-Fukushima is ruptured (Fig. 2.11

d-e). Both portions are ruptured in the model by Ide et al. (2011) (Fig. 2.11f) and neither

portions broke in the model by Yagi and Fukahata (2011) and Hayes (2011) (Fig. 2.11 g-h).

Overall, our estimated large-slip area is spatially the most consistent with the coseismic slip

area (> 15 meters) in Wei et al. (2012) model, indicating significant coseismic slip in the

up-dip region of Off-Fukushima. Our estimated large-slip area may put constraints on the

post-seismic slip distribution if it is spatially complementary with the high coseismic slip.

The afterslip (red line in Fig. 2.11i) of the mainshock Ozawa et al. (2012) is concentrated

at the deeper portion of the megathrust, which surrounds our estimated large-slip area.

But it is substantially overlapping with Kato’s estimation at the Off-Fukushima region. An

alternative model shows that the postseismic slip (blue regions in Fig. 2.11i) at the shallow

portion of the off-Fukushima region is as large as 0.5 m (Iinuma et al., 2016). However,

this result is less certain since the corresponding estimation error is 0.4 m because it heavily

relies on only one offshore geodetic site in that region. By tripling the events near the

trench, the BP-MF catalog provides a better constraint on the slip at the shallow depth of

the megathrust, where the resolution of coseismic and postseismic slip is low.
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2.4.2 Advantages of BP-MF

The case study of the aftershock detections following the Tohoku earthquake demonstrates

the advantage of the BP-MF method. Our approach is efficient in detecting offshore events,

especially those that occurred near the trench, where near-field (<100 km) observations from

permanent seismic stations are rarely available. Standard detection methods using regional

land-based networks, systematically miss offshore events in the routine catalog. This can

be shown in the along-dip distribution of earthquake templates, where the number of JMA

templates decreases by 50% from the coast to the trench (Fig. A.12). However, the BP

technique, utilizing waveforms recorded at teleseismic distances between 40◦ and 90◦, pro-

vides uniformly distributed templates in the study area regardless of their proximity to the

landward stations. In fact, the BP-MF approach detects roughly twice more events in the

near-trench region and three times more events to the east of the Japan Trench than those of

the JMA catalog (Fig. A.16). Such improvement makes the BP-MF method an inexpensive

solution for offshore seismicity monitoring compared with deploying ocean-bottom instru-

ments. The recent developments of large-scale seafloor networks such as the S-net project

along the Japan trench and the DONET network along the Nankai trough will undoubtedly

promote unprecedented progress in the surveillance and research of offshore seismicity and

fault structures. However, most of the developing countries close to subductions such as

Indonesia, Mexico, and Chile do not have yet permanent seafloor networks. Therefore, it is

challenging to detect offshore seismicity with conventional methods relying on close sensors.

The BP-MF method can potentially enhance the monitoring of near-trench events in these

countries without deploying offshore sensors. In addition, the BP-MF method is easy to im-

plement and computationally efficient. The BP-MF processing is relatively robust with few

hyperparameters to tune. Comparing with the autocorrelation-based methods (e.g. Brown

et al., 2008) which does not require event templates, the strategy of enriching the template

pool in matched-filter detection requires significantly less computing resources. The BP-MF

processing can be divided into independent calculations in each sub-region, which is ideal

for parallel computing and GPU acceleration.
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2.4.3 Further Development of BP-MF

The BP-MF technique can be further improved in several aspects. The BP-MF is capa-

ble of capturing moderate to large earthquakes. But it is less effective in detecting small

earthquakes (Mw < 4.5), which limits the number of high-quality BP templates for the MF

detections. The amplitude of the Mw < 4.5 events are weak and indistinguishable from

that of the ambient noise at teleseismic distances (Fig. 2.2b). In the current BP detection

scheme, we only extract two features, the spatial peak ratio p(t)/As(t) and the temporal

peak ratio p(t)/At(t) from the BP energy series in order to separate the seismic events from

the background noise. Such task of feature extraction is similar to reducing a video into a

two-component 1D time series. The original BP movie, containing the continuous spatial-

temporal information of the BP energy distribution, could be represented in more than two

components. We can potentially increase the dimensions of the classification input by in-

cluding additional channels (e.g., BPs using different frequency bands and networks). We

can also extract more features from the BP energy using self-defined mathematical func-

tions (e.g., kurtosis, skewness, and maximum absolute deviation), or adopting the automatic

methods (e.g., Convolutional Neural Network). With the increased channels and features,

it would be interesting to explore whether state-of-art machine learning techniques (e.g.,

Support Vector Machine, Convolutional Neural Network, Random Forest, and Adaboost)

can separate small earthquakes (Mw < 4.5) from the background noise.

We can devote more effort to reducing the epicenter and magnitude uncertainties of the

BP templates. Currently, the hypocenter of the MF detection is assumed to be identical

to the template event and the magnitude is determined according to the amplitude ratio

between the MF detections and its corresponding template. The epicenter and magnitude

errors of BP templates are around 10 km (after calibration) and 0.6 respectively, larger than

the uncertainties listed in the JMA catalog. The new events detected with the BP templates

inherit the corresponding location and magnitude errors, which affects the aftershock density,

Mc, b and p value analysis. In our future work, we will improve the accuracy of the BP

template locations by including arrival-times estimated at the regional network (e.g. Hi-net
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and K-net) possibly accounting for the effect of local velocity variations (e.g. Z. Wang &

Zhao, 2006). For those events with clear sP depth phases in seismograms, the focal depth of

BP templates could be determined (Umino, Hasegawa, & Matsuzawa, 1995; Mishra, Zhao,

Umino, & Hasegawa, 2003; Z. Wang & Zhao, 2005; Gamage, Umino, Hasegawa, & Kirby,

2009; D. Zhao, Wang, Umino, & Hasegawa, 2009; D. Zhao, Huang, Umino, Hasegawa, &

Kanamori, 2011). Therefore, we can potentially make a distinction between events on the

megathrust to those in the outer-rise according to the depth information. In addition, the

magnitude estimates are affected by the radiation pattern of the earthquake sources at the

teleseismic array, which can be suppressed by averaging the BP estimations using multiple

arrays.

We can also aim to improve the quality control of BP-MF detections. Currently, we

remove the templates without enough S wave phases detection with the GPD processing and

only keep the MF detections above a simple threshold of 9 times MAD. We can potentially

combine different existing detection methods (e.g., STA/LTA, polarization analysis, Akaike

information criteria picker) through a voting strategy to determine which temples and new

detections to keep. This ensembling method can outperform every single classifier if they are

independent and have relatively high accuracy. In addition, our approach can benefit from

including more datasets. The S-net project constructed by the National Research Institute

for Earth Science and Disaster Resilience (NIED) started recording continuous waveforms

since 2016. It consists of 150 real-time monitoring observatories connected in line with

submarine optical cables from off-Hokkaido to off-Kanto (Mochizuki et al., 2016; Uehira et

al., 2018). Performing matched-filter on the S-net recordings with additional BP templates

could detect more offshore events that are otherwise buried in the noise. We also expect

to obtain more accurate hypocenters, origin times, magnitudes, and event focal mechanisms

with the aid of the S-net project.
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Figure 2.1: (a) Illustration of the back-projection imaging: The rectangular grids indicate

the location of testing sources. The true source location (red star) is connected by ray theory

to the teleseismic receivers (black triangles). The black curves above the receivers denote

the recorded seismograms. In principle, the travel time curve of the true source locations

(red lines) brings the seismograms in phase, thus the stack along the moveout reaches the

maximum. (b) The locations of 47 selected Hi-net stations for the match-filter analysis

(c) The locations of 460 selected stations in North American for BP analysis. (d) The

distribution of normalized energy released during a BP-detected event with the epicenter

located at the energy peak (blue cross). The white open star is the mainshock epicenter. (e)

The BP peak stack energy (black), spatial threshold (red), and temporal threshold (blue)

with respect to time from 11 March 2011, 08:00:00 UTC. The red stars are the BP-detected

events with the peak energy above the spatial and temporal thresholds.
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Figure 2.2: (a) The spatial SNR p(t)/As(t)and temporal SNR p(t)/At(t)distribution of large

earthquakes (Mw ≥ 4.5) recorded in JMA catalog (open red circles), background noise (gray

dots, 1 to 600 days after the mainshock), and coda waves of the mainshock and early after-

shocks (yellow triangles, within 24 hours after the mainshock). The blue lines are thresholds

to classify earthquakes (upper-right corner) and noises. (b) The spatial SNR p(t)/As(t) and

temporal SNR p(t)/At(t) distribution of small earthquakes (Mw < 4.5) recorded in the JMA

catalog (green dots). (c) The normalized information entropy gain after the binary classifi-

cation as a function of the spatial and temporal threshold. The peak gain is represented by

a red open star and final selection is represented by a blue open star.
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Figure 2.3: Locations of the BP template events before (a-b) and after (c-d) spatial cali-

bration: (a) The locations of 1090 newly detected (orange ball) and 396 missed (blue cross)

Mw ≥ 4.5 events by Backprojection. The black dashed lines represent iso-depth contours of

the plate boundary at 20-km intervals (b) The locations of 2066 matched-event pairs, which

are recorded by both the BP catalog and JMA catalog. The vectors of event pairs (black

arrows) are pointing from JMA locations (blue) to BP locations (red), with an average dis-

tance of 21 km. (c) The locations of 1069 newly detected (orange ball) and 380 missed (blue

cross) Mw ≥ 4.5 events by Backprojection. (d) The locations of 2087 matched-event pairs

with an average distance of 11 km.
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Figure 2.4: (a) Scatter plot of event pair vectors (green dots) before and after calibration.

The vectors are pointing from JMA locations to BP locations. Left and Upper panels show

the distribution of errors in N-S and E-W directions with the best fitting Gaussian curves

(red curves), respectively. (b) Histogram of origin time error of matched event pairs before,

after removing the mean, and after temporal calibration.
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Figure 2.5: (a) The locations of 1,896 large JMA templates (Mw ≥ 4.5, orange circles) and

605 newly-detected BP templates (Mw ≥ 3.8, blue crosses). The two red stars are examples

of two aftershocks located deeper and shallower than the 2011 Mw 9.0 Tohoku mainshock

along the slab interface. The gray dash lines divide the fault plane into 9 segments according

to the distance from the trench. (b) Magnitude distribution of BP-detected templates in the

period within 600 days after the 2011 Mw 9.0 Tohoku Earthquake.
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Figure 2.6: (a) Magnitude distribution of original JMA events (gray), new MF detections by

JMA templates (blue), and new MF detections by BP templates (red). These three portions

of events together constitute the BP-MF catalog. The distribution is zoomed to the range

from Mw 4.0 to 6.0 (inset-top-right panel). (b) Magnitude distribution of events near the

trench (east to the 20 km iso-depth of the plate interface). The distribution is zoomed to

the range from Mw 4.0 to 6.0 (inset-top-right panel).
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Figure 2.7: Map view of the earthquake density (per 0.2◦ × 0.2◦ grid) recorded by the

JMA catalog (a) and the BP-MF catalog (b). The black star indicates the epicenter of the

Tohoku mainshock. The gray rectangle is the outer trench-slope normal fault zone. The

blue line sketches the seismicity gap. The black dash line(Region B) outlines an area of

high intraplate-seismicity density. The gray dashed lines represent iso-depth contours of

the plate boundary at 20-km intervals. The pink line represents the edges of the interplate

coseismic rupture based on the sharp seismicity-density contrast in the JMA catalog (Kato

and Igarashi, 2012). Two large aftershocks to the east of the trench are represented with

the focal mechanism in cyan (2012/03/14 08:42:8.3 Mw 6.9 and 2011/03/11 06:26:12.6 Mw

7.6).
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Figure 2.8: Map view of the magnitude of completeness (Mc) distribution based on JMA

catalog (a) and new BP-MF catalog (b). The black star indicates the epicenter of the

Tohoku mainshock. (A-F) The 6 large aftershocks (Mw ≥ 6.7) are shown with the fo-

cal mechanisms in black (2011/04/07 14:32:50.6 Mw 7.1, 2011/04/11 08:16:19.3 Mw 6.7,

2011/03/11 06:15:58.7 Mw 7.9, 2012/03/14 08:42:8.3 Mw 6.9, 2011/03/11 06:26:12.6 Mw

7.6, and 2011/07/10 00:57:16.3 Mw 7.0). Three of them (A-C) locate nearshore and the

other three are near the trench (D-F). (c) and (d) represent the Mc change with distance

to the trench (negative: west to the trench, positive: east to the trench), in the JMA and

BP-MF catalog respectively. Red dots represent the medians of Mc for respective bins.
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Figure 2.9: Map view of the b value distribution based on the JMA catalog (a) and the

new BP-MF catalog (b). The black star indicates the epicenter of the Tohoku mainshock.

(A-F) The 6 large aftershocks (Mw ≥ 6.7) are shown with the focal mechanisms in black

(2011/04/07 14:32:50.6 Mw 7.1, 2011/04/11 08:16:19.3 Mw 6.7, 2011/03/11 06:15:58.7 Mw

7.9, 2012/03/14 08:42:8.3Mw 6.9, 2011/03/11 06:26:12.6Mw 7.6, and 2011/07/10 00:57:16.3

Mw 7.0). Three of them (A-C) locate nearshore and three near trench (D-F). (c) and (d)

represent the b value change with distance to the trench (negative: west to the trench,

positive: east to the trench), in the JMA and BP-MF catalog respectively. Red dots represent

the medians of b values for respective bins.
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Figure 2.10: The p value of the 6 selected aftershock sequences in Figure 2.8 and 2.9

(2011/04/07 14:32:50.6 Mw 7.1, 2011/04/11 08:16:19.3 Mw 6.7, 2011/03/11 06:15:58.7 Mw

7.9, 2012/03/14 08:42:8.3Mw 6.9, 2011/03/11 06:26:12.6Mw 7.6, and 2011/07/10 00:57:16.3

Mw 7.0).
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Figure 2.11: (a-h) Comparison of estimated large-slip area (black line) with the large co–

seismic slip area in 8 finite fault source models (Wei et al., 2012; Ide et al., 2011; Shao et al.,

2011; Ammon et al., 2011; Hayes, 2011, 2017; Yagi & Fukahata, 2011; Yamazaki et al., 2018).

The white lines represent iso-slip contours of mainshock slip in 5-m intervals (15-m contour

highlighted by red lines). Black stars represent the mainshock epicenter. (i) Comparison of

estimated large-slip area (black line) with the large postseismic slip area in two models by

Ozawa et al. (2012) (red contour, slip > 1 m) and Iinuma et al. (2016) (blue region, slip >

0.4 m). 57



CHAPTER 3

EdgePhase: A Deep Learning Model for Multi-station

Seismic Phase Picking

Paper under review. Feng, T., Mohanna, S., & Meng, L. EdgePhase: A Deep Learning

Model for Multi-station Seismic Phase Picking (Submitted to Geochemistry, Geophysics,

Geosystems). I contribute to the experiements and writing of the paper. Lingsen and Saeed

provide suggestions on the paper revision.

Note: the supplementary materials are included in Appendix B.

abstract

In this study, we build a multi-station phase-picking model named EdgePhase by integrat-

ing an Edge Convolutional module with a state-of-the-art single-station phase-picking model,

EQTransformer. The Edge Convolutional module, a variant of Graph Neural Network, ex-

changes information relevant to seismic phases between neighboring stations. In EdgePhase,

seismograms are first encoded into the latent representations, then converted into enhanced

representations (”Enhanced” in this context refers to the improved representation ability)

by Edge Convolutional module, and finally decoded into the P- and S-phase probabilities.

Compared to the standard EQTransformer, EdgePhase increases the precision (fraction of

phase identifications that are real) and recall (fraction of phase arrivals that are identified)

rate by 5% on our training and test datasets of Southern California earthquakes. To evalu-

ate its performance in regions of different tectonic settings, we applied EdgePhase to detect

the early aftershocks following the 2020 M7.0 Samos, Greece earthquake. Compared to a
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local earthquake catalog, EdgePhase produced 190% additional detections with an event

distribution more conformative to a planar fault interface, suggesting higher fidelity in event

locations. This case study indicates that EdgePhase provides a strong regional generalization

capability in real-world applications.

3.1 Introduction

The recent expansion of seismic data and computing resources enables flourishing applica-

tions of deep learning (DL) in seismology (Valentine & Trampert, 2012; LeCun, Bengio, &

Hinton, 2015; Schmidhuber, 2015; Oord et al., 2016; Reynen & Audet, 2017; Perol et al.,

2018; Z. Li, Meier, et al., 2018; Meier et al., 2019; Kong, Trugman, et al., 2019; Kong, Inbal,

Allen, Lv, & Puder, 2019; Bergen, Johnson, Maarten, & Beroza, 2019; Bianco et al., 2019;

Nakano et al., 2019; Mousavi & Beroza, 2019, 2020; Tian et al., 2020; Kuang et al., 2021;

Saad et al., 2021; Saad & Chen, 2020; J. D. Smith et al., 2022; T. Wang, Trugman, & Lin,

2021; Civilini et al., 2021; Ross, Yue, Meier, Hauksson, & Heaton, 2019). Many of these

studies aim to automatically pick P and S arrivals, especially the signals of microseismicity

buried under noises. Dozens of DL models prove to be efficient in detecting phases of local

events (epicentral distance smaller than 300 km) (Ross, Meier, Hauksson, & Heaton, 2018;

J. Wang et al., 2019; Woollam et al., 2019; W. Zhu & Beroza, 2019; L. Zhu et al., 2019; Ross,

Meier, & Hauksson, 2018; Y. Zhou et al., 2019; Dokht, Kao, Visser, & Smith, 2019; Mousavi

et al., 2020; Baker, Holt, Pankow, Koper, & Farrell, 2021; Xiao et al., 2021; Liao, Lee, Mu,

Chen, & Rau, 2021). Some of these DL models exhibit performance close to manual phase

picking with precision and recall rates exceeding 95%. Moreover, they are advantageous

in terms of their high sensitivity, computation efficiency, and automatic implementation

(Mousavi et al., 2020). Compared to conventional automatic phase picking methods, e.g.,

short-term average/long-term average and auto-regression with Akaike Information Criterion

(R. V. Allen, 1978; Stevenson, 1976; Sleeman & Van Eck, 1999; Akazawa, 2004), detections

by DL models show higher accuracy, especially in high-level noise environments (W. Zhu &

Beroza, 2019; Mousavi et al., 2020).
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Previous models mainly predict phases with seismograms from a single station. How-

ever, some phases are difficult to identify at a single station due to a low signal-to-noise

ratio (SNR; Xiao et al., 2021). In the manual phase picking process, humans often rely

on waveform consistency between multiple stations to decide if an ambiguous case should

be marked as a seismic phase. Therefore, a multi-station approach utilizing the waveform

consistency between neighboring stations should improve the performance of DL models

in phase picking. Several DL models have attempted to utilize waveforms from multiple

stations for source characterization tasks (e.g., earthquake detection, phase-picking, earth-

quake location). These models typically learn the representations of waveforms in a seismic

network through feature extraction or mathematical transformations. The representation

learning compresses the high-dimensional raw data to low-dimensional vectors, making it

easier to discover patterns and anomalies in the downstream tasks. One approach taken by

several studies is to jointly convert seismograms of all stations into latent representations

(simplified representation of the input data; X. Zhang et al., 2020; Zheng et al., 2020; Yang

et al., 2021; Kriegerowski, Petersen, Vasyura-Bathke, & Ohrnberger, 2019). This approach

is straightforward and easy to implement with conventional DL modules, such as Convolu-

tional Neural Network (CNN; LeCun et al., 1999) and Recurrent Neural Networks (RNN;

Hopfield, 1982). However, models using this approach are trained and tested on the same

station configuration and region, which limits their generalization capability to other station

networks or tectonic settings.

An alternative approach to utilize multi-station data is to combine the feature embeddings

from individual stations with an aggregation module (M. P. van den Ende & Ampuero, 2020;

W. Zhu et al., 2021; Xiao et al., 2021). For example, the Siamese Earthquake Transformer

(S-EqT) model aggregates the feature embeddings from station pairs with a cross-correlation

module (Xiao et al., 2021). S-EqT has strong generalization ability because the aggregation

module is designed to accommodate different station configurations. However, since the

communication is limited between station pairs, the waveform consistency of more stations

is not fully explored.
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One solution to establish communications between multiple stations is to utilize the

Graph Neural Networks (GNN; Gori et al., 2005; Scarselli et al., 2008; J. Zhou et al.,

2020). GNN can freely exchange information between multiple stations, which can handle

the irregular structures of graphs with a fixed model architecture (Z. Zhang et al., 2020). It

has been successfully implemented in seismic source characterization (M. P. van den Ende

& Ampuero, 2020; McBrearty & Beroza, 2022) and phase association problems (McBrearty

& Beroza, 2021). In the multi-station phase-picking task, the high dimensionality of the

data makes training a GNN model from scratch difficult. One solution to solve this issue

is fine-tuning, a process that adopts a pre-trained model for one given task and then tunes

or tweaks the model to adapt a second similar task. It accelerates the training process and

overcomes the problem of small datasets. For instance, the aforementioned S-EqT model

is fine-tuned on EQTransformer, a popular DL model for the single-station phase-picking

task (Mousavi et al., 2020). Here, we attempt to integrate the GNN with EQTransformer

to improve the detection ability in low SNR conditions. More specifically, we fine-tuned the

EQTransformer with a GNN variant named Edge Convolution (Y. Wang et al., 2019), and

we named this model EdgePhase. In EdgePhase, the seismograms of each station in the

seismic network are first encoded into the latent representations individually by the encoder

from EQTransformer. Then the edge convolution module combines the latent representations

of the target and a neighboring station into a ”message”. The ”messages” are then used

to aggregate the latent representation of the target station into ”enhanced representation”.

Finally, the ”enhanced representation” is decoded into the final P- and S-phase probability

functions by decoders from EQtransformer.

The rest of this article is organized as follows: In section 2, we introduce the EdgePhase

model, which is composed of the EQTransformer and an Edge Convolutional module. In

section 3, we describe the Southern California dataset used for fine-tuning. In section 4, we

compare the performance of the EdgePhase model with two baseline models. In section 5, we

apply the EdgePhase model in a case study of the 2020 M7 Samos earthquake in Greece. In

section 6, we discuss the seismotectonics of the Samos Earthquake, advantages and potential
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developments of EdgePhase, and its comparison with other multi-station methods.

3.2 Model

3.2.1 EQTransformer

The EdgePhase system is built by integrating the EQTransformer model with the Edge

Convolutional module. EQTransformer is one of the most popular DL models for the single-

station phase-picking task, and it is also the benchmark model that other models are usually

compared with (Mousavi et al., 2020). This state-of-the art model picks P- and S-phases

with precision close to manual picks by human analysts. It utilizes plenty of deep-learning

modules, like 1D convolutions, bi-directional and uni-directional long-short-term memories

(LSTM), residual connections, feed-forward layers, transformer, and self-attentive layers.

The transformer it adopts has been widely used in the field of natural language processing

and computer vision (Vaswani et al., 2017; Devlin, Chang, Lee, & Toutanova, 2018). To

learn more about these DL modules, please refer to Mousavi et al. (2020). The transformer

weights the significance of each part of the input data differentially, and highlights the in-

formation relevant to the target. In the phase-picking task, the attention of the transformer

is focused on durations, P- and S-phases of events in the seismograms. EQTransformer is

built with a multiple-task structure that consists of a deep encoder and three independent

decoders (Detection/P-phase/S-phase). In our experiments, we keep the encoder and two

decoders (P-phase and S-phase) with their pre-trained weights (328.1K parameters in to-

tal) based on the STanford Earthquake Dataset (STEAD) (Mousavi, Sheng, Zhu, & Beroza,

2019). The encoder encodes 3-component seismograms (X; dimension: 3*6000) into the

latent representations (V ; dimension: 32*64) (Fig. 3.1a). The Edge Convolutional mod-

ule transforms the latent representations into the enhanced representations (V ′; dimension:

32*64), by transferring the information (messages) related to P- and S-phases between neigh-

boring stations. This is a light module with only 9.3K trainable parameters, and we will

introduce its details in the next section. The two decoders transform latent representations

62



or enhanced representations into P- and S-phase probabilities respectively.

3.2.2 Edge Convolution

We attempt to improve the phase detection rate in low SNR conditions by incorporating Edge

Convolution operations into EQTransformer. Edge Convolution, a variant of graph message

passing processing (Gilmer et al., 2017), has achieved great success in classification and

segmentation problems (e.g., Y. Wang et al., 2019). Edge Convolution enables exchange

of information between neighboring nodes, which enhances the relevant signals shared by

adjacent nodes. The graph message passing is composed of three steps: (1) the target node

gathers messages or feature embeddings from its neighboring nodes; (2) all messages are

aggregated via an aggregate function (e.g., sum, max, mean); (3) the pooled messages are

then passed through an update function to renew the embeddings of the target node.

In the phase picking task, we represent the recordings of each earthquake or noise

sample with a graph G = (V,E), in which V = {vi|i = 1, ..., N} ⊆ RC∗F is the node

set with N elements. Each node represents a seismic station, with feature embeddings

(channel number is C and embedding length is F ) exacted from the seismograms. The

E = {eij|vi, vj are connected} is the edge set containing all edges of G. One edge (eij)

represents a path used to send messages (mij) between two connecting nodes. The message

in this task is a vector that indicates the likelihood that a phase arrives. Based on the as-

sumption that the waveforms of neighboring stations are typically more similar than distant

ones, we build an edge between two nodes if their represented stations are considered to be

close (geographic distance < 100 km). The graph includes a self-loop, meaning each node

also points to itself with an edge. An important characteristic of graphs is that they are not

defined by the ordering or positioning of the data but only by the relations between data

(M. P. van den Ende & Ampuero, 2020). The edge convolution operation first collects all

the messages associated with all the edges emanating from each node, and then applies a

channel-wise symmetric aggregation operation (here we use maximum operation) to update

features for each node. Taking node vi as an example in Figure 3.1b, we see that it receives
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4 messages mij1, mij2, mij3, and mii from neighbor vj1, vj2, vj3, and itself vi. Then target

node vi will update its value with max(mij1,mij2,mij3,mii). The number of neighbors may

be different in other nodes, but a similar operation can be done for every node in the graph.

In order to incorporate Edge Convolutional module into the existing architecture of Eq-

Transformer, the message is designed to be a differentiable function mij = hθ(vi, vj), where

hθ is the nonlinear function with a set of learnable parameters θ. We represent h with a

neural network composed of 5 one-dimensional convolutional (conv1D) blocks (Fig. 3.1c).

Each block has a convolutional layer ( kernel size = 3, stride = 1, padding = 1), a Gaussian

Error Linear Units activation layer (GELU; Hendrycks & Gimpel, 2016), and a dropout

layer (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014) for regularization

(dropout rate = 0.1). We concatenate two latent representations along the channel di-

mension as the input (R2C∗F ) of the neural network hθ. Since the input dimension of the

EQTransformer decoder is C ∗F , we set the output channel number of the 5 conv1D blocks

as [2C, 2C,C,C,C], respectively. Compared to the original version of the Edge Convolution

module used in the DGCNN model (Y. Wang et al., 2019), we made the following changes to

adapt to the phase-picking task. In the EdgePhase, a CNN instead of a Multilayer perceptron

(MLP) is used to construct messages. This is because the station embedding is a large-size

two-dimensional vector, using a CNN instead of a MLP can significantly reduce the number

of trainable parameters and skip the flattening operation. Traditional Edge Convolution

defines neighbors based on the relative distances with k-nearest neighbors (k-NN). However,

only absolute distances can guarantee the coherency of waveforms, because the waveform

coherence decays dramatically in an exponential fashion with interstation distance and fre-

quency (Luco & Wong, 1986; Zerva & Zervas, 2002; Langston, 2014). Therefore, unlike

K-NN, EdgePhase defines neighbors with the fixed threshold of the geographic distance.

The DGCNN model is stacked with many layers of Edge Convolutional layers due to the

large number of nodes in graphs. Considering that the number of stations in a network is

usually around dozens or hundreds, EdgePhase only uses one Edge Convolutional layer.
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3.3 Dataset

Our training and testing dataset (SCSN2021) is built with the continuous waveforms and

earthquake catalog of the year 2021 recorded by Southern California Seismic Network (SCSN;

Hutton, Woessner, & Hauksson, 2010). Here, each sample event (earthquake or noise) is

treated as an edgeless graph. Since the number and sequence of stations might vary with

different samples, we store the node information of each sample in the dictionary data struc-

ture. The edge information is not stored in the dataset, but constructed during the training,

validation, and testing process, because edges could change when performing data augmen-

tation (e.g., reordering, resampling stations; W. Zhu, Mousavi, & Berosa, 2020). In addition,

the edgeless structure allows for the exploration of different methods and threshold values

to establish edges in further research.

In our dataset, the 12,718 earthquake samples with more than 5 labeled phases are

selected from 22,619 events that occurred within the year of 2021 in the SCSN catalog. The

15,813 noise samples are randomly selected in the gaps between 5 min before and 40 min after

events in the SCSN catalog. Compared to datasets suitable for single-station models (e.g.,

STEAD with 1.3 million samples), our dataset suffers from the problem of a small training

dataset (28.5k samples), because each sample in our dataset is a graph containing all the

seismograms of one event from a seismic network, rather than one seismogram at a single

station. A small set of training samples makes training deep learning models from scratch

difficult, so we decided to fine-tune the EQTransformer model with the SCSN2021 dataset.

The pre-processing steps of seismograms are the same as STEAD, including detrending,

bandpass filtering the seismograms to 1-45 Hz, and resampling to 100 Hz.

Previous single-station models achieved robust performance in high SNR conditions, so

we intentionally make our training dataset noisy to test the performance of multi-station

models. STEAD only keeps the seismograms with both P- and S-phase labels, but our

dataset includes seismograms with a P-phase label or S-phase label. The seismograms with

only one phase label tend to be of low SNR as the other phase is not recognized by the

SCSN phase picking system. Compared with samples in STEAD, the waveforms of samples
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in the SCSN2021 are more noisy. The median values of the signal-to-noise ratio of the

STEAD test set and SCSN2021 test set are 25.0 and 16.3 decibels, respectively (Fig. B.1).

The SNR is calculated in the same way as in the STEAD dataset (Mousavi, Sheng, et al.,

2019). For the prediction targets (labels), we convert the phase arrival times into a temporal

distribution with a triangular shape, just like EQTransformer. If one station has multiple

types of channels (e.g., Broadband, High Gain), we consider them as multiple stations with

the same geographical location. If some components or segments of waveforms are missed,

we pad the gaps with zeros. Finally, we split the datasets into training, development, and

test sets, which account for 80%, 10%, and 10% of the total samples respectively.

3.4 Performance

To understand the contribution of the Edge Convolutional module to the overall system

of EdgePhase, we compared the EQTransformer model with Edge Convolutional module

(EdgePhase) and the standard EQTransformer without Edge Convolution (Baseline-A). For a

fair comparison, EdgePhase and Baseline-A are both fine-tuned with the SCSN2021 training

set. To study the effect of fine-tuning, we also added Baseline-B to the comparison, which

is the standard EQTransformer trained with the STEAD dataset without the fine-tuning.

Due to the consistency of region and station configuration between training and test set, the

EdgePhase and Baseline-A are expected to achieve better performance than Baseline-B on

the SCSN2021 test set. In the fine-tuning process of EdgePhase and Baseline-A, we adopt

the binary cross-entropy and Adaptive Moment Estimation (Adam) as our loss function

and optimizer, respectively. The training loss was checked every 5,000 training steps. The

learning rate for the optimizer started from 10e-4 and decreased by 90% every time the

training loss stopped decreasing in the past 10 checks. We update the weights of the whole

network in a batch size of 16. Each sample may have a different number of stations, so we

make the data generator sampling up to 32 stations per training sample. The EdgePhase

and Baseline-A models start to converge at 52k and 40k training steps, respectively.

We define the peak in the probability function above a certain detection threshold as
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a phase pick, with the phase arrival time located at the center of the peak. The pick is

counted as a true positive (TP) if the time residual of matched labeled phases is smaller

than 0.5 sec. If the pick can’t match any labeled phases, it is deemed a false positive (FP).

If a labeled phase does not match with any picks, then it is considered false negative (FN).

Based on TP, FP, and FN values we can calculate three basic performance metrics of machine

learning models: precision ( TP
TP+FP

), recall ( TP
TP+FN

), and F1 score (2∗precision∗recall
precision+recall

). For the

true positives, we evaluate the accuracy of picking time by calculating the mean, standard

deviation (Std), and mean absolute error (MAE) of their residuals with the ground truth

(Table 1).

To determine the model detection thresholds, we use the F1 score, which is the weighted

average of precision and recall. We set the thresholds of the P-phase for EdgePhase, Baseline-

A, and Baseline-B at 0.39, 0.64, and 0.05, when they achieve maximum F1 scores at 0.88,

0.84, and 0.66, respectively (Fig. 3.2; Table B.1). Similarly, we set the thresholds of the

S-phase for EdgePhase, Baseline-A, and Baseline-B at 0.28, 0.4, and 0.03, when they achieve

maximum F1 scores in the test set at 0.86, 0.81, and 0.62, respectively. The Baseline-B model

achieves the F1 score of 0.99 and 0.98 for P and S-phases on the STEAD test set, which are

higher than on the SCSN2021 test set (0.66 and 0.62). This is due to consistency of region

and station distribution between training and test set, and the earthquake waveforms in the

SCSN2021 test set being more noisy than STEAD, as we laid out in the previous section.

In addition, the Std, and MAE on phase picking time residuals by EdgePhase increase by

about 0.01 second, compared to two other models. This is also reasonable as the additional

detections made by EdgePhase tend to have blurry phase arrivals, which would contribute

to larger picking time residuals.

In previous analysis, EdgePhase outperforms two baseline models with higher precision

and recall rate. To study the effect of SNR on the phase picking performance, we compare

the number of TP, FN, and FP generated by the three models at low (0 db), medium (10 db),

and high (20 db) SNR bands (width: ±1 db). The P-phase TP (matched phases) numbers

of EdgePhase, Baseline-A, and Baseline-B models are 183, 109, 5 at low SNR; 1048, 995, 468
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at middle SNR; and 988, 959, 915 at high SNR, respectively (Fig. B.2). The P-phase FN

(missed phases) numbers of EdgePhase, Baseline-A, and Baseline-B models are 443, 517, 621

at low SNR; 113, 166, 693 at middle SNR; and 39, 69, 112 in high SNR, respectively. The

P-phase FP (false alarms) numbers of EdgePhase, Baseline-A, and Baseline-B models are

36, 22, 14 at low SNR; 39, 36, 76 in middle SNR; and 17, 22, 155 in high SNR, respectively.

Compared with two baseline models, EdgePhase detects more and misses fewer phases at

all three SNR bands. EdgePhase also makes fewer false alarms at high SNR conditions, but

more false alarms at low SNR conditions. Compared with two baseline models, EdgePhase

is more sensitive to phase arrivals at low SNR conditions by making significantly more phase

picks, so it is reasonable to make more false alarms. It demonstrates EdgePhase’s superior

detection capability at the environment of 0-20 db SNR. Based on Figure B.3, a similar

conclusion can also be drawn for S-phases. To sum up, EdgePhase outperforms two baseline

models, especially at low to medium noise levels (SNR between 0-20 db).

Next, in Figure 3.3, we show the detection probability functions of the 3 models with

an example of an M 1.43 earthquake in the test dataset that occured in 25th April, 2021

(202110425M1). The EdgePhase model outperforms two baseline models by detecting all la-

beled P- (11) and S-phases (9). The Baseline-A detects 5 P- and 4 S-phases, while Baseline-

B detects 4 P- and 7 S-phases with 6 false detections. Some of the missed detections in

Baseline-A show a peak in the probability functions, but smaller than the detection thresh-

old. Baseline-B sometimes confuse P-phases with S-phases and there are no corresponding

peaks to the missed detections in its probability functions. In general, EdgePhase outper-

forms Baseline-A, and Baseline-A outperforms Baseline-B. To study the efficiency of the Edge

Convolutional module in exchanging information relevant to P- and S-phases, we visualize

the input (latent representations) and output (enhanced representations) of this module.

We visualize the feature map of the 3 neighboring stations for Event 202110425M1 (Fig.

B.2), which are sorted in ascending order based on the mean values of the features. For the

enhanced representations, the amplitudes of features are either increased or decreased in the

region between the P-phases and S-phases. But there are clear changes of amplitudes at the
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arrivals of the P-phases and S-phases in the feature maps, compared with the seismograms

before and after the seismic phases. This phenomena is especially clear for the station SLB.

The latent representations show fluctuations before the P-phases but no clear change of pat-

tern before and after P-phase arrivals in many channels. The boundaries between phases and

background are clearer in the enhanced representations than in the latent representations,

which demonstrates that the communication between stations efficiently suppresses the noise

before P-phases and after S-phases in the feature spaces.

To conclude, fine-tuning is essential to EQTransformer when applying to new datasets

or applications. The Edge Convolutional module, which can convert a single-station model

into a multi-station model, makes additional improvements during the fine-tuning process.

3.5 Case Study of the M7.0 Samos Earthquake

To evaluate the performance of EdgePhase in a real-world application, we examined the

aftershock region of the M7.0 Samos (Néon Karlovasion) earthquake which occurred 14 km

northeast of the Greek island of Samos on 30th October, 2020. It was the deadliest earth-

quake in 2020, causing more than 100 deaths during the mainshock and tsunami. This

devastating earthquake happened due to the north-south extensional stress during slab roll-

back, where the African plate subducted beneath the Aegean and Anatolian Microplates

(Fig. B.5; J. Meng et al., 2021). Preliminary results indicate that the mainshock occurred

on the Offshore North Samos (Kaystrios or Samos Basin) Fault, which has not hosted a

large earthquake since the mid-eighteenth century (Papadimitriou et al., 2020; Foumelis et

al., 2021). The north-dipping candidate plane from the focal mechanism is more likely to be

responsible for the 2020 quake, as suggested by the uplift at the western part of Samos Island

(footwall), and the over 10cm of subsidence at the northernmost edge of the central part of

the island (Papadimitriou et al., 2020; Evelpidou, Karkani, & Kampolis, 2021). However,

the distribution of aftershocks in regional catalogs (NKUA, GI-NOA, and AFAD) does not

show any preference for the nodal plane (Foumelis et al., 2021; Papadimitriou et al., 2020).
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Early aftershocks immediately following the mainshock are usually relevant to the main-

shock rupture process (Mendoza & Hartzell, 1988; Wetzler et al., 2018), so we study the

distribution of aftershocks in the first month after mainshock. The phase picking model

was applied to continuous data from 72 stations around the Aegean Sea (Fig. B.5). These

waveforms are not included in the STEAD and SCEC2020 datasets, so they are suitable for

testing the generalization ability of EdgePhase. The pre-processing of the raw waveforms

included bandpass filtering (1- 45 Hz) and detrending. We then divide the continuous wave-

forms into the 60-sec sliding windows with a step of 18 sec and feed them into the EdgePhase

phase picker. The computational time required to process 24 hours of continuous data from

72 three-component seismometers is around 20 minutes on an economical GeForce-GTX-

1070-8GB GPU. As a result of using low detection thresholds (0.18 for P-phases and 0.15

for S-phases), we were able to detect 979,218 P-phases and 1,000,341 S-phases with rela-

tively low SNRs. Then, we applied the rapid earthquake association and location method

(REAL), least-squares location method (VELEST), and double-difference earthquake loca-

tion algorithm (HypoDD), in that order, to perform phase association and event locations

(M. Zhang, Ellsworth, & Beroza, 2019; Kissling, Ellsworth, Eberhart-Phillips, & Kradolfer,

1994; Waldhauser & Ellsworth, 2000). The magnitude estimation method and parameter

setting of earthquake location methods are included in the supplementary materials (Text.

B.1 and Text. B.2).

In total, we located 1,222 events with VELEST and relocated 687 events with HypoDD.

Compared to the local catalog (421 events, Fig. B.6) from the NKUA, this study (Fig. B.7)

increases the detections by 190% with a distribution more conformative to a linear fault

trace (Fig. 3.4a). It demonstrates that the detection ability of the DL phase picking model

is on par with that of the manually reviewed catalog. We consider a DL detection to match

with a known event in the NKUA catalog if they occurred within 3 sec and 30 km of each

other. Under such matching criteria, we matched approximately 53% of the events listed in

the NKUA catalog, with the event locations of this study generally being somewhat north

of the NKUA catalog (Fig. B.8). Based on matched event pairs, we calibrate the estimated
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local magnitude of our detected events using linear regression (Fig. B.9). We then check the

997 new detections found by this study, and find that earthquake signals are quite clear in

most traces, especially at close stations (four examples shown in Fig. B.10 - B.13).

3.6 Discussion

3.6.1 Seismotectonics of the Samos Earthquake

Similar to the preliminary report by Papadimitriou et al. (2020), we group aftershocks of the

M7 Samos Earthquake into four clusters along the fault strike direction (Fig. 3.4a) with the

DBSCAN algorithm (distance < 4.3 km; at least 43 samples in a group). Events in Clusters

2 and 3 started to appear in an earthquake swarm from June 20th to June 30th, 2009. During

the period of the swarm, one Mw 5.1 event and more than 80 ML > 1.5 events occurred

around Samos Island (Tan et al., 2014). The clustering of events indicates the concentration

of stress in these locations as well as the presence of frictional heterogeneities on the fault

plane. Furthermore, the slow unlocking process (precursor) of the Offshore North Samos

Fault might have existed several years before the 2020 M7 event similar to those observed

prior to several megathrust earthquakes (e.g. Huang & Meng, 2018).

The cross-section along the A-A’ direction shows that the events (Clusters 1 and 2) west

of the mainshock are shallower than the events east of the mainshock (Clusters 3 and 4;

3.4b). Furthermore, the events in the west segments are restricted to a depth of 13-17 km.

By examining the cross-section along the B-B’ direction, we find that the south-dipping plane

of the mainshock by AFAD (dashed lines in 3.4c) seems to fit the lower bound of clusters

1 and 4 well. Cluster 2 and 3 events are close to the mainshock hyocenter, with shallower

depths than the mainshock(3.4d).

The results of this case study demonstrate that our fine-tuned DL phase picking method

incorporated with traditional earthquake location methods, could automatically monitor

earthquakes. Meanwhile, the performance of the multi-station phase-picking model is proven

to be comparable to human efforts.
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3.6.2 Advantages and Further Development of EdgePhase

In early phase-picking studies, the seismograms/spectrograms were treated as images by

CNNs (Ross, Meier, Hauksson, & Heaton, 2018; W. Zhu & Beroza, 2019; L. Zhu et al., 2019;

Ross, Meier, & Hauksson, 2018; J. Wang et al., 2019; Woollam et al., 2019), or as audio

data by incorporating RNNs (Mousavi et al., 2020; Mousavi, Zhu, et al., 2019; Y. Zhou et

al., 2019). In this study, the seismograms and geographical locations of multiple stations

are treated as a graph through the GNN framework. The communication between stations

through the Edge Convolutional module brings the phase-picking model into a new stage,

where the phase detection not only depends on seismograms from a single station, but

also waveform consistency in a seismic network. Compared with the single-station model

(Baseline-A), the precision and recall of the multi-station model (EdgePhase) increases by

5%, and the detection accuracy in low SNR conditions is improved.

Although the EdgePhase model is fine-tuned with data in Southern California (SCSN2021),

it showed strong generalization ability in the case study of the 2020 Samos earthquake se-

quence in Greece. There are two reasons for the strong generalization ability. First, the

encoders and decoders of EQTransformer are pre-trained with a global dataset (STEAD).

Second, the information exchange mechanism in EdgePhase only requires that the neighbor-

ing stations are within a certain distance range, therefore its application is not restricted to

a specific station configuration as is the case of the end-to-end DL models (X. Zhang et al.,

2020; Zheng et al., 2020; Yang et al., 2021; Kriegerowski et al., 2019).

In addition to strong generalization ability, the Edge Convolutional module can be easily

incorporated into any pre-trained phase-picking models in the encoder-decoder architecture.

For example, one potential improvement to PhaseNet (W. Zhu & Beroza, 2019) is to add

the Edge Convolutional module right before the first devolutional layer. There is no need to

change its U-net architecture and residual connections. We can even pick and choose encoders

and decoders from different models, with the Edge Convolutional module connecting them.

Reusing the pre-developed encoders, exchange modules, and decoders can accelerate the

development of new models through transferring learning or fine-tuning.
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There is still potential for improvement of EdgePhase in further work. Possible develop-

ments include replacing the Edge Convolutional module with a more general message passing

network (Gilmer et al., 2017), trying different functions to build and aggregate messages;

fine-tuning with a global dataset (large size), and exploring different algorithms such as

k-NN to define neighbors of stations. In the current EdgePhase model, two stations are

either classified as neighbor or non-neighbors based on their relative distance. This rough

binary classification ignores the differences between close and far neighbors, and an alterna-

tive method is to add a distance feature to the edges connecting the stations. The distance

feature can potentially serve as weighting coefficients for the waveform embedding of two

connected nodes, although the adding edge features may require more computing resources,

which scales with the square of the number of nodes.

The EdgePhase is very suitable for solving node-level tasks, in which the model predicts

properties for each node in a graph. Besides the phase-picking task, EdgePhase can also

be applied to the seismograms denoising problem. The phase-picking and seismogram de-

noising tasks transform the raw seismograms into phase probability functions and denoised

seismograms for each station, respectively. Like the phase-picking task, separating noise

from signals also benefits from communication between stations. Based on the assumption

that a similar pattern of the earthquake signal is shared at neighboring stations, the Edge

Convolutional module can be modified to transfer the feature embeddings relevant to the

earthquake signals. One can adopt encoders, decoders, and loss functions in the previous

single-station seismograms denoising models (W. Zhu, Mousavi, & Beroza, 2019; Novoselov,

Balazs, & Bokelmann, 2020) and fine-tune them as is done in this study.

3.6.3 Comparison to Other Multi-station DL Models

In this section, we compare the EdgePhase model with three other multi-station DL models

that combine the feature embeddings from individual stations with an aggregation module

(M. P. van den Ende & Ampuero, 2020; W. Zhu et al., 2021; Xiao et al., 2021). M. P. van den

Ende and Ampuero (2020) aggregate the feature embeddings of all stations with a node-wise
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maximum function (we will use EA2020 as the abbreviation for their model). For each

element of the latent representation, the node-wise maximum function selects the largest

value among embeddings of all stations, therefore the aggregation result is not affected by

the number or the order of stations. The EQNet by (W. Zhu et al., 2021) adopted a different

approach to aggregate feature embeddings related to P- and S-phases through a shift-and-

stack operation similar to the backprojection process. The shift operation is performed on

P- and S-phase embeddings, which can be regarded as a preprocessing step. The stacking

operation is to node-wise sum up the shifted embeddings, which works as an aggregation

function. The S-EqT model (Xiao et al., 2021) retrieves phase picks in target seismograms

(low SNR) by referencing confident phase picks in the template seismograms (usually has

high SNR). Specifically, it first extracts feature embeddings from seismograms with the

encoder of EQTransformer. Then it performs enhancing and cross-correlation operations

on the feature embeddings of the template and target seismograms. The cross-correlation

operation works as an aggregation module to gather information about similarity between

template and target stations.

These models attempt to aggregate station embeddings with the knowledge of graphs

and earthquake physics (e.g., phase velocity of the P and S arrivals, waveform similarity),

which correspond to GNN modules and physics-based modules in models, respectively. An

elementary GNN module transforms nodes, edges, and the global context of graphs, while

a physics-based module is modified from some widely used multi-station geophysical tech-

nologies or models (e.g., waveform cross-correlation, backprojection, and focal mechanism

inversion). Compared to the GNN modules, physics-based modules benefit from additional

physical constraints but are only applicable to some specific tasks. The S-EqT and EQNet

models include physics-based modules, while EdgePhase and EA2020 only utilize GNN mod-

ules.

In addition to the presence of physics-based modules, these four models show differences

in methods to aggregate feature embeddings. The EA2020 and EQNet models aggregate

feature embeddings of all nodes with a function that satisfies the law of permutation invari-
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ant, such as maximum (EA2020) and summation (EQNet). Permutation invariant means

that the values of these functions do not change when exchanging the order of the com-

ponents/elements of input. The aggregation modules of EQNet and EA2020 treat every

station equally and transform the feature embeddings of the whole seismic network into a

matrix of a fixed size, which does not change proportionally with the number of stations.

This design is suitable for solving graph-level tasks, which predict properties for the entire

graph. Here, we take the source characteristic task as an example: the amount of parameters

involved in predicting magnitude and location only depends on the source (graph) itself, not

the number of stations (nodes). On the other hand, S-EqT and EdgePhase use the message

passing mechanism, which applies the aggregation module N times for a N-station network.

In each aggregation operation, there is a non-repeating primary station and several reference

stations, and the fixed-size output represents the feature embeddings for the primary station.

By scaling the number of aggregation operations with the number of stations, the size of all

stations’ embeddings is proportional to the number of stations, therefore message passing

networks are suitable for solving node-level tasks.

Next, we will compare S-EqT and EdgePhase in more detail, because they are both built

with a message passing mechanism and for the same task (multi-station phase-picking). In

the S-EqT model, a primary station pairs another referencing station with reliable phase

picks as its neighbor. In the EdgePhase model, more neighbors are connected with the pri-

mary station based on the geographic distance, which means more data is used to predict

phases for each station. The geographic locations of the template and searching stations are

not considered in the S-EqT model. However, the distances between stations is still useful

information for phase picking, since nearby stations have closer phase arrival times on the

seismograms for the same event. In addition, S-EqT constructs a message between the pri-

mary and referencing station through the cross-correlation between two station embeddings.

In the EdgePhase, messages are learnt by a neural network, which takes the embeddings of

sending and receiving stations as input. The neural network, rather than simply calculating

the similarity between two embeddings, is more expressive than the cross-correlation func-
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tion. Therefore, a neural network could extract more relevant information that nodes intend

to communicate with each other through optimizing the weights to minimize loss function.

In the training process, EdgePhase makes two additional improvements compared with S-

EqT. First, the parameters of the EqTransformer model are fixed during the training process

of S-EqT, but are trainable during the fine-tuning process of EdgePhase. Making EqTrans-

former parameters trainable increases the degrees of freedom of the model, but achieves

better performance after fine-tuning. Second, S-EqT is optimized with Stochastic gradient

descent by setting batch size to 1 for convenience, while EdgePhase is optimized with mini-

batch gradient descent (batch size = 16). Stochastic gradient descent updates parameters

once per sample, so it usually takes a longer time to converge to the minimum value of the

loss function and involves numerous random and less efficient update steps compared with

mini-batch gradient descent.

To conclude, although these models have a lot of differences in model structures, they all

analyze multi-station waveforms in a GNN framework. As we gain a better understanding

of constructing graphic networks for geophysical problems, the next generations of GNN

models will have a stronger expression and generalization ability. Finally, we expect more

developments about how to efficiently exchange and aggregate information among multiple

stations, how to design GNN models for different geophysical tasks, and how to build a

dataset suitable for these models.

3.7 Conclusions

By integrating an Edge Convolutional module with EQTransformer, we construct a multi-

station phase-picking model named EdgePhase. EdgePhase takes into account the waveform

consistency between neighboring stations and improves the phase detection capability at low

to medium noise levels (SNR between 0-20 db). We compared EdgePhase with the fine-

tuned EQTransformer (Baseline-A) and the original EQTransformer (Baseline-B) using the

Southern California dataset (SCSN2021). The best F1 scores for EdgePhase, Baseline-A, and

Baseline-B are 0.88, 0.84, 0.66 in P-phase detections; 0.86, 0.81, 0.62 in S-phase detections,
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respectively. It demonstrates that fine-tuning the EQTransformer with the Edge Convolu-

tional module makes significant improvements to phase picking tasks. The EdgePhase also

shows a strong regional generalization ability, as it was trained with the Southern Cali-

fornia dataset but performs well in an independent dataset of the 2020 Samos earthquake

sequence. Compared with the NKUA catalog, EdgePhase detects 190% extra events, with

the fidelity of the event locations being higher. With its comparable performance to human

seismologists, EdgePhase can automatically detect and monitor regional seismic activities

in real-time. Furthermore, the Edge Convolutional module could potentially be applied to

other pre-trained phase picking models (e.g., PhaseNet) and other node-level tasks (e.g.,

multi-station seismograms denoising).
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Figure 3.1: Network architecture. (a) shows the components of EQTransfromer and inserted

Edge Convolution module. (b) shows the process of collecting messages (mij) from neigh-

boring nodes, and aggregation to enhanced representations. (c) shows the neural network in

constructing messages (mij) between two nodes. The operation ⊕ represents concatenation

of two latent representations along the channel dimension.
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Figure 3.2: The precision-recall curve of EdgePhase, Baseline-A, and Baseline-B models on

the SCSN2021 test set. The precision and recall of P-phases (blue) and S-phases (red) are

calculated separately. The optimal threshold (circle) of each model is selected according to

the maximum F1 score. The maximum F1 score in P-phases for EdgePhase, Baseline-A, and

Baseline-B models are 0.88, 0.84, and 0.66, respectively. For S-phases, they are 0.86, 0.81,

and 0.62, respectively.
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Figure 3.3: Detection probability functions of EdgePhase (left), Baseline-A (middle), and

Baseline-B (right) models in an M 1.43 earthquake from the SCSN2021 test set. The earth-

quake occured at 01:45:56 UTC on 25th April, 2021 (202110425M1). The red and blue dots

on the waveforms (gray curves) represent the ground truth P- and S-phases. Here, we missed

the S-phase ground truth labels for CTC and CTW stations. The orange and cyan curves

represent the predicted probability of P- and S-phases, with red and blue vertical lines on

them if the peak value is larger than the best threshold determined in Table S1. Here, we

only visualize the waveforms of a portion of vertical channels, since the total channel number

(219) is too large to visualize all in one figure.
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Figure 3.4: Map view and vertical cross-sections of seismicity from this study. (a) shows

clustered events (colored circles) detected by this study. (b-d) represent the vertical cross–

sections, respectively. We project events from Cluster 1 and 4 onto the B-B’ plane in panel

(c), and events from 2 and 3 onto the B-B’ plane in panel (d). The yellow line and gray

dashed line indicate the two nodal planes of the mainshock’s focal mechanism provided by

AFAD.
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CHAPTER 4

A High-Frequency Distance Metric in Ground-Motion

Prediction Equations Based on Seismic Array

Backprojections

Originally published in Feng, T., & Meng, L. (2018). A High-Frequency Distance Metric in

Ground-Motion Prediction Equations Based on Seismic Array Backprojections. Geophysical

Research Letters, 45(21), 11-612. I contribute to the experiements and writing of the paper,

focusing on the analysis of the ground motion. Lingsen provides instructions on Backpro-

jection and paper revision.

Note: the supplementary materials are included in Appendix A.

Abstract

Typical ground-motion prediction equations (GMPEs) measure source-to-site distances rel-

ative to the closest point on the rupture plane (Rrup). However, for megathrust earthquakes

(Mw > 8), the oversimplification of the earthquake source characteristics in distance metrics

results in significant bias. Recent studies suggest that the high-frequency (HF) and low-

frequency (LF) energy tend to emanate from different portions of the megathrusts. This

phenomenon motivates an alternative distance metric based on the array backprojection

imaging technique that effectively captures regions releasing HF energy. Herein, we define

an HF distance metric (Rhf ) as the distance from the site to the high-frequency radiation

zone. We study five Mw > 7.2 megathrust earthquakes in Japan and Chile and find that

Rhf outperforms Rrup in predicting the ground shaking intensity between 0.5 and 4 Hz. We
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consider Rhf as a complementary measure to conventional GMPE distance metrics and a

more accurate ground-motion predictor in many cases.

4.1 Introduction

Recent advances in earthquake source imaging of major subduction earthquakes highlight the

frequency-dependent and depth-varying seismic radiation along the plate interfaces. Low-

frequency (LF) energy mainly emanates from the shallower portion of the megathrusts, while

dominant high-frequency (HF) energy often radiates from the deeper portion of the megath-

rust (Lay et al., 2012; Yao, Shearer, & Gerstoft, 2013). In the 2011 Mw 9.0 Tohoku-Oki

earthquake, the along-dip separation between fault segments that radiate HF and LF seismic

waves is as large as about 100 km (L. Meng, Inbal, & Ampuero, 2011; Yao et al., 2011).

These frequency-dependent source behaviors have significant impacts on the spatial pattern

of the near-field ground shaking and therefore should be considered in ground-motion predic-

tions, which are crucial to both earthquake source sciences and civil engineering applications

(J. Anderson, 2007; Bozorgnia et al., 2014). The standard approach to predict the expected

seismic shaking intensity is the ground-motion prediction equations (GMPEs). A GMPE

provides estimates of ground-motion intensity measures based on regression analysis of the

source, path, and site effects (N. A. Abrahamson, Silva, & Kamai, 2014; Atkinson & Boore,

2007; Boore, Joyner, & Fumal, 1993, 1997; Boore, Stewart, Seyhan, & Atkinson, 2014; Gre-

gor et al., 2014). GMPEs are widely used in probabilistic seismic hazard analysis (PSHA)

due to their simplicity, as it does not require local 3-D velocity models, previously observed

strong motion records, or additional input such as empirical Green’s functions.

The source-to-site distance is an important parameter of the GMPEs that represents

the path effect of ground motion during an earthquake (Figure C.1 in the supporting in-

formation). The classical GMPEs use point-source measures relative to the epicentral and

hypocentral distances (Repi and Rhypo, respectively). Considering the finite dimensions of

large earthquakes, point-source distance metrics were replaced by extended-source distance

metrics. Two widely used metrics are the rupture distance Rrup (Douglas, 2003), represent-
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ing the closest distance (orthogonal) to the fault plane, and the Joyner-Boore distance RJB

(Joyner & Boore, 1981), the shortest distance to the surface projection of the fault plane. A

variant of RJB, the equivalent hypocentral distance EHD, measures the shortest distance to

the area of principle moment release on the fault (Ohno, Ohta, Ikeura, & Takemura, 1993; Si

& Midorikawa, 2000). Many current GMPEs based on these frequency-independent distance

metrics rely on numerous modifications of distance to accurately model near-field ground

motions. Because these modifications (e.g., additional distance definitions and saturation

terms) often result in complicate functional forms without seismological basis, Thompson

and Baltay (2018) advocate for the use of mean rupture distance Rp, which is frequency de-

pendent and in a simpler form. Frequency-independent distance metrics perform reasonably

well in predicting the shaking intensity of small earthquakes, but the frequency dependence

of source distances can become more significant for large subduction-zone earthquakes (Lay

et al., 2012; L. Meng et al., 2011; Yao et al., 2013). In the case of the Tohoku earthquake,

GMPEs using frequency-independent distance metrics produce substantial biases in the es-

timated level of shaking. Stewart et al. (2013) compared the performances of four different

GMPEs (N. Abrahamson, Gregor, & Addo, 2016; Atkinson & Boore, 2007; Si & Midorikawa,

2000; J. X. Zhao et al., 2006), all of which underestimate the near-field (< 100 km) ground-

motion intensity of the Tohoku earthquake at short periods and overestimate shaking at long

periods. To address this bias, a statistical event term is applied after residual analysis is

performed, comparing GMPEs to observed ground-motion intensity (Stewart et al., 2013).

This term is positive at short periods and zero or negative at long periods. The physical

basis of this term is unknown, and it is not clear how the event term can be generalized to

other megathrust earthquakes.

Here based on the observations that the short- and long-period seismic radiations are

generated from differ- ent portions of the megathrust, we attributed this event term to

the frequency-dependent source-to-site distances. In the following sections, we propose a

new frequency-dependent distance metric Rhf based on backprojection (BP) imaging and

compare it with Rrup in five large megathrust events: the 2011 Mw 9.0 Tohoku earthquake,

84



the 2003 Mw 8.0 Tokachi earthquake, the 2005 Mw 7.2 off-Miyagi earthquake, the 2014

Mw 8.1 Iquique earthquake, and the 2015 Mw 8.3 Illapel earthquake. In all cases, Rhf

outperforms Rrup in the HF band (0.5–2 Hz) by showing little or no bias in ground-motion

estimations.

4.2 High-Frequency Distance Metric

4.2.1 Backprojection Imaging

The frequency-dependent radiation patterns, particularly at HFs, can be effectively captured

with the BP approach. BP is an earthquake-rupture imaging technique utilizing the coherent

teleseismic P wavefield based on seismic array processing (Ishii et al., 2005; Kiser & Ishii,

2017; Krüger & Ohrnberger, 2005; L. Meng et al., 2011). Back-tracking of seismic waves

recorded by dense arrays allows BP to determine the spatiotemporal properties of the rupture

(length, direction, speed, and segmentation; Figure C.2). Over recent decades, development

of large-scale dense seismic networks has enabled BP imaging of the rupture process of major

large earthquakes.

The advantages of BP are threefold. First, in contrast to conventional finite-fault mod-

eling, BP is an imaging procedure that does not involve the solution of an inverse problem.

Thus, it does not suffer from being ill-posed or underdetermined and does not rely on restric-

tive parameterizations of the rupture kinematics and fault geometry or additional smoothing

(Kiser & Ishii, 2017). Because fewer assumptions and choices are involved, BP results tend

to be more robust and are more mutually consistent between different research groups than

finite fault models (Kiser & Ishii, 2017). Second, BP algorithms (such as beamforming) are

simple and do not require heavy computations, such as large-scale matrix inversions or wave-

propagation simulations. Therefore, BP is easily automated (e.g., IRIS BP products) and

well suited for implementation in real time for the purpose of rapid seismic hazard assess-

ment or earthquake/tsunami early warning (An & Meng, 2016; L. Meng, Allen, & Ampuero,

2014). Third, since BP does not attempt to deterministically fit seismic waves and relies only
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on the coherent phase of seismic array signals, it does not require the detailed knowledge of

the Green’s functions. This benefit allows BP to be applied to HF wavefield (f ≥ 1 Hz),

which is generally thought to be too noisy and uncertain to be modeled deterministically.

In comparison, classic source inversions requiring the deterministic Green’s function are

limited to relatively low frequencies (f < 0.1 Hz), for which the crustal structure is reason-

ably approximated. The complex rupture patterns that emerge in dynamic ruptures require

finer details of the source process that are apparent in high frequencies (f > 1 Hz), which

are hard to retrieve through using conventional source inversions. Furthermore, the ability of

BP to image HF sources is crucial to improve the prediction of strong ground motion, since

the typical frequency range of intense shaking is between 1 and 10 Hz (e.g., J. Anderson,

2007; Sokolov & Chernov, 1998). The natural frequency of building response falls in this

particular frequency band: A rule of thumb is that the building period equals the number

of stories divided by 10, so the 1 to 10 Hz band is roughly responsible for the shaking of 1

to 10 story residential and commercial buildings.

4.2.2 High-Frequency Radiator and High-Frequency Distance

To systematically evaluate the performances of the frequency-dependent distance metrics

in ground-motion predictions, we studied five large earthquakes in Japan and Chile (Table

C.1 in the supporting information). These earthquakes are chosen because they occurred

after 2003, when strong motion data are available for systematic strong motion analysis, and

because their GCMT solutions indicate typical thrust mechanism (Figure C.3). In our study,

we adopt the hypocenters and magnitudes determined by Japan Meteorological Agency

and Centro Sismólogico Nacional (CSN). We perform BP analysis of the vertical velocity

seismograms recorded by broadband station in North America for the five earthquakes at

four representative frequencies (0.5, 1, 2, and 4 Hz). The data are available through the IRIS

data management center. We chose stations at teleseismic distances between 40° and 85°

because of simplicity and the high coherency of the direct P arrivals. We adopt the Multiple

Signal Classification BP method with the reference window strategy that provides superior
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resolution and less artifact than conventional beamforming (L. Meng et al., 2011, 2012). We

first filter the seismograms aligned by initial P arrivals and then determine the HF sources

(large energy bursts) as the peak locations of short-period energy released in each time frame

with an interval of 1 s. We name the locations of these energy bursts as HF radiators (HFRs)

since 0.5–4 Hz is relatively high in the ground-motion spectrum of earthquakes.

The spatial distribution of HFRs at four frequencies show clear along-dip patterns, with

higher frequency HFRs closer to the mainland (Figure 4.1a). Assuming the coseismic rupture

occurring on the megathrust, we estimate the depths of HFRs by projecting HFRs onto the

predefined plate interface (SLAB 1.0, Hayes, Wald, & Johnson, 2012). We then define

the HF distance (Rhf ) as the shortest distance from a given site to all HFRs during the

earthquake, analogous to the distance metric Rrup. Since the locations of HFRs can be

evaluated with BP performed at different frequency bands, the distance metric Rhf (f)

is also frequency-dependent. To avoid the contamination of the coda wave, only the HFRs

within the earthquake duration are used to determine Rhf . The event duration is determined

according to the average SCARDEC moment-release functions (Vallée & Douet, 2016), and

we consider the earthquake over when the moment release function falls below 1% of the

peak moment rate.

4.2.3 Effective Period and Uncertainty of Rhf

It is worth noting that the effective period of Rhf metric is limited from 0.1 to 10 s. In

this study, we choose 0.25 to 2 s, where teleseismic BP performs best. When the period is

longer than 10 s, the BP result is less reliable because of the swimming artifact, a systematic

drift resulting from signal nonstationarity (L. Meng et al., 2012). The swimming artifact

produces apparent energy bursts migrating in the direction of the array as time lapses because

of the trade-off between source origin time and distances (Koper, Hutko, Lay, Ammon, &

Kanamori, 2011). The swimming artifact is most prominent in LF beamforming BP and

can lead to apparent frequency-dependent rupture behavior (L. Meng et al., 2012). On the

other hand, when period is shorter than 0.1 s, the waveforms are too noisy and incoherent
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to achieve the reliable BP results. To extend the valid frequency range of GMPEs, we could

combine Rhf with other distance metrics (e.g., to use Rhypo when studying longer period

ground motion).

Recent studies show that the spatial uncertainty of BP mainly comes from the travel

time error due to 3-D path effects (Y. Chen, Meng, Zhang, & Wen, 2018; Fan & Shearer,

2017; Kiser & Ishii, 2013; L. Meng et al., 2016). This uncertainty is generated by applying

a uniform the hypocenter time correction across the entire rupture area without considering

the structural heterogeneity of the Earth’s interior. The uncertainty can be inferred by

comparing the BP-imaged aftershocks with their catalog locations. Fan and Shearer (2017)

analyze the BPs of 46 M5–M7 earthquakes in Japan and determine that the median location

error is about 25 km. Similarly, Y. Chen et al. (2018) study two deep earthquakes (M > 5)

near the 2015 Mw 7.9 Bonin earthquake and estimate the spatial error around 15 km.

Besides, (L. Meng et al., 2018) perform the slowness-enhanced BP based on the aftershocks

of 2015 Mw 8.3 Illapel earthquake and reduce the spatial error from 24 to 8 km. Here we

consider that HFR location error and therefore Rhf error are on the order of 20 km, which

is reasonably small comparing to the dimension of megathrust events (M > 7) and the gaps

between HF and LF sources.

4.2.4 Comparison Between Rhf and Rrup

Traditionally, when calculating Rrup, the preferred finite fault model is often trimmed by

removing low-slip (< 10% of the peak slip) subfaults. Then, Rrup is measured as the closest

distance to the edge of trimmed fault area (> 10% of peak slip, blue pattern in Figure 4.1a).

This procedure allows Rrup to represent the source-receiver distance from the principle slip

area and is a routine processing in the PEER NGA-West2 project (Ancheta et al., 2012;

Stewart et al., 2012). Because different data sources (e.g., teleseismic, strong motion, GPS,

InSAR, and tsunami) are used alone or jointly in the finite fault model inversions, the edge

of trimmed fault areas could be different under the same criteria. For the Iquique and Illapel

earthquakes, the edge is spatially correlated with higher frequency HFRs (Figure 4.1a).
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Thus, we can deduce that frequency-independent Rrup is close to Rhf at high frequency

while smaller than Rhf at low frequency. This difference between Rrup and Rhf increases

from HF to LF. However, for the Tokachi, off-Miyagi, and Tohoku earthquake, the edge is

closer to lower frequency HFRs. Accordingly, Rhf is close to Rrup at low frequency and

decreases with the frequency.

4.3 Ground-Motion Predictions

4.3.1 Strong-Motion Data

We collect the strong motion data (horizontal accelerograms) recorded on the Japanese K-

Net (Kyoshin network) and Chilean CSN stations, and then compare them with the GMPE

predictions. Owing to the densely distributed K-Net stations, over 300 recordings of the

ground-motion observations are available to study GMPEs for each Japan event. For the

two Chile events, 11 and 48 recordings are used for analysis, respectively. We use 5% damping

pseudo spectra acceleration (PSa), the maximum acceleration response of equivalent single

degree of freedom systems, as our ground-motion intensity measure, extracted directly from

the seismograms. PSa is commonly used in GMPEs, designed to approximate first-order

building response. We use the Newmark Method for linear systems to compute the PSa in

our study (Chopra, 1995).

4.3.2 Ground-Motion Prediction Equations

As an example of the utility of representing the HF source generation, we replace the dis-

tance metric in existing GMPE with Rhf and compare the performances of the GMPE with

different distance metrics. We adopted the BC2016 GMPE designed for subduction earth-

quakes with magnitudes up to Mw 9.0 (N. Abrahamson et al., 2016). Even though some

other GMPEs use subduction zone data, they are not suitable for large earthquakes in the

subduction zone; that is, they do not consider the fore-arc/back-arc effect, which Stewart

et al. (2013) show is essential for the 2011 Tohoku earthquake. The original form of the
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GMPE uses rupture distance Rrup, the shortest distance from the site to the fault plane.

The original form of BC2016 for the plate-interface earthquakes is

ln(PSa) = δC1 + FM(M) + FD(Rrup,M) + FFABA(Rrup) + FS(V s30, PGA1000) (4.1)

where PSa is 5% pseudo spectra acceleration, M is moment magnitude, V s30 is the

average shear velocity of the top 30 m, and PGA1000 is the reference median PGA for

V s30 = 1000m/s. FM , FD, FFABA, and FS represent the magnitude scaling, distance scaling,

fore-arc/back-arc scaling, and site attenuation functions. The event term C1, suggested by

Stewart et al. (2013), is estimated from the residual analysis of the 2010 Mw 8.8 Maule and

2011 Mw 9.0 Tohoku earthquakes. In our analysis, we replace Rrup with Rhf . To focus on

the effect of the distance metric, we also drop the event and site amplification functions.

The GMPE is simplified as

ln(PSa) = FM(M) + FD(Rrup,M) + FFABA(Rrup) (4.2)

To compare the accuracy of different distance metrics in GMPEs, we compute the residual

Ri between the observed and model-predicted PSa.

Ri = ln(PSai)− ln( ˆPSai) (4.3)

where PSai is the PSa measured from recording i and ˆPSai is the corresponding value

predicted by the GMPE. This residual is later used for the correction of site attenuation,

specifically in reference to the scaling of ground motions with Vs30 (Stewart et al., 2013).

We then utilize the root-mean-square error (RMSE) to represent the average logarithmic

residuals between predictions with the data:

RMSE =

√√√√ n∑
i=1

R2
i /n (4.4)

Note that n is the total number of recordings.
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4.4 Results

4.4.1 The 2011 Mw 9.0 Tohoku Earthquake

First, we select six representative stations in different regions across Japan (Figures 4.3 and

C.3) and study the PSa predictions (Figure 4.2a). In all six stations, we find that Rrup

underestimates the ground-motion intensity at the short periods (T < 1 s). On the other

hand, the prediction based on Rhf fits the observation very well in a broad spectral range

(0.1 < T < 10 s). Note that Rhf still underestimates the shaking at MYG0081, possibly due

to the local site effect (Figure 4.2a).

Next, we compare performances of two distance metrics Rrup and Rhf at all K-Net sta-

tions, using BC 2016 (Figure 4.2b), shown for two periods of T = 2s and T = 0.5 s. For

each case, we combine the fore-arc and back-arc predictions to obtain a single RMSE. We

find that the Rhf ’s RMSE for both periods remains a small value of about 0.74; that is, the

predicted PSa is on average 2.15 times either larger or smaller than the observations. On

the other hand, while the RMSE of Rrup at T = 2 s is reasonably small at 0.745, it increases

dramatically to 1.38 at T = 0.25 s, which renders Rrup a poor distance metric for HF. Our

results indicate that Rhf is a more robust and accurate metric for this event. However, even

though Rhf performs significantly better than Rrup in the near-field (R < 100 km), there is

still bias in Rhf , overestimating at T = 0.25 s, while underestimating at T = 2 s (Figure

4.2b). We then add two more comparisons in the periods of T = 1 s and T = 0.5 s (Figures

C.4 and C.5). It indicates that while RMSE of Rhf remains stable in both frequency bands,

the RMSE of Rrup increases with frequency (Figure C.4). The RMSEs of Rhf and Rrup are

both reasonably small at T = 2 s. We consider that the prediction by Rrup is invalid for

T < 0.5 s for the Tohoku earthquake.

The advantage of Rhf can be also verified with the site attenuation analysis (Text C.1

in the supporting information and Figures C.6 and C.7). We focus on the rate c(T ) at

which site attenuation term is changing with respect to logarithmic value of Vs30. c(T ), in

other words, is the slope between residual R(T ) and ln(V s30) (Figure C.7). In the Tohoku
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earthquake, the variation of c(T ) (Stewart et al., 2013) with the period T is much larger than

the previous study in active crustal regions (ACRs; Choi & Stewart, 2005) when using Rrup.

However, when using Rhf , c(T ) is much more consistent with that inferred from ACR data

(Figure C.7). This agreement between the Tohoku earthquake case and ACR study indicates

that Rhf is a better approximation of the distance term. A more detailed discussion of the

methodology can be found in the supporting information (Barani, De Ferrari, Ferretti, &

Spallarossa, 2010; Borcherdt, 1994; Borcherdt & Glassmoyer, 1989; Choi & Stewart, 2005;

Stewart et al., 2013).

4.4.2 Analysis of All Five Megathrust Events

To further understand the performance of Rhf in other earthquakes, we analyzed four ad-

ditional megathrust earthquakes in Japan and Chile in the same manner as the Tohoku

earthquake (Table C.1): the 2003 Mw 8.0 Tokachi earthquake (Koketsu, Hatayama, Furu-

mura, Ikegami, & Akiyama, 2005; Nozu & Irikura, 2008), the 2005 Mw 7.2 off-Miyagi earth-

quake (Shao & Ji, 2013), 2014 Mw 8.1 Iquique earthquake (Wei, 2014), and the 2015 Mw

8.3 Illapel earthquake (Figures C.8–C.15; Okuwaki, Yagi, Aránguiz, González, & González,

2017). Combining the results of all five earthquakes, we compare the RMSE of Rrup and

Rhf as a function of frequency (Figure 4.1b). For the three Japanese earthquakes (left), the

mean RMSE of Rhf remains around 0.8 for all frequency bands, while that of Rrup increases

rapidly with frequency, from 0.8 (T = 2 s) to 1.2 (T = 0.25 s). This can be explained by our

previous analysis (see section 4.2.4): Rrup is close to Rhf at low frequency and the difference

increases with frequency. For the two Chilean earthquakes (right), the mean RMSE of Rrup

shows the opposite trend, decreasing rapidly with the frequency, from 1.3 (T = 2 s) to 0.7

(T = 0.25 s) with the corresponding explanation that Rrup is close to Rhf at high frequency

and the difference decreases with frequency. Our results suggest that frequency-independent

Rrup only works well in one single frequency, and this frequency depends on the fault trim-

ming process and the earthquake itself. Thus, Rhf outperforms Rrup despite that the trend

of the errors is different for Japanese and Chilean earthquakes within the overall HF band
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(0.5–2 Hz).

4.5 Discussion

Here we demonstrate that modeling the locations of HF generating areas from BP gives a

new distance metric, Rhf , that more accurately predicts strong ground motion at distance

as compared to the traditionally used metric of Rrup. To understand the role of HFRs in

generating HF ground motions, we compare HFRs at the period of 0.25 s with the strong

motion generation areas (SMGAs) and the coseismic slip of the 2011 Tohoku Event (Figure

4.3) and Tokachi Event (Figure C.16). The SMGA is defined as the source areas that are

responsible for the large amplitude of HF near-field strong motions (Miyake, Iwata, & Irikura,

2003). SMGAs are typically interpreted as the source of large slip velocities or large stress

release (∼ 10 MPa). The locations of the SMGAs are estimated based on the onset times of

the wave packets at near-field stations (Kurahashi & Irikura, 2011). Another terminology,

asperity, in the context of kinematic source models, is a region on the fault surface that

produces large coseismic slip relative to the average slip. These asperities often locate at

shallower depths in the dip-slip faults of crustal earthquakes (Somerville et al., 1999). SMGAs

are often associated with the asperities in the corresponding source models by assuming that

large slip velocity is often proportional to large static slip (Miyake et al., 2003). However, in

the case of the Tohoku earthquake, the identified SMGAs are more consistent with the HFRs

inferred from teleseismic BP rather than the large shallow asperities (Stewart et al., 2013; Ye,

Lay, & Kanamori, 2013). This agreement between SMGAs and HFRs confirms the common

origin of HF bursts (∼ 10 Hz) observed at teleseismic and local distances. In comparison,

the region with large slip velocity is not necessarily the region of large slip (Figure 4.3).

One possible scenario to produce large slip velocity with small slip is the short rise times.

Average slip velocities equal the total slip divided by the rise time. When the rise time is

small, the slip velocity of subfaults can be large even with small final slip. This hypothesis is

supported by the observation that the HFRs are colocated with downdip subfaults of short

rise times (< 10 s) and moderate localized slip (∼ 5m) in Tohoku earthquake (Wei et al.,
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2012). The generation of these HFRs can be due to the presence of frictional heterogeneities

at the seismogenic zone (Madariaga, 1983; L. Meng et al., 2011). The conditionally stable

background is dotted with plenty of patchy, small-scale regions, which produce coherent

short-period radiations when broken (Lay et al., 2012).

In future work, we will continue to test and improve the performances of Rhf in GMPEs

and develop new attenuation relationship based on Rhf . The GMPEs using Rhf can be used

to guide the interpolation of sparse data when producing the USGS ShakeMap. When a

finite fault model is unavailable immediately after an earthquake, a quick, robust prediction

of ground-motion intensity using Rhf can be developed based on near real-time automatic

BP. One can determine the HFRs directly from IRIS Data Management Center’s automated

BP results for global M > 6.5 earthquakes, based on coherent P wave energy from regional

arrays (North America, Europe, and Australia) and Global Seismographis Network (Trabant

et al., 2012). The duration and magnitude of an earthquake can also be estimated from BP

based on an empirical equation (D. Wang et al., 2017). Thus, we have all the necessary

information to estimate ground-motion intensity. An important aspect of the GMPE is to

estimate the ground motion intensity for the future earthquake scenarios, which requires

the assumptions of source locations. For PSHA purposes, Rhf cannot be simply estimated

using BP as it is only available after the earthquake. These deep HFRs are the closest

to the landward strong motion stations and therefore dominate the determinations of Rhf .

The mechanism of repeating earthquakes and HFRs are both interpreted as the repeated

failures of small patches driven by either slow-slip or dynamic ruptures. Thus, these small

patches in brittle-ductile transition could be the potential locations to generate coseismic

HF energy in megathrust earthquakes. The spatial consistency between HFRs during the

2011 Tohoku earthquake (Figure 4.3) and the 2003 Tokachi earthquake (Figure C.16) and

preseismic repeating earthquakes is an evidence for such hypothesis (Igarashi, Matsuzawa,

Umino, & Hasegawa, 2001; Lay et al., 2012; L. Meng et al., 2011; Uchida, Iinuma, Nadeau,

Bürgmann, & Hino, 2016). Next, we will explore which repeating earthquakes could be used

as proxies for HFRs of potential future ruptures for PSHA.
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4.6 Conclusion

Recent studies exploring the frequency-dependent and depth-varying seismic radiation at

plate interfaces from several major megathrust earthquakes motivate us to consider frequency-

dependent source effect for GMPEs. The corresponding HF distance metric Rhf is based on

HFRs, which are quickly and robustly located by BP imaging technique without any prior

knowledge of rupture kinematics. We demonstrate that Rhf performs better in GMPEs

over the traditional frequency-independent metric Rrup in several recent large megathrust

earthquakes based on the analysis of the 2011 Tohoku earthquake, the 2003 Tokachi earth-

quake, the 2005 off-Miyagi earthquake, the 2014 Iquique earthquake, and the 2015 Illapel

earthquake. Rrup shows significant bias in the prediction of 5% pseudo spectral acceleration

at high frequencies (0.5–4 Hz), which is close to the natural frequency of low-rise buildings.

However, the distance metric Rhf based on BP shows little or no bias in ground-motion

estimations. Rhf therefore potentially has the ability to improve the accuracy of GMPE pre-

dictions. GMPEs utilizing on Rhf can potentially provide real-time ground-motion intensity

estimations for large earthquakes based on automated BP.
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Figure 4.1: (Caption next page.)
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(a) Backprojection results of five large earthquakes in Japan and Chile: the 2011 Mw 9.0

Tohoku earthquake, the 2003 Mw 8.0 Tokachi earthquake, the 2005 Mw 7.2 off-Miyagi

earthquake, the 2014 Mw 8.1 Iquique earthquake, and the 2015 Mw 8.3 Illapel earthquake.

The black star marks the hypocenters of the five earthquakes. The color open circles represent

high-frequency radiators in four frequency bands. The yellow and blue patches represent

areas with coseimic slip larger than 50% and 10% of peak slip, respectively. (b) Comparison

of the performance between Rrup and Rhf in five earthquakes. The blue dashed lines represent

Rrup, while the red lines represent Rhf . (left) The Rrup’s mean root-mean- square error

(RMSE) value of three Japanese events (solid blue line) decreases with period, while Rhf ’s

mean RMSE (solid red line) changes little. (right) The Rrup’s mean RMSE value of three

Chilean events increases with period while Rhf ’s mean RMSE remains small.
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Figure 4.2: (a) Comparisons of pseudo spectra acceleration (PSa; g) predicted with distance

metrics Rhf and Rrup of 2011 Tohoku earthquake (Mw 9.0) at six selected K- Net stations.

The black, blue, and red lines denote the observation, the prediction based on Rrup, and

the prediction based on Rhf , respectively. (b) Comparisons of PSa in different frequencies

using Rhf and Rrup for the 2011 Tohoku earthquake. The x axis marks distance in km, and

the y axis denotes PSa in gravitational acceleration g. The green and red traces denote the

fore-arc and back-arc PSa values predicted with GMPE BC2016. The blue and black open

circles are the observed PSa values at fore-arc and back-arc K-Net stations, respectively.
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Figure 4.3: Finite fault model (Wei et al., 2012) of 2011 Mw 9.0 Tohoku earthquake (gray

rectangle), strong motion generation areas from Kurahashi and Irikura (2011) (black rect-

angles), the 4-Hz high-frequency radiator locations (color spheres), and deep preseismic

repeating earthquakes (Uchida et al., 2016)(purple open squares). The contours indicate

coseismic slip (m), and the red star is the JMA epicenter of the main shock. The blue lines

denote the surface projection of Rhf at six selected stations (green triangles).
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CHAPTER 5

Discussion and Conclusion

My Ph.D. research aims at characterizing microseismicity through the use of machine-

learning and waveform-similarity-based approaches. In our case study of the aftershock

sequence of 2011 M9 Tohoku, Japan earthquake, we propose a waveform-similarity-based

model (BP-MF) which integrates BP and MF. The BP-MF method is highly effective in

detecting offshore microseismicity. After spatial and temporal calibration, the BP-MF after-

shock catalogue contains 44.2% more offshore events than the JMA catalog. We inferred the

large co-seismic slip area from the aftershock distribution, which is spatially complementary

with post-seismic slip. The large coseismic slip area inferred by our model is consistent with

several finite fault models that indicate large coseismic slip in the near-trench region offshore

Fukushima. In contrast to deploying ocean bottom instruments, the BP-MF method makes

use of waveforms recorded in teleseismic distances, resulting in an inexpensive solution for

offshore seismicity monitoring.

In the case study of the aftershock sequence of the 2020 M7 Somas, Greece earthquake,

we build a multiple-station phase-picking model (EdgePhase) by integrating GNN with EQ-

Transformer. Compared to a local earthquake catalog, EdgePhase showed 190% additional

detections with event distribution more conformative to a planar fault interface, suggesting a

higher degree of fidelity in event locations. This case study shows that EdgePhase, when com-

bined with traditional earthquake location methods, can automatically monitor earthquakes.

Meanwhile, the performance of the multi-station phase-picking model is demonstrated to be

comparable to that of humans.

In addition to studying microseismicity, my thesis investigates ground motion during
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megathrust earthquakes. We propose a new frequency-dependent distance metric based on

the BP imaging technique. The method improves the accuracy achievable in rapid post-

seismic mapping of probable strong ground motions, especially where strong-motion stations

are sparse. We study five large subduction zone earthquakes in Japan and Chile and Rhf

outperforms traditional distance metrics. We consider Rhf as a complementary measure

to conventional GMPE distance metrics and a more accurate ground-motion estimator in

seismic hazard analysis.

The British statistician George Edward Pelham Box FRS said, ”All models are wrong,

but some are useful”. While all models are inaccurate due to their simplification of reality,

simplifying the realities of life can be quite useful, since it helps us explain, predict and better

understand the universe and all its various components. Many generations of iterations are

necessary to create a good model. The models presented in this thesis are not entirely new,

but rather are improved upon existing models. In future studies, I believe there is still

considerable room for improvement in the study of microseismicity. I will highlight these

improvements in the following three aspects: data, model, and task.

My thesis only makes use of the conventional seismic data, but new unconventional

data has recently been used in the study of microseismicity and oceanic seismicity. Data

collected from distributed acoustic sensing (DAS; H. F. Wang et al., 2018; Lindsey et al.,

2017; Martin et al., 2018; Marra et al., 2018) shows high spatial and temporal resolution,

and thus is suitable for detecting microseismicity. It is necessary to compress DAS data

prior to applying it to make predictions, as the volume of data from DAS is very large.

Self-supervised learning and semi-supervised learning are effective approaches for extracting

latent representations from DAS data. In addition, A study of the state of polarization (SOP)

of a transcontinental submarine cable (Zhan et al., 2021) detected multiple moderate-to-large

oceanic earthquakes along the cable. Apart from this, we can also utilize the data provided

by citizen such as felt reports (Atkinson & Wald, 2007), social media (Sakaki, Okazaki, &

Matsuo, 2010; Earle, Bowden, & Guy, 2011), web traffic (Bossu et al., 2008), acceleration

data recorded by smartphones (Kong et al., 2016), or Internet of things (IoT) devices.
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In addition to new data, we can also build models based on new concepts. As we discussed

in Chapter 3, combining physics-based models with ML models is an important trend in

characterizing microseismicity. Physics-based models offer the benefit of understanding the

physics of systems; machine-learning models are able to take advantage of large volumes of

data and high levels of complexity. In Chapter 3, we compared EdgePhase with two other DL

models that included physics-based modules (similar to BP and MF). This is a good strategy

for developing a new generation of microseismicity characterizing methods, but the research

is still in an early stage. There are some challenges in integrating physics-based module

into ML architecture. For example, how can physical parameters be incorporated and made

applicable to multiple types of instruments, regions, and events? A model of this kind would

show superior performance if the generalization problem can be solved efficiently. Another

trend is to integrate several types of data when developing a model. In a microseismicity

task, these data could consist of seismic data, GPS data, and DAS data. In a broader sense,

these data types could encompass geology data, geophysics data, and geochemistry data.

Within this thesis, we only examine the task of detecting microseismicity and seismic

phases with supervised learning, primarily because the labels in this task are most complete

and reliable. Once we have accumulated enough experiences and techniques, we will be

able to address more challenging questions with partially labeled data, such as predicting

focal mechanisms of microseismicity. There have been some studies that have attempted

to solve this problem, but the experiments were conducted in a very limited number of

instances (Kuang et al., 2021; Uchide, 2020). For more general applications, we need to use

more innovative and specific ML models, and the traditional supervised learning approach

is unlikely to be suitable, perhaps semi-supervised or self-supervised learning is appropriate.

There is also the possibility of applying machine learning to earthquake nucleation and

triggering. Our hypothesis depends on establishing a comprehensive catalog, which is what

we are attempting to do in this thesis. Utilizing unsupervised learning algorithms, we were

able to cluster events easily for the subsequent analysis. Furthermore, GNNs can also be used

to predict the triggering relationships between events. In addition, we can use a ML model
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to identify the migration of earthquakes as well as to trace repeating earthquakes. Through

these studies, we might gain a deeper understanding of cascade and slow slip triggering

models.

If we can make progress in the three aspects outlined above, we may be able to create

an artificial intelligent model that behaves like a human seismologist. Seismicity can be

analyzed by the model automatically based on a variety of sources of seismic data. As

compared to human experts, it has the advantages of being objective, robust, and fast.

Besides microseismology on Earth, the system may also be effective in detecting tremors,

slow earthquakes (Rouet-Leduc, Hulbert, McBrearty, & Johnson, 2020; Hulbert et al., 2019),

moonquakes, and marsquakes through transfer learning (Civilini et al., 2021).

Apart from studying microsemicity, machine learning has many potential applications

for solving geophysics problems. Listed here are some noteworthy applications:

(1) In Chapter 2, we determine microseismicity from the BP energy series by looking at

spatial peak ratios and temporal peak ratios. It would be advantageous to detect and locate

events directly from the original BP movies (animated maps of energy radiation). For this

task, I recommend using object detection models used in computer vision, such as R-CNN

(Ren, He, Girshick, & Sun, 2015) and YOLO (Redmon, Divvala, Girshick, & Farhadi, 2016).

By taking advantage of different frequencies and networks in the conduct of BP, we can

augment the BP movies, in much the same way we use multiple cameras when detecting

objects.

Additionally, we perform spatial and temporal calibration to improve the hypocenters and

origin times of newly detected events by BP with linear interpolation. Using the historical

events recorded in a conventional catalog as ground truth, this calibration task is very

suitable for supervise learning. Linear interpolation may capture the majority of errors,

but cannot quantify the velocity heterogeneity that caused them. With the aid of machine

learning, we can build a more general model to estimate the slowness term, and inversely, to

help BP perform better by considering 3-D velocity structures. Han, one of my colleagues,

discovered that one slowness correction may not be applicable to a large geographical area
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due to the structural heterogeneity. By using the K-means algorithm, he clustered the region

into several groups and fitted slowness separately. Both clustering techniques and supervised

learning can be used in this task.

Based on the aformationed study of detection and calibration, it is possible to train a BP

imaging model in conjunction with ML algorithms. Using continuous waveforms and a local

catalog as training data, a ML model is supervised to learn to perform BP by considering

three-dimensional velocity structures. An objective function may be defined as the spatial

and temporal difference between the BP energy peaks and catalog events. With trained

BP model, the travel time errors should be theoretically corrected, and BP imaging results

should be more accurate than current versions without the need for calibration. The model

can be constructed in the same way as the EQNet (W. Zhu et al., 2021) we discussed in

Chapter 3. EQNet’s shift-and-stack module actually functions as BP. EQNet only shifts

features with constant P and S velocities. Here, I recommend replacing shift-and-stack

module with a learnable model, whose parameters can be used to characterize 3D velocity

structures. Furthermore, it would be great if this could be applied to more than one network

(Du, 2021), making BP results more robust on multiple networks.

(2) As we illustrated in Chapter 3, EdgePhase model (message passing neural network)

is very suitable for signal denoising problems when there are multiple sensors present. De-

noising is not limited to seismic data, as it can also be applied to GPS and infrasound data.

Machine learning has great potential in denoising geodetic data as they require complex

preprocessing procedures to highlight transient signals. One of the difficulties is that we

lack knowledge of the ground truth (clean) signal in many instances, so we need to rely on

synthetic data for model training. Accordingly, supervised learning may not be the best

solution, so it might be useful to adopt unsupervised/self-supervised approaches, such as

generative adversarial networks (GANs) or variational autoencoders (VAEs).

(3) Another trend is to employ ML models to approximate or simplify complex function

or processes in physics. It has been used to accelerate calculations on large-scale viscoelastic

calculations (DeVries, Thompson, & Meade, 2017). It could also help with waveform sim-
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ulation problems. The traditional simulation method may be very time consuming when

studying the properties of waveforms at high frequencies. It is possible to use a ML model

as a fast computing approximator and therefore help save a great deal of resources when we

require a quick resolution or real-time monitoring.

In addition to the aforementioned tasks, ML can be applied to many other topics. As an

example, to examine the structure of the Earth, as well as other planets, especially when we

have seismic data from the InSight Mission on Mars. Several studies have applied machine

learning to the study of tomographs (Mauricio, Jennings, Adler, & Dahlke, 2018; Valentine &

Woodhouse, 2010; Paitz, Gokhberg, & Fichtner, 2018; Bianco & Gerstoft, 2018). Dicitonary

learning may be an interesting direction to explore. Also, we can make use of machine

learning to automate some tasks, such as categorizing volcanic ash particles (Shoji, Noguchi,

Otsuki, & Hino, 2018). In a similar way, we can apply machine learning to identify images

of rocks, faults, landslides, craters and other objects based on techniques used in computer

vision.

Overall, there are a large number of applications to be considered. At present, we are

at a very early stage of applying ML tools to the study of geophysical problems. Machine

learning, especially deep learning, is developing at an astounding rate, with new models

emerging each month. Hopefully, previously unsolvable problems will soon be resolved.
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APPENDIX A

Supplementary Materials of Chapter 2

A.1 Text S1 Comparison between this study and KI-2013

. Since KI-2013 (Kiser & Ishii, 2013) only performs the BP up to 25 hours after the main-

shock, we compare our BP catalog with it in the same time span. KI-2013 and our method

detected 600 and 661 events respectively, 437 of them were matched (Fig. A.7). We consider

two events are matched in two catalogs if they occur within 60 sec and 50 km from each

other.

We also match the BP detections with large events (Mw > 4.5) in the JMA catalog

(431). KI-2013 detected 266 of them and our catalog matched 49 more events. Among these

matched events, 243 of them are detected by both BP methods (Portion A in Fig. A.7).

Compared to the KI-2013 catalog, the event location determined by our method is overall

more landward (Fig. A.8a). This difference might come from the selection of mainshock

hypocenter and settings of hyperparameters. Also, we perform the spatial calibration, which

systematically corrects the BP location according to event hypocenters from the JMA cat-

alog. In addition, the origin time determined by KI-2013 is overall 10 sec later than our

method which has the same median origin time with the JMA catalog (Fig. A.8c). KI-2013

did not perform the temporal calibrations.

However, both methods are not able to match 93 events in the JMA catalog (Mw > 4.5).

Some events are in fact detected by the BP techniques, but the spatial or temporal differences

are larger than the matching thresholds. The remaining events are missed due to the low

signal-to-noise ratio of the teleseismic waveforms. Please check Section 2.2 for more details.
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334 and 346 events in KI-2013 and our BP catalogs are not matched with large events

(Mw > 4.5) in the JMA catalog. The majority of them are newly detected events, and some

of them are events recorded in the JMA catalog but with smaller magnitude (Mw < 4.5).

We then used the same criteria to match the remaining events in two BP catalogs, finding

194 matched pairs (Portion B in Fig. A.7). The spatial and temporal differences between

these two catalogs shows the same pattern: the hypocenter determined by KI-2013 is more

trenchward and origin time is 11 sec later than our method (Fig. A.8b,d). Compared with

events matched with the JMA catalog (Mw > 4.5, Portion A), these unmatched events

(Portion B) in both BP studies are more trenchward. This pattern indicates the advantages

of BP in detecting near-trench events.

Overall, our method detected more events and matched more events with the JMA cat-

alog than KI-2013. Two BP catalogs have about 70% overlapping events. The different

performance may come from the following aspects: First, KI-2013 manually identifies events

from the energy peaks, while our method sets up an objective threshold to identify earth-

quakes. Second, we add additional quality control by inspecting the spatial energy distri-

bution. Third, KI-2013 used a coherency function approach while we used conventional

beamforming.
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Figure A.1: Normalized confusion matrix for binary classification (event and noise). The

true positives (TP), false positives (FP), false negatives (FN), and true negatives (TN) are

0.7920, 0.0004, 0.2080, and 0.9996 respectively.
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Figure A.2: Upper panel: The BP peak stack energy (black), temporal threshold (red),

spatial threshold (blue), and the waveforms (lower panel) of an Mw 5.2 event on 2012-08-26

03:37:00. This event is missed by BP detection because the energy peak is smaller than the

spatial threshold.
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Figure A.3: Upper panel: The BP peak stack energy (black), temporal threshold (red),

spatial threshold (blue), and the waveforms (lower panel) of an Mw 6.2 event on 2011-03-11

15:08:54. This detection is not matched with the JMA catalog because the hypocentral

difference is larger than the threshold of 50 km.
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Figure A.4: Upper panel: The BP peak stack energy (black), temporal threshold (red),

spatial threshold (blue), and the waveforms (lower panel) of an Mw 5.7 event on 2011-03-11

17:16:31. This detection is not matched with the JMA catalog because the origin time

difference is larger than the threshold of 60 sec.
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Figure A.5: Upper panel: The BP peak stack energy (black), temporal threshold (red),

spatial threshold (blue), and the waveforms (lower panel) of an Mw 6.1 event on 2011-08-22

20:23:35 (Lat = 36.1072, Lon=141.9840). In the JMA catalog, an Mw 4.4 event occurs

24 sec earlier than this Mw 6.1 event (Lat = 36.0703, Lon = 141.9413). Our BP program

matched the first energy peak with the Mw 4.4 event and considered the second energy peak

represents the S wave.
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Figure A.6: The relationship between the BP energy and the earthquake magnitude in the

JMA catalog. The best fit line (gray line) with 95% confidence limits (red zone) is presented

together with 95% prediction limits (gray dashed lines).
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Figure A.7: Comparison between KI-2013 BP catalog (600 events), BP catalog of this study

(661 events), and the JMA catalog (Mw > 4.5, 431 events) in the first 25 hours after the

2011 Mw 9.0 Tohoku mainshock. The portion A is the overlap of three catalogs, while

the Portion B are matched events in two BP catalogs but not present in the JMA catalog

(Mw > 4.5).
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Figure A.8: The spatial (a-b) and temporal (c-d) differences of matched events between

KI-2013 and this study. The left panels (a, c) are events of Portion A in Fig. A.7. The right

panels (b, d) are events of Portion B in Fig. A.7.
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Figure A.9: An example of the GPD algorithm based on deep learning (Ross, Meier, Hauks-

son, & Heaton, 2018). It takes the 3-component seismic waveforms (a-c) as input and outputs

the probability of S and P phases as a function of time (d). The red and blue lines indicate

the offset of the estimated P and S phases (a-c).
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Figure A.10: Waveforms of an Mw 4.5 near-coast event recorded by 47 Hi-net stations.

Recorded P and S wave trains (salmon color) are close to theoretical P (blue) and S (red)

arrivals predicted by the IASP91 model.

117



Figure A.11: Waveforms of an Mw 4.6 near-trench event recorded by 47 Hi-net stations.

Recorded P and S wave trains (salmon color) are close to theoretical P (blue) and S (red)

arrivals predicted by the IASP91 model.

118



Figure A.12: The relationship between the number of BP (red columns) and JMA (gray

columns) templates and distance along the dip. The percentage of BP templates in total

templates are also presented (black line).
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Figure A.13: The occurrence of BP templates in the period within 600 days after the 2011

Mw 9.0 Tohoku earthquake.
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Figure A.14: An example of the matched-filter detection with 47 stations. (a) The left panel

shows the stacked CC trace around the detected event 2011-03-17, 04:45:20.40, which is not

listed in the JMA catalog. The right panel shows the histogram of the mean CC trace of

the day. The green dashed line denotes the detection threshold (9 times the MAD). (b)

shows the template waveforms (red) superimposed at the position of matched continuous

waveforms (gray). The channel name and the corresponding CC values are labeled on the

left and right sides, respectively.
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Figure A.15: The density of newly detected events (per 0.2◦×0.2◦ grid) within 600 days after

the mainshock by the MF detection using BP templates. The green star in the outer rise

denotes the location of the template event shown in Fig. A.14, while the black star shows

the epicenter of the M 9.0 mainshock. The gray dashed lines represent iso-depth contours

of the plate boundary at 20-km intervals.
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Figure A.16: The ratio of seismicity density between the BP-MF catalog and JMA catalog

as a function of along-dip distance.
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Figure A.17: An example showing the grid search process of b value (blue circles) and

magnitude of completeness (Mc). The goodness of fit (R, red circles) achieves the maximum

value when Mc and b value equal 3.8 and 1.09, respectively.

124



Figure A.18: The difference of goodness of fit (R) between BP-MF and JMA catalog in fitting

the frequency-magnitude distribution (BP-MF minus JMA). The Positive value indicates

that the BP-MF catalog fits Gutenberg-Richter law better than the JMA catalog.
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APPENDIX B

Supplementary Materials of Chapter 3

B.1 Text S1 Earthquake magnitude calculatation

To calculate earthquake magnitude, we first simulate the displacement waveform on a Wood-

Anderson seismograph (in meters), trim to the event window (5 sec before the arrival of

theoretical P-phase arrival and 45 sec after), and calculate the zero-to-peak amplitude amp

according to the larger absolute maximum of the two horizontal components (Hutton &

Boore, 1987; Tan, 2013). Afterwards, we estimate the local magnitude ML with epicentral

distance depi and zero-to-peak amplitude based on an empirical function for each station.

The median magnitude is used for the final estimation.

ML = log10(amp · 1000mm

m
) + 0.018 · depi + 2.17 depi < 60km (B.1)

ML = log10(amp · 1000mm

m
) + 0.0038 · depi + 3.02 depi ≥ 60km (B.2)

B.2 Text S2 The parameters setting for REAL, VELEST, and

HypoDD

In the REAL algorithm, the search grid size is set to 0.03 degrees in latitude and longitude

direction and 5 km in the depth direction. The earthquake detection threshold is either

at least 4 P-phase picks or at least 8 P- and S-phases in total. Under these standards, we

detected and roughly located 27,007 events.
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In the VELEST algorithm, the maximal epicentral distance of 400 km is used to filter

the seismic phases. The observations at stations with a distance greater than 400 km are

ignored. The weighting factor for S-phase relative to P-phase is 0.75, and the Vp/Vs ratio

is set to 1.73. The local velocity model has been adapted from Ozer, Gok, and Polat (2018).

The inversion process is composed of 9 forward and backward simulation iterations. Finally,

it deletes the events with a station gap greater than 180 degrees or inversion residual greater

than 0.5 seconds. As a result, we deleted 24,242 events and kept 2,765 events.

In the HypoDD algorithm, we limit the research area to the longitude between 26.0 E

and 27.4 E and the latitude between 37.5 N and 38.3 N. We set the maximum distance

between cluster centroid and station as 400 km; maximum hypocentral separation as 100

km; the maximum number of neighbors per event as 20; and the minimum number of links

required to define a neighbor as 1. For the event clustering, we set the minimum number

of observation pairs to be 4. According to these standards, we relocated 687 events out of

1,222 events.
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Table B.1: Performance of EdgePhase, Baseline-A, and Baseline-B models on the SCSN2021

test set. The best performance is highlighted in bold.

Phase Precision Recall F1 Mean(s) Std(s) MAE(s) Threshold

Baseline-B P-Phase 0.82 0.55 0.66 -0.02 0.10 0.06 0.05

S-Phase 0.77 0.53 0.62 -0.01 0.15 0.10 0.03

Baseline-A P-Phase 0.89 0.80 0.84 0.00 0.10 0.06 0.64

S-Phase 0.84 0.78 0.81 0.03 0.13 0.10 0.40

EdgePhase P-Phase 0.92 0.85 0.88 0.03 0.11 0.07 0.39

S-Phase 0.89 0.83 0.86 -0.04 0.14 0.11 0.28

Figure B.1: The signal-to-noise ratio (db) density distribution of STEAD test set and

SCSN2021 test set. The median value of SNR for STEAD (red vertical line) and SCSN2021

(blue vertical line) test sets are 16.43 and 25.00 db.
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Figure B.2: The SNR (db) density distribution of True Positives (TP, matched detections),

False Negatives (FN, missed phases), and False Positives (FP, false detections) counts for

P-phases on the SCSN2021 test set generated by EdgePhase, Baseline-A, and Baseline-B.

The selected low (0 db), medium (10 db), and high (20 db) SNR bands (width ±1 db) are

represented by the red, green, blue color bands.
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Figure B.3: The SNR (db) density distribution of True Positives (TP, matched detections),

False Negatives (FN, missed phases), and False Positives (FP, false detections) counts for

S-phases on the SCSN2021 test set generated by EdgePhase, Baseline-A, and Baseline-B.

The selected low (0 db), medium (10 db), and high (20 db) SNR bands (width ±1 db) are

represented by the red, green, blue color bands.
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Figure B.4: (Caption next page.)
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Feature map of latent representations and enhanced representations in EdgePhase. The

earthquake example is the same as Figure 3.2. We only visualize the vertical seismogram of

3 neighboring stations (SLB, WWC, and PMD), since the total channel number (219) is too

large to visualize all in one figure. The red and blue dots on the waveforms (gray curves)

represent the ground truth P- and S-phases. We process the feature map with min-max

normalization, more specifically, the minimum value of that feature gets transformed into a

0 (black), the maximum value gets transformed into a 1 (white), and every other value gets

transformed into a decimal between 0 and 1. Finally, we sorted the feature map in ascending

order based on the mean value of the feature.
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Figure B.5: Tectonics in the Aegean Sea with movement directions of African Plate, Aegean

Microplates, and Anatolian Microplates. The focal mechanism (red stars) and faults (white

curves) are from AFAD and the New Seismotectonic Atlas of Greece (Kassaras et al., 2020),

respectively. The study region is highlighted by a red box. We select 72 stations around the

Aegean Sea from 6 networks (HA, HC, HI, HL, HT, KO) and 2 different types of channels

(HH: High gain and HN: accelerometer) with a 100 Hz sampling rate. The distribution of

stations shows good azimuthal coverage of the 2020 Mw 7.0 Samos earthquake (red star).
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Figure B.6: Map view and vertical cross-sections of seismicity from NKUA. Empty circles are

the events from the earthquake catalog from the Seismological Laboratory of National and

Kapodistrian University of Athens (SL-NKUA), 421 in total. The mainshock hypocenter is

highlighted by red stars. The color of circles in the top panel indicates the days after the

mainshock.
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Figure B.7: Map view and vertical cross-sections of seismicity from this study. Empty circles

are the events detected with EdgePhase, relocated by VELEST and HypoDD methods. The

total number of events is 1222, 687 of them are relocated by HypoDD. The mainshock

hypocenter is highlighted by red stars. The color of circles in the top panel indicates the

days after the mainshock.
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Figure B.8: Map view of matched events. Two events from the NKUA catalog (blue) and

the catalog of this study (red) are matched (black lines) if the temporal and spatial difference

is smaller than 3 sec and 30 km.
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Figure B.9: Linear regression of magnitude between matched event pairs. The coefficient of

determination (R2) is 0.87.
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Figure B.10: An example of a newly detected M 3.1 event by EdgePhase. The relocated

hypocenter is 37.840 N, 26.434 E with a depth of 21 km. The detected 7 P- and 8 S- phases

are represented by red and blue vertical bars.
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Figure B.11: An example of a newly detected M 3.6 event by EdgePhase. The relocated

hypocenter is 37.902 N, 26.837 E with a depth of 14 km. The detected 17 P- and 6 S- phases

are represented by red and blue vertical bars.
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Figure B.12: An example of a newly detected M 2.9 event by EdgePhase. The relocated

hypocenter is 37.880 N, 26.979 E with a depth of 15 km. The detected 12 P- and 7 S- phases

are represented by red and blue vertical bars.
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Figure B.13: An example of a newly detected M 3.0 event by EdgePhase. The relocated

hypocenter is 37.815 N, 26.979 E with a depth of 14 km. The detected 8 P- and 6 S- phases

are represented by red and blue vertical bars.
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APPENDIX C

Supplementary Materials of Chapter 4

C.1 Text S1. Site Attenuation Analysis

Site attenuation term associated with local ground response or basin response can be eval-

uated with the amplification factors F (T ), which is defined as the ratio of an observed

ground-motion intensity to the intensity measurement of a reference site (often the rock

type) at similar source distances, (Stewart et al., 2013):

F (T ) = PSaobs(T )/PSaref (T ) (C.1)

Where PSaref (T ) is the ground-motion intensity measure for the reference site and

PSaobs(T ) is the intensity of the observe site at the period T . The site amplification F (T )

can be compared with the residual R(T ) between observation and GMPE predictions ac-

cording to the following two arguments. The observed intensity at the reference station

PSaref (T ) is equivalent with the GMPE prediction ˆPSaref (T ) plus a site attenuation term

Fsref (T )).

PSaref (T ) = ˆPSaref (T ) + Fsref (T ) (C.2)

Since the observation station and reference station are at similar distances, the GMPE

predications at the two stations are equal: ˆPSaref (T ) = ˆPSaobs(T ). Also, by definition the

site attenuation term is zero at the reference site: Fsref (T ) = 0. Thus, we can use the

estimation at the observation site ˆPSaobs(T ) by GMPE to represent the value of observation

PSaref (T ) at the reference site.

PSaref (T ) = ˆPSaref (T ) + Fsref (T ) = ˆPSaobs(T ) (C.3)
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Taking the natural logarithm of both sides of Equation C.1, we have:

ln(F (T )) = ln(PSaobs(T ))− ln(PSaref (T )) = ln(PSaobs(T ))− ln( ˆPSaobs(T )) = R(T )

(C.4)

Equation C.4 indicates that the GMPE performance can be evaluated by comparing the

observed log amplification factor ln(F (T )) with the residual R(T ) of the GMPE prediction.

The site amplification factor F (T ) depends on both period T and the average sub-surface

shear velocity V s30. It is often factorized as a linear function of ln(V s30) with the coefficient

a and c depending on the period T . (Fig. S4, Borcherdt, 1994; Borcherdt & Glassmoyer,

1989; Barani et al., 2010):

R(T ) = ln(F (T )) = a(T ) + c(T ) ∗ ln(V s30) (C.5)

Since a(T ) also depends on the choice of the reference station, we focus on the slope c(T )

which can be compared across different datasets. If a GMPE adequately considers the source

and path effects, the residual R(T ) should only account for the site effect. Thus the c(T )

in the residual scaling approach should match the parameters in previous studies. Stewart

et al. (2013) find that in the Tohoku earthquake the variation of c(T ) with the period T

is much larger than the previous study in active crustal regions (ACR). They attribute the

discrepancies to a region-specific variation of the site response. However, in our work, c(T ) is

much more consistent with that inferred from ACR data (Fig. C.5, Choi & Stewart, 2005).

Our results indicate that the effect of the frequency-dependent distance metric is mapped

into the residual calculation in Stewart et al. (2013). When using frequency-dependent

distance Rhf , the term c(T ) is closer to ACR data than that calculated with Rrup. This

agreement between the observed and inferred site attenuation term indicates that Rhf is a

better approximation of the distance term. We consider that most of source and path effects

are excluded from the term c(T ) when using Rhf as the distance metric. Rhf also properly

accounts for the frequency dependent source effect and is thus a better distance metric.
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Table C.1: Basic information of three megathrust events in the Japan Subduction zone.

Event Time Duration(s) Mw Location Depth(km) Fault model

Tohoku 2011/03/11 150 9.0 38.10N 142.86E 24 (Wei et al., 2012)

Tokachi 2003/09/26 70 8.0 41.78N 144.07E 42 (Koketsu et al., 2005)

off-Miyagi 2005/08/16 25 7.2 38.15N 142.28E 42 (Shao & Ji, 2013)

Illapel 2015/09/16 100 8.3 31.55S 71.86W 11 (Okuwaki et al., 2017)

Iquique 2014/04/01 80 8.1 19.57S 70.91W 17 (Wei, 2014)

Figure C.1: Schematic diagram of distance metrics with several frequency-dependent radi-

ation domains from Yao et al. (2013); Lay et al. (2012). Red, blue and purple portions

represent low-frequency, intermediate-frequency and high-frequency radiation zones along

the slab interface accordingly.
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Figure C.2: Sketch shows the integration of Back-Projection. The black dots in the center

of the rectangular grids indicate the locations of testing sources in Back-Projection. The

red star represents the hypocenter. The moveout of recorded seismograms is shown with the

red line. In principle, the moveout of the actual source locations brings the seismograms

in phase; thus, the stack along the moveout reaches the maximum. When the earthquake

rupture to a new location, represented by the yellow star, the moveout of seismograms move

from the red line to the yellow dashed line.
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Figure C.3: K-Net stations (black open triangles) used in GMPE analysis of 2011 Mw 9.0

Tohoku-Oki earthquake as well as GCMT (Global Centroid Moment Tensor) resolution of

three large megathrust events in the Japan subduction zone. The red rectangle indicates the

area in Figure 4.3. Green triangles represent the six stations selected for the analysis.
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Figure C.4: Comparisons of PSa in different frequencies between Rhf metric and Rrup metric

of 2011 Tohoku earthquake (Mw 9.0).
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Figure C.5: Comparisons of logarithmic residual in different frequencies between Rhf metric

and Rrup metric of 2011 Tohoku earthquake (Mw 9.0).
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Figure C.6: Scaling relationship between residuals from Tohoku-Oki recordings and logistic

Vs30 values at the period of 0.1 s, 0.5 s, 1 s, and 3 s. The red lines are the linear regression

fit of residuals (black open dots).

149



Figure C.7: Vs30-scaling of residuals from Tohoku-Oki recordings (c parameter) along with

comparable values for data from active crustal regions (Choi & Stewart, 2005).
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Figure C.8: Comparisons of PSa in different frequencies between Rhf metric and Rrup metric

of 2003 Tokachi earthquake (Mw 8.0).
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Figure C.9: Comparisons of logarithmic residual in different frequencies between Rhf metric

and Rrup metric of 2003 Tokachi earthquake (Mw 8.0).
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Figure C.10: Comparisons of PSa in different frequencies between Rhf metric and Rrup

metric of 2005 off-Miyagi earthquake (Mw 7.2).
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Figure C.11: Comparisons of logarithmic residual in different frequencies between Rhf metric

and Rrup metric of 2005 off-Miyagi earthquake (Mw 7.2).
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Figure C.12: Comparisons of PSa in different frequencies between Rhf metric and Rrup

metric of 2015 Illapel earthquake (Mw 8.3).
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Figure C.13: Comparisons of logarithmic residual in different frequencies between Rhf metric

and Rrup metric of 2015 Illapel earthquake (Mw 8.3).
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Figure C.14: Comparisons of PSa in different frequencies between Rhf metric and Rrup

metric of 2014 Iquique earthquake (Mw 8.1).
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Figure C.15: Comparisons of logarithmic residual in different frequencies between Rhf metric

and Rrup metric of 2014 Iquique earthquake (Mw 8.1).
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Figure C.16: Finite fault model of 2003 Mw 8.0 Tokachi earthquake (Koketsu et al., 2005)

(red rectangle), strong motion generation areas from (Nozu & Irikura, 2008) (black rect-

angles), the 2 Hz high-frequency radiator locations (color spheres), and deep pre-seismic

repeating earthquakes (Uchida et al., 2016) (purple open squares). Contours indicate coseis-

mic slip (m) and the red star is the JMA epicenter of the main shock.
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