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Building plug load mode detection, forecasting and scheduling
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Abstract

In an era of increasing energy demands and environmental concerns, optimizing energy consumption within
buildings is crucial. Despite the vast improvements in HVAC and lighting systems, plug loads remain an
under-studied area for enhancing building energy efficiency. This paper studies smart plug active operating
mode detection, plug-level load forecasting, and plug scheduling methodologies. This research leverages
a unique dataset from the University of California, San Diego, consisting of readings from over 150 smart
plugs in several office buildings for more than a year, notably during the post-Covid era. This dataset is made
publicly available. A comprehensive literature review on plug, i.e., appliances, operating mode detection is
presented. Novel unsupervised learning approaches are applied to identify plug operating modes. A pipeline
integrating the detected modes with forecasting and scheduling is developed, aiming at building energy con-
sumption reduction. Our findings offer valuable insights and promising results into smart plug management
for energy-efficient buildings.

Keywords: Smart Plug, Operating Mode, Plug Scheduling, Building Consumption

1. Introduction

1.1. Motivation

Non-residential buildings account for 18% of the
total electricity consumption of the United States [1,
2]. This combined with increasing local solar power
generation, has led recent research to focus on
building energy efficiency and demand flexibility.
Plug loads are defined as loads not associated with
lighting; heating, ventilation and air conditioning
(HVAC) and water heating. Note that in the litera-
ture, plug loads are sometimes called plug and pro-
cess loads (PPLs) [2], Miscellaneous Electric Loads
(MELs) [3, 4, 5], small power equipment [6], or
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plug-in equipment loads [7]. Plug loads in commer-
cial buildings accounted for 47% of the total com-
mercial buildings energy consumption in the United
States in 2020 [8, 1]. Despite advancements in the
efficiency of lighting and HVAC systems, consump-
tion from unregulated plug loads has increased [9, 5].
Plug loads must be targeted as well to further reduce
building energy use.

The smart plug research field mostly started by
focusing on home energy management systems [10,
11, 12, 13, 14, 15]. The installation of smart plugs
in homes is easier, requires fewer devices and thus
less investment, and is easier to maintain. The in-
tegration of smart plugs into commercial buildings
however, is more challenging. Chia et al. [8] discuss
these challenges comprehensively, shedding light on
data access, control, and integration within commer-
cial buildings. The availability of smart plug data
remains limited, and the infrastructure for seamless
integration is still evolving.

The utilization of smart plugs to completely dis-
Preprint submitted to Applied Energy November 4, 2024



connect appliances, thus reducing standby and/or
idle energy consumption, presents a promising av-
enue for reducing energy use [16]. This underscores
the importance of comprehensive study around plug
loads as significant contributors to energy consump-
tion. Yet, plug loads are only minimally explored for
potential energy-saving interventions, primarily due
to data scarcity and the absence of economical plug
load controllers [17]. Existing studies emphasize the
potential benefits of an open-source dataset compris-
ing plug load measurements [5].

This paper addresses plug load operating mode
detection, i.e., active vs. unused states (i.e. idle,
standby, off), plug load forecasting, and smart plug
scheduling. Plug load operating mode detection is
critical to estimate potential energy savings and to
design plug load control schemes. Plug load fore-
casting provides the predictions for plug load usage
patterns to inform plug load scheduling. Plug load
scheduling leverages plug load forecast to imple-
ment decision on when to turn off plug loads without
disrupting plug load users while maximizing energy
savings. The dataset originates from the University
of California, San Diego and includes over 150 smart
plugs distributed across several office buildings over
more than a year [8]. The objective of this research is
to contribute to the understanding of energy-efficient
building management through smart plug time series
analysis and to explore the potential for energy sav-
ings.

1.2. Contributions

This paper presents several advancements in the
study of smart plugs. The key contributions are as
follows:

1. A novel open dataset is introduced, encompass-
ing readings from over 150 smart plugs situated
in various office buildings, spanning a duration
exceeding a year, with specific emphasis on the
recent post-Covid era.

2. The first literature review on methodologies for
plug load operating mode detection is presented
coupled with a compilation of terminologies
that have been employed in prior research.

3. The paper proposes an unsupervised learning
approach aimed at discerning the operating

modes of a plug load, addressing the challenges
documented in the existing literature.

Finally, a methodological pipeline is outlined, com-
bining the detected modes with individual plug load
forecasting techniques, designed to schedule smart
plugs (on/off) a day in advance, with the overarching
aim of decreasing building energy consumption.

2. Literature review

2.1. Smart plug hardware

The advent of smart plugs has led to significant ad-
vancements in both hardware and software research
related to energy consumption and management.
Smart plugs enable fine-grained monitoring and con-
trol of plug loads and can be configured through
Wi-Fi or cellular networks [16]. Plug-level data is
becoming more accessible, mainly thanks to these
advances in hardware. Many commercially avail-
able plug load controllers exist that include plug and
telecommunication solutions originally proposed by
researchers. For instance, a hardware plug that turns
off if the consumption is below a user-defined thresh-
old was showcased in [18]. Another example is a
smart plug equipped with a wireless Zigbee sensor,
primarily designed to measure power consumption
of electrical appliances in home energy management
systems [19]. A prototype for home units that can
recognize device types based on statistics and labeled
data, was described in [20].

2.2. Non-intrusive and intrusive load monitoring

There are two main different approaches3 to
study building energy efficiency. Non-Intrusive
Load Monitoring (NILM) consists of disaggrega-
tion strategies, seeking to break down the total build-
ing energy consumption into individual device con-
sumption without the need for extensive hardware
installations [21], requiring only one smart meter at
the building level. A notable disaggregated model
of plug loads in an office building was introduced by
Doherty et al. [2]. This method uses power data from
a few monitored devices combined with a detailed

3Note that in some papers, the term “invasive” is used in-
stead of “intrusive” [21, 22]
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device inventory. The derived model provides non-
measured loads based on logical assumptions and
technical specifications. Crucially, these insights,
when coupled with the disaggregated model, help
identify devices that can be optimized for energy
savings. Though NILM offers the advantage of re-
duced hardware requirements, making it more cost-
effective and easier to maintain, it does have its chal-
lenges. Primarily, while NILM has been popular
in the residential sector since the 1990s, there are
concerns about its accuracy, especially in the com-
mercial sector. Larger spaces tend to have a diverse
range of devices, often with multiple instances of the
same device, making them hard to distinguish. Skep-
ticism persists regarding NILM’s accuracy in such
settings [2]. However, it is worth noting that Lanzis-
era et al. demonstrated that by taking an inventory of
just 40% of their building floor space, they achieved
less than a 10% error in their projection estimates of
number of devices in the entire building (compared
to the true inventory), especially for computers and
displays [3].

On the other hand, Intrusive Load Monitoring
(ILM), also termed component-based load monitor-
ing or distributed sensing, operates by monitoring
and recording the electrical consumption data –or
voltage and current– of each individual device or
appliance separately. ILM provides accurate disag-
gregation, particularly in commercial settings. The
capability of smart plug technology in ILM is well-
acknowledged. Yet, ILM’s major challenge remains
its cost, given the hardware and labor demands to
monitor each device in a building individually [2,
21]. This study presents an ILM dataset.

2.3. Smart plug data

Comprehensive ILM datasets are crucial for ad-
vancing research in the dynamic field of smart plug
loads. Making such datasets openly accessible not
only fosters progress but also facilitates benchmark-
ing. A recent overview of public datasets for home
management systems and typical household appli-
ance recordings is provided in [21]. While some pa-
pers presented results without sharing their datasets,
others commendably made them available. In 2013,
Lanzisera et al. [3] offered insights from a year-long
study that meticulously inventoried over 4,000 de-

vices. 455 plug load meters monitored the plug loads
in an office building. However, this extensive data
is not publicly accessible. Likewise, in 2015, [23]
defined the characteristics that a useful open dataset
should possess. While the authors stated their inten-
tion to release the data post a comprehensive analy-
sis, this dataset has not been made available. Sim-
ilarly, Das et al. [24] stated their intention to pub-
lish their dataset in the future, but it has not been
made available yet. Das et al.’s dataset consists of
six different appliances recorded during six months.
It includes a docking station, a laptop, two monitors,
a lamp and a “miscellaneous” plug load, where the
user was allowed to plug in any device. They also
recorded environmental data such as the lighting, oc-
cupancy, temperature, and humidity of the room. To
the best of the authors’ knowledge, the first office
smart plug open data set ’BLOND’ was made avail-
able in 2018. The data, from 2017, spans over 213
days with voltage and current recordings from 53
distinct appliances at 50 kSps (kilo Sample per sec-
ond). The dataset occupies 38.7 TB with nearly a
million files [25]. In 2019, Doherty et al. published
a dataset detailing 14 different plug loads. The data
collection covered October to December 2017, with
power consumption recordings made every 5 min-
utes. Among the items tracked were common office
appliances like coffee makers, laptops, microwaves,
and video conference cameras [2]. An open three-
week-long dataset from February and March 2020,
recording data every minute incorporates informa-
tion from 88 smart plugs, which include a diverse
range of devices: 31 laptops, 9 desktops, 35 mon-
itors, 13 fans, and 11 task lamps [26]. An open
Matlab formatted dataset was also made available
in 2020 incorporating six days of readings in May
2018, every second, from 19 sensors in an office
space. These sensors range from SmartSense motion
sensors to temperature-humidity sensors, ultrasonic
sensors, and Belkin Wemo switches [27]. The an-
cillary sensor data allow studies beyond just smart
plug data; for example, occupancy information can
be added to plug load forecasting.
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2.4. Plug load operating modes detection

2.4.1. Plug load operating mode terminology
The task of discerning the operating mode of an

electrical device, specifically determining if it is ac-
tive, idle, in standby or off, is an essential aspect of
all forecasting and scheduling applications. Surpris-
ingly, research addressing this topic specifically re-
mains scarce in the literature. A notable challenge
faced during the literature review is the lack of stan-
dardization in terminology. This absence of a con-
sistent terminology not only complicates the review
process but also makes comparisons between differ-
ent research difficult. To palliate this lack of stan-
dardization this section provides an exhaustive list
of the different terminology used in 19 papers which
address implicitly the problem of operating mode de-
tection.

In the context of smart plugs and related studies,
what this paper refers to as the procedure of oper-
ating mode detection, is referred to as threshold de-
tection, mode detection, status monitoring, load state
estimation, recognition of appliances states, or activ-
ity recognition.

Operating modes themselves, as they are named
in this paper, are referred to as mode of opera-
tion, operating patterns, operational characteristics,
operation mode, operating state, operational energy
use, power state, power status, power management
modes, power levels, appliance status, or appliance
activity.

Lastly, when naming the categories of operating
modes, there’s a plethora of terms used both in aca-
demic research and industry practices. Some papers
provide explicit definitions [28, 29] while most stud-
ies assume a general understanding even though this
understanding often differs between them. Expand-
ing on [29] definitions, as a generalization, and com-
mon ground between existing studies, four modes
can be defined. For standardization, for each mode,
we suggest one term, that is already prevalent in most
literature, and recommend its continued adoption in
future work:
(1) The mode off or energy zero represents a de-

vice that is completely turned off, consuming no
power. We recommend to designate this mode
as off.

(2) The next mode is typically defined as a state
the device automatically enters after prolonged
inactivity [6]. It is known by terms like low-
power, passive, suspend, sleep, asleep, standby,
or even the descriptive “turned off but still con-
suming power”. This is also sometimes called
the vampire current. We recommend to desig-
nate this mode as standby.

(3) The following mode is denoted as idle or ready,
it signifies a device that is not in use, but turned
on and ready for activation, consuming more
power than the previous mode. We recommend
to designate this mode as idle.

(4) The terms on, high-power, active, in use, and
running are used interchangeably to denote this
mode, representing the highest power consump-
tion level of a device. We recommend to desig-
nate this mode as active.

It should again be noted that there are varied con-
ceptualizations across studies, mostly depending on
the application. Some consider only two states, off
and a conglomerate of (2), (3) and (4). Others might
recognize three distinct states off, a combination of
(2) and (3) and on. In this paper, the end goal is
to turn a smart plug off when it is not in use. We
thus aim to find out when the connected appliance is
used/active and when it is not used. The “unused”
mode collectively refers to the modes (1),(2),(3), as
opposed to mode (4), which is defined as “active”.

2.4.2. Plug load operating modes detection method-
ologies

Approaches to discern plug load operating modes
are applicable in both residential and commercial set-
tings and cover a range of methods. Operating modes
detection has never been the main research topic of
a research paper; instead it is usually a byproduct of
a broader study, or a step in a smart plug application
such as appliance scheduling. Four approaches for
plug load operating modes detection have been iden-
tified when reviewing the existing literature. Most of
the studies focused on empirical techniques, such as
visualizing measurements and determining a standby
threshold, or choosing a threshold value based on
the average load measurement. Some researchers
used literature benchmarks and referred to appli-
ances specification sheets. Device user feedback is
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sometimes used to qualitatively estimate which per-
centage of the time a device is on or off, necessitating
questionnaires or interview of users. Finally, some
papers relied on labeling a dataset manually and then
applying supervised learning techniques. This sec-
tion highlights each of these approaches.

2.4.2.1. Empirical techniques.
Leonardi et al. [11] proposed an innovative solution
using machine learning to streamline metadata man-
agement for smart homes. While the study’s core
focus was on identifying swapped devices and newly
connected devices on the network, it acknowledged
the necessity of threshold identification for operat-
ing mode detection. They decided to empirically
set the threshold at 15 W. Filtering out standby val-
ues improved device identification accuracy. Am-
bati et al. [30] proposed “AutoPlug”, an automated
system for tracking and identifying devices plugged
into smart outlets in real-time. AutoPlug presumed
a smart building environment with interconnected
smart outlets transmitting power consumption data
in real-time. To segregate active from unused pe-
riods, the researchers empirically established a 5 W
threshold. Tekler et al. [26] observed that many plug
loads occasionally utilize a slight amount of standby
power, approximately 2.3 W, when not in active use.
Hence, the researchers designated a power threshold
of 2.5 W to accurately detect active periods. Wang et
al. [31] focused on home energy management and
differentiated plugs load as either continuous, e.g.
a fridge, or intermittent, e.g. a toaster, power con-
sumers. This categorization seemed to have been
done manually. They then determined the active ver-
sus idle states based on the effective state ratio (ESR)
that depends on the type of power consumption of the
device (continuous or intermittent) and its measured
mean consumption value. Chia et al. [8] adopted
a visual method by examining power recordings of
plug loads. They found that the majority of devices
have distinct active use peaks during business hours,
with standby powers ranging from 2 W to 60 W.

Siebert et al. [32] proposed both centralized and
decentralized methodologies for scheduling algo-
rithms. While the focus of the paper was not on
determining standby values, the determination of
such values was crucial, given the study objective

to mitigate standby consumption, also termed “vam-
pire current”. In the centralized approach, a home
automation controller aggregated data from smart
plugs, the smart meter, and utility information, like
tariff tiers. The centralized algorithm initially de-
termined the standby energy of devices by comput-
ing the daily average consumption for each smart
plug. A plug load was deemed in standby mode
when its power lies between a lower and an upper
threshold, defined respectively as a given percent-
age of the mean consumption and an upper limit.
However, the case study section suggested that these
parameters, were respectively set to 75% and 50 W
empirically without detailed justification. The de-
centralized method proposed an in-built scheduling
algorithm within the smart plug itself. To deduce
standby consumption, this simpler algorithm evalu-
ated if the peak demand during a given assessment
period was at least double the minimum. If not, the
load was considered constant, implying no standby
state. However, if this criterion was not met, the al-
gorithm delineated the range between minimum and
maximum demand into ten segments. It then exam-
ined, starting from the minimum, whether the cumu-
lative number of measurements within a segment ex-
ceeded a reference value (RV) which is a fraction
of the total count. If this condition held true, the
standby threshold was recognized as the value of that
segment. Yet, similar to the centralized method, the
case study indicated an empirical selection of param-
eters, with RV set ad hoc at 25%.

2.4.2.2. Benchmarks and technical specification
sheets.
Kawamoto et al. [28] explored three distinct op-
erating modes: active, low-power, and off. The
power consumption data for these modes was de-
rived from the authors’ unpublished measurements
(empirically) or literature benchmarks. For servers
specifically, measurements reflected power demands
ranging between 50 W and 270 W, with an esti-
mated average of 75 W. Interestingly, copier and
laser printer power levels varied considerably with
the speed (measured in images per minute) of the de-
vice. Doherty et al. [2] developed a disaggregated
model to evaluate plug loads in office buildings. The
novelty was the utilization of power data from a lim-
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ited number of monitored devices combined with
a device inventory. The methodology to ascertain
standby load was twofold: direct measurements of
specific devices in standby, for instance, observing
the power consumption of an elliptical trainer for 30
minutes, or extracting the required data from specifi-
cation sheets. Menezes et al. [6] created two models
to estimate plug load power consumption in office
buildings, complemented by typical power demand
profiles. The paper leaned heavily on data obtained
from published benchmarks, especially for Energy
Star-rated devices, for which data sheet specification
can be sourced from their online database. For refur-
bished devices or specific appliances that were not
in online databases, short-term monitoring was used
to provide better input data. They presented a table
on published energy use for both desktop and lap-
top computers in low-power and active modes. An-
other table captured the power levels of other in-
stalled equipment, i.e., computers, printers, copiers
and monitors, based on short-term monitoring and
specification sheets.

2.4.2.3. User feedback.

Ghatikar et al. [17] evaluated the Infosys Plug
Load Manager (PLM), a commercial solution that
includes smart plugs, sensors, a server and a PLM
application, which includes a user interface. This in-
terface allows users to view the instantaneous power
and the mode (on or off) for all connected smart
plugs. Note that the definition of the on/off mode is
not explicitly stated. One of the features of the PLM
is that it allows building managers to identify plug
load patterns and evaluate wasted consumption. The
wasted consumption appeared to be computed based
on the energy consumption outside office hours de-
fined per the users’ manual input.

Hafer et al. [29] extracted assumptions about the
duration spent in distinct operating modes from user
feedback gathered during preliminary phases of the
research. Hafer et al. mentioned that given the
largely qualitative nature of these assumptions, there
is room for improvement. Potential future studies
could aim to refine operating mode estimations by
collecting more rigorous data about the periods spent
in each power state with an emphasis on the most

used devices.

2.4.2.4. Labeling data.
Webber et al. [33] collected data on turn-off rates for
an array of office equipment, including but not lim-
ited to computers, monitors, and printers. They vis-
ited office spaces and physically observed each de-
vice, and noted down its power status, essentially
a form of manual labeling. For instance, a laptop’s
power status was determined by visual indicators,
like a screen being on. Similarly, monitors usually
manifested their low-power mode via a distinct light,
and printers, particularly ink jets, were simply cate-
gorized as either “on” or “off.” Identifying the power
status for copiers proved relatively straightforward.
Ruzzelli et al. [34] introduced RECognition of elec-
trical Appliances and Profiling in real-time (RECAP)
with a focus on residential systems. RECAP con-
sisted of three main parts: directing users to cata-
log electrical devices and establish a unique database
of their distinct features, utilizing this database to
train a model to differentiate and understand appli-
ance operating modes, and implementing appliance
signatures to facilitate comparisons between appli-
ance. The authors meticulously crafted a labeled
database of these distinct appliance signatures based
on six parameters: real power, power factor, peak
current, RMS current, peak voltage, RMS voltage.
The challenge of operating mode detection (called
device activity recognition in [34]), especially with
appliances possessing multiple settings, was high-
lighted. Lin et al. [35] identified appliance states
using circuit-level energy consumption. The study
leaned heavily on manually labeled data. Kalluri
et al. [23] emphasized the significance of visual in-
spection for data labeling. A case in point was the
BLUED dataset, wherein appliance activity transi-
tions are manually labeled based on the visual assess-
ment of energy signatures. Specifically, any power
level fluctuation exceeding 30 W and persisting for a
minimum of 5 seconds was documented. Masoso et
al.[36] examined energy consumption during unoc-
cupied hours in Botswana and South Africa. Sur-
prisingly, their research revealed that a substantial
portion of energy (56%) is consumed during non-
working hours, exceeding the consumption during
working hours (44%). These results are based on a
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series of detailed energy audits, with data acquired
via on-site assessments and subsequent manual la-
beling.

2.4.2.5. Other studies.
Several other studies acknowledged the significance
of identifying plug load operating modes, though
their primary focus was not the detection of these
modes. For instance, in the work of Ahmed et
al. [37], there is mention of on/off states, but the em-
phasis was primarily on shifting peak consumption.
Kamilaris et al. [5] underscored the importance of
discerning operating modes in their conclusions, as-
serting that it is crucial for enhancing the analysis
and understanding of total consumption. However,
tangible solutions for this identification were not pro-
vided.

2.4.2.6. Summary.
Determining plug load operating modes, both in res-
idential and office settings, has been approached
through a diverse set of methods, as discussed in
the preceding sections. Four predominant method-
ologies are identified: empirical methods, bench-
marks and specification sheet information, user feed-
back, and supervised learning when a manually la-
beled dataset is available. However, each of these
approaches presents its challenges. Empirical meth-
ods face challenges in their generalizability. Given
the differences in power consumption levels across
devices, from computers, to copiers, to coffee ma-
chines, crafting a one-size-fits-all model threshold
value can be problematic. Moreover, addressing each
device individually visually is labor-intensive. Rely-
ing on averages or percentiles for decisions can be
an issue due to potential imbalances in device us-
age patterns. Turning to benchmarks and specifica-
tion sheets, challenges are: (i) procuring information
for a large number of devices; (ii) The information
may sometimes be absent from specification sheets;
(iii) Over their lifecycle, devices might deviate from
their initial specifications; (iv) The swift advance-
ments in technology necessitate constant updates to
benchmarks; (v) The dynamic nature of a workplace,
where devices are continuously added or replaced;
(vi) Device active states may be shorter than the
averaging interval such that the specification sheet
value would not manifest in the data. User feedback,

while valuable, is inherently qualitative. Determin-
ing plug load operating modes demands consistent
updates, which is both labor-intensive and challeng-
ing to scale. The approach of manual labeling fol-
lowed by supervised learning, though promising, is
not without pitfalls. It demands meticulous experi-
mentation and manual state annotations. The scala-
bility issue resurfaces, coupled with potential inac-
curacies due to human errors in labeling.

A recurring observation is that all of these method-
ologies for plug load operating mode detection play
a secondary role in broader research projects. The
significance of plug load operating mode detection
is frequently understated, even though it can pro-
foundly impact plug load control applications. An
additional layer of complexity arises from the lack
of standard terminology, leading to potential misin-
terpretations and ambiguities in research reporting.
This literature review underscores the knowledge gap
and challenges and accentuates the need for focused
research in this domain. We believe that the most
promising approach is unsupervised learning and au-
tomatically updating plug load operating modes, re-
moving the dependence on labor-intensive manual
processes. We adopt an unsupervised learning ap-
proach in this paper.

2.5. Forecasting plug load energy use

There are numerous forecasting techniques and
papers about electricity consumption time series, de-
signed to predict energy use at varying scales —from
national to household levels. However, these broader
approaches fall outside the scope of this paper and
its literature review. We are specifically interested in
forecasting at the individual plug load level.

The literature appears sparse when it comes to
forecasting at the finer granularity of individual plug
or appliance levels, a niche that poses unique chal-
lenges. These challenges arise from the inherent
stochasticity of appliance use, largely driven by un-
predictable human behavior. Additionally, the data
is frequently unbalanced, characterized by prolonged
periods of low consumption values (indicating idle,
standby, or off modes) with occasional higher con-
sumption when the appliance is in use. In the lit-
erature, intermittency is defined as prolonged se-
quences of consecutive zero values with brief periods

7



of higher values. The domain of intermittent fore-
casting is predominantly explored within economic
contexts, such as sales predictions for inventory sys-
tems [38, 39]. In this study, the prolonged sequences
do not always represent zero power levels; rather,
they reflect prolonged lower power levels when the
device is idle yet powered on or in standby versus
higher power levels during shorter active usage peri-
ods.

Furthermore, any model designed for such fore-
casting must be inherently scalable, due to the po-
tential need to predict usage across a multitude of
plug loads. The current literature landscape offers lit-
tle insight into individual plug load forecasting, also
underscored by Wang et al. [40]. However, some re-
search has been identified that addresses aggregate
plug load forecasting at the room, zone, or building
level, and these works will be the focus of this sec-
tion.

Gunay et al. [7] constructed a model that splits
plug load patterns across five distinct time frames:
occupancy periods, intermediate breaks, weekday
evenings, weekends, and vacations. By integrat-
ing the predictions of an occupancy model, the re-
search demonstrated accurate plug load forecasts at
the room level. Wang et al. [40] focused on HVAC
predictive control, underscoring the importance of
plug load forecasts to estimate internal heat gains
within office environments. Their research findings
highlighted the significant role of occupant count in
predicting building level plug loads. They devel-
oped a forecast model for an 8-hour horizon, uti-
lizing features such as the last 24-hour consump-
tion, the day of the week, hour of the day, and
hourly occupancy data. They found that a Long
Short Term Memory (LSTM) network outperforms
the ARIMA model by 4%. Including occupancy
data improved the accuracy of the predictions. Srini-
vasan et al. [41] discussed plug load forecasting,
leaving certain specifics such as the forecasting hori-
zon and the exact consumption entity (whether in-
dividual device or aggregate) undefined. Abdul-
lah et al. [14] also discussed forecasting, however
they used an artificial neural network controller for
appliance management, predicting on or off states
based on customer preferences and appliance pri-
orities rather than forecasting individual plug loads

based on historical data. Maltais et al. [42] compared
various data-driven forecasting models to predict ag-
gregated residential lighting and plug load electricity
demands in individual dwellings. While the gradi-
ent boosted regression trees model performed best,
the distinction between the best models remained nu-
anced and dependent upon specific residential units
and time horizons. Das et al. [24] tackled individ-
ual plug load forecasting. They compared the perfor-
mance of an LSTM network, Bi-LSTM network and
a GRU model on a dataset composed of six differ-
ent office appliances. Their analysis concluded that
Bi-LSTM and GRU models outperformed LSTM.

2.6. Scheduling smart plugs

Different smart plug control strategies can be
used to optimize energy consumption in commer-
cial spaces. Tekler et al.[26] divided strategies into
time-based (also called schedule-based), occupancy-
based, and system-based controls. Time-based con-
trols are designed to deactivate plug loads accord-
ing to a set schedule, typically during periods like
non-office hours. If occupants have variable sched-
ules, occupancy-based controls can be more dy-
namic, by determining presence within a designated
area and deactivating plug loads after prolonged
absence. Occupancy-based controls are necessary
if occupancy patterns are unpredictable. System-
based controls are components of a comprehensive
building management mechanism. Beyond these es-
tablished control strategies, innovative hybrid auto-
mated strategies have been developed.

Teckler at al. [26] proposed high-fidelity occu-
pancy detection methods to trace user movements,
combined with a plug load identification model. Al-
ternatively, users can define their preferred settings
per plug type through an interface. Hafer et al.[29]
combined energy monitoring gamification on a mo-
bile platform with plug load control schedules, re-
sulting in a 21% reduction in plug loads across three
buildings. Choi et al.[43] introduced a location-
aware energy-saving service. This service utilized
smartphone Bluetooth connections to local beacons
to determine the occupancy and turn devices on or
off accordingly, yielding energy savings of approxi-
mately 32% for PCs and monitors, and about 15% for
lights. Ghatikar et al. [17] proposed three approaches
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to schedule small appliances in office buildings, both
drawing upon preset user inputs, using an interface.
The first approach is time-based and requires that
the user pre-programs each monitored plug load with
his personal daily schedule. The second approach
is based on a user-specified maximum energy us-
age (in kW h). Once this limit has been reached,
the smart plug turns itself off. The researchers also
suggested a third control framework based on a mas-
ter/slave model. In this setup, the power states of
principal devices, such as personal computers, had
an influence on the power states of their logically as-
sociated devices, like speakers, monitors, and print-
ers. These proposed plug load control system depend
on persistent user engagement, along with the requi-
site infrastructure in terms of reliable communica-
tion technologies and hardware. [1] offered a differ-
ent perspective, recommending that devices switch
to standby mode instead of being completely shut
off. Standby could be triggered manually or embed-
ded in the device hardware settings. For computers,
triggers could be the power button, designated key-
board buttons, or even an icon on the desktop. Multi-
functional devices, like printers and scanners, should
ideally shift to standby after 15 minutes of inactivity.

3. Methodology

We propose a pipeline for office plug load schedul-
ing composed of four main steps, as illustrated in
Figure 1: (i) Data preparation, (ii) operating mode
detection, (iii) plug load forecasting, and (iv) plug
load on/off scheduling. This pipeline assumes static
loads, i.e., the plugged in appliances remain plugged
in and do not change.

3.1. Data preparation

A large data preparation process was necessary to
obtain a usable dataset. This is a one-time procedure,
and the specific details are presented in Section 4.2.
In this section, some general guidelines to apply the
pipeline in Figure 1 on any plug load dataset are pro-
vided.

The dataset is expected to have the same frequency
through the entire recording period, in our case it is
a quarter hourly resolution. NaNs indicate missing
recordings, that can occur due to system updates or

failure, or employees unplugging appliances. These
can either be filled using data imputation techniques,
or left as such and removed during the training and
testing. We opted for the latter.

Data exploration and analysis using visualization
has been done iteratively, using time series plot,
heatmaps, and stacked diagrams with a weekly or
yearly evolution. For example, heatmaps allowed
identifying wrongly assigned device types and pro-
files with only zero. The correct device type was re-
assigned in the metadata and fully zero profiles were
dropped. This visual data exploration is highly rec-
ommended to obtain insights into the dataset, and
identify additional pre-processing steps but is out of
scope for this paper.

Another recommended pre-processing step is to
select only plugs load that have small amounts of
NaNs (missing values) and zero recordings, since
the aim is to schedule appliances that are used fre-
quently. Underutilized appliances could instead be
turned off semi-permanently or removed. We set the
threshold to at most 30% of NaNs and 30% of zeros.

3.2. Operating mode detection

This section covers the proposed plug load oper-
ating mode detection procedure. As concluded from
the literature review, a recurring observation is that
all the existing methodologies for plug load operat-
ing mode detection play a secondary role in broader
research projects. This section addresses the knowl-
edge gap and challenges in plug load operating mode
detection.

As mentioned in Section 2.4.1, in this study, we
focus on two operating modes. The first mode corre-
sponds to when the electrical appliance is active, as
denoted by (4) in Section 2.4.1. The second mode
encompasses states (1), (2), and (3) from the same
section, and is designated as unused. With the aim
of minimizing energy consumption in buildings, the
final objective of the proposed pipeline is to ensure
plug loads are tuned on only when active, i.e., in
use, and turned off otherwise. This includes situa-
tions when appliances are off but drawing a minimal
current, in standby, or idle.

The proposed solution is based on an ensem-
ble of statistical and unsupervised learning meth-
ods. The method automatically detects plug load
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Figure 1. The proposed pipeline for plug load scheduling, designed to enhance energy building efficiency encompasses
four principal phases: (i) Data preparation, a one-time procedure that consolidates disparate data recordings into a
single, clean dataset ready for analysis; (ii) Operating mode detection, employing automated methods to distinguish
between active and unused power levels for each plug load; (iii) Forecasting, which predicts plug load power a day in
advance; and (iv) Scheduling, which controls plug power states to reduce energy usage, turning off appliances that are
not in use.

operating modes, and removes the dependence on
labor-intensive manual processes discussed in Sec-
tion 2.4.2. Section 3.2.1 details the two statistical
approaches, Section 3.2.2 explains the three unsuper-
vised approaches, and finally Section 3.2.3 proposes
an ensemble scheme to robustly combine these. Each
method, is applied individually on each plug load,
and only uses the first 80% of the plug load time se-
ries. A visual evaluation is performed against each of
the method applied on the test set, i.e., the remaining
20%.

3.2.1. Statistical approaches
Two statistical approaches are proposed. They

each generate a threshold, which is then used to bina-
rize the power values. The power values higher than
the computed thresholds are considered as active (1)
and values lower than the thresholds are considered
as unused (0).

The first statistical approach considers the median
of all recordings as the threshold. The median is
favored over the mean, since it is less sensitive to
outliers. A limitation of this approach is that this
threshold assumes that an appliance is on average
used more often than not.

The second statistical approach tries to address
this limitation by selecting a threshold value equal to
the 70th percentile of the recording values. The un-

derlying assumption is that an appliance is typically
active during weekdays from 8 am to 6 pm. Math-
ematically, this implies the appliance is active ap-
proximately 29.76% of the time. Therefore, the top
30% of values are considered as active, establishing a
threshold to differentiate between active and unused
states based on the 70th percentile. Percentile also
have the advantage that no mathematical assumption
about the underlying distribution of the data has to
be made.

3.2.2. Unsupervised clustering approaches
Three unsupervised clustering approaches are pro-

posed to classify the power values as the appliance
being active (1) or unused (0), i.e., either in idle,
standby, or off operating mode. For each approach,
the number of clusters is an input parameter and is
set equal to two. The same pre-processing is applied
in each method: the 0 W recordings and NaN val-
ues are dropped, as well as extreme positive outliers.
Outliers are identified as values surpassing a cut-off,
determined by the mean plus 30 standard deviations.
It is improbable for a device to exhibit such dras-
tic consumption variations. This detection process
is applied only when there are fewer than five such
outliers. This approach seeks to mitigate potential
data recording errors. Observing up to four values
significantly deviating from the distribution suggests
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potential recording anomalies. We observe that this
outlier removal occurs for less than 5% of the plug
loads. Another purpose of this outlier detection is to
address the sensitivity of both k-means and Gaussian
mixture models to outliers.

The first unsupervised clustering approach uses
the k-means algorithm. The missing values (NaN)
are dropped and k-means clustering is applied with
default parameters, i.e., k-means++ initialization
and squared Euclidean distances metrics. This
method aims to partition the data into distinct, non-
overlapping subgroups, or “clusters”. k-means as-
sumes clusters to be spherical and of comparable
size. The squared Euclidean distance renders it sen-
sitive to outliers. Its scalability, especially with large
datasets, makes k-means a popular choice across di-
verse research areas. For more details on k-means,
the reader is directed to foundational literature [44,
45].

The second and third unsupervised clustering ap-
proaches are based on Gaussian Mixture Models
(GMM). One of them uses the entire training set
while the other only uses the most recent three
months of data, and can be updated over time. Fun-
damentally, a GMM is a probabilistic model that as-
sumes data points are derived from a mixture of sev-
eral Gaussian distributions with unknown parame-
ters. In this use case, the number of underlying Gaus-
sians is set to two, since we are aiming to determine
active versus unused modes. The initialization used
in both GMM approaches is the same as for the k-
means approach. The model achieves convergence
through the expectation-maximization (EM) algo-
rithm. In terms of scalability, GMMs are well-suited
for datasets of moderate size but may demonstrate
slower performance with larger datasets. While k-
means strives for clusters of similar spatial shape,
algorithms like GMM allow for clusters with vari-
ous shapes and sizes. The reader is referred to the
existing literature on GMM and for theoretical and
implementation details [46, 45]

In all methods, we consistently apply three post-
processing steps. Initially, we ensure the cluster la-
beled as 0 corresponds to the values with the lowest
average, given that our intent is for the 0 label to rep-
resent unused mode (including off, standby and idle);
and 1 to indicate active mode. Subsequently, power

readings of 0 W are always labeled as 0, knowing the
device is off (thus unused). Lastly, and mainly rel-
evant for the GMM clustering, values under the me-
dian of the 0 cluster but tagged as 1 are reclassified as
0. Conversely, values above the median of the 1 clus-
ter but marked as 0 are re-labeled 1. This avoids the
outlier effect, which GMM can sometimes produce.

A limitation of both the k-means and GMM algo-
rithms is that they depend on the initialization step.
Further experiments with varying initialization could
be done in future work [47].

3.2.3. Ensemble
An ensemble technique [48] is introduced to com-

bine insights from all the aforementioned methods.
The ensemble works on a majority principle, with
a safety margin, specifically designed for appliance
scheduling. If none of the five operating mode de-
tection approaches assigned a power value as active,
this power value is labeled as unused (0). Similarly,
if only one method considered it active, it was still
labeled as unused (0). When at least two out of the
five methods agree upon active mode, a power value
is considered active (1). The ensemble adopts a sort
of weighted average, while prioritizing user conve-
nience, keeping the end goal of appliance scheduling
in mind. It is preferable to label a power recording as
active, ensuring the appliance remains scheduled on,
than to mistakenly label it as unused and potentially
schedule the appliance off, while a user might utilize
the appliance. Note that in the clustering literature,
ensembles are sometimes also called consensus clus-
tering.

3.2.4. Operating mode detection evaluation
There is no ground truth (or “true threshold”) to

evaluate the proposed clustering ensemble approach.
We suggest assessing the mode detection accuracy
using heatmap comparisons. One can visualize the
time series of plug power levels as a heatmap, as
depicted in Figure 2. A heatmap displays the plug
power level using color intensity, with days on the
x-axis and hours on the y-axis. This representa-
tion captures the weekly plug load usage pattern.
Two heatmaps of the same plug load can be con-
structed: the original based on the original contin-
uous power levels, and the heatmap after applying
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Figure 2. Representation of a three-months long time series of
plug power values, visualized as a heatmap. The power level
is indicated using color intensity, the days of the week are on
the x-axis and hours of the day on the y-axis. Each cell rep-
resents the average power value for a combination of a day of
the week and a time of the day, e.g., the average power level
on a Wednesday at 1000 h is around 70 W. A weekly appliance
usage pattern is clearly visible between Monday and Friday dur-
ing office hours from 0830 h to 1700 h.

mode detection with binary levels. The binarized
heatmap should mirror the original’s weekly usage
pattern. This pattern remains crucial as the pipeline
end goal is to schedule appliances in line with their
individual usage.

Quantifying the similarity between two heatmaps
is not straightforward. Out of the many existing im-
age similarity metrics in the literature, we selected
three simple metrics: the MSE [49], the RMSE [50],
and the Pearson correlation coefficient [51]. We
also considered two more advanced and established
metrics: the structural similarity index (SSIM) [52,
53] and the Kullback-Leibler (KL) Divergence [49].
However, none reflected the similarity as the human
eye perceives it, nor are they suited for this particu-
lar application. Patterns that align perfectly should
receive high similarity scores, and minor deviations
in timing and values be acceptable. A significant
disparity, such as continuous high power on a Mon-
day in the original data that is not present (marked
as active) in the binarized heatmap, should not score
highly. The literature agrees that evaluating image
similarity as perceived by human eye is challeng-

ing [52, 49]. Consequently, we decided to exclude
these metrics and results from the paper, as they were
found to be unsuitable for numerical mode detection
evaluation.

Our proposed evaluation method involves visual
qualitative heatmap comparisons. We classify the re-
sults into three distinct categories based on how well
the algorithm captures the underlying usage pattern:
• High-fidelity detection: the binarized heatmap

closely mirrors the original heatmap, capturing
the usage pattern of the plug power levels. This
suggests that the algorithm has successfully de-
tected and represented the true underlying usage
pattern.
• Partial-fidelity detection: while the binarized

heatmap generally aligns with the original, there
are discrepancies. For example, the power value
is always marked as active correctly when it is
indeed active, but power levels are also some-
times incorrectly labeled as active during some
of the unused periods. This indicates that while
the algorithm detects most active patterns, it
does not provide a high-fidelity match.
• Low-fidelity detection: the binarized heatmap

significantly deviates from the original. This
could manifest as the plug load being marked as
continuously active or continuously unused de-
spite contrary evidence in the original data, or
the algorithm failing to capture the usage pat-
tern at all.

This approach has limitations, such as the inability
to quickly assess multiple plug loads and subjectiv-
ity. Further research in that direction, to find, or de-
sign, an appropriate similarity measure with the right
properties for this use case is left for future work.

3.3. Forecasting

The forecasting problem, highlighted in dark
green in Figure 1, is characterized by two dimen-
sions: spatial aggregation and horizon. Spatial ag-
gregation is the level of load being predicted. In this
context, we focus on forecasting the average power
of individual plug loads in 15 min intervals. Regard-
ing the horizon, the model produces forecasts for the
upcoming day, with data recorded in quarter-hourly
intervals, this yields 96 predictions. This section
elaborates on several implemented forecasting mod-
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els based on diverse approaches: a naive baseline, an
enhanced naive approach, a linear regression, and fi-
nally a more advanced machine learning approach. It
is good practice to clarify all forecast time parame-
ters [54]. In this paper the forecast update rate is 24 h
(daily at midnight), the forecast resolution is 15 min,
the forecast horizon is 24 hours, and the forecast lead
time is 0 h.

3.3.1. Persistence
A persistence model serves as a naive baseline,

where no modeling is involved. In the absence of
complex training, the most straightforward assump-
tion is that today’s consumption will be similar to
yesterday’s consumption.

Another possible assumption is that the load pat-
tern of an electrical appliance on a Monday is more
likely to look like the load pattern of the previous
Monday than the previous day, i.e., a Sunday. An-
other persistence model using the same day of the
previous week is proposed.

3.3.2. Optimal Persistence
An enhanced version of the persistence model, in-

corporating calendar information, holiday, and using
averaging, is developed. Similar to the persistence
model, this optimal persistence model is based on
historical data without training. For Tuesday through
Friday and Sunday, the forecast is generated by av-
eraging the consumption values of the previous day
and the corresponding weekday from the previous
week. When forecasting Mondays or Saturdays, the
prediction is generated by averaging the values from
the same weekday of the prior two weeks. Addition-
ally, when the forecast day is designated as a holi-
day in the UCSD calendar, the model selects the two
nearest holidays or Sundays in the past and averages
their consumption data.

3.3.3. Autoregressive model with exogenous input
and Lasso regression

An Auto Regressive Model with eXogenous input
(ARX) is developed, utilizing Lasso regression. This
model has two days of historical data (one day ago
and one week ago) along with a holiday binary indi-
cator as inputs. Historical data inputs are scaled be-
tween 0 and 1. The output of the model is a one-day-
ahead point prediction, i.e., 96 values are predicted

since the dataset is in quarter-hourly resolution. The
least absolute shrinkage and selection operator, com-
monly referred to as Lasso regression, is a technique
in statistics and machine learning that combines vari-
able selection with regularization. By constraining
the sum of the absolute values of the regression co-
efficients to be below a set threshold, i.e., the L1-
norm, Lasso regression effectively drives certain co-
efficients to zero [55, 56]. We set the parameter α,
the penalty term that denotes the amount of shrink-
age, equal to 0.001.

3.3.4. XGBoost regression
A more advanced machine learning approach is

based on gradient boosting regression using the XG-
Boost library [57]. It has often proven successful
in load forecasting research [58]. XGBoost mod-
els construct ensembles from decision tree models.
Trees are incrementally added to the ensemble, each
tailored to correct the errors of its predecessors. The
fitting process involves minimizing a differentiable
loss function using gradient descent. More details
about XGBoost can be found in [57].

We implemented a local and a global approach. In
the local approach, one XGBoost model is trained
per plug load time series. In both approaches,
seven days of historical data, scaled between 0 and
1, are used as inputs, and one day ahead is pre-
dicted, i.e., 96 values. In the global approach, one
model is trained over all the plug load time se-
ries. In the global approach, early stopping and L1-
regularization (alpha = 0.1) are implemented. In the
local approach, more regularization is necessary to
avoid overfitting. The parameters used are the fol-
lowing: the minimum sum of instance weight needed
in a child is set to 8 (min child weight = 8), the max-
imum depth of the trees is set to three (max depth =
3), the L1 regularization parameter alpha is set to
0.2 (reg alpha = 0.2), the number of early stopping
rounds is set to 20 (early stopping rounds = 20), the
data is 80% subsampled (subsample = 0.8), and 80%
of the features (col sample = 0.8) are retained. The
other parameters are kept to their default values.

3.3.5. Feedforward neural network regression
The proposed feedforward neural network

(FFNN) takes two days of historical data as inputs,
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i.e., one day and one week prior, along with a binary
holiday indicator. Inputs are scaled between 0 and 1
to normalize the range of data values. The network
generates a one-day-ahead point prediction for the
plug load, i.e., 96 values.

The architecture of the FFNN is adapted for two
distinct approaches: a local and global approach. In
the local approach, one FFNN is trained per plug
load. The structure includes an input layer with 128
neurons using the Rectified Linear Unit (ReLU) ac-
tivation function, a hidden layer with 64 neurons
also employing ReLU activation, and an output layer
comprising 96 neurons with linear activation to cor-
respond with the 96 outputs for the day-ahead fore-
cast.

In the global approach, one model is trained for
all plug loads. The architecture incorporates an in-
put layer with 526 neurons followed by a dropout
layer with a rate of 0.2 to prevent overfitting. This is
succeeded by two hidden layers with 256 and 128
neurons, respectively, both utilizing ReLU activa-
tion. The architecture ends with an output layer with
linear activation and 96 neurons, similar to the local
approach.

In both scenarios, the training process is governed
by two callbacks: early stopping to prevent overfit-
ting and a reduction in the learning rate on a plateau
to fine-tune the learning process for better perfor-
mance. The Adam optimizer is utilized for its effi-
ciency in both cases, with a maximum of 100 epochs
for the local model and 200 epochs for the global
model, ensuring adequate learning while avoiding
excessive computational demands.

3.4. Scheduling

In the pipeline depicted in Figure 1, the schedul-
ing step is emphasized in orange. The proposed ap-
proach integrates the outputs from both the ensemble
clustering and forecasting models. Here, one-day-
ahead forecasting is applied on the test set. Subse-
quently, the continuous forecast is binarized through
the ensemble clustering model. This binary forecast
then guides the individual appliance scheduling, de-
termining the activation and deactivation commands
and their respective timings. We decided to call this
schedule “forecast-driven”. A baseline scheduling
approaches is also proposed as a comparison. This

baseline schedule, referred to as ’time-based’ con-
trol in the literature, relies solely on predefined of-
fice hours. We also compare the baseline and the
forecast-driven schedules with no schedule.

3.4.1. Time-based schedule
A fix time-based schedule is developed. Moni-

tored appliances are turned off on weekends and ev-
ery weekday between midnight and 5 am.

3.4.2. Forecast-driven schedule
In the proposed forecast-driven schedule, logic

rules determine the on/off commands of the appli-
ances based on the binary predictions. These binary
predictions are the outputs of the subsequent applica-
tion of the forecast model, in a one-day-ahead rolling
window fashion, and the operating mode detection
clustering. In the clustering output, label 0 denotes
that the appliance is unused (encompassing operat-
ing modes off, standby and idle). Conversely, label 1
signifies that the device connected to the smart plug
is actively used. The rule for on/off scheduling is
straightforward: if a device is consistently labeled
as 0 (unused) for a minimum of n consecutive time
steps, it is directed to switch off. In any other sce-
nario, which includes instances where it is marked
as 0 (unused) for fewer than n time steps or when it
is labeled as 1 (active), the device is turned on, or
remains on.

3.4.3. Scheduling evaluation
The end schedule is evaluated using four different

metrics:
• Saved energy: The absolute saved energy is the

difference in consumption between the true test
set and the test set with the implemented sched-
ule, i.e., time steps marked as turned off in the
schedule have a zero consumption. The percent-
age of saved energy over the test set is computed
by dividing the absolute value by the total en-
ergy. These relative and absolute saved energy
can be computed per day, per week, or per appli-
ance to obtain different insights. The schedule
aims to save as much energy as possible.
• Number of violations: The number of viola-

tions is the number of times that the appliance is
scheduled as off while it is actually marked ac-
tive in the mode detection (on the test set). The
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schedule of off periods is informed by the mode
detection algorithm based on the forecast load
values, followed by the scheduling step. The
ground truth for assessing violations is based on
the mode detected on the actual test set, rather
than on the forecast values. The percentage of
violations is also computed. These relative and
absolute number of violations can be computed
per day, per week, or per appliance to obtain dif-
ferent insights. The schedule should not prevent
employees from working or using their appli-
ances as they need. A minimum number of vio-
lations is desired for user convenience.
• Number of missed chances: The number of

missed chances is the number of times that the
appliance is scheduled on while it is not used.
It is the number of time we could have saved
energy but did not. The percentage of missed
chances is also computed. These relative and
absolute number of missed chances can be com-
puted per day, per week, or per appliance to
obtain different insights. When designing the
schedule, a greater safety margin or expanded
time-based schedules can result in increased
missed chances for energy savings. It is crucial
to strike a balance between energy conservation,
the number of violations, and missed chances.
• Number of turn on/off commands: The number

of times that an appliance is turned on and off in
a day or in a week can also be computed. This
can help assess if the schedule might adversely
impact appliances, as some appliances experi-
ence increased wear-and-tear when turned on or
off.
• Energy efficiency: We also employ a metric

termed energy efficiency. This metric is the ratio
of useful energy to total energy consumed. Use-
ful energy refers to the energy expended while
the appliance is active. If the appliance operates
solely when in use, the total energy consumed
matches the useful energy, resulting in an effi-
ciency of 100%.

4. Case Study

4.1. Problem statement

The pipeline proposed in this paper tackles the
challenge of office plug load scheduling. In a first
step, the data is pre-processed. Secondly, the oper-
ating mode of each plug load is detected, two modes
are targeted: active or unused (encompassing idle,
standby and off. Third, the plug load state (active
or unused) is predicted one day ahead. Finally, the
forecast and the mode detection results are used in
the scheduling step, along with logic rules to deter-
mine whether an appliance should be turned on or off
one day ahead.

4.2. Dataset

The raw dataset is collected through smart plug
sockets between the wall plugs and the electric appli-
ance as detailed in [8]. About 650 smart plugs from
Best Energy Reduction Technologies (BERT) are de-
ployed in fifteen buildings of the campus of the Uni-
versity of California, San Diego (UCSD). The power
level of each individual appliance is recorded in mW
at fifteen or at five minutes interval in Jason files and
accessible in a data lake. The smart plugs were in-
stalled in 2020 and–with a few exceptions such as
office moves–are still active to date.

The process of transforming the individual Jason
file recordings into a usable dataset necessitated in-
tensive data cleaning and formatting. The specific
details lie outside the scope of this paper and will be
elaborated upon in a subsequent publication centered
on the dataset. This section provides a brief overview
of critical pre-processing steps.

The dataset contained a blend of 5-minute (6%
of data) and 15-minute (94% of data) recordings.
To maintain consistency, these were resampled to
a quarter-hourly resolution. Plug load profiles that
were only composed of zero recordings or lacking
metadata were excluded. While there were no miss-
ing values in terms of empty recordings or NaNs in
the raw data, instances were identified where the sys-
tem was inoperative, such as during system-wide up-
dates. It was observed that in such cases, the record-
ing system substituted the gaps with zeros. We elab-
orated several scenarios to discern these erroneous
zeros from actual zero power recordings and replace
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them with NaNs. One such scenario involved in-
stances where all plug loads in a building simulta-
neously displayed zero readings over three or more
time steps. In such cases, since it is unlikely that all
appliances are unused for a consecutive 45 minutes,
these readings were replaced with NaNs. Another
scenario considered the start of a plug load time se-
ries with prolonged time of zero values, succeeded
by consistent power level fluctuations for the rest of
the recording period. This suggested non-usage dur-
ing the COVID lockdown, followed by reactivation
of the devices. The initial zeros did not truly rep-
resent genuine usage trends. Lastly, prolonged zero
sequences towards the end of a plug load time se-
ries were substituted with NaNs, assuming the appli-
ance’s disconnection from the smart plug, preventing
recordings. After these steps, 625 plug load record-
ings spanning over at least a year remained.

In the subsequent phase, a subset of plug loads
was chosen for this particular study. Plug loads with
over 30% of NaNs or 30% of zeros in total were ex-
cluded. Additionally, it was ensured that the test set
contained less than 3% NaNs, as the aim was not to
schedule underutilized appliances.

The final selection was based on the plug device
type. Although a large number of computers were
monitored, they were excluded from scheduling to
avoid potential disruptions for employees, especially
those who may be running models overnight or who
might not have backed up recent work. This rigorous
selection yielded a dataset of 169 high-quality smart
plug time series spanning 498 days, from November
18th, 2021, to March 31st, 2023. The 169 plug loads
consist of 146 printers, 16 copiers, 4 TVs, and 3 fax
machines.

This final pre-processed dataset is openly accessi-
ble [59]. In the upcoming publication centered on the
dataset, further analysis and visualizations that were
a central part of the data exploration, will be detailed.

4.3. Results & discussion

4.3.1. Mode detection
The mode detection approach based on the clus-

tering ensemble is applied on the given dataset. This
method converts the power level values into binary
values based on the detected mode. A label of 1 indi-
cates an active appliance, while a label of 0 indicates

Number of
plugs

Percentage of
plugs

High-fidelity 119 70.41 %
Partial-fidelity 29 17.16 %
Low-fidelity 21 12.43 %

Total 169 100 %

Table 1. Mode detection results are presented based on a qual-
itative comparison between original and binarized heatmaps.
High fidelity denotes accurate usage pattern detection. Partial
fidelity suggests the detected pattern includes the original, but
some values labeled as active may be inactive. Low fidelity
means the algorithm does not capture the underlying usage pat-
tern accurately.

an unused appliance, encompassing off, standby, or
idle states. As explained in Section 3.2.4, a visual
evaluation of mode detection accuracy is undertaken
through a heatmap comparison. The accuracy of
the mode detection is classified into three categories:
high-fidelity, partial-fidelity, and low-fidelity. The
results are detailed in Table 1. Close to 70% of the
plug loads fall under the high-fidelity category, indi-
cating that the algorithm correctly discerns the appli-
ance usage patterns. Another 17% of the plug loads
demonstrate partial-fidelity detection. In these in-
stances, while the algorithm identifies the core active
usage patterns, it also mistakenly labels some unused
power values as active. Lastly, the algorithm exhibits
low fidelity for 12% of the plug loads.

Given the qualitative nature of the evaluation, we
believe it is essential to provide a detailed illustration
of these results. All figures discussed in this section
are located in Appendix B to enhance textual conti-
nuity and readability. The first heatmap is built using
the original power data from the test dataset. The
second heatmap is generated with the binarized test
data through our detection algorithm. The compari-
son of these two heatmaps is used to categorize our
algorithm performance. The last heatmap is formed
with the binarized test data, based on power thresh-
olds specified in product specification sheets. Ap-
pliance metadata, including aspects like type, brand,
and model, facilitated the acquisition of the pertinent
specification sheet and power threshold details. A
dotted line on the initial time series plot also de-
picts this specification sheet threshold. The dis-
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cussion around these specification sheets thresholds
concludes this section. Note that the units and scales
of the heatmaps are different, as the original data is
in Watts, while the data after mode detection is in
binary format.

Figure B.3 presents instances of high-fidelity de-
tection results. In every example, our mode detection
algorithm effectively captures the continuous power
usage pattern in the binarized format. Devices show-
cased include a printer, a TV, and a copier.

Figure B.4 displays several plug loads classified as
partial-fidelity. In each instance, the detected modes
encompass the active usage pattern, but the algorithm
occasionally labels unused power values as active.
However, this does not pose an inconvenience to the
user; the appliance will not be inadvertently turn off
when it should remain on. For some plug loads, there
is no distinct original usage pattern, which could be
a reason for the lower performance of the algorithm.

In our focused examination of the low-fidelity
detection results, we aim to understand potential
sources of failure and avenues for the improvement
of the mode detection algorithm. We illustrate, dis-
cuss and propose solutions to each challenge. The
primary set of challenges relates to the inherent at-
tributes of the plug load data. There are appliances
for which the absolute difference in Watts between
the active and standby mode is very small, as illus-
trated in Figure B.5a. Given the fact that GMM clus-
tering allows overlapping clusters, if the small abso-
lute difference between two modes makes them hard
to detect, there exists a risk of unintentionally turn-
ing the device off during its active mode. It might be
prudent to consider whether these devices should be
scheduled at all.

Additionally, situations arise where three distinct
modes are perceptibly present. However, the cur-
rent design of the mode detection discerns only two
modes, given the set input parameter in the k-means
as well as the GMM clustering. This might po-
tentially affect the efficacy of the proposed algo-
rithm on these specific profiles. An example is il-
lustrated in Figure B.5b. To mitigate this, a solu-
tion would be to apply mode detection with param-
eters adjusted for both two and three modes. Sub-
sequent performance evaluation on a validation set
would then determine the most optimal parameteri-

zation. Another observed phenomenon is the occur-
rence of concept drift [39]: over time, devices can
exhibit changing behavior. An example is shown in
Figure B.5c. This might be due to wear and tear, plug
load operating software updates, users changing the
plugged appliances, or users employing power strips.
This challenge can be addressed by detecting con-
cept drift and subsequently re-training the mode de-
tection algorithm. Raising awareness among users
about the scheduling system and the repercussions
of unplanned alterations is also an option.

The second type of challenges is inherent to the
intrinsic attributes of the implemented algorithm.
It is well known that algorithms like k-means and
GMM are sensitive to their initialization. To im-
prove the robustness of the algorithm, one approach
would involve running the mode detection task mul-
tiple times, and then averaging the outcomes. Alter-
natively, another strategy would entail focusing on
adopting a more robust initialization method. Fur-
thermore, in our algorithm, each power value is cur-
rently evaluated and labeled individually, not ac-
counting for its sequential or temporal context. This
can lead to overlooking specific transitional phases.
Including additional features, like the time of day,
could potentially increase the accuracy of the algo-
rithm. Another potential improvement is linked to
the resolution of measurements. Recordings with a
higher frequency might improve detection. Indeed,
devices like televisions or printers typically transi-
tion between off and active modes within a 15 min in-
terval; therefore 15 min averages may contain power
values from multiple modes.

Lastly, we compare our mode detection algorithm
with thresholds from appliance specification sheets.
For each example highlighted in this section, we
determined the power for both active and unused
modes, as provided in the appliance specification
sheets. Despite the extensive manual effort required,
it is worth noting that such information is not al-
ways accessible. Out of the 13 appliances presented
in Figures B.3, B.4, B.5 only one specification sheet
thresholds yields high-fidelity results: Figure B.4(a).
The printer in Figure B.4(b) receives a partial-fidelity
classification; it aptly labels the active mode but also
mislabels certain power values that could be marked
as unused. The remaining mode detection results us-

17



ing specification sheets fall into the low-fidelity cat-
egory. It is worth observing that the copier in Fig-
ure B.3(b) seems to capture the general usage pat-
tern but mislabels several active power values as un-
used, posing a risk of appliance deactivation during
actual use. One reason for apparently overly large
specification sheet thresholds could be the 15 min
averaging period. The specification sheet thresh-
old assumes that the device is active during the en-
tire 15 minute period. For example, for a copier
or printer, this would mean continuous printing or
copying for 15 minutes. Such usage is unlikely in
practice. Most often, a 15 min interval will contain
periods of activity together with inactivity or even
standby modes. The inactive (unused) periods would
then cause the 15 min average power to decrease be-
low the specifications threshold.

4.3.2. Forecasting
The different forecasting model detailed in Sec-

tion 3.3 were implemented in python and evaluated
on an unseen test set, i.e., the last 20% of the dataset.
Traditional distance metrics, the Mean Absolute Er-
ror, Mean Squared Error and Root Mean Squared Er-
ror were used. Smaller values indicate better perfor-
mance. Table 2a presents the average metrics over
all plug loads. Additionally, the percentage improve-
ment in terms of RMSE is computed compared to the
naive persistence model based on the consumption of
the same day a week ago.

Another evaluation of these models is proposed,
oriented towards the end goal of the forecasting: the
appliance scheduling. The ground truth consists of
the unused / active labels of the operating mode de-
tection algorithm applied directly on the true test set
power values, as described in Section 3.2. The con-
tinuous power point predictions from the forecasting
are also binarized using the operating mode detec-
tion algorithm and compared with the ground truth.
The evaluation consists of two traditional and com-
plementary classification metrics: the recall and the
miss rate. The recall is also called true positive rate,
sensitivity, or probability of detection. In our specific
case, it is an indication on how many times the appli-
ance has been labeled as active out of all the times it
was actually active. We aim to have a recall as high
as possible. The miss rate, also termed false nega-

tive rate, is computed as 1 − recall. It highlights the
number of times that the appliance was labeled as un-
used while it was active. We want the miss rate to be
as low as possible, as this can cause inconvenience
to the users of the appliances. Additionally, the per-
centage improvement in terms of recall is computed
as a function of the naive persistence model based on
the consumption of the same day a week ago. These
results are presented in Table 2b.

In both tables, the models are ordered from the
best performing to the least performing based on the
respective metric. This ordering varies significantly
depending on the chosen evaluation metric. This
variation underscores the importance of selecting ap-
propriate metrics that align with the end goals of the
forecasting process. In both evaluation methods, the
global feedforward neural (FFNN) network model
ranks as the top performer. These findings align with
Spiliotis et al.’s [60] results on intermittent time se-
ries forecasting one-step-ahead. The global FFNN
model achieves a 26% improvement in RMSE com-
pared to the baseline and a 42% improvement in re-
call. Interestingly, the addition of holiday data does
not reduce RMSE for both local and global feedfor-
ward neural networks, nor for the LASSO autore-
gressive model. However, adding holiday data does
seem to reduce the miss rate by nearly 5% for the
local FFNN.

It is important to note that the ground truth used in
these evaluations is derived from the preceding oper-
ating mode detection algorithm and is not an absolute
measure of the ground truth. Consequently, while
this ranking offer useful insights into model perfor-
mance, the results should be interpreted with some
caution.

4.3.3. Scheduling
The scheduling results are presented in Table 3.

The “true test set schedule” is the schedule obtained
using the true values of the test set, as if the pre-
dictions were perfect. The true values of the test
set are binarized using the operating mode detection
algorithm, and the schedule is generated using the
forecast-driven approach described in Section 3.4.2.
This can be considered as the perfect schedule in
terms of forecast, still keeping in mind that there is
no real ground truth for the operating mode detection
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MAE [W] MSE RMSE Improvement (%)
Global FFNN 3.85 458.26 10.53 26.00

Individual FFNN 3.53 482.49 10.79 24.17
Global FFNN with holidays 3.65 467.21 11.07 22.21

Individual FFNN with holidays 4.00 489.28 11.15 21.64
Global XGBoost 2.86 529.23 11.51 19.11

Individual XGBoost 4.67 522.19 12.18 14.41
Optimal Persistence 2.79 642.54 12.28 13.70

ARX 4.49 606.44 12.33 13.35
ARX with holidays 4.51 597.54 12.38 13.00
Persistence 1 day 2.61 809.95 13.91 2.25

Persistence 1 week 3.03 817.65 14.23 /

(a) Forecasting results based on the evaluation of Mean Absolute Error, Mean Squared Error and Root Mean Squared Error on the continuous
predictions.

Recall Miss Rate Improvement (%)
Global FFNN 74.09 25.91 42.55

Individual XGBoost 71.27 28.73 40.27
ARX 69.55 30.45 38.80

ARX with holidays 68.59 31.41 37.94
Global XGBoost 59.72 40.28 28.72

Global FFNN with holidays 59.17 40.83 28.06
Individual FFNN with holidays 58.68 41.32 27.45

Individual FFNN 54.14 45.86 21.38
Persistence 1 day 48.73 51.27 12.65

Optimal Persistence 45.52 54.48 6.48
Persistence 1 week 42.57 57.43 /

(b) Forecasting results based on the evaluation of recall and miss rate on the binarized predictions. The continuous predictions are binarized using
the operating mode detection algorithm.

Table 2. Forecasting models evaluated on the test set, i.e., the last 20% of each plug load time series and averaged over all plugs.
(a) Forecasts of mW of individual plug load average power consumption over 15 min intervals are compared to plug load control
measurements. (b) The binarized predictions derived from the forecasts are compared to the binarized output of the ensemble
plug load operating mode detection model presented in Section 3.2. The binarized predictions from the forecasts are obtained by
applying the plug load operating mode detection model to the forecast data. Therefore active versus inactive thresholds may differ
between forecasts and ground truth. In both tables, the models are ordered from the best performing to the least performing based
on the respective metric. This ordering varies significantly depending on the chosen evaluation metric. This variance underscores
the importance of selecting appropriate metrics that align with the end goals of the forecasting process. In both evaluation methods,
the global feedforward neural network model ranks as the top performer.

step. The “no schedule” approach considers the ap-
pliances as always on. The baseline schedule is the
simplistic time-based approach, as described in Sec-
tion 3.4.1. These three specific schedules are inter-
esting to compare to the forecast-driven methods, in
the sense they each give us insights into the realistic
expectation of the pipeline. The true test set schedule
indicates the maximum amount of energy that could
be saved, i.e., 42.07% along with the best energy effi-

ciency that could be obtained, i.e., 87.32%. This per-
fect schedule also shows that there are at least 6.28%
of missed chances, these are occurrences when the
appliance is marked as unused for such a short period
that the schedule does not deem it long enough to ac-
tually turn the appliance off. This perfect schedule
has one of the highest number of turn on/off com-
mands. When no schedule is applied, the percent-
age of missed chances is 70%. This confirms our
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assumption in Section 3.2.1 that the appliances are,
on average, approximately used 30% of the time. In
the no schedule case, we also have an indication of
the worst energy efficiency, i.e., 39.79%. Finally,
the baseline schedule provides insights on the met-
rics that can be attained without complex comput-
ing, training, nor data collection and the proposed
approaches should at least be better than the base-
line.

Selecting the right schedule depends on the spe-
cific application. For instance, when scheduling crit-
ical appliances, minimizing the miss rate is impor-
tant to ensure reliability and continuity for the users.
Conversely, in scenarios where non-critical appli-
ances are scheduled, the objective may shift towards
maximizing energy savings. Formulating an opti-
mization problem that integrates these different con-
siderations, would allow selecting a schedule that
aligns with the specific needs.

The results table clearly indicates that the global
FFNN leads to the most effective forecast-driven
scheduling. The proposed pipeline, while innovative
and promising, also highlights that enhancements in
forecasting, i.e., moving closer to the “True Test Set
Schedule” could substantially increase energy sav-
ings and reduce the miss rate.

5. Future research directions

In this section, based on the reviewed literature,
the presented research, and the result discussion, we
outline potential research directions in smart plug
utilization and building energy efficiency. These sug-
gestions provide potential extensions and improve-
ments to the existing study.
• Mode detection: The mode detection algorithm

is the first to provide an automated way to dis-
cern between plug load modes, yet it has lim-
itations that could be addressed through sev-
eral improvements. Firstly, a suitable metric
for evaluating mode detection algorithms would
enable more effective comparisons. Secondly,
exploring alternative algorithms, such as ker-
nel spectral clustering, could yield promising
results [? ]. Lastly, determining the optimal
number of clusters, i.e., modes, using meth-
ods like the elbow method, and then applying a

post-processing step to select only the relevant
modes, could enhance the performance of the
mode detection.
• Occupancy data: The integration of occupancy

data into plug load forecasting models is rec-
ommended to increase accuracy. Several stud-
ies [43, 61, 40] have underscored the significant
role of occupancy data in plug load predictions.
• Categorizing plug loads: Wang [31] suggests

categorizing plug loads based on their opera-
tional modes: continuous versus intermittent.
For instance, while water dispensers generally
run continuously, devices like TVs operate in-
termittently. Adopting distinct mode detec-
tion and forecasting strategies for each category
could yield more accurate predictions. Note that
the plug loads in the proposed dataset are all in-
termittent. Another approach could be to cluster
the time series and then developing a forecast-
ing model per cluster or device type, leveraging
more historical data. Cluster-based forecasting
is consistent with the new trend of global fore-
casting models [39].
• Addressing plug load appliance movement: this

research paper assumes static loads, i.e., the
plugged in appliances remain plugged in and do
not change. Detecting novel devices or changes
in plugged in device, and adapt the scheduling
accordingly would provide more flexibility and
robustness.
• Transfer learning: The idea of leveraging

hand labeling from existing datasets for transfer
learning on new datasets, given device type con-
sistency, is promising. The dataset by Kalluri et
al. [23], which was visually inspected and man-
ually labeled, could provide insights for similar
applications.
• Impact of each pipeline step: It would be in-

teresting to assess numerically the performance
at each stage of the proposed pipeline. Specif-
ically, the impact of accurate operating mode
detection and the impact of improvements in
forecasting on the subsequent scheduling tasks
could be assessed.
• Return on investment: The economic implica-

tions of plug load monitoring cannot be over-
looked. Comprehensive financial analyses, as
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Number of
violations

(%)

Missed
chances (%)

Energy
saved (%)

Number of
turn on/off
commands
per plug per

day

Energy
Efficiency

(%)

True Test Set Schedule 0.0 6.28 42.07 4.33 87.32
No Schedule 0.0 70.26 0.0 0.0 39.79

Global FFNN Schedule 2.21 33.11 21.92 1.62 45.89
Individual XGBoost Schedule 2.75 35.82 16.51 1.82 44.77

Global XGBoost Schedule 3.27 27.67 25.84 3.33 47.92
Individual FFNN Schedule 4.61 23.77 29.38 3.71 47.85

ARX Schedule 5.09 28.63 20.38 2.18 47.35
Optimal Persistence Schedule 6.05 10.03 40.15 3.4 55.77

Persistence 1 day Schedule 6.05 12.70 46.17 4.26 54.51
Persistence 1 week Schedule 7.95 14.30 47.70 4.32 50.31

Baseline Schedule 11.4 38.09 41.88 1.45 43.28

Table 3. The different forecast-driven schedules are compared. The “true test set schedule” can be considered as the perfect
schedule, it indicates the maximum amount of energy that could be saved if the forecast were perfect. The “no schedule” approach
considers the plugs as always on. In the no schedule case, we have an indication of the worst energy efficiency and the worse
percentage of missed chances. The baseline schedule is the simplistic time-based approach, it provides insights on the metrics
that can be attained without complex computing, training nor data collection and the proposed approaches should at least be better
than this. The results table clearly indicates that the global feedforward neural network leads to the most effective forecast-driven
scheduling.

demonstrated in Trenbath et al.[1] and Wang
et al.’s[62] return on investment analysis, could
shed light on the actual monetary benefits and
potential payback periods of such initiatives.
• Frame a global optimization problem: Op-

timizing the scheduling of energy consump-
tion should be approached from a multifaceted
perspective, encompassing occupants’ conve-
nience, financial gains, and the overarching goal
of energy reduction. This multi-objective op-
timization problem can pave the way for sus-
tainable energy management solutions in the fu-
ture [12].
• Randomized control trial: In the context of

smart plug scheduling, implementing a random-
ized controlled trial could offer valuable in-
sights into the practical effectiveness of the pro-
posed scheduling strategies. Specifically, we
suggest applying plug load scheduling for an
24-hour duration, refraining from scheduling in
the subsequent 24 hours, and then reintroducing
the scheduling for another 24 hours. This cycle

would be maintained over several weeks. By
comparing the scheduled hours against the non-
scheduled hours, performance metrics such as
energy conservation and user satisfaction could
be assessed.
• Eco-feedback: Promotion of occupants’ aware-

ness, also called eco-feedback, emerges as a
promising element in energy reduction. Kami-
laris et al.[5] conducted an illuminating study
over 22 weeks, targeting the understanding of
office workers’ energy consumption behaviors.
Results revealed the compelling impact of con-
tinuous personal feedback, with notable reduc-
tions in energy use observed in the third and
fourth months. Moreover, the study high-
lighted the efficacy of group-level feedback
and peer-education interventions in fostering
energy-saving behavior. Doherty et al.[2] and
Gandhi et al. [63] further emphasize the poten-
tial of informational campaigns, rewards pro-
grams, gamification, and regular energy usage
feedback in enhancing occupants’ energy con-
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servation habits.

6. Conclusion

This paper introduces a pipeline for scheduling
plug loads in office buildings with the aim of energy
reduction. The pipeline integrates three components:
plug load operating mode detection, plug load fore-
casting, and plug load scheduling based on the two
prior components. The objective is to reduce the
energy consumed when appliances are not actively
used.

Significant contributions of this research include
the development of an extensive dataset, capturing
over a year’s worth of data from 169 plug loads in
multiple office buildings. This dataset is made pub-
licly available to foster further research. The first
literature review on plug load operating mode de-
tection methodologies and terminology is presented,
clarifying terminology and providing a foundation
for future work in this domain. An unsupervised ap-
proach for determining plug load operating modes is
proposed, which has been a challenge in past litera-
ture. Additionally, the research opens the domain of
individual plug load forecasting, an under-explored
area. The resulting pipeline demonstrates potential
plug load energy savings of up to 50%, marking a
significant step towards building energy efficiency.
The developed code is made publicly available for
reproducibility and benchmarking in further research
work.

The research also acknowledges certain limita-
tions, such as the absence of a numerical metric for
evaluating the plug load mode detection algorithm
accuracy and opportunities in improving forecasting
models. A specific section is dedicated to future re-
search in the smart plug field.

In conclusion, the research presented proposes a
novel and promising framework for office plug load
scheduling and underscores the importance of shar-
ing data and methodologies. It lays a foundation
for collaborative progress and sets a benchmark for
plug load mode detection, forecasting, and appliance
scheduling towards energy efficient buildings.
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Appendix A. Code and data availability

The code used and implemented in this research
study along with the pre-processed datasets are pub-
licly available on GitLab [59].
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Appendix B. Illustration of the operating mode detection results

(a) High-fidelity mode detection of a TV.

(b) High-fidelity mode detection of a Copier.
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(c) High-fidelity mode detection of a printer.

Figure B.3. (Continued) Each figure consists of four plots. First, the complete time series is plotted, with the training set in light blue
and the test set in dark blue. In the test set, the labels outputted by our mode detection algorithms are incorporated. Active power
values are marked with green dots, while inactive (unused) values are marked in orange dots. The first heatmap is build using the
original test data. The second heatmap is generated with the binarized test data through our detection algorithm. The comparison of
these two heatmaps is used to categorize our algorithm performance. The last heatmap is formed with the binarized test data, based
on power thresholds specified in product specification sheets. The dotted line on the initial time series plot also depicts this data
sheet threshold. (a), (b) and (c) are examples of mode detection results classified as high-fidelity. Each binarized dataset captures
the underlying usage pattern of the true dataset accurately. Different device types and usage patterns are represented.
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(a) Partial-fidelity mode detection of a printer.

(b) Partial-fidelity mode detection of a printer.
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(c) Partial-fidelity mode detection of a printer.

Figure B.4. (Continued) Each figure consists of four plots. First, the complete time series is plotted, with the training set in light
blue and the test set in dark blue. On the test set, the labels outputted by our mode detection algorithms are incorporated. Active
power values are marked with green dots, while inactive (unused) values in orange dots. The first heatmap is build using the original
test data. The second heatmap is generated with the binarized test data through our detection algorithm. The comparison of these
two heatmaps is used to categorize our algorithm performance. The last heatmap is formed with the binarized test data, based on
power thresholds specified in product sheets. The dotted line on the initial time series plot also depicts this data sheet threshold.
(a), (b) and (c) are examples of mode detection results classified as partial-fidelity. Each binarized dataset captures the underlying
usage pattern of the true power values, nevertheless it also wrongly labels some unused values as active.
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(a) Low-fidelity mode detection, which might be due to the small difference in power absolute values, or the fact that the appliance might never have been used.

(b) Low-fidelity mode detection which might be due to the three existing operating modes.
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(c) Low-fidelity mode detection which might be due to the occurrence of concept drift.

Figure B.5. (Continued) Each figure consists of four plots. First, the complete time series is plotted, with the training set in light
blue and the test set in dark blue. On the test set, the labels outputted by our mode detection algorithms are incorporated. Active
power values are marked with green dots, while inactive (unused) values in orange dots. The first heatmap is build using the original
test data. The second heatmap is generated with the binarized test data through our detection algorithm. The comparison of these
two heatmaps is used to categorize our algorithm performance. The last heatmap is formed with the binarized test data, based on
power thresholds specified in product sheets. The dotted line on the initial time series plot also depicts this data sheet threshold. (a),
(b) and (c) are examples of mode detection results classified as low-fidelity. (a) The proposed algorithm has difficulty grasping the
usage patterns since the difference between active and unused mode is very small in terms of absolute power values. (b) There seem
to be three operating modes for this appliance, while the proposed algorithm is designed to detect two modes. (c) The large change
in power dynamics between the training set and the test set, called concept drift, makes it challenging for the proposed algorithm to
accurately discern the new usage pattern.
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