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“RADIOTRANSCRIPTOMICS”: A synergy of imaging and 
transcriptomics in clinical assessment
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Abstract

Recent advances in quantitative imaging and “omics” technology have generated a wealth of 

mineable biological “big data”. With the push towards a P4 “predictive, preventive, personalized, 

and participatory” approach to medicine, researchers began integrating complementary tools to 

further tune existing diagnostic and therapeutic models. The field of radiogenomics has long 

pioneered such multidisciplinary investigations in neuroscience and oncology, correlating 

genotypic and phenotypic signatures to study structural and functional changes in relation to 

altered molecular behavior. Given the innate dynamic nature of complex disorders and the role of 

environmental and epigenetic factors in pathogenesis, the transcriptome can further elucidate serial 

modifications undetected at the genome level. We therefore propose “radiotranscriptomics” as a 

new member of the P4 medicine initiative, combining transcriptome information, including gene 

expression and isoform variation, and quantitative image annotations.
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SYSTEMS BIOLOGY IN MEDICINE

Diagnostic paradigms of the past century witnessed the prevalence of an “Oslerian 

formalism for human disease” methodology, a term coined by network theorist and complex 

systems pioneer AL Barabasi [1]. Scientific investigators often relied upon hypothesis-

driven correlations between clinical manifestations and pathological findings, bringing rise 

to a reductionism philosophy in medicine. Reinforced by early successes in diagnosis of 

acute diseases, the relationship between the conventional medical practice and the 

reductionist mechanistic approach led to an oversimplification of the complex etiology of 
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diseases. It was not until the evaluation of cases of chronic disorders and complex diseases 

that clinicians became aware of the shortcomings of a discrete assessment of symptoms. 

Given our current understanding of the body as a complex system of interconnected 

biological networks, and of disease as a culmination of a multi-step modification of those 

networks, new paradigms are needed.

With the contemporary transition of biology from a qualitative, descriptive discipline into a 

quantitative, multi-parameter field, the power of computational methods has begun to 

unravel novel biology. The emergence of high-throughput technologies; greater 

computational power; and advances in imaging modalities, processing, and analysis have 

rendered a wealth of publically available biological “big data”. This newfound capacity has 

promoted a paradigm shift in the early 21st century in which the biological science 

community began to embrace a more integrative attitude to medical research, using data to 

define and drive hypotheses. Propelled by the conviction that “every object that biology 

studies is a system of systems” [2], scientists began using tools from seemingly unrelated 

disciplines to study the impact of pathogenic factors on the genome, transcriptome, 

proteome, and metabolome. These efforts have been supported by numerous National 

Institutes of Health (NIH)-sponsored initiatives in the United States, giving rise to a 

collaborative community in which data and resources are easily shared and field-specific 

expertise continuously exchanged to drive advances in biomedical research [3].

GENOMICS and GWAS

Initially driven by the preeminent “common disease–common variant” hypothesis at the 

time, genome-wide association studies (GWAS) overtook the role of inheritance genetic 

linkage studies in assessing genotypic-phenotypic relationships [4,5]. Scientists 

meticulously examined the genome for recurrent variation patterns believed to be associated 

with the development of diseases and complex traits [6]. Single-nucleotide polymorphisms 

(SNPs), point mutations involving base substitutions in DNA sequences occurring in more 

than one percent of the general population, are the most common type of genetic variation 

marker in GWAS studies [7,8]. The identification of commonly occurring SNPs, along with 

the analysis of altered allelic frequency and distribution range of common variants across 

subpopulations, have been extensively used to assess the hereditary susceptibility to 

Mendelian disorders [7]. Given its comprehensiveness in surveying the whole genome, 

GWAS has proven promising in uncovering novel pathogenic candidate genes and potential 

therapeutic molecular targets. Nonetheless, the predictive power of commonly identified 

genomic variants remains poor as a result of the inability to determine truly causal 

relationships between such variants and disease susceptibility [9]. This is mostly attributed 

to a lower statistical significance when applying single-locus approaches to measure 

monogenic, single haplotype marginal effects on complex and aggressive disorders or rare 

traits [10]. The majority of large-scale GWAS approaches is also incapable of accounting for 

allelic heterogeneity, epigenetic and environmental bearing on gene expression, and gene-

gene interactions or epistasis [10–13]. GWAS’s contribution to elucidating the genetic basis 

of disease susceptibility is notable; however, the incorporation of functional annotations, 

interaction information, and multi-level molecular analyses is necessary for a more holistic 

genomic approach to disease stratification.
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QUANTITATIVE MEDICAL IMAGING ANALYSIS

Medical imaging has long been a standard in diagnostic and therapeutic assessment and 

clinical outcome inference. Physicians often monitor morphologic, functional, molecular, 

metabolic, and micro-environmental changes in vivo in patients over time. Structural 

medical imaging modalities, such as X-ray, magnetic resonance imaging (MRI), and 

computed tomography (CT), are used to observe anatomical abnormalities whereas 

functional imaging modalities, such as functional-MRI (fMRI), positron emission 

tomography (PET), and single-photon emission computed tomography (SPECT), are 

reserved for assessment of physiological activity [14]. Melding complementing imaging 

modalities, modern multimodal devices and techniques now offer anatomic correlates to 

functional and molecular variations associated with pathogenesis [15,16].

Advances in imaging protocols, biomarker identification, and analysis tools have 

considerably improved prognosis of disease manifestation and progression. Standardization 

of imaging protocols, along with automated image registration, alignment, and segmentation 

and availability of reference atlases, has facilitated the transition of imaging from a largely 

qualitative tool to a robust quantitative measurement [17,18]. This transition process has 

been supported by the abundance of open source, user-friendly image analysis software such 

as the Insight Segmentation and Registration Toolkit (ITK) [19], FSL [20], 3D Slicer [21], 

Osirix [22], and Statistical Parametric Mapping [23]. Using those tools, quality control pre- 

and post-processing protocols can be applied to alleviate acquisition scheme- and operator-

induced errors [24], and attempt to normalize imaging data across normal variations. For 

MR imaging, this includes distortions due to multi-center protocol differences, magnetic 

field inhomogeneity, motion and geometric artifacts, image intensity dropouts, misalignment 

and incorrect image registration, and eddy currents [24–26]. As for PET/CT multi-center 

cohort studies, errors can arise as a result of discrepancies in acquisition mode, scanner 

parameters, reconstruction filter kernel, and attenuation correction method [27,28]. 

Investigators then have a variety of manual, semi-automatic, and automatic methods to select 

from for quantitative analysis of the images [29]. A relatively simple approach, regionof- 

interest (ROI) analysis is used to extract signal intensity information within pre-defined 

anatomical regions [30]. This approach can be limited in its precision, namely when 

evaluating smaller areas, coverage, and time-consumption [31]. When conducting larger-

scale exploratory studies, radiologists often employ automated voxel-based methods that 

carry statistical tests across image voxels to identify correlates to preselect covariates of 

interest [32]. Voxel-based morphometry (VBM) is widely used; however, its results are 

prone to misinterpretation due to misalignment, imperfect registration to standard space, and 

arbitrary spatial smoothing [32]. Tract-based spatial statistics (TBSS) has been proposed to 

address such concerns while equally maintaining the strengths of voxel- and tractography-

based analyses [32]. This is achieved by carefully tuning registration and projecting onto an 

alignment-invariant tract representation [32]. The shift towards quantization in imaging has 

propelled the role of radiology in transforming patient care. Uniting clinicians, radiologists, 

and medical researchers, the Radiological Society of North America (RSNA) established the 

Quantitative Imaging Biomarkers Alliance (QIBA) to address aspects of image acquisition 

protocols, process standardization, quantitative data analysis, and biomarker development 
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[33]. A synergy of art and science, imaging analysis has now paved the way for both 

qualitative visualization and quantitative measurement of phenotypic features associated 

with many biological disorders.

More recently, researchers have placed a greater emphasis on generating extensive, mineable 

databases of radiological images and phenotypic features extracted and quantitatively 

analyzed in a high-throughput fashion [34,35]. The field was spurred by the observed 

heterogeneity in tumor microenvironment, metastatic nature of various cancers, and 

treatment responses. It employs automatic and semi-automatic segmentation and image trait 

extraction algorithms to generate individualized and targeted lists of imaging biomarkers 

[36]. Those features then undergo a conservative selection process in which only those that 

exhibit high specificity, stability, reproducibility, and information-to-count ratio are retained 

as potential phenotypic predictors.

GENOMICS and IMAGING META-ANALYSIS

The accumulation of a wealth of histopathologic, omic, and imaging data, in addition to 

electronic medical records, has fostered investigations in the assimilation of a variety of 

biological “big data” to better understand pathogenesis. A relatively new field, 

“radiogenomics” or “imaging genomics” emerged as part of the hybrid, multidisciplinary 

initiative to leverage and correlate phenotypic and genotypic traits of biological disorders 

[3,37,38].

Initially explored by neuroscientists, radiogenomic frameworks were utilized to study brain 

endophenotypes and decode neurodevelopment and mechanisms that mediate the complex 

traits of cognition, brain plasticity, and neurodegeneration. Amongst some of the 

collaborative neuroimaging genomics efforts in the field are the Enhancing NeuroImaging 

Genetics through Meta Analysis (ENIGMA) consortium [39], the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) [40], and the Human Connectome Project [41]. By 

conducting GWAS, they are attempting to link SNP biomarkers and genetic variants with 

structural and functional neuroimaging phenotypes [39,42]. Integrating tools from genetics, 

“omics”, and imaging, they aim to decipher the human brain and elucidate the intricate 

molecular underpinnings of neurodegeneration [39,43,44]. On a morphological level, many 

research groups have observed genetic influences on total intracranial and hippocampal 

volume [45], cortical thickness [46], subcortical structures [47], and white matter 

microstructure integrity [48]. To a lesser extent, genetic associations with physiological 

alterations have also been linked to human behavior and neurodegenerative disorders [49]. A 

few genetic studies have explored similar correlations with neuronal activation patterns [50], 

fractional anisotropy (FA) [51], and cerebral amyloid precursor protein accumulation [52].

Given the extent of processing information attainable through functional imaging, 

radiogenomics studies using PET and certain MR protocols offer the potential for a 

distinctive look into changes in the physiology and molecular activity during disease onset 

and progression [49]. Diffusion Tensor Imaging (DTI) MR and 18F-FDG PET imaging 

annotations have been speculated to exhibit higher sensitivity to effects of genetic variants 

and as a result yield stronger association signals [53,54]. A recent study by the ENIGMA 
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consortium conducted a heritability analysis of tract-derived FA measures obtained from 

multi-site DTI MR brain images of healthy subjects [55]. FA scalar maps, which account for 

the directional preference of water diffusion and fiber coherence, are extensively used to 

infer the state of white matter (WM) microstructure integrity in neurodegenerative diseases 

[55,56]. They generated a pipeline composed of a standardized high-resolution FA-based 

registration space and WM skeleton to address inter-site variability in protocol 

administration, operation, and measurement. Using voxel-wise heritability analysis, they 

extracted FA phenotypes with high levels of heritability. Through imaging protocol 

harmonization, they proved successful at laying a strong foundation for future multi-site 

GWAS endeavors and rendering FA measures a more robust candidate endophenotype.

Scalable in its nature, radiogenomics is now being pursued in oncology, as the field applies a 

personalized genomic- and environmentally-centered approach to identify prognostic and 

predictive tumorigenesis biomarkers [3]. The network-scale rewiring of signal transduction 

and metabolic pathways during carcinogenesis has led to the hypothesis that genomic 

alterations foster adaptation to varying selection pressures, enabling cancer cells to evolve in 

a Darwinian fashion and as result prevail chemo and radiation treatment [57]. Mapping 

altered molecular behavior onto cancer imaging features enables noninvasive assessment of 

the underlying molecular machinery, providing exhaustive spatial and temporal coverage of 

tumor development, metastasis, and heterogeneity [58]. Research groups have already 

investigated genotypic associations with functional measures such as 18[F]-2-

fluorodeoxyglucose (FDG) uptake [54] and morphologic traits such as non-uniform 

enhancement patterns and architectural distortion [59], cerebral edema and cellular invasion 

[60], and intratumoral vasculature and tumor margin definition [61].

TRANSCRIPTOMICS

Transcriptome sequencing and expression profiling have laid the foundations for studies of 

the transcriptional structure of genes. By cataloguing and mapping the transcriptome, 

researchers have been able to quantitatively evaluate altered expression levels during 

development and pathogenesis [62]. Analyzing total RNA derived from protein-coding and 

non-coding genes, which actively reflects time-resolved gene expression, offers a deeper 

understanding of the inner workings of a cell. This has rendered transcriptomics crucial in 

disease investigation, readily competing with other “omic” tools (Figure 1). In addition to 

providing a thorough snapshot of total gene activity, transcriptomics is impermeable to 

limitations of proteomics, including a large domain size, difficulty amplifying and detecting 

low-abundance proteins, and proteins’ dynamic nature [63,64]. It also outperforms 

metabolomics in simplicity, maturity, and depth, despite being unable to relay cellular 

biochemical activity [65].

Various hybridization- and sequencing-based methods have been developed to profile gene 

expression and quantify the transcriptome. Notwithstanding the popularity of microarray 

technology, high-throughput next generation sequencing (NGS) is surpassing Moore’s law 

predictions, rapidly becoming the platform of choice for transcriptional profiling [66]. 

Hybridization-based methods are limited by the introduction of individual bias due to 

reliance upon prior knowledge of the transcriptome. Restricted to closed systems, only 
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mRNA with corresponding homologous printed probes can be measured and only known 

transcripts are accounted for [67,68]. As a result of high noise and saturation background 

levels and cross-hybridization, microarrays are also constrained in detection dynamic range 

and suffer from quantitative inaccuracies due to nonlinear dye response [69]. Furthermore, 

intra- and inter-tumor diversity raises the concern of sampling errors when using microarray 

methods in oncology studies [70]. RNA-seq is therefore poised to address limitations of 

microarray-based investigations. Albeit with higher costs and further analytical complexity, 

RNA-seq proves superior for gene network construction [66]. By aligning reads against 

splice junctions, it can identify isoforms, gene fusions, alternative splicing sites, and post-

transcriptional RNA editing events with greater sensitivity and higher spatio-temporal 

resolution [71]. Able to conduct a robust, limitless, and unbiased genome-wide survey of the 

transcriptome, RNA-seq can quantify transcripts with over six orders of magnitude of 

dynamic range [66,72]. With the exponential decrease in sequencing costs and advances in 

sequence detection methods, library preparation protocols, and multiplexing capabilities, 

NGS-based RNA-seq has revolutionized gene expression profiling studies, translating into 

countless novel discoveries of pathogenic biomarkers.

Quantitative analysis of the transcriptome by RNA-seq encompasses many layers that extend 

beyond the mere evaluation of gene expression levels. Investigators often aim to detect novel 

splice junctions, transcripts, and fusion genes and identify translocation, differential 

alternative splicing, and post-transcriptional events as they relate to the evolution of complex 

traits and pathogenesis [73]. Gene expression levels are estimated by mapping RNA-seq 

reads against a reference genome or transcriptome. By comparing expression levels across 

various conditions, researchers can then extract key differential expression genes and embed 

results in a network framework for a systems evaluation of gene-pathway interactions. 

Assessment of alternative splicing events and mRNA isoform expression levels has also 

become an emergent field of interest when analyzing RNA-seq data. The role of pre-mRNA 

alternative splicing, as well as other types of transcript isoform variation in modulating gene 

expression and consequently rendering diverse transcriptome and proteome populations, has 

elicited a belief in a direct causal relationship between isoform-level dysregulation and 

disease susceptibility and initiation [74]. The basic modes of alternative splicing include 

(Figure 2): (i) exon skipping, (ii) mutually exclusive exon usage, (iii) alternative 5′ donor or 

3′ acceptor splice sites, and (iv) intron retention [75]. Additionally, alternative initiation and 

alternative polyadenylation, sometimes coupled with alternative splicing, are two other 

common sources of transcript isoform diversity. Through varying combinations of those 

modes, alternative splicing and transcript isoform processing can dynamically regulate gene 

function, spatially and temporally accounting for environmental impacts on phenotypic 

development [75].

RNA-seq technology has opened up diagnostic applications beyond the purview of 

microarrays, providing information on disease-specific gene expression, RNA variants, and 

fusions at a fraction of the cost of whole-genome sequencing [76]. However, its transition to 

the clinical practice is hindered by the prerequisite for standardization and establishment of 

benchmark datasets to assess analytical sensitivity, specificity, accuracy, and reproducibility 

[77]. Researchers are in the process of investigating potential sources of bias across sites, 

including library preparation methods, sample collection, and sequencing platform selection, 
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to develop standardized metrics that can minimize artifacts and false discoveries. The 

development of rigorous protocols that can account and correct for such biases and perform 

cross-validation of results is critical in a clinical sequencing workflow. Additionally, clinical 

protocols will also have to be optimized to account for low-quality and low-abundance 

specimens [76]. A rapid turnaround in the delivery of analysis results, along with the 

maintenance of a reasonable cost of operation and support from insurance companies, will 

also have to be met prior to the wide adoption of RNA-seq in clinical settings [76].

“RADIOTRANSCRIPTOMICS”

Currently, the term “radiogenomics” has been used broadly to refer to studies that correlate 

imaging data with diverse types of omics data. However, in its strictest sense 

“radiogenomics” should address specifically variations at the DNA level. Given the extent of 

available “omic” data and the variety of information provided through each type, 

transcriptomic data can be combined with imaging to offer further insight into the molecular 

intricacies of diseases. Studying the transcriptome allows us to venture into the intermediate 

stage from gene to protein, providing functional context to key genes, along with regulatory 

mechanisms through which they confer selective expression variations in pathogenesis. We 

therefore propose a more specific term “radiotranscriptomics” as the newest member of 

expanding efforts in omics-phenotype data integration (Figure 3).

A few currently-existing efforts have begun exploring the integration of microarray 

expression profiling data with imaging features to non-invasively study the molecular 

characteristics of various tumor types and predict clinical outcome. A study conducted by a 

group in Stanford investigated oncogenomic correlates of non-small cell lung cancer 

(NSCLC) by linking FDG uptake PET imaging features to genome-wide expression 

signatures [54]. A prognostic multivariate FDG uptake model was generated by associating 

single gene and co-expressed gene clusters with various standard uptake values (SUVs) and 

survival information. The heterogeneity in tissue-specific uptake of FDG, an established 

surrogate for glycolysis, was observed to be a comprehensive transcriptomic-level marker 

for dysregulated cellular bioenergetics in tumorigenesis. Another study explored the 

association of MR volumetrics with mRNA and microRNA (miRNA) expression levels in 

glioblastoma multiforme (GBM) [60]. They measured fluid attenuation inversion recovery 

(FLAIR) signal abnormalities in relation to edema and cellular migration and correlated 

select radiophenotypes with gene expression. By means of Ingenuity Pathway Analysis 

(IPA), they identified top concordant genes and molecular pathways that can potentially 

serve as diagnostic determinants of cancer invasion and metastasis. Another recent study by 

Aerts et al. examined the association of a pre-defined list of quantitative imaging annotations 

with gene expression profiles of lung cancer patients [35]. Through gene-set enrichment 

analysis (GSEA), they unveiled a coupling between several oncogenic cell cycle and 

proliferation pathways and four such features. Given the abundant concern of false positive 

gene hits as a result of the probe-dependent nature of microarrays, we believe RNA-seq 

technology to be extremely promising in its ability to improve upon existing results in the 

field of “radiotranscriptomics”.
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A working “radiotranscriptomics” pipeline will involve the (i) selection of an adequate 

mRNA profiling dataset and transcript analyses method, (ii) extraction of quantitative image 

annotations, (iii) data sharing and harmonization, (iv) application of appropriate statistical 

and analysis algorithms for association studies, (v) visual representation and predictive 

modeling, and (vi) potential integration of additional molecular and clinical variables. The 

Cancer Genome Atlas (TCGA), in connection with The Cancer Imaging Archive (TCIA), 

creates an effective dataset repository for exploratory studies [78]. It offers a wide range of 

publically accessible microarray and RNA-seq mRNA and miRNA gene expression data 

from surgically resected tumors, along with corresponding patient radiological information 

[78,79]. Analysis of total gene expression, isoform variation, and alternative splicing events 

can be interchangeably pursued to account for RNA’s complex nature. A subset within the 

associated imaging dataset should then be selected, varying the choice of modality per 

interest in either morphologic or physiologic phenotype extraction. Preference should be 

given to protocols that render high reproducibility, reliability, and accuracy, as well as scans 

of ample sample size and sufficient pre- and post-treatment/resectioning time incremental 

measures. Following that, a controlled and comprehensive set of imaging features should be 

defined based on prominence, reproducibility, and independence from other traits [36]. 

Validation by domain experts will help moderate inhomogeneity and obfuscation in 

quantitative analysis [80]. Collaborations across multiple cohorts are encouraged to ensure 

sufficient power, statistical significance, and credibility for the proposed association studies. 

As a result, it is crucial to harmonize the process by establishing a regimented protocol that 

addresses multi-site acquisition and patient population variability. This involves image-space 

registration along with the use of consistent sequence alignment methods to map 

transcriptomic reads and data analysis tools to limit spurious positives. Afterwards, a 

quantitative statistical analysis scheme (e.g., weighted gene co-expression network analysis 

[81]) should be employed to elucidate a predictive relationship between gene expression/

isoform variation and phenotype. Investigators can refer to their research goals to guide their 

selection of correlation linkage, association, or regression estimation methods to obtain 

strong signals for single gene, gene set, and network analyses. In the process, additional 

mathematical methods will be needed to mitigate limitations of data dimensionality 

variations and insufficient “good data” sample sizes. Researchers will have the opportunity 

to consolidate supplementary clinical and molecular signature levels within patient records 

to improve upon their predictive “radiotranscriptomic” model. Finally, validation of results 

will have to be performed to differentiate true associations from false discoveries. This can 

be done orthogonally through basic experimental science bench work. Replication studies 

using independent datasets can also be used to validate findings.

“RADIOTRANSCRIPTOMICS” CHALLENGES

“Radiotranscriptomics” has all the ingredients fitted to explore new biomedical questions 

and complements other methodologies in clinical assessment. Nonetheless, it is noteworthy 

to bring attention to limitations and workarounds potentially associated with such an 

approach. First and foremost, the field’s greatest challenge is the limited number of existing, 

well-documented datasets that include concurrent RNA-seq and medical imaging data. We 

anticipate this will become less of a concern in the near future, in view of the increased 
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interest in biomedical Big Data and allocation of funds for cross-disciplinary and multi-omic 

research.

Moreover, the unsupervised nature of quantitative association studies makes it difficult to 

distinguish true biological signals from artifacts due to technical variability and confounding 

factors. Technical variability can occur throughout the various stages of a 

“radiotranscriptomics” workflow: study design and protocol, time points of data collection, 

RNA-seq library preparation, image acquisition and processing, to name a few. Confounding 

factors can include changes in gene expression due to physical environment, genetic or 

demographic variables such as population stratification, and inherent variations between 

subjects arising from age, gender, or other features. Careful study design and data analysis 

strategies are needed to minimize the effect of technical artifacts and confounding factors. 

We should also note that the association studies between transcriptome and imaging data 

will reveal correlation but not causality. Causal inference in “radiotranscriptomics” will 

nonetheless continue to be challenging, as in other areas of transcriptome-phenotype 

mapping efforts.

In addition, the majority of collected RNA-seq data are from analyses at the cell population 

level. This can fail to account for intratumoral heterogeneity, in which apparently identical 

cells can still harbor varying degrees of mutation and consequently promote an inconsistent 

behavioral pattern of disease progression and recurrence and treatment response [82]. 

Single-cell RNA-seq can help mitigate this shortcoming, identifying cell-type specific 

characteristics, albeit with higher sampling errors and technical noise.

SUMMARY

Given the temporal and functional nature of transcriptome-level analysis, 

“radiotranscriptomic” models have an edge over other data-driven frameworks in disease 

risk stratification and clinical assessment. By harnessing RNA-mediated regulation of gene 

expression, the field can appropriately capture the transcriptional state of a cell, offering a 

keener insight into the current underlying molecular and functional state. It also provides 

information on patient-specific epigenetic and environmental modifications believed to be 

major contributors to the acquisition of pathogenic traits. Accounting for the intrinsic 

dynamic nature of biological systems and the relationship between molecular, functional, 

and anatomical stages, “radiotranscriptomics” has naturally lent itself to investigations in 

complex, multifactorial disorders such as cancer, neurodegeneration, and autoimmune 

diseases (Figure 4).

Medical imaging is often used to grossly characterize underlying molecular features. 

Nonetheless, “radiotranscriptomics” can also pave the way for mining the reverse 

relationship, in which transcriptomic signatures serve as input to predicting imaging 

annotations. Imaging offers an aggregate representation of the underlying function. Studying 

the microenvironment of a transcriptome can elucidate the associated physiology and help 

guide clinicians in scouting for pathogenic phenotypes and generating all-inclusive lists of 

imaging features. Furthermore, medical imaging continues to lag behind in its ability to 

adequately capture biomarkers, namely in cases of early disease onset or multi-faceted 
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disorders that lack a standard trend. By studying thematic expression patterns in relation to 

observed regional physical properties, researchers are better equipped to design novel 

imaging protocols that can specifically target such signatures.

Moreover, the translational capabilities of “radiotranscriptomics” render it an equally 

informative tool for both researchers and clinicians. Research studies are typically 

meticulous in following controlled imaging protocols and quality control procedures when 

using data across multiple sites. However, image acquisition parameters are constrained by 

local settings and scanner capabilities, therefore making it difficult to standardize the 

parameters and subsequent image. The application of an endophenotypic approach to 

disease assessment and stratification has the potential to overcome imaging-only biomarkers 

that are prone to this issue. The integration of multi-level biological data, including 

prognostic quantitative imaging biomarkers, radiogenomic and radiotranscriptomic 

signatures, and clinical variables, can generate more robust, precise descriptors as input to 

personalized patient plans. Through “radiotranscriptomics”, specifically, clinicians can 

further tune treatment regimens by building temporal models to match time-series 

transcriptomic information with serial imaging and patient record observations.

The potential applications of “radiotranscriptomics” extend far beyond the immediate rejoice 

of joining many systems biology efforts in the integration of “big data” in medicine. 

Through a Venn diagram synergistic coupling of molecular indexes from transcriptomics, 

phenotypic traits from imaging, and clinical data from medical records (Figure 5), the field 

offers the potential to radically transform the face of modern medicine. 

“Radiotranscriptomics”, thus, poses as a promising contributor to the P4 “predictive, 

preventive, personalized, and participatory” and precision medicine initiatives, promoting 

both proactive and reactive measures through disease detection in pre-symptomatic phases 

and tailored targeting of therapeutic plans.
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Figure 1. A systems biology approach through “omic” tools
The directional relationship of “omic” tools enables researchers to study the phenotypic 

progression from genome to metabolome. Multi-level data exists at the (i) genomic-level: 

single-nucleotide polymorphism (SNP), copy number variation (CNV), and loss of 

heterozygosity (LOH); (ii) transcriptomic-level: messenger RNA (mRNA), micro-RNA 

(miRNA), and non-coding RNA (ncRNA); (iii) proteomic-level: proteins; (iv) metabolomic-

level: metabolites, and (v) epigenomic-level: DNA methylation and histone modification.
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Figure 2. Alternative splicing modes of isoform variation
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Figure 3. From Radiogenomics to Radiotranscriptomics
We propose a transition from the integration of imaging with genomics to that with 

transcriptomics, to unravel the impact of epigenetic and environmental factors on the static 

DNA code in the etiology of complex diseases. Note that studies involving gene expression 

and medical imaging have already been explored under the umbrella of radiogenomics. 

However, radiotranscriptomics is a more specific term, given that gene expression analysis is 

done at the transcriptome level.
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Figure 4. "Radiotranscriptomic" maps of biological disorders
Heatmap presents varying expression levels in correlation with a GBM-associated MR 

imaging annotation.
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Figure 5. Integration of molecular, functional, and anatomical data in Radio-“ ”-omics
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