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EPIGRAPH

The only moment of possible happiness is the present.
The past gives regrets. And future uncertainties.

Arsène Wenger

Ask and it will be given to you; seek and you will find;
knock and the door will be opended to you.

For everyone who asks receives; the one who seeks finds;
and to the one who knocks, the door will be opened.

Matthew 7:7-8

If I have seen further it is by standing on the shoulders of Giants.

Isaac Newton
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The objective of this dissertation is to develop novel statistical models for modeling

different types of high-dimensional data such as large-scale survey data, HIV genetic linkage

network data and fMRI data. This dissertation is compromised of five parts. The Mann-Whitney-

Wilcoxon rank sum test (MWWRST) is called for when two-sample t-tests fail to provide

meaningful results, as they are highly sensitive to outliers. In the first chapter, we develop an

approach to extend the MWWRST to survey data to test the null of equal mean rank. Akin to

the goal of modeling paired subjects’ outcomes, or between-subject outcomes in MWWRST, in

the second chapter, we model the probability of HIV genetic linkage by using semiparametric
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functional response models (FRM). We apply the proposed method to study the genetic linkage

between and within villages in Botswana from the Botswana Combination Prevention Project

(BCPP), which is a cluster randomized study to implement interventions to prevent and control

HIV transmission in Botswana. Since BCPP is a survey study with nonresponse, we adopt the

doubly robust estimator to address the missing data problem.

During the COVID-19 pandemic, at UCSD, daily high-resolution wastewater surveillance

at the building level is being used to identify potential undiagnosed infections and trigger

notification of residents and responsive testing, but the optimal determinants for notifications

are unknown. To fill this gap, we propose a framework for identifying features of a series of

wastewater test results that can predict the presence of COVID-19 in residences associated with

the test sites by using classification/decision tree models. This collaborative work also motivates

us to study the asymptotic properties of an ensemble of multiple classification trees, random

forests model, and extend it to model between-subject outcomes in the next chapter.

Finally, my research on high-dimensional data also includes work on functional magnetic

resonance imaging (fMRI). To detect peaks and identify the locations of peaks in fMRI data, we

develop a Monte Carlo method to compute the height distribution of local maxima of a stationary

Gaussian or Gaussian-derived random field that is observed on a regular lattice.
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Introduction

The development of this dissertation is motivated by analyzing high-dimensional data and

observational data from national surveys, image analysis and network analysis. Technological

advances in the internet and digital arena have greatly facilitated data collection and analysis

for research and other purposes. In particular, surveys can be conducted to collect data instanta-

neously to provide important information for timely issues and topics, medical images can be

used for incurable diseases such as cancer and Alzheimer’s disease diagnosis and prognosis, and

network epidemiology can be leveraged to investigate patterns of disease transmission dynamics

and the effect of interventions on them. These data bring unprecedented statistical challenges,

including the unique and intractable data structure and ultra-high data dimensionality.

Traditional parametric regression models and two-sample t-test require strict data as-

sumptions such as the data need to be independent and identically distributed (iid) and Normally

distributed. However one particular problem arises from modern large-scale surveys is increased

number of outliers, which violates the Normality assumption, thus yielding uninterpretable

and often biased results. Rank-based methods such as Mann-Whitney-Wilcoxon rank sum test

(MWWRST) are good alternatives for mean-based methods when the data have outliers. By

utilizing the latest development in semiparametric models, we develop a Mann-Whitney form

based MWWRST to compare mean ranks between two groups for survey data [61]. Compared

with a previous approach from Lumley and Scott [64], which focuses on testing the null of equal

distribution, our method has a less restrictive null and works better as an alternative for t-test. We

illustrate the proposed approach and show major differences from Lumley and Scott’s approach

using both NHANES and simulated data.
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The iid assumption is critical for traditional statistical methods centered around individual

outcomes, which we termed ”within-subject attributes”. This assumption can easily be violated

when analyzing ”between-subject attributes”, which is introduced to define functions of paired

individual outcomes. For example, outcomes defined by pairwise comparisons between two

groups, akin to the MWWRST test statistics, and network connectivity defined for a pair of

nodes in a network. To model between-subject attributes, we take advantage of the functional

response model (FRM) [62], which is a class of semiparametric models that is free of distribution

assumption. A major difficulty of inference about this model is classic asymptotic theories

including law of large number (LLN) and central limit theorem (CLT) could not be directly

applied since data is not iid. Therefore in this work we illustrate how to utilize U-statistics based

weighted generalized estimating equations (UWGEE) to estimate the parameter and justify the

consistency and asymptotic normality of the proposed estimator using U-statistics theory [55].

The method has been applied to analyze linkage network data from a large cluster-randomized

trial, the Botswana Combination Prevention Project (BCPP), to evaluate the effectiveness of

interventions designed to control HIV in Bostwana. Specifically, we develop a doubly robust

estimator of network linkage probabilities in the presence of missing data for the BCPP study.

Although the semiparametric methods we have been working on are more robust than

the parametric models and can be used to model the non-iid between-subject outcomes, they

still require correct specifications of the parametric conditional mean. For longitudinal and

observational data, this parametric form is required for the main model of interest, auxiliary

components for weights (e.g. logistic regression for IPW methods) and outcome regression (for

doubly robust estimators).

A GSR work on leveraging the decision tree method for COVID-19 surveillance immedi-

ately piqued my interest in random forests (RF). During the COVID-19 pandemic, wastewater

surveillance of the SARS CoV-2 virus has been demonstrated to be effective for population

surveillance at the county level down to the building level. At the University of California San

Diego (UCSD), daily high-resolution wastewater monitoring at the building level is being used

2



to identify potential undiagnosed infections and trigger notification of residents and responsive

testing, but the optimal determinants for notifications are unknown. To fill this gap we pro-

pose a framework for identifying features of a series of wastewater test results that can predict

the presence of COVID-19 in residences associated with the test sites. Using time series of

wastewater results and individual testing results during periods of routine asymptomatic testing

among UCSD students from 11/2020-11/2021, we develop hierarchical classification/decision

tree models to select the most informative wastewater features (patterns of results) which predict

individual infections. We find that the best predictor of positive individual level tests in residence

buildings is whether or not the wastewater samples were positive in at least 3 of the past 7 days.

We also demonstrate that the tree models outperform the random forest models in modeling the

data from our setting. Results of this study have been used to refine campus-wide guidelines and

email notification systems to alert residents of potential infections.

After this project, I started developing RF-based nonparametric models. Although RF has

been widely applied, asymptotic properties of estimated nonparametric regression relationships

have not been carefully studied, until the seminal paper of Wager and Athey (2018) [96]. This

serves as a perfect theoretical basis for the extension of RF to between-subject cases because

both asymptotic proofs rely heavily on U-statistics theory. By integrating their U-statistics based

approach into ours, in this work I extend their RF-based estimators for causal inference for

MWWRST. The proposed method can have a wide range of applications in inference about

personalized treatment effects by adjusting high dimensional covariates.

Recent development in statistical methods for high-dimensional imaging data facilitates

the research on functional magnetic resonance imaging (fMRI), which can measure brain

activity by detecting changes associated with blood flow to learn brain structures and functions,

guide treatment of brain therapy and understand different types of brain-related disease such

as Schizophrenia and Alzheimer’s. Many previous studies used random field theory (RFT) for

inference in fMRI analysis [21, 80]. Recently, Eklund et al. (2016) investigated the validity

of RFT based cluster size and voxelwise inference and found that a number of the traditional

3



assumptions did not hold in practice, including the assumption to view data as a continuous

random field [37]. We develop an approach for performing peakwise inference to provide

inference without viewing fMRI as a continuous random field. This simulation-based Monte

Carlo discrete local maxima (MCDLM) approach works for any stationary Gaussian random field

under arbitrary connectivity (i.e., where local maxima are defined with respect to any desired

neighborhood). This offers a solution for small values of FWHM when the existing formula

derived for continuous domain is not accurate. Additionally, we extended the approaches in

Worsley (2005) and Taylor et al.(2007) to compute the height distribution and compared it with

our approach as well as the RFT approach in Schwartzman and Telschow (2019) by simulations

[101, 87, 80]. The simulation results supported MCDLM as a well-suited approach for inference

on peak heights when smoothness levels are low.
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Chapter 1

Extending the MWW Rank Sum Test to
Survey Data for Comparing Mean Ranks

1.1 Introduction

Survey studies are widely used to provide timely information on important topics of

interest in a population of interest, such as demographic distribution, voter opinions and disease

prevalence. Analysis of survey study data requires some special attention because of complex

sampling designs employed to obtain reliable and efficient population-level inference. Survey

methodology allows us to intentionally alter distributions of different subgroups in the survey

sample by over- and/or under-sampling some subpopulations so that under-represented groups

are well represented to ensure reliable population-level estimates without resorting to extremely

large samples. Conventional statistical methods generally yield biased estimates due to such

“selection bias”.

After Horvitz and Thompson’ seminal work [49], many popular statistical methods have

been extended to survey data and popular statistical packages such as R, SAS, SPSS and STATA

all provide support for such methods. For example, many popular SAS procedures have their

survey counterparts to facilitate analysis of survey data, such as PROC SURVEYREG for linear

and PROC SURVEYPHREG for Cox regression analysis [85].

More recently, Lumley and Scott (2013) developed an approach to extend the Mann-

Whitney-Wilcoxon (MWW) rank sum test to survey data with an accompanying R package for
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facilitating research [64]. Their approach has filled an important gap in survey methodology, as

it tackles a rank-based statistic for which application of inverse probability weighting (IPW) of

Horvitz and Thompson is not straightforward. However, their approach tests the null of equal

distribution, which, although efficient for comparing two distributions, is limited in practice.

For example, consider two normal distributions with a common mean but different variances.

Although the two groups are considered no different in most studies, the null tested by Lumley

and Scott’s approach does not hold true in this example. Moreover, the MWW test is generally

called for when two-sample t-tests (with or without equal variance assumed) are problematic to

apply, as such mean-based tests are highly sensitive to outliers. In such situations, the MWW

test meaningfully compares mean ranks between two groups.

Unlike mean and median, mean rank for a group is calculated based on ranking observa-

tions from all groups (two in the case of MWW test) and thus is less intuitive as a measure of the

center of one single distribution. Many interpret comparing mean ranks as comparing medians

of distributions and apply the MWW for this purpose [71, 35] . Although the two measures are

identical for some special distributions (see Section 1.2 for details), they are generally different.

Despite such differences, mean rank as a center of a distribution is widely used in practice, such

as the MWW test within the current context, Kruskal-Wallis test and rank regression [57, 20].

In this paper, we consider an extension of the MWW to survey data for testing the null of

equal mean rank between two groups. After a brief overview of survey sampling and sampling

weights in survey studies in Section 1.2, we discuss this null of interest and its relationships to

the null of equal distribution and the null of equal median. We then develop an extension of the

MWW to testing this null by integrating sampling weights within the context of the MWW test.

We examine performance of the proposed approach and illustrate its differences with Lumley

and Scott’s test of equal distribution using both simulated and real data in Section 1.3. We give

our concluding remarks in Section 1.4.
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1.2 Mann-Whitney-Wilcoxon Rank Sum Test for Survey
Study

1.2.1 Survey Sampling and Sampling Weights

Consider a population ΩN of finite size N and let yi denote a continuous outcome of

interest. For inference about quantities of interest such as the mean of yi, we may randomly

sample ΩN to obtain a set S of size n to construct estimates such as the sample mean y· =
1
n ∑i∈S yi

of yi. To facilitate investigation of properties of estimates, S and ΩN can both be viewed as

subsets of a superpopulation Ω̃ of infinite size so that their defined sample means are all consistent

estimates of µ = E (yi), the mean of yi defined by the superpopulation Ω̃. Under this framework,

we can study and compare different estimates defined by the sample S for their asymptotic

properties with respect to Ω̃ such as consistency of the sample mean y· =
1
n ∑i∈S yi [90, 86]. If

sampling fraction n
N is not sufficiently small, non-independence across the yi’s in S may have a

non-negligible effect on the asymptotic variance of an estimate and a correction factor N−n
N may

be applied [86]. In what follows, we refer to ΩN as the study population and assume that n
N is

sufficiently small so that no correction is necessary for the asymptotic variance.

When the study population is heterogeneous, especially with large variation in subpopula-

tions, simple random sampling by taking a random sample of the population may yield unreliable

or even biased estimates due to insufficient representation of under-represented subpopulations

unless with an extremely large sample. Survey studies employ complex sampling methods for

more efficient inference. For example, under stratified sampling, the population is partitioned

into a set of subpopulations, or strata, and simple random sampling is applied within each stratum

to obtain a sample of the population. This hierarchical sampling approach ensures sufficient

representation of all subpopulations of interest without resorting to an extremely large sample.

As the stratified sample no longer represents the study population, sampling weights must be

used to construct population-level estimates.

For example, for inference about the mean µ , if the population is partitioned into H (≥ 2)
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strata of size Nh and a sample of size nh (≤ Nh) is taken from each stratum, sampling weights

whi and an unbiased estimate µ̂ of µ are constructed as follows:

µ̂ =
1

w··

H

∑
h=1

nh

∑
i=1

whiyhi, fh =
nh

Nh
, whi =

1
fh
, (1.1)

w·· =
H

∑
h=1

nh

∑
i=1

whi =
H

∑
h=1

Nh = N, n =
H

∑
h=1

nh, 1 ≤ h ≤ H,

where fh is sampling fraction within each stratum [27]. Although construction of sampling

weights depends on specific sampling schemes, estimates of µ are constructed in the same form

as in (1.1), regardless of sampling methods used. For example, many large scale survey studies

employ multi-stage sampling procedures such as counties, households and individual subjects

[86], estimates of µ still have the same form (1.1).

In practice, sampling weights may also account for other issues in survey studies such as

non-responses [86, 9]. In the following development, we assume sampling weights are given

and focus on inference about quantities of interest with such weights.

1.2.2 Mann-Whitney-Wilcoxon Rank Sum Test

Consider two independent samples and let yki denote outcome of interest from the ith

subject within group k (1 ≤ i ≤ nk, k = 1,2). The Mann-Whitney (Un) and Wilcoxon (Wn) of

the MWW rank sum test statistics are given by [66, 99, 55]:

Un =
1
n1

1
n2

n1

∑
i=1

n2

∑
j=1

I
(
y1i ≤ y2 j

)
; Wnk =

nk

∑
i=1

Rki, (1.2)

where I (A) is an indicator with I (A) = 1 if A is true and 0 otherwise and Rki denotes rank

scores based on pooled yki. The above test statistics are for continuous data. If yki is discrete,

the Mann-Whitney statistic becomes Un =
1
n1

1
n2

∑
n1
i=1 ∑

n2
j=1
[
I
(
y1i < y2 j

)
+1/2I

(
y1i = y2 j

)]
to

account for ties. For simplicity, we focus on the continuous case using the test statistics in (1.2)

unless stated otherwise. The same considerations also apply to discrete data [86].
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The two forms of the MWW test in (1.2) are equivalent, since

Wnk = n1n2Un +
nk(nk +1)

2
. (1.3)

Both statistics can be used to form hypotheses. For example, to test for equal mean rank between

two groups, we may test the following null:

H0 : E (R1i) = E
(
R2 j
)

vs. Ha : E (R1i) ̸= E
(
R2 j
)
. (1.4)

which is equivalent to (see Appendix):

H0 : ∆ =
1
2

vs. Ha : ∆ ̸= 1
2
, (1.5)

where ∆ = E
[
I
(
y1i ≤ y2 j

)]
is the mean of stochastic ordering. The U-statistic, Un, in (1.2) is an

unbiased estimator of ∆, and its asymptotic normal distribution is widely used to test hypotheses

involving ∆ for non-survey study data [55]. Note that since Wn1 +Wn2 = n(n+1)/2, only one

of the Wnk’s can be used as a test statistic in practice (n = n1 +n2).

The MWW test is also used to test the null of equal distribution:

H0 : F1 (y) = F2 (y) vs. Ha : F1 (y) ̸= F2 (y) , (1.6)

where Fk (y) = Pr(yki ≤ y) denotes the cumulative distribution function (CDF) of yki (k = 1,2).

For example, a common Ha in this case is Ha : F1 (y) = F2 (y+ c) for some constant c, known as

location shift. The null (1.6) clearly implies the null (1.4), or (1.5). However, the reverse is

generally not true, such as comparing two normals with identical mean but different variances as

noted in Section 1.1.

When testing the null of equal distribution in (1.6), we calculate the asymptotic distri-

bution of the statistic (Un or Wnk) under this more restricted null, which is generally different
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from the asymptotic distribution for testing the null of equal mean rank in (1.4), or (1.5) [55]. If

interest lies in testing the null in (1.6), the corresponding asymptotic distribution should be used

as it generally leads to a more powerful test than the asymptotic distribution under the null in

(1.4), or (1.5). If the MWW test is called for to address limitations of two-sample t-tests, interest

generally lies in the null in (1.4), or (1.5).

As noted in Section 1.1, many believe that (1.4), or (1.5), also tests equal median between

the two groups [71, 35] . Indeed, for symmetric Fk (y)’s, equal median does imply H0 : ∆ = 1
2 , or

H0 : E (R1i) = E
(
R2 j
)
, and vice versa, as asserted by the following theorem (see Appendix for a

proof).

Theorem 1. Two symmetrically distributed yki have the same median if and only if the null in

(1.4), or (1.5), holds true.

However, for non-symmetric Fk (y)’s, there is no clear relationship between the two. For

example, if y1i is a χ2 and y2i is a rotated y1i around its median, then yki have the same median,

but not the same mean rank. On the other hand, for the following distributed yki:

y1i ∼U(0,1), y2 j ∼
33+3

√
57

64
(y1i −

√
57/3+2), (1.7)

the two groups have the same mean rank, but different medians, 0.5 for y1i and (
√

57 −

3)/(3
√

2)−
√

57/3+ 2 for y2 j. The following example shows that it is also possible for

non-symmetric yki’s to have the same median and same mean rank:

F1 (y) =


y
6 +

1
2 y ≤ 0

1
2 +

y2

2 y > 0
, F2 (y) =


y
2 +

1
2 y ≤ 0

1
2 + y− y2

2 y > 0
.

The class of non-symmetric distributions that have the mean rank and medium is actually quite

big. For example, for any symmetrically distributed yki’s with the same mean rank and medium

such as yki ∼ N
(
µ,σ2

k

) (
σ2

1 = σ2
2
)

and any monotone function g(·) such as g(·) = exp(·), we
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can create two non-symmetrically distributed zki = g(yki) that have the same mean rank and

medium. This is because ranks and mediums are invariant under monotone transformation. An

implication of this invariance property in practice is that if we can transform non-symmetricaly

distributed yki to symmetrically distributed ones or or nearly so, testing the null of same medium

is equivalent to that of equal mean rank or approximately so, and vice versa.

1.2.3 Weighted Mann-Whitney-Wilcoxon Rank Sum Test

Lumley and Scott proposed the following statistic for testing the null of equal distribution

in (1.6) [64]:

Tn =
1

w1i.

n1

∑
i=1

w1iR1i −
1

w2i.

n2

∑
j=1

w2iR2i, (1.8)

where Rki = F(e)
k (yi) and F(e)

k (y) denotes the empirical CDF of yki for group k (k = 1,2). The

test statistic in (1.8) compares two weighted mean ranks, which may be viewed as extending the

Wilcoxon form to account for sampling weights. Under the null in (1.6), the test statistic Tn has

an asymptotic normal distribution with mean zero and thus rejects the null if the weighted mean

ranks are significantly different.

Our approach is to extend the Mann-Whitney U-statistic Un in (1.2) to account for

sampling weights. To this end, we consider a weighted Mann-Whitney U-statistic of the form:

Un =
1

w1·

1
w2·

n1

∑
i=1

n2

∑
j=1

w1iw2iI
(
y1i ≤ y2 j

)
, wk· =

nk

∑
i=1

wki, k = 1,2. (1.9)

Unlike the Lumley and Scott’s test statistic in (1.8), the proposed test statistic in (1.9) is a

weighted average of indicators of stochastically ordered pairs I
(
y1i ≤ y2 j

)
, rather than ranks, of

observed
(
y1i,y2 j

)
. Although equivalent in the absence of sampling weights, the two forms of

the MWW rank sum test in (1.8) and (1.9) are generally different and lead to difficult conclusions

when applied to survey data (see also Section 1.3.1).

As summarized in Theorem 2 below, Un in (1.9) is also a consistent and asymptotically
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normal estimate of ∆ (see Appendix for a proof).

Theorem 2. Let

h
(
y1i,w1i;y2 j,w2 j

)
= w1iw2 j

[
I
(
y1i ≤ y2 j

)
−∆
]
, (1.10)

hk (yki,wki) = E
[
h
(
y1i,w1i;y2 j,w2 j

)
| yki,wki

]
,

σ
2
k =Var (hk (yki,wki)) , σ

2
U =

[
E (w1i)E

(
w2 j
)]−2 (

ρ
2
1 σ

2
1 +ρ

2
2 σ

2
2
)
,

lim
n→∞

n
nk

= ρ
2
k < ∞, wk· =

1
nk

nk

∑
i=1

wki,

ĥk (yki,wki) =
1
nk

n1k

∑
j=1

(
w1iw2 jI

(
y1i ≤ y2 j

)
− ∆̂

)
,

σ̂
2
k =

1
nk −1

nk

∑
i=1

[
ĥk (yki,wki)

]2
, k = 1,2.

Under mild regularity conditions, we have:

a. Un is consistent;

b. Un is asymptotically normal:

√
n(Un −∆)→d N

(
0,σ2

U
)

; (1.11)

c. A consistent estimate of σ2
U is given by:

σ̂
2
U = (w1·w2·)

−2
(

n
nk

σ̂
2
1 +

n
nk

σ̂
2
2

)
, (1.12)

where →d denotes convergence in distribution.

By using results in Theorem 2, we can readily compute p-values and/or confidence

intervals when testing the hypothesis in (1.5), or (1.4). If the null is rejected, confidence intervals

also provide information about the extent to which ∆ deviates from 1/2, or difference between

the mean ranks. Theorem 2 is also applicable if ∆ in (1.5) is different from 1/2 under H0,

although such nulls are less popular in practice.
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1.3 Illustration

We illustrate the proposed approach and compare its performance with Lumley and

Scott’s approach using simulated as well as real study data. In all examples, we set type I error

α = 0.05 and Monte Carlo (MC) sample size M = 2,000.

1.3.1 Simulation Study

Consider stratified random sampling from a study population of size N consisting of

two evenly distributed subpopulations, or strata, of size Nh = N/2 (h = 1,2). Let yki denote

an outcome of interest from group k (= 1,2). Under stratified random sampling, we randomly

sample mh subjects within stratum h. Let xhi denote the group indicator within the hth stratum

(xhi + 1 = k if group k is sampled) and let ykhi denote the sampled outcome within stratum h.

Let µkh denote the population mean of group k in the hth stratum and σ2 the common variance

across both strata and groups.

The above setting yields the following group mean, group size and sampling weights for

sampled subjects:

µk =
N1

N
µk1 +

N2

N
µk2, nk =

2

∑
h=1

mh

∑
i=1

xhi, wkhi =


N1
m1

if h = 1

N2
m2

if h = 2
, k = 1,2. (1.13)
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For our simulations, we set:

Nh =

 20000 if h = 1

20000 if h = 2
, m1 = m, m2 = 3m, n = 4m, σ

2 = 1, (1.14)

Scenario I : µk1 =

 −5 if k = 1

5 if k = 2
, µk2 =

 5 if k = 1

−5 if k = 2
, n = 200,400,

Scenario II : µk1 =

 5 if k = 1

2 if k = 2
, µk2 =

 10 if k = 1

13 if k = 2
, n = 200,400,

Following (1.13), the kth group has the mean:

Scenario I : µk =
1
2
(µk1 +µk2) = 0, k = 1,2.

Scenario II : µk =
1
2
(µk1 +µk2) =

15
2
, k = 1,2.

We simulate xhi and ykhi from the following statistical distributions:

xhi ∼ Bern(0.5) , log(ykhi) | xhi +1 = k ∼ N
(
µkh,σ

2) , (1.15)

1 ≤ i ≤ mh, k = 1,2, h = 1,2,

where Bern(µ) denotes a Bernoulli with mean µ . Under the above setting, each group is an

equal mixture of two lognormal distributions. For Scenario I, the two groups have the same

lognormal mixture and thus identical distribution. For Scenario II, the two groups have different

lognormal mixture distributions. By Theorem 1 and monotonicity of log(·), yki simulated under

simple random sampling for both scenarios will have the same mean rank between the groups

and ∆ = 0.5, thus satisfying the null in (1.4), or (1.5). However, only for Scenario I will the

two groups have an identical CDF. With stratum 2 sampled 3 times higher than stratum 1, the

simulated ykhi under stratified random sampling will have different group means (on log(y)
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scale):

Scenario I : µk =
m1

n
µk1 +

m2

n
µk2 =


5
2 if k = 1

−5
2 if k = 2

,

Scenario II : µk =
m1

n
µk1 +

m2

n
µk2 =


35
4 if k = 1

41
4 if k = 2

.

Thus if used directly without sampling weights, the two groups will have a location shift and

thus different mean ranks, in which case the (standard) unweighted MWW rank sum test will

yield incorrect inference.

Shown in Table 1.1 are estimates of ∆ (averaged over MC iterations), along with asymp-

totic and empirical standard errors, and empirical type I errors for testing H0 in (1.5), or (1.4), by

the proposed approach. For both scenarios and sample sizes, the estimated ∆ were quite close

(actually identical after being rounded to two decimal points) to the true ∆ = 0.5, asymptotic and

empirical standard errors were quite close to each other, and empirical type I errors were very

close to the nominal value.

Also shown in Table 1.1 are differences between the two group mean ranks (standardized

by the total sample size) for both scenarios and sample sizes; the mean rank is unweighted for

the unweighted MWW rank sum test and weighted for the Lumley and Scott’s MWW test. For

the unweighted test, Table 1.1 also showed the estimated ∆’s. The estimated ∆’s and type I

errors were all highly biased for the unweighted across all scenarios and sample sizes. The

differences between the unweighted mean ranks were also quite different from 0 in all cases.

For Lumley and Scott’s test, differences between the weighted mean ranks were quite

close to 0 for Scenario I but different from 0 for Scenario II for both sample sizes. Likewise,

the empirical type I errors were quite close to the nominal α = 0.05 for Scenario I but were

downwardly biased for Scenario II for both sample sizes. The findings for Scenario I are

expected since they are consistent with testing the null of equal distribution. For Scenario II, the
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Table 1.1. Results from a simulation study to examine performances of proposed weighted
(Proposed), along with Lumley and Scott’s weighted (L&S) and unweighted MWW rank-sum
test for two sample size n = 200 and 400.

Methods
Difference in
(weighted) mean rank

Estimates
of ∆ = 0.5

Variance
Type I errorAsymptotic Empirical

Scenario I: Sample size n = 200
Proposed 0.50 5.77×10−4 5.92×10−4 0.053

L&S −3.5×10−3 0.047
Unweighted -0.25 0.75 3.21×10−4 1.27×10−4 1

Scenario I: Sample size n = 400
Proposed 0.50 2.81×10−4 2.88×10−4 0.049

L&S −2.2×10−3 0.049
Unweighted -0.25 0.75 1.57×10−4 6.29×10−4 1

Scenario II: Sample size n = 200
Proposed 0.50 1.71×10−3 1.70×10−3 0.052

L&S -0.12 0.039
Unweighted -0.24 0.74 1.86×10−3 9.69×10−4 1

Scenario II: Sample size n = 400
Proposed 0.50 8.50×10−4 8.70×10−4 0.052

L&S -0.12 0.042
Unweighted -0.24 0.74 9.21×10−4 4.87×10−4 1

large differences between the groups’ mean ranks results are a bit surprising, since the two groups

simulated have the same mean rank under simple random sampling. Thus, unlike its application

to non-survey data, the weighted Wilcoxon Wn statistic in Lumley and Scott’s extension no

longer has a zero mean unless the null of equal distribution holds true. The proposed extension

by weighting the Mann-Whitney Un continues to yield consistent estimates of ∆ and provide

correct inference for testing the null of equal mean rank.

We also compared power between the two weighted methods by changing the group

means within each stratum in (1.14) to:

Scenario I : µk1 =

 −5.5 if k = 1

5.5 if k = 2
, µk2 =

 5 if k = 1

−5 if k = 2
, (1.16)

Scenario II : µk1 =

 −2 if k = 1

2 if k = 2
, µk2 =

 5 if k = 1

−5 if k = 2
.
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Table 1.2. Results from a simulation study to compare power between proposed weighted
(Proposed) and Lumley and Scott’s weighted (L&S) for n = 200.

Methods Mean Rank Difference Estimates of ∆ Power
I II I II I II

Proposed 0.066 0.09 0.43 0.59 0.79 0.73
L&S 0.066 0.09 0.78 0.89

For Scenario I, we again simulated ykhi from lognormals, while for Scenario II, we simulated

ykhi from lognormals for stratum 1, but from normals for stratum 2. Thus, the two groups have

more different distributions for the second than the first scenario.

Shown in Table 1.2 are Monte Carlo estimates of ∆ by the proposed, differences between

the weighted mean ranks from the groups, and power estimates by the proposed and Lumley

and Scott’s tests for n = 200. The two approaches yielded similar power estimates for the

first, but Lumley and Scott’s method provided more power for the second scenario. The large

increase in power compared with a small increase in the mean rank difference from the first to

the second scenario seems to indicate that Lumley-Scott test is also sensitive to differences in

shape parameters between the two groups. There was not much change in power estimates for

the proposed approach, actually a slight decrease, due to increased variability of sample mean

rank difference.

Note that strictly speaking, ykhi should be simulated from a finite population consisting of

N subjects. As indicated in Section 1.2.1, given the large difference between n and N, simulating

from such finite populations will yield similar results and draw same conclusions. However,

simulating ykhi from mathematical distributions makes it easier to control simulation parameters

and evaluate performance of different estimates.

1.3.2 Real Study

We applied the proposed approach to the NHANES 2013-2014 Questionnaire Data from

the National Health and Nutrition Examination Survey (NHANES), a large national health and
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Table 1.3. Results from NHANES 2013-2014 to compare serum copper concentration between
anemia and non-anemia groups with proposed (Propsed) and Lumley and Scott (L&S) methods,
along with two-sample t-test (for unequal variances).

Group Mean Std. dev. Mean rank p-value
t-test Proposed L&S

Original sample
Anemia 128.0 38.8 0.56 0.05 0.325 0.08
Non-anemia 117.7 29.5 0.49

Original sample with simulated data added
Anemia 113.3 31.9 0.43 0.09 0.11 0.02
Non-anemia 117.7 29.5 0.49

nutrition examination survey [42], to show difference between the null in (1.5), or (1.4), and

the null in (1.6). Lumley and Scott (2013) used NHANES II (1976-1980)[64] to illustrate

their approach by comparing their results with those from the unweighted MWW rank-sum test

reported by Knovich et al. (2008)[54] in studying serum copper concentrations in people with

and without anemia. We used the NHANES 2013-2014 Questionnaire Data, since, unlike the

NHANES II (1976-1980), this data set is available for free download from the Center for Disease

Control and Prevention website [42].

Out of 10,175 who completed the interview, 9,813 were examined. After excluding

all missing data, we obtained 2,266 subjects, 71 anemia and 2,195 non-anemia, with serum

copper amount recorded. Shown in Table 1.3 under “Original sample” are weighted sample

means, standard deviations and mean ranks of serum copper concentrations for the two groups.

The anemia group had a higher (sample) mean, standard deviation and mean rank than the

non-anemia. The weighted two-sample t-test (for unequal variance) was significant, while the

proposed and Lumley and Scott’s (L&S) test both showed a non-significant difference. Shown

in the left plot of Figure 1.1 is the (weighted) empirical CDFs (eCDFs) for the two groups, which

seems to indicate a small location shift. The p-value for the proposed is much larger than that

for the Lumley and Scott’s, reflecting a small difference (0.077) between the mean ranks.
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Figure 1.1. Weighted empirical cumulative distribution functions of copper
concentration for anemia and non-anemia group for (1) NHANES 2013-2014
Data (left) and (2) NHANES 2013-2014 Data plus 100 simulated values
(right).

To further illustrate differences between the two methods, 100 values simulated from

N(90, 30) and truncated by the support of the study data were added to the Anemia group of the

original sample, with sampling weights based on the mean weight (38457). Shown in Table

1.3 under “Original sample with simulated data added” are the same statistics from this altered

study sample and in the right plot of Figure 1.1 is the eCDFs. The decreased difference between

the sample means was so significant that it rendered a non-significant difference between the

group means, despite increased sample size. Despite reduced difference between the mean ranks

(0.063) and the two eCDFs, p-values for both the proposed and Lumley and Scott’s became

smaller due to increased sample size. Although the proposed remained non-significant, Lumley

and Scott’s test now indicated a significant difference. With the added observations, the two

center measures, mean and mean rank, were no longer significantly different, but their CDFs

remained significantly different. Thus, the proposed test is more consistent with testing nulls

concerning differences between center measures.
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1.4 Discussion

In this paper, we proposed an approach to extend the Mann-Whitney-Wilcoxon (MWW)

rank sum test to survey data with sampling weights. Unlike Lumley and Scott’s approach, which

extends to survey data using the Wilcoxon form, the proposed extension integrates sampling

weights into the Mann-Whitney form of the MWW test. Although equivalent in the absence

of sampling weights, the two test statistics are generally quite different and should be used for

testing their intended null hypotheses. If interest lies in testing the null of identical CDF, Lumley

and Scott’s approach should be used, as it is generally more efficient. If the MWW is used to

address limitations of two-sample t-tests when comparing two groups such as in the presence of

outliers, the proposed approach should be used, as it tests a null that is more relevant to what

t-tests set out to do. As shown by the simulated and real survey study data, the two extensions of

the MWW test generally yield different p-values, rendering them to serve for different purposes.

We also clarified relationships between two center measures, mean rank and medium.

Although equal to each other for symmetric distributions, the two center measures have no clearly

relationship for non-symmetric distributions. The original and proposed extension of the MWW

test can only test the null of equal mean rank, not equal medium. However, if two non-symmetric

distributions can be transformed to symmetric ones, then testing the null of medium is the same

as testing the null of equal mean rank, thanks to rank invariance under transformation. Thus, in

practice, if two groups have approximately symmetric distributions after transformation, they

will have similar mediums if they have same mean ranks and vice versa.

In addition to sampling weights, missing data due to non-response or other reasons is an-

other common problem. For example, in our analysis of the NHANES 2013-2014 Questionnaire

Data, we obtained only 2,266 subjects out of 9,813 who were examined. Missing data may well

be informative and results based on the subsample with complete data may not be generalized

to the study population sampled in this survey. Future work is needed to address such missing

data.
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Chapter 1, in full, is a reprint of the material as it appears in Tuo Lin, Tian Chen, Jinyuan

Liu, and Xin Tu. (2021). Extending the Mann-Whitney-Wilcoxon Rank Sum Test to Survey Data

for Comparing Mean Ranks. Statistics in Medicine, 40(7), 1705-1717. The dissertation author

was the primary author of this paper.

21



Chapter 2

Doubly Robust Estimation of Network
Linkage Probabilities in the Presence of
Missing Data.

2.1 Introduction

Molecular epidemiology is increasingly used to investigate patterns of HIV transmission,

epidemic dynamics; in addition, both the CDC and NIH have proposed that such analyses be

used to guide resources intended to end the AIDS epidemic [39]. An important feature of

such analyses is investigation of HIV genetic linkage; such linkage can be based on the genetic

distance between genetic sequences taken from pairs of individuals from whom HIV transmission

may have occurred. Such analyses can reveal which viral strains are propagating within and

between communities, the characteristics of people infected with such strains, and the effects of

interventions designed to control HIV on the rates at which viral genetic clusters grow. However,

in the presence of potentially informatively missing data, observed viral genetic linkage networks

do not represent the true underlying networks in populations under study, rendering inferences

based on sampled networks unreliable [31]. Specifically, estimates of probabilities of linkage,

defined as two individuals selected at random from their respective groups being linked, that

ignore the impact of missing data (henceforth referred to as unadjusted estimators) will be biased.

Carnegie et.al. provided consistent estimates of probabilities of linkage under the as-
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sumption that viral genetic sequences were missing at random (MAR) given group membership

[17] . However, they did not demonstrate asymptotic normality for this estimator. It follows

in our previous work, under the assumption that viral sequences were missing completely at

random, we developed an unbiased estimator through a subsampling approach and demonstrated

consistency and asymptotic normality using a U-Statistics framework [95]. However, in our

previous work, demonstrating consistency required strict conditions. Specifically the network

generating process of the complete network had to be known and the degree distribution for

the complete network would be approximately the same as that of the sampled network (which

seemed to be feasible when the sampling proportion was at least 0.40). In this paper, we propose

a more flexible approach that allows data to be MAR given auxiliary variables that associated

with missing and yields a consistent and asymptotically normal estimator without the strict

conditions required in our previous work.

We consider linkage to occur between two individuals if the pairwise genetic distance

between their viral genetic sequences is less than some threshold. Obtaining asymptotic proper-

ties for estimators of probabilities of linkage, which are informative regarding linkage rates, is

challenging, because indicators of linkage across pairs of individuals are between-, rather than,

within-subject attributes in conventional statistical analyses. Thus, standard asymptotic methods

such as the central limit theorem and law of large numbers cannot be directly applied to these

estimators [61, 62]. In this paper, we develop estimators for probabilities of linkage under the

assumption that unobserved viral genetic sequences are missing at random (MAR) and derive

asymptotic properties for these estimators.

The choice of the threshold indicating linkage is an important scientific question in the

analysis of viral genetic data. In general it may be best to investigate the sensitivity of findings,

but the methods developed here apply regardless of the threshold value.

We apply the proposed methods to analyze HIV sequences from the Botswana Combina-

tion Prevention Project (BCPP), which has motivated the development of the proposed approach,

but we note that our methods apply in any setting wherein nodes are sampled from networks. We
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demonstrate that the methods can be applied to networks more generally.

2.2 Botswana Combination Prevention Project (BCPP)

The BCPP was a large cluster-randomized trial of a combination HIV prevention inter-

vention compared to standard of care in 30 villages in Botswana. In this section we review the

sampling design of the BCPP along with the layers of missingness in this study.

2.2.1 Study Introduction

At baseline, 20% of the households in each community in Botswana were targeted for

participation in a baseline household survey, which collected demographic and household data

among those household members willing to participate. For those unwilling to participate, such

demographic and house data were generally provided by heads of households. All participants

were tested for HIV infection and virus from blood samples were sequenced for all HIV+

participants; the remaining participants who were HIV- form the incidence cohort. For the next

two years the HIV incidence cohort was annually tested for HIV; once again, all virus from

those participants who became HIV+ was sequenced. At the end of the BCPP, six communities

were selected to participate in a survey of all households, denoted the End of Survey Study

(ESS). Because of the inclusiveness of this survey, we illustrate our methods using data from

ESS villages.

As our research question focuses on viral linkage without regard to timing of infection—

in other words on a static VGL network– we do not consider time as variable in our models.

Dynamic VGL models have been described but require information about time of infection,

which is generally not available in our study population.

2.2.2 Missing Data

In BCPP, we have three layers of missingness in the observed viral genetic linkage (VGL)

network data. First, HIV status is unknown for non-participating household members. Note that
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unlike common survey studies, demographic data for non-participating household members are

also observed (obtained through head of household), provided that the head of the household

participated in the BCPP. Second, genetic sequences are unavailable for those who were not

tested; hence they are available for only a subsample of those who tested positive. Third, we do

not have any observed data on households that did not participate in the ESS. In this paper we

will only be addressing the first two layers of missingness and hence. In other words, We assume

that our population of interest to consist of only individuals from ESS-participating households.

A common approach for addressing non-response in survey studies is to model this

missingness probability, or propensity score, using all observed participants’ information such

as demographic and HIV status in the current study and then use the inverse of the propensity

as propensity score weights, in addition to weights due to multi-stage sampling frames if

applicable, to construct consistent population-level estimators under the missing at random

(MAR) mechanism [86]. Because the second layer of missingness causes all genetic links to

be missing for those who were HIV+ but never tested, this usual approach cannot be applied

to address non-response for BCPP. We propose instead to prior estimates of HIV prevalence in

Botswana to address this missing not at random (MNAR) mechanisms in the current BCPP. We

consider this analysis in two steps: 1) to address the missing HIV status of non-participants, and

2) to address the missingness of links among HIV+ nonparticipants and between them and others

who might have been linked to them.

2.3 Notation and Setting

Consider a population of individuals, ΩN , of finite size N. As in the literature [27, 90],

we regard ΩN as a sample from a superpopulation Ω∞, i.e., ΩN ⊆ Ω∞. Let y denote a m× 1

random vector denoting the viral sequence of a HIV+ individual. This random vector is defined

with respect to some probability space with Ω∞ as its sample space.

Let Sm = {yi;1 ≤ i ≤ m} denote a random sample of yi (since the BCPP is a randomized
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trial). We consider a pair of yi and y j to be similar, or linked, if the distance, Di j = d
(
yi,y j

)
,

between yi and y j is less than some given threshold, δ (> 0), where d (·, ·) denotes a similarity,

or distance, metric from Rm ×Rm to R. The random variable, Di j = d
(
yi,y j

)
, as well as its

distribution is well defined. We are interested in the mean linkage:

ρ = E
[
I
(
Di j ≤ δ

)]
, (2.1)

where E (·) is defined with respect to the distribution of Di j. Again, as in the literature, we

assume that N is sufficiently large such that inference about ρ for the finite population ΩN can

be based on the superpopulation Ω∞.

Within the current study context, this sample Sm can be partitioned into four subsamples:

(1) HIV+ responders, Sr+
n1

; (2) HIV+ non-responders, Snr+
n2

; (3) HIV- responders, Sr−
n3

; and (4) HIV-

non-responders, Snr−
n4

, where nk denotes the sample size of each subsample with m = ∑
4
k=1 nk.

Our goal is to make inference about ρ for the HIV+ subjects, S+n = Sr+
n1

∪Snr+
n2

, where n = n1+n2.

However, we have viral sequences yi only for the HIV+ responder subsample Sr+
n1

. In BCPP,

non-response may not arise from the missing completely at random (MCAR) mechanism; the

probability of non-participation is likely to depend on HIV status and demographic variables

(A low participation rate among young males was observed in the BCPP as a whole). Thus

inference based on observed yi in Sr+
n1

is likely to be invalid for the HIV+ population.

In Section 2.3.1 and 2.3.2, we assume that the missing-response probability is known for

Snr+
n2

and derive three different estimators for consistent estimation of ρ . In Section 2.3.3, we

discuss how to construct an appropriate Snr+
n2

by leveraging some external information and use

this constructed Snr+
n2

to estimate ρ .
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2.3.1 Inverse Probability Weighting Estimator

Let S+n = Sr+
n1

∪Snr+
n2

= {yi;1 ≤ i ≤ n}, let ri = 1 if yi ∈ Sr+
n1

and ri = 0 otherwise. Let

ri j = rir j and yi j denote the linkage indicator between yi and y j as:

yi j = I
(
Di j ≤ δ

)
= I
(
d
(
yi,y j

)
≤ δ

)
, yi,y j ∈ Sn, (i, j) ∈Cn

2 , (2.2)

where Cn
2 denotes the set of

(n
2

)
combinations of two distinct elements (i, j) from the integer set

{1, . . . ,n}. We can readily estimate ρ in (2.1) by the sample mean:

ρ̂ =

 ∑
(i, j)∈Cn

2

ri j

−1

∑
(i, j)∈Cn

2

ri jyi j. (2.3)

If non-response is independent of HIV status, i.e., ri j⊥yi j, the above estimator ρ̂ is unbiased.

However, asymptotic properties about ρ̂ cannot be obtained by conventional statistical methods

such as laws of large numbers and central limit theorem, because of correlated summands ri jyi j.

By leveraging the theory of U-statistics, ρ̂ can be shown to be consistent (see Appendix A).

As in other survey studies, non-response in BCPP is likely dependent on HIV status

and other demographic variables; a low participation rate among young males was observed in

the BCPP as a whole. To accommodate such selection bias, we assume that non-response is

independent of yi given a vector of covariates zi, i.e., ri j⊥yi j | zi,z j, and denote the response

probability by:

πi j = E
(
ri j | zi,z j

)
.

Under this missing at random (MAR) assumption, we can estimate ρ consistently by the inverse

probability weighted (IPW) estimator:

ρ̂
IPW
n =

(
n
2

)−1

∑
(i, j)∈Cn

2

ri j

πi j
yi j. (2.4)
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As with IPW estimators based on i.i.d. summands, this ρ̂ IPW
n is readily shown to be consistent, if

πi j is known (see Appendix A).

Since

πi j = E
(
ri j | zi,z j

)
= E (ri | zi)E

(
r j | z j

)
,

we can model πi j above through modeling E (ri | zi). We can use any member of the generalized

linear models for binary responses such as the logistic regression to model π (zi;γ). In this study,

we use the logistic regression:

E (ri | zi) = π (zi;γ) = expit
(

γ0 + γ
⊤
1 zi

)
, (2.5)

where γ = (γ0,γ1)
⊤ and expit(·) = logit−1 (·) with logit(·) denote the logit link. By estimating

γ and substituting an estimator γ̂ in place of γ , the revised estimator by substituting π (zi; γ̂) in

place of π (zi;γ) is also consistent. We discuss asymptotic properties of this revised estimator

after introducing two other estimators.

2.3.2 Doubly Robust Estimator

The IPW estimator ρ̂ IPW
n in (2.4) of Section 5.3.1 only uses the observed subsample Sr+

n1

for HIV+ responders. Alternatively, we may impute the missing yi given zi for yi ∈ Snr+
n2

and

use the imputed yi to create I
(
Di j ≤ δ

)
for all yi ∈ S+n . Given the high dimension of yi, this can

lead to quite complex models for the association of yi with zi. Siince we are only interested in

the linkage ρ = E
(
yi j
)
, we can impute yi j directly given zi j =

(
zi,z j

)
and then estimate ρ by

averaging the observed and imputed yi j.

We first posit an outcome regression model for yi j given zi j =
(
zi,z j

)
:

E
(
yi j | zi,z j

)
= gi j = g

(
zi,z j;β

)
, i ∈Cn

2 . (2.6)

We can use logistic or other GLM for binary responses to model g
(
zi,z j;β

)
. To ensure
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symmetric with respect to (i, j) as yi j, we need g
(
zi,z j;β

)
= g

(
z j,zi;β

)
. For example, if using

logistic regression, we may model the symmetric g
(
zi,z j;β

)
as:

g
(
zi,z j;β

)
= expit

(
β0 +β

⊤
1
(
zi + z j

))
.

The linkage ρ can be expressed in terms of (2.6) as:

ρ = E
(
yi j
)
= E

{
E
(
yi j | zi,z j

)}
= E

(
g
(
zi,z j;β

))
.

Thus, we can define another estimator based on the mean score imputed (MSI) g
(
zi,z j;β

)
as:

ρ̂
MSI
n =

(
n
2

)−1

∑
i∈Cn

2

{
ri jyi j +

(
1− ri j

)
gi j
}
. (2.7)

Again, as with mean score imputation estimators for i.i.d. summands (ref), this ρ̂MSI
n is readily

shown to be consistent, if g
(
zi,z j;β

)
is correctly specified and β is known (see Appendix A).

By combining ρ̂ IPW
n and ρ̂MSI

n , we can yet construct a third estimator. For ρ̂ IPW
n (ρ̂MSI

n ) to

be consistent, the response probability model πi j in (2.5) (outcome regression model g
(
zi,z j;β

)
in (2.5)) must be correctly specified. By combining ρ̂ IPW

n and ρ̂MSI
n , we can derive a doubly

robust estimator when only one of the two models is correctly specified. Within the current

setting, let

ρ̂
DR
n =

(
n
2

)−1

∑
i∈Cn

2

{
ri j

πi j
yi j +

(
1−

ri j

πi j

)
gi j

}
(2.8)

It is readily shown that ρ̂DR
n is consistent if either π

(
zi,z j;γ

)
or g

(
zi,z j;β

)
is correctly specified,

and γ and β are known (see Appendix A).

To use any of the three estimators above, we must estimate γ for the IPW, β for the MSI

or both (γ,β ) for the DR estimator. This requires that we know the covaraites zi for all subjects

in Snr+
n2

. Although we have zi for then entire sample Sn, we do not know which zi belong to Snr+
n2

.

We do not even know the size n2 of Snr+
n2

. Thus before discussing inference about (γ,β ) and any
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of the estimators, we first discuss how to construct Snr+
n2

.

2.3.3 Addressing Missing HIV+ Nonparticipants

Because HIV status is missing for all non-participants, Snr+
n2

∪Snr−
n4

, the BCPP sample

Sn alone does not provide sufficient information to identify Snr+
n2

. To address this missing not

at random (MNAR) mechanism [86], we leverage estimates of HIV prevalence for the study

population obtained from a national household survey (BAIS) [65]. We assume that within

Sr+
n1

∪ Snr+
n2

, the HIV+ non-responders Snr+
n2

is missing at random (MAR) given the covariates

zi. Under this assumption, S+n is a random subsample of the HIV+ subpopulation of the study

population and thus a random subsample of the sample Sn.

Let p denote the HIV prevalence of the study population. Then, mp= n and n2 =mp−n1.

We can take a random subsample of size n2 from the complement, Sn \Sr+
n1

, of Sr+
n1

, regardless

of their HIV status and sampled or not and use the sampled subjects’ covariates zi in this

subsample as Snr+
n2

to estimate (γ,β ). We may also take multiple such subsamples, Snr+
n2 j

, estimate

(γ,β ) based on each subsample
{

Sr+
n1

∪Snr+
n2 j

}
, and combine estimates across all

{
Sr+

n1
∪Snr+

n2 j

}
(1 ≤ j ≤ J).

2.3.4 Joint Inference of Linkage and Model Parameters

One approach to inference about ρ is to estimte γ and β separately, substitute the

estimators in place of γ and β , and derive asymptotic normality of the resulting linkage estimator

of ρ by accounting for sampling variability of the estimated γ and β . An alternative is to

leverage the semiparametric functional response models (FRM) for joint inferences about all

parameters θ =
(

ρ,γ⊤,β⊤
)⊤

(ref).

To this end, consider the following FRM.
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E
(
fi j | zi,z j

)
= hi j

(
zi,z j;θ

)
, fi j =

(
fi j1, fi j2, fi j3

)⊤
, hi j =

(
hi j1,hi j2,hi j3

)⊤
,

fi j1 = ri + r j, fi j2 = yi j, fi j3 =
ri j

πi j
yi j +

(
1−

ri j

πi j

)
gi j,

hi j1 = π (zi;γ)+π
(
z j;γ

)
, hi j2 = g

(
zi,z j;β

)
, hi j3 = ρ,

π (zi;γ) = expit
(

γ0 + γ
⊤
1 zi

)
, g

(
zi,z j;β

)
= expit

(
β0 +β

⊤
1
(
zi + z j

))
.

In the model above, the response fi j is indexed by a pair of subjects. It is a member of a class

of functional response models (FRM). This class of models is useful, because of its ability to

model relationships of interest that involve interactions between subjects [38, 106]. Let

Si j = fi j −hi j, Di j =
∂

∂θ
hi j (θ) ,

Vi j =Var
(
fi j | zi,z j

)
=


Vi j1 0 0

0 Vi j2 0

0 0 Vi j3


1
2

R(α)


Vi j1 0 0

0 Vi j2 0

0 0 Vi j3


1
2

,

Vi j1 =Var
(

fi j1 | zi,z j
)
, Vi j2 =Var

(
fi j2 | zi,z j

)
, Vi j2 =Var

(
fi j3 | zi,z j

)
,

The variances Vik are given in Appendix B. For inference, consider a class of U-Statistics based

weighted generalized estimating equations (UWGEE):

Un (θ) = ∑
(i, j)∈Cn

2

Un,i j = ∑
(i, j)∈Cn

2

Di jV−1
i j Si j = 0.
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Theorem 3. Let

vri = E
(
Un,i j | yri,rri,zri

)
, vs j = E

(
Un,i j | ys j,rs j,zs j

)
, B = E

(
Di jV−1

i j D⊤
i j

)
, (2.9)

Σr =Var (vri) , Σs =Var
(
vs j
)
, ρ

2
r = lim

n→∞

n
nr

< ∞, ρ
2
s = lim

n→∞

n
ns

< ∞,

n = nr +ns, ΣU = ρ
2
r Σr +ρ

2
s Σs, Σθ = B−1

ΣU B−⊤.

Then, under mild regularity conditions, we have

1. θ̂ is consistent.

2. If
√

n(θ̂ −θ)→d N(0,Σθ ).

See proof of Theorem 2 in Appendix B. To estimate Σθ , we first estimate B by:

B̂ =
1
nr

1
ns

nr

∑
i=1

ns

∑
j=1

D̂i jV̂−1
i j D̂⊤

i j ,

where B̂ denotes B with θ substituted by θ̂ . We then estimate Σr and Σs by:

Σ̂r =
1
nr

nr

∑
i=1

v̂riv̂⊤ri , v̂ri =
1
ns

ns

∑
j=1

Ûn,i j,

Σ̂s =
1
ns

ns

∑
j=1

v̂s jv̂⊤s j, v̂s j =
1
nr

nr

∑
i=1

Ûn,i j,

where Ûn,i j denotes Un,i j with θ substituted by θ̂ . A consistent estimator of Σθ is given by:

Σ̂θ = B̂−1
Σ̂U B̂−⊤ = B̂−1

(
n
nr

Σ̂r +
n
ns

Σ̂s

)
B̂−⊤.

As in the case of GEE, a working correlation structure R(α) for fi j parameterized by

some vector α may be assumed and incorporated into Vi j to improve efficiency of estimates of θ .

In this more general case, Vi j (α) depends on α as well. Like GEE, the UWGEE estimator θ̂ by
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solving the equations above is asymptotically normal by Theorem 1. For notational brevity, we

only consider working independence structure below unless otherwise stated.

2.4 Application

2.4.1 Simulation Study

We apply both IPW estimator proposed in 2.3.1 and DR estimator in 2.3.2 to simulated

data to examine and compare their performances. For simplicity, in this simulation study we will

not generate the individual level outcome but linkage outcome directly. Consider two villages:

village r and s. Let Nr = 200 and Ns = 200 so we can access the performance of the FRM for

relative small sample sizes.

Let Pr
(

Drs
i j ≤ δ

)
be the linkage rate for two samples from two villages r and s, re-

spectively (1 ≤ i ≤ nr, 1 ≤ j ≤ ns). We generate data from the following setup for network

data:

Pr(Drs
i j ≤ δ ;β ) =

exp
(
β0 +β1zri +β2zs j

)
1+ exp

(
β0 +β1zri +β2zs j

) = pi, i = (i, j)

fi | Drs
i j ∼ Bernoulli(pi), zri ∼ N(µri,σ

2
ri), zs j ∼ N(µs j,σ

2
s j).

We let the parameters β0 = β1 = β2 = 1, µri = 0.8, µs j = 0.2, σri = σs j = 1 such that

the true network linkage rate between two subjects from two villages is 0.816. Next we generate

data for missing mechanism:

πri = E(ri | zri) =
exp(γ0 + γ1zri)

1+ exp(γ0 + γ1zri)
, ri | zri ∼ Bernoulli(πri),

πs j = E(r j | zs j) =
exp(γ ′0 + γ ′1zs j)

1+ exp(γ ′0 + γ ′1zs j)
, r j | zs j ∼ Bernoulli(πs j),

where η0 = 1, η1 =−1. If ri = r j = 1, then fi is observed, otherwise missing. For the simulation

study, we employ Monte Carlo (MC) simulations and set the MC sample size to M = 1000.
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Table 2.1. Estimates and standard error of Doubly Robust estimator and IPW estimator for
simulated network data.

Doubly Robust Estimates
True value Estimates Standard error

β0 1 1.001 0.016
β1 1 1.000 0.017
β2 1 1.000 0.017
η0 1 0.996 0.146
η1 -1 -0.997 0.144
γ 0.816 0.816 0.012

IPW Estimates
η0 1 1.004 0.146
η1 -1 -1.012 0.145
γ 0.816 0.817 0.043

Table 2.1 shows both the DR and IPW estimates and standard errors for simulated

network data from above. In our simualtion we correctly specify the propensity score model

and the outcome regression model, thus leading to consistent estimates from both estimators.

Moreover, by comparing the standard errors of the linkage rate estimates between the two

approaches (highlighted with red), we conclude that DR estimator has higher efficiency than IPW

estimator, since a smaller standard error is observed. This is no coincidence. The doubly robust

estimator for within-subject outcomes from a semiparametric model has been shown to improve

the semiparametric efficiency when both models are modeled correctly [93]. More recently, the

semiparametric efficiency theory has been extended to study the FRM efficiency to facilitate the

research on between-subject outcomes such as genetic linkage network in this paper [63].

2.4.2 BCPP Study

In this section, we perform analysis for the BCPP study introduced in Section 2.2. As

we described in Section 2.2, at the end of BCPP study, all households were targeted for a

survey in 6 participating villages (Gumare, Maunatala, Mmankgodi, Mmathethe, Ramokgonami,

Shakawe), known as ESS villages. We obtain the HIV viral sequences for the participants but
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Table 2.2. The number and participation rate of HIV+ individuals in each community that
participated in the BCPP.

Total Respondent Non-respondent Response Rate
Gumare 1125 313 812 27.8%
Maunatala 694 347 347 50.0%
Mmankgodi 1058 265 793 25.0%
Mmathethe 763 314 449 41.2%
Ramokgonami 732 331 401 45.2%
Shakawe 1003 455 548 45.4%

not nonparticipants. The demographic data are provided by the head of household for the whole

population. Table 2.2 shows summary statistics of the number and the proportions of HIV+ in

individuals that participated in the BCPP. We observe large variability in response rate across

different villages; for 4 of the 6 villages, the proportions were over 40% but for the other 2, they

were below 30%.

We apply the proposed doubly robust estimator to estimate the mean linkage of the ESS

villages. As stated in Section 2.3, two individuals are considered linked if the pairwise genetic

distance between their viral genetic sequences is less than some given threshold. Following

Novistky et. al. [70], we use a threshold of c = 0.07 to define genetic linkage. Figure 2.1

provides a heat map of the intensity of linkage rates after applying the proposed method to

address the missing data, within and across the ESS villages. The analysis provides evidence

of a larger within- than between-village linkage. In addition, we perform the Wald test to test

the difference between the within- and the between-village linkage. We select three pairs of

villages (Gumare-Maunatala, Mmankgodi-Mmathethe, Ramokgonami-Shakawe) and the test

results (p-value) are shown in Table 2.3. The test results indicate significant difference between

the within- and between-village linkage.
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Figure 2.1. Doubly robust estimates for mean linkage between and within
the villages from ESS of BCPP. The linkage estimates are indicated by the
values and colors of cells, the darker the color, the larger the linkage rate.

Table 2.3. Wald test for difference between the the within- and the between-village linkage

Gumare-Maunatala
vs. Gumare

Mmankgodi-Mmathethe
vs. Mmankgodi

Ramokgonami-Shakawe
vs. Ramokgonami

p-value 2.46×10−22 6.31×10−25 3.32×10−62
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2.5 Discussion

Viral genetic linkage analysis play an important role in molecular epidemiology in it s

ability to reveal features of transmission patterns within and across communities such analyses

may prove useful in control of COVID-19 and other outbreaks. While methods have been

proposed for viral genetic linkage analyses in the presence of sampling bias, this paper is the

first to ground such methods in a statistical framework uniquely positioned to address between-

subject, rather than within-subject attributes as as the primary focus of analyses. Through the

use of FRM and UWGEE, we were able to show consistency and asymptotic normality of our

estimators under the assumption that non-responses are MAR, thereby permitting unbiased point

and interval estimates, as demonstrated by our simulation results.

Our illustrative example made use of data from an HIV prevention study in Botswana—

the BCPP. We demonstrated that VGL linkage across communities is common—which implies

that a treatment-as-prevention intervention applied at the village level will likely have effects on

HIV incidence that are attenuated compared to effects that would occur if all relationships took

place within villages. Furthermore such estimates would also be attenuated compared to another

estimand of interest—the counterfactual expected difference in incidence between a setting in

which the intervention was implemented in all villages and a setting in which it was in none.

Hence these VGL analyses are useful in both design and interpretation of cluster randomized

trials for control of endemic diseases or disease outbreaks.

In many real studies, we can estimate missing response probabilities under the MAR

assumption. In this case, the FRM with inference based on a class of UWGEE will provide valid

inference about linkage among network nodes. In the BCPP study, data are missing on people

within households who were enumerated but who did not provide blood samples (used to assess

HIV status as well as to obtain sequences) —leading to data that are MNAR. the By utilizing

population level estimates and multiple imputation, we addressed this statistical challenge. The

idea is similar to raking–an approach used in survey research to improve estimation of sampling
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weights by utilizing aggregated population-level estimates. Our methods would apply networks

of all types, for which sampling of nodes is not complete but for which there exist sufficient

covariate information to help identify the MAR mechanism. This paper also illustrates how

to address a type of MNAR mechanism in survey research by taking advantage of general

information regarding the population survey.

Chapter 2, in full, is currently being prepared for submission for publication of the

material as it may appear in Tyler Vu*, Tuo Lin*, Jingjing Zou, Xin Tu and Victor De Gruttola.

Doubly Robust Estimation of Network Linkage Probabilities in the Presence of Missing Data.

The dissertation author was the co-primary author of this paper.
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Chapter 3

Optimizing Campus-wide COVID-19 Test
Notifications with Interpretable Wastew-
ater Time-series Features using Machine
Learning Models

3.1 Introduction

The ongoing spread of SARS CoV-2 creates an urgent need for rapid detection of

the SARS CoV-2 virus that aids in development of effective decision making to contain its

transmission in communities– particularly those with high density congregate living such as

university campuses [91, 8]. Campus-wide monitoring systems capable of rapid detection of new

infections remain an important public health priority [59, 98, 72, 67].

Wastewater surveillance has been demonstrated to be a cost-effective approach to mon-

itoring viral spread, by virtue of its ability to 1) detect individual infections at early stages

in some settings, 2) identify variants of concern, and 3) provide a less biased assessment of

population infection dynamics–particularly in settings where infections are underreported to

health departments [53, 52, 51, 58, 74, 4, 68, 104, 32, 47, 46].

As part of the “Return to Learn” (RTL) program of the University of California, San

Diego (UCSD), a campus-wide GIS (geographic information systems)-enabled wastewater

surveillance system has been implemented for the detection of SARS CoV-2 since Fall 2020
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[76, 15]. Currently, the program has 131 samplers collecting daily from >340 buildings (both

residential and non-residential). A previous study at UCSD from 2020 showed that the wastewater

surveillance system was highly sensitive in detecting individual infections (85% of the buildings

where a residential student was diagnosed with SARs-COV-2 had a positive wastewater signal

prior to individual identification). Additionally, notification of building residents that their

building had a positive signal doubled testing rates among residents, even during a period of

routine asymptomatic testing [52]. Information on wastewater results is provided on the UCSD

public daily dashboard, and targeted email notifications are sent to those living or working in

buildings with concerning signals.

A key question challenging programs using wastewater for early detection is when tar-

geted notifications, including email notifications, should be issued to populations at risk in order

to increase testing or enhance other mitigation efforts to contain potential transmissions. Crucial

to answering this question is quantitative assessment of the relationship between the risk of

individual COVID-19 infections and the wastewater test results from associated samplers. There

is a recognized need for real-time analysis of the wastewater results to inform decision making.

Results from correlative studies have demonstrated a significant relationship between

the viral load in wastewater and individual COVID-19 PCR-based test results. J. Vallejo et al.

(2020) [94] used a linear model for the relationship between COVID test cases and viral load

detected in the wastewater in A Coruña, Spain. I. Bar-Or et al. (2020) [7] also applied a linear

model and concluded that the concentration of the virus RNA in the Bnei Brak sewage correlates

with the number of COVID-19 positive individuals in the city. S. Agrawal et al. (2021) [3] found

a significant correlation between COVID-19 incidence and viral load observed in wastewater

in the Frankfurt metropolitan area. X. Li et al. (2021) [60] performed a meta-analysis for

multi-national wastewater data and compared three different models, multiple linear regression,

artificial neural network, and adaptive neuro fuzzy inference system for predicting COVID-19

community prevalence (# of infections per 100,000 people) based on wastewater-based quantities

including the SARS-CoV-2 RNA concentration.
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Several studies utilized not only wastewater results from single time points but also

longitudinal time series of wastewater data. N. Krivoňáková et al. (2021) [56] found a high

correlation between the number of viral particles in wastewater and the number of individual

cases tested 2 weeks later in data from Bratislava. Y. Cao et al. (2021) [16] analyzed the time

series of wastewater results using the vector autoregression model to model the weekly variations

on the SARS-CoV-2 wastewater concentrations and COVID-19 cases in the Borough of Indiana,

PA. Ai et al. (2022) [5] compared different time-series and non-time-series machine learning and

deep learning methods including linear model, gradient-boosting decision tree, feed-forward deep

neural networks, Facebook Prophet and long short-term memory for the predictive performance

of COVID-19 cases in central Ohio. Their results indicated that time-series models outperformed

non-time-series models. Other studies [41, 50, 1] have also compared advanced neural networks

to predict COVID-19 cases. However, few existing studies focused on extracting interpretable

predicting features from time series wastewater results and using them to predict individual

test results, which is crucial for facilitating transparent and informed community-level decision

making as well as evaluations of the reliability and robustness of the decisions. Comparing

to black-box type models, models that can identify the importance of features are particularly

advantageous because they provide decision makers with a clear understanding of the factors

that contribute to the model’s predictions, allowing for more targeted interventions and informed

decision making.

In this study, we propose a new framework for feature extraction of longitudinal wastew-

ater test results and for predicting individual COVID-19 infections with the features. As we

discuss below, wastewater testing is one example of pooled testing [45, 28, 34]. What is different

in our setting is that in standard pooling, investigators can control and standardize how many

samples are pooled and how much sample from each person is contributed. In our setting,

these factors are impacted by the design of wastewater systems and depend on processes that

experimenters do not control. But some principles remain the same; and our analyses are exam-

ples of evaluation of diagnostic tests—in our case wastewater tests–based on their properties:
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sensitivity, specificity, positive and negative predictive values. Wastewater test results are used to

predict the outcome at the level of sets of residence buildings that are associated with manholes

in which samplers have been installed. The outcome we seek to predict is whether or not at least

one person is infected in the set of buildings associated with a given sampler. We use machine

learning to make use of longitudinal time series of wastewater tests to develop optimal rules for

notification based on the test properties.

Specifically, we develop hierarchical classification/decision tree models to select impor-

tant features from the longitudinal series of tests that should trigger notification—that is, that

makes it likely that at least one resident is positive. Our analyses of the data on wastewater tests

and infections among residents at UCSD derive from information collected in the period from

Nov. 2020 to Nov. 2021, covering approximately a whole academic year. Results indicate that

by leveraging single-day, long-term and short-term features extracted from the time series of

wastewater results, the classification tree model can predict the presence of a positive resident

with high sensitivity and satisfactory specificity. Important wastewater features are identified in

a hierarchical manner; the most important feature is having a positive wastewater test in at least

3 out of 7 past days. If fewer than 3 out of 7 past days have positive wastewater test results, then

the next most important feature is whether 1 out of 5 past days have positive wastewater tests.

When applying the model to a set-apart testing set, the prediction accuracy is 72.3%. We also

compare the performance of the proposed model to that of random forest models as a benchmark;

results indicate the proposed model can predict outcomes with equal or better accuracy while

maintaining a high level of interpretability.

Findings derived from the proposed approach have been used to evaluate and refine

the current notification system at UCSD. This system sends out timely email notifications to

alert residents to a positive wastewater sample associated with their residence buildings and

recommend individual COVID-19 tests to contain transmissions at early stages [52]. As a result

of this study, in 2021 UCSD modified the email notification system to notify after 3 days of a

positive signal. However, during the omicron surge the email notifications were issued after 2
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positive days due to the short viral kinetics, indicating the need for ongoing analysis as the virus

and epidemiology change.

Our study addresses the urgent need for real-time analysis of data from wastewater

surveillance systems and predictive models using wastewater features to predict COVID-19

infections. Results of our study facilitate informed decision making for community-level

recommendations and policies intended to contain and prevent transmissions of COVID-19. The

approach proposed here provides accurate prediction of individual COVID-19 infection and

interpretable feature engineering, and can be readily implemented and applied to other similar

systems.

3.2 Model and Methods

3.2.1 Pre-processing of Wastewater Test Results.

As part of the UCSD return-to-learn program, a total number of 140 commercial auto-

samplers have been deployed in manholes across the UCSD campus, covering teaching, ad-

ministrative, and residence buildings, including four isolation buildings for students who test

positive for COVID-19. In this study, we focus on the data from the 73 manholes covering

the 239 residence buildings and their ∼9,700 residents. Figure 1 shows the structure of man-

holes associated with residence buildings. Twenty-four-hour composite wastewater samples

are collected daily from the manholes and analyzed in the laboratory for viral concentration.

SARS-CoV-2 signatures are screened via real-time quantitative PCR (RT-qPCR) for the N1, N2,

and the E genes [53]. Results are integrated with the campus GIS database to traceback from

the manholes to associated upstream residence buildings and identify potential sources of any

positive SARS-CoV-2 signals.

As mentioned above, wastewater tests are used to estimate the sensitivity and specificity

of different rules for predicting that at least one person will test positive among residents in a

set of buildings associated with a given sampler. This requires tracing the source of positive
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Figure 3.1. Locations of autosamplers installed in manholes (orange circles)
connected to UCSD buildings (grey blocks).

signals back to buildings in a way that accounts for the upstream/downstream structure of the

sewer network: only the buildings that can contribute to the wastewater are matched to a given

manhole. Shown in Figure 3.1 is the structure of manholes connecting to residence buildings

[52]. However, the set of buildings associated with a sampler can depend on the results of the

wastewater tests. For example, if wastewater from sampler B tests positive but that from an

upstream sampler A tests negative, only the buildings contributing wastewater into the sewer

between samplers A and B are considered relevant for analysis of signals in sampler B. By

contrast, if both samplers are positive, then all buildings associated with either A or B are

included in the analysis. The spatially enabled sewer network and subsequent trace of samplers

to buildings were stored in and performed by ArcGIS Pro 2.7 (Esri). More details about the

sewer network and tracing of samplers can be found in [52] and the interactive web interface at

https://returntolearn.ucsd.edu/dashboard/index.html.

Our analysis focuses on the time period of 11/23/20 - 11/13/21, which covers the majority
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of the academic year 2020-2021 and the first quarter of year 2021-2022. A total of 23,282

wastewater daily samples were collected during this period, and a cutoff of the quantification

cycle [Cq] values 39 [53, 51] was used to categorize these samples as positive (<39) vs. negative

(>=39). Among the samples, 3,488 were positive and 19,794 were negative.

3.2.2 Ascertainment of Individual Tests Results of COVID-19

During the COVID-19 pandemic, UCSD student residents were required to take individual

COVID-19 tests weekly (reduced to bi-weekly after Spring 2021). In addition, in an effort to

alert individuals of potential infections in their buildings and encourage them to be tested in

one of the on-campus diagnostic testing sites or self-administered test-kit vending machines,

targeted email notifications were sent to residents of associated source buildings when positive

wastewater SARS-CoV-2 signals were detected in manholes. Notices were also sent to the UCSD

campus when a potentially positive building contained a common access area open to the public

[52]. Tests are sent to UC San Diego Health labs for processing and the results are saved in an

electronic health record (EHR) system [76, 77]. Results of individual tests are available within

one day of testing.

Daily individual diagnostic COVID-19 test results of residents in each building are

aggregated and merged with the daily wastewater results from manholes associated with the

buildings. After excluding all the missing observations, there are a total of 8,853 daily wastewater

test records in the merged data, of which 1,212 are positive and 7,641 are negative. The

corresponding COVID-19 individual diagnostic test results among students resident in campus

housing indicate 170 are positive and 8,683 are negative.

Of the 170 COVID-19 individual diagnostic positive test results among students residing

in campus housing, only 54.7% have a tested-positive wastewater sample from the associated

manhole on the same day of the individual test, indicating using daily wastewater test results

alone cannot achieve satisfactory prediction of individual infections of COVID-19 in associated

buildings. Potential reasons for the observed discrepancy between individual tests and wastewater

45



results include delays in being tested or getting results among those who had become infected.

For example, among infected residents, there could be a delay in the manifestation of symptoms

or absence of symptoms; for those reasons or others, the individual tests may not take place until

a few days after the actual onset of the infection. There can also be false negative wastewater test

results arising from low viral concentration, even if one or more residents in associated buildings

have become infected. In addition, there is a possibility of false positives in the wastewater

results. To understand the implications of the wastewater samples and to optimize the utility of

the wastewater surveillance system in detecting individual infections, a definition of the outcome

of individual infections that accounts for potential lags between the wastewater and individual

test results is needed.

Here we propose a 3-day time window approach to define the outcome of individual

infections. Using the date of wastewater test as an anchor point, for each manhole we examine

individual diagnostic test results of residents in associated buildings in the 3-day window

including the date of wastewater test and the day before and after the wastewater test. This

outcome is defined as positive for an individual-level test if there exists at least one positive

individual COVID-19 test result among residents in associated buildings in this time window.

The proposed time window addresses the time lag between the wastewater and individual tests

by including positive individual tests in intervals of one day before to one day after the detection

of a positive wastewater test. A sensitivity analysis using a longer window of 6 days has also

been conducted and its results are described in the Appendix; this choice of window leads to a

similar model as does the analysis with a 3-day window.

3.2.3 Model for Predicting Individual COVID-19 Infections Using
Wastewater Results

To detect individual COVID-19 infections, we use multiple interpretable features ex-

tracted from wastewater time series data, which includes both single-day test results and short-

term/long-term trends. The proposed features provide a comprehensive characterization of
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different aspects of the wastewater test results. The list of features includes single-day wastew-

ater results up to five days before the day in question, short-term wastewater trends including

whether at least 1 out of the past 3 days, 1 out of the past 4 days, 3 out of the past 4 days, 1 (or 2,

3) out of the past 5 days contains positive wastewater signals, and long-term wastewater trend

including whether at least 2 (or 3) out of the past 7 days contains positive signals, and whether

wastewater results in all of past 3 consecutive days are positive.

We adopt a machine learning approach–classification trees– [14, 82, 48, 84], to predict

individual COVID-19 infections defined using the 3-day window with the above features ex-

tracted from wastewater signals. The classification tree derives from a hierarchical model that

predicts outcomes with recursive binary partitions based on an ordering of the importance of

the predictors. At each node/leaf of the classification tree, the feature capable of reducing the

maximal amount of Gini impurity, a criterion to measure the mixture of different classes of the

outcome, is selected to partition the data [44, 75, 73]. Predictors that appear in earlier nodes

are considered more important in predicting the outcome [14]. The ordering of importance of

predictors is crucial in our study, as we aim to accurately predict the presence of infections

in residence buildings and to reveal important and interpretable features from wastewater test

results to aid in decision making for campus-wide recommendations and mandates. To avoid

overfitting and improve interpretability, we apply constraints on the model complexity using a

penalty parameter cp [13, 89, 6]. In addition, the classification tree mitigates collinearity among

predictors as a result of its variable selection mechanism based on feature importance [92].

We also incorporate a re-weighting mechanism in our model to address the important

issue of imbalance in the outcome. There are many more negative than positive individual test

results in the data, which represents a typical imbalance in the outcome of individual testing of

COVID-19 in similar communities. Models optimizing prediction accuracy when trained with the

data without any adjustment tend to classify all outcomes as negative due to over-representation

of the negative outcomes. To address this issue we re-weight the data by allocating larger weights

to positive than to negative outcomes in training the classification tree models. This approach is
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similar to over-sampling the minority class and under-sampling the majority class, which has

been shown to achieve better classifier performance [100, 19, 18].

To evaluate the performance of the proposed approach, we partition the data from

11/23/20 - 11/13/21 into a training and a testing set. The training set includes data from 11/23/20

to 04/30/21 and the testing set includes data from 06/30/21 to 11/13/21. The partition of the

dataset is not random: it preserves the chronological ordering of the dates of the test results

as definitions of the features extracted from the wastewater samples rely on the chronological

ordering of the dates. In addition, results in the same period are expected to behave similarly as

the policies, circulating variants, and other pandemic conditions vary with the chronologic time

of measurement. Comparing model performance in the training and testing sets also provides

insight into the influence of these factors on the effectiveness of the wastewater surveillance

system. We exclude the samples in May and June due to potential data quality issues; further

investigation of the wastewater results during this period is needed. In the Appendix, we present

a sensitivity analysis that includes data from this period, and we obtain the same model as

described in the following section. This analysis serves to demonstrate the robustness of our

results.

3.3 Results

3.3.1 Classification Tree Trained with the Training Set

Figure 3.2 shows the result of classification tree trained with the training set. From the

top (root) to the bottom (leaves) of the tree, we show the features selected to predict the outcome;

features closer to the root are considered to be more important. The branches of each node,

visualized by the arrows, describe the features and the two possible conditions used for binary

partitioning of the data according to which condition is satisfied. The color of each node indicates

the predicted outcome for records partitioned into the category corresponding to the node: red

indicates a positive predicted outcome of at least one infection in associated buildings, and blue,
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Figure 3.2. Classification tree model trained with the training set only.
Wastewater time series features are used to predict individual COVID-19 test
results. The red node means a positive predicted outcome and the blue node
means a negative predicted outcome. The value inside each node denotes the
percentage of the total data records that falls in the category of the node. “+”
means number of positive wastewater results. For example: “+ < 3 in last 7
days” means there were less than (<) 3 days of positive wastewater results in
the last 7 days of wastewater testing.

a negative predicted outcome. The value in the circle of each node indicates the percentage of

the partitioned data records in the whole data.

The model in Figure 3.2 indicates the most important feature in predicting the outcome

is whether fewer than (<) 3 days in the last 7 had positive wastewater test results. The outcome

is predicted to be positive if wastewater results are positive in at least 3 out of the past 7 days,

and negative otherwise. Given positive wastewater results on fewer than 3 out of the past 7 days,

the second most important feature is whether none of the past 5 days have positive wastewater

results. If yes then the outcome is predicted to be negative, otherwise to be positive.

The decision tree in Figure 3.2 is fitted with weights of positive outcomes equal to (2 / #

positive classes) and weights of negative outcomes equal to (1 / # of negative classes). Note the
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weights are standardized by the total number of positive and negative outcomes, respectively,

and then multiplied by scalers based on the importance placed on correctly predicting the

positive and negative outcomes. Our choice of weights reflects the priority of sensitivity (true

positive rate) over specificity (true negative rate) in predicting positive individual infections.

A sensitivity analysis using weights equal to the reciprocal of class sizes for both classes is

performed in Appendix. The value of the penalty parameter on model complexity cp = 0.02

is chosen to balance optimal performance in the training set as suggested by cross-validation

while maintaining a small number of nodes in the tree for model interpretability. A sensitivity

analysis using cp = 0.001 to train the model is available in the Appendix to further investigate the

influence of model complexity on the prediction performance and the trade-off between model

complexity and interpretability.

Table 3.1 shows the confusion matrix of the predictions when applying the model to the

training set. The sensitivity (True Positive Rate, TPR = TP/(TP+FN)) is 83.7% and the specificity

(True Negative Rate, TNR = TN/(TN+FP)) is 58.5%. Note that the calculations of sensitivity and

specificity are unaffected by the weights allocated to positive and negative outcome classes as

the weights appear in both numerators and denominators and cancel out. The overall weighted

prediction accuracy is 75.3%, which is calculated by

∑
n
i=1 wi[I (predict positive | positive)+ I (predict negative | negative) ]

∑
n
i=1 wi

where wi denotes the weight of sample i, I (predict positive | positive) denotes the indicator

function that sample i has a positive outcome that is predicted to be positive, and

I (predict negative | negative) denotes the indicator function of sample i has a negative outcome

that is predicted to be negative. It is expected to observe a higher estimated sensitivity than

specificity as we are over-sampling the positive outcome class compared to the negative class.

To evaluate the prediction performance of the classification tree, we then apply the model

to the set-apart testing set in the period of 06/30/21 - 11/13/21. The confusion matrix is provided
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Table 3.1. Confusion matrix of results obtained from applying the model (trained with the
training set) to the training set.

Predict positive Predict negative
Actual positive 83.7% 16.3%
Actual negative 41.5% 58.5%

Table 3.2. Confusion matrix of results obtained from applying the model (trained with training
set only) to the testing set.

Predict positive Predict negative
Actual positive 77.1% 22.9%
Actual negative 37.2% 62.8%

in Table 3.2. For the testing set, the sensitivity decreased from 83.7% to 77.1% while the

specificity increased from 58.5% to 62.8%. The overall weighted prediction accuracy is 72.3%.

The testing set contains the period in which most of the student residents had already received

vaccination and the wave of the highly infectious SARS-CoV-2 Omicron variant had not yet

arrived [11]. Therefore, fewer infected cases were observed and thus underrepresented the total

population. Despite the evolving nature of the pandemic, the model performed well and was able

to predict individual infections with satisfactory accuracy and high sensitivity. We also trained a

model on the testing set alone and compared it with the model trained with the training set; the

comparison of results is available in the Appendix.

3.3.2 Influence of Weights

In this section we investigate the role of relative weights of positive and negative outcomes

in the prediction. For simplicity of notation, we denote a relative weight of (a / #positive classes)

: (b / #negative classes) for positive vs. negative outcomes as a:b. For example, the model in

Figure 2 is trained with weights 2:1; this weighting places a double amount of emphasis on

records with positive outcomes compared to those with negative outcomes after standardizing by

51



0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

1-specificity

s
e

n
s
iti

v
ity

A

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

1-specificity

s
e

n
s
iti

v
ity

color

weight 0.2:1

weight 0.5:1

weight 1:1

weight 1.5:1

weight 2:1

weight 3:1

weight 4:1

B

Figure 3.3. ROC (Receiver Operating Characteristic) curves of models
trained with different relative weights for positive and negative outcome
classes using data of the training set only. The left panel shows results
obtained from applying the models to the training data. The right panel shows
results of applying the models trained with the training set to the testing set.

the total numbers of positive and negative outcomes. The trained decision tree model for relative

weights 1:1 is available in the Appendix as a sensitivity analysis.

Figure 3.3 displays the receiver operating characteristics (ROC) curve [40, 88], which

demonstrates a trade-off between sensitivity and specificity; the x-axis indicates one minus

the specificity, and the y-axis indicates the sensitivity. This curve permits a comparison of the

performance of models trained with varying weights. Detailed results are provided in Table 3.

With relative weights on the positive class as small as 0.2:1, all the outcomes are predicted to

be negative; hence, the sensitivity is 0 and the specificity is 1. As the weight for positive class

increases, the sensitivity also increases, and the specificity decreases. With relative weights of

4:1 or greater, all outcomes are predicted to be positive, yielding sensitivity of 1 and specificity

of 0.

Table 3.4 summarizes the importance of features in models trained with different weights

given by orders of nodes appearing in the classification trees. For results to be comparable,

cp value of 0.02 is used in training all models with different weights; this approach leads to

different numbers of nodes under different weight settings. For all models, the root nodes are
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Table 3.3. Detailed values of Sensitivity and (1-Specificity) for ROC curves in Figure 3.3.

Relative Weight
(positive vs. nega-
tive outcome)

Sensitivity
(training set
performance)

1-Specificity
(training set
performance)

Sensitivity
(testing set
performance)

1-Specificity
(testing set
performance)

0.2:1 0 0 0 0
0.5:1 68.1% 20.4% 43.8% 14.5%
1:1 68.1% 20.4% 43.8% 14.5%
1.5:1 80.7% 33.8% 58.3% 28.0%
2:1 83.7% 41.5% 77.1% 37.2%
3:1 83.7% 41.5% 77.1% 37.2%
4:1 100% 100% 100% 100%

Table 3.4. Importance of features extracted from wastewater time series given by models trained
with different relative weights. “a out b” in the table represents the dichotomous feature of
whether there were at least a out of the previous b days with positive wastewater test results.

Relative weights 0.5:1 1:1 1.5:1 2:1 3:1
1st level feature 3 out 7 3 out 7 3 out 7 3 out 7 3 out 7
2nd level feature 1 out 5 1 out 5 1 out 5
3rd level feature 2 out 7

defined by whether or not fewer than 3 out of the past 7 days have positive wastewater signals;

this is consistently the most predictive wastewater feature for predicting individual COVID-19

infections. In all models with a lower level node/leaf, the next most important feature is whether

or not none of the previous 5 days have positive wastewater signals. Combined with the result of

the root node, a predictive model that is robust to the choice of weights consistently includes

the dichotomous features: 3 or more out of 7 days wastewater positive (yes/no) and 1 to 5 of

the previous days wastewater positive (vs 0 days). This model leverages features characterizing

wastewater results both in a long-term trend of 7 days and in shorter periods of 5 days.
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3.3.3 Prediction With Random Forest Model as a Benchmark

To further evaluate the prediction performance of the proposed decision tree model,

we apply a weighted random forest model [12] consisting of an ensemble of 1,000 individual

weighted decision trees. As in the classification tree model, weights are applied for oversampling

the positive individual cases. The random forest is known for its high prediction accuracy but

lacks the interpretability of the classification trees. Comparing the performance of the proposed

model to that of the random forest enables us to assess the proposed model with a reliable

benchmark and to understand the trade-off between the interpretability and prediction accuracy

of models.

Figure 3.4 shows the ROC curve of sensitivity vs. (1-specificity) when applying training-

set-fitted decision tree and random forest models under different weight settings to the testing

data, which were not used in training the models. Detailed results are provided in Table 3.5.

The proposed decision tree models generally outperform the random forest models in the same

weight settings, especially when the relative weights of positive vs. negative outcomes are high.

For the random forest approach, the optimal weight, with high sensitivity and relatively high

specificity, is 3:1. In this case, both sensitivity and specificity equal to 68.8%, leading to a 68.8%

prediction accuracy, while the proposed decision tree model has a prediction accuracy of 75.3%.

One possible reason for the random forest to under-perform compared to the proposed decision

tree is that the random forest is based on bootstrap (or subsampling) of the data, which breaks the

chronological structure of the time series in the data and thereby potentially affects the prediction

performance.
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Figure 3.4. ROC curves of models trained with different relative weights for
positive and negative outcome classes using random forest model (black) and
classification tree model (red). The figure shows the results of applying the
models trained with the training set to the test set.

Table 3.5. Detailed values of Sensitivity and (1-Specificity) in ROC curves of Figure 3.4.

Relative
Weight
(positive
vs. negative
outcome)

Sensitivity
(black)

1-Specificity
(black)

Sensitivity
(red)

1-Specificity
(red)

0.2:1 2.1% 0.1% 0 0
0.5:1 35.4% 8.6% 43.8% 14.5%
1:1 45.8% 13.1% 43.8% 14.5%
1.5:1 45.8% 13.1% 58.3% 28.0%
2:1 62.5% 24.7% 77.1% 37.2%
3:1 68.8% 31.2% 77.1% 37.2%
4:1 91.7% 94.0% 100% 100%
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3.3.4 Positive Predictive Value (PPV) and Negative Predictive Value
(NPV)

We further examine the positive predictive value (PPV) and negative predictive value

(NPV) of the predictions of individual infections as defined below:

Positive predictive value (PPV) of wastewater (WW) test =

Sensitivity of WW test * prevalence
{(sensitivity * prevalence) + (1-specificity) (1 – prevalence)}

= TP/(TP+FP),

Negative predictive value (NPV) of WW test =

Specificity of WW test * (1-prevalence)
{specificity *(1- prevalence) + (1- sensitivity) (prevalence)}

= TN/(TN + FN),

Where TP and FP are numbers of true and false positives and TN and FN are numbers of true

and false negatives in the prediction, and the prevalence is the proportion of true positives among

all tested units of observation (which could be, for example, at a building or individual level).

These quantities can be particularly useful in developing policies regarding control of the

COVID-19 epidemic. In the case of pooled tests, results can help in using testing resources more

efficiently—by focusing intensive testing where cases are most likely to reside. In addition, the

tests can provide an early warning about the potential for at least one resident of a building unit to

be infected. To make best use of the wastewater tests, we estimate the probability that there is at

least one infected person in a residence given a positive wastewater test. This estimate will aid in

evaluating the cost-benefit of different strategies for testing the residents. In addition, knowledge

of the relationship between the timing of positive wastewater tests and positive individual-level

tests can inform us about when—or at what schedule–it is best to offer the latter to residents.

Our testing setting is a little more complex than usual, because the wastewater test is

a pooled test that aggregates results of buildings associated with the same manholes; hence,

the number who contribute to the pool varies across tests—which are done at the residence

level. Furthermore the prevalence of interest is at the residence level; as noted above, we define
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a residence to be a true positive if there is at least 1 infected resident in the residence. Like the

wastewater itself, this definition is at the residence building level.

The prevalence at the residence building level pc can be estimated from the prevalence p

at the individual level given the number of residents (n), under the assumption of independence

across infection events across them: pc = prob of (>=1 infected resident) = 1− (1− p)n where

p is individual-level prevalence. Because most detected infection events we observed are only in

a single person, we believe that violation of this assumption has little effect on our estimates. As

the prevalence of COVID-19 and the number of residents vary with date, the estimates of PPV

and NPV will vary with date as well. There are also possible dilution effects that could affect the

estimations. For example, the detectability of SARS CoV-2 genetic material may depend on the

total number of residents living in the upstream of the manholes.

Here we provide approximate building-level estimates of the PPV and NPV and demon-

strate how they are affected by the number of residents in buildings associated with manholes.

We focus on the period of the week before Fall 2021 quarter begins, as most student residents

are in the process of moving back onto campus during that week, and are required to take

individual-level tests as soon as they move into their residences. The curves of PPV and NPV as

a function of the number of people in residence buildings are shown in Figure 3.5. We note that

the PPV and NPV are quite sensitive to the number of residents; the usefulness of wastewater

tests must be considered in this context. Negative tests are less reassuring as the number climbs

near 1,000; whereas PPV only approaches 50% when the number of residents is near 250.

3.3.5 Sensitivity Analyses

As previously mentioned, multiple sensitivity analyses are conducted to examine the

effects of different model parameters; these include: 1) a different definition of outcome using

a longer-term time window, 2) varying weights used in training the model to balance positive

and negative individual test results, and 3) different levels of model complexity. In addition, we

use the testing data set alone to train the models and compare them to models trained with the
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Figure 3.5. PPV and NPV curves as functions of numbers of residents in
buildings associated with manholes.

training set in order to gain a deeper understanding of the difference between the two datasets

and how the trained models vary with different time period of the data. All of the analysis results

are available in Supporting Information.

3.4 Concluding Remarks

This paper proposes a model framework for predicting the presence of infections in

residence buildings using results from wastewater surveillance systems. The goal of this study

is to make use of wastewater test results to inform decision making regarding notification of

wastewater results to guide public health strategies intended to control the spread of individual

COVID-19 infections in communities. To this end, we extract features that characterize wastewa-

ter test results over time, develop classification/decision tree models to select important features,

use them to predict probabilities that there is at least one individual infection in residences, and

finally optimize the COVID-19 test notification strategy.

We used the classification tree to analyze data from the wastewater surveillance system

and individual-level COVID-19 tests of residents on UCSD campus from Nov 2020 to Nov 2021.

Results reveal that the best predictor of positive individual level tests in residence buildings
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is whether or not the wastewater results were positive in at least 3 of the past 7 days. Using

a set-apart testing set, we demonstrate the accuracy of these predictions. Our results suggest

that the proposed analysis approach can be useful in using wastewater to guide policies around

notifications for building residents to seek individual-level testing. Features included in the

model are robust to changes in weights of positive and negative individual test results, and

the features discovered to be most important are consistent across different weight choices in

balancing the positive and negative outcomes in the data. Discoveries from the analysis have

been useful in assisting decision making in the UCSD campus-wide Return-to-Learn program

and incorporated into the email notification system.

Although our approach is motivated by and developed for the UCSD Return-to-Learn

program, the model framework proposed here can be readily applied to similar wastewater

surveillance systems to predict individual COVID-19 infections in communities and to facilitate

decision making processes in making community-wide guidelines, mandates and policies for

containing transmission of the virus. In applying the proposed approach, several aspects of

the model may need to be adjusted by researchers and/or policymakers according to pandemic

conditions at the time of analysis. First, in defining the outcome of individual COVID-19

infections, we introduced here a time window of 3 days to account for potential lags from onset

of infections to testing and mismatches between the individual infections and the wastewater

results. If the required test frequency changes, the optimal performance of wastewater tests may

require that the time window be adjusted accordingly. Second, pandemic conditions vary over

time because of the regular appearance of new variants and changes in behavior with regard

to masking and other mandates and mitigation strategies. Coverage rates of vaccinations may

improve over time in some communities, but the effectiveness of older vaccines constantly

wanes. Therefore we recommend an “online” learning approach in which the prediction model

is updated regularly as new data become available to ensure that the model reflects prevailing

conditions.

Chapter 3, in full, has been submitted for publication of the material as it may appear in

59



Tuo Lin, Smruthi Karthikeyan, Alysson Satterlund, Robert Schooley, Rob Knight, Victor De Grut-

tola, Natasha Martin, Jingjing Zou. Optimizing campus-wide COVID-19 test notifications with

interpretable wastewater time-series features using machine learning models. The dissertation

author was the primary author of this paper.
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Chapter 4

Non-parametric Causal Inference for
Mann-Whitney-Wilcoxon Rank Sum Test
Using Random Forest

4.1 Introduction

Increased number of outliers is a big problem in data analysis, yielding uninterpretable

and often biased results when analyzed using mean-based statistical models, including most

popular models such as two-sample t-test and linear regression. Rank-based methods such as

the Mann-Whitney Wilcoxon rank sum test (MWWRST) introduced in Chapter 1 and rank

regression can effectively address this statistical problem without any subjective bias as in other

ad-hoc methods such as winsorized estimates based on truncating the outliers to 3 times IQR

[61].

In randomized control trials, MWWRST is commonly used as an alternative to two-

sample t-test when there are outliers in data. In non-randomized observational studies, treatment

or exposure effects cannot be estimated using MWWRST because of confounders. Rubin’s

potential outcome framework allows us to define and estimate the average treatment effect

[78]. However, existing mean-based methods break down in the presence of outliers. In our

previous paper [under review], we proposed a novel Mann-Whitney-Wilcoxon type of causal

effect, Pr(Y (0)
i < Y (1)

j ), to address this problem. To estimate causal effects (see details of this
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causal effect in Section 4.2) under this framework, a semiparametric FRM model with a doubly

robust estimator, akin to the method in Chapter 2, has been proposed. Although methodologically

sound, such semiparametric models require correct model specifications for either propensity

score model or outcome regression model to ensure consistency. If the linear predictor for these

models involve non-linear and non-additive associations with the explanatory, the doubly robust

estimators will generally be biased. We consider nonparametric models to address this major

weakness of semiparametric models.

The advancement of data collection and storage technology creates possibilities for us

to access high dimensional data such as electronic health records and DNA sequences. Many

researchers start to extract information from these types of observational data and incorporate

them into clinical studies [30, 29], yet many classic statistical methods such as generalized

linear model (GLM) could not be applied due to the high dimensionality of the data. Machine

learning methods including random forests, support vector machine and neural network have

been widely adopted to model the association between the outcomes and high dimensional

variables of interest and have been shown to have good prediction performances [12, 105, 83].

While successful in prediction, most machine learning methods do not have a well-established

theory for their asymptotic properties, which is important in hypotheses testing and constructing

interval estimates. A recent work from Wager and Athey (2018) [96] has justified the consistency

and asymptotic normality of the random forests for non-parametric linear regression analysis

and extended such properties to the causal inference setting. In this project, we propose a

between-subject random forests estimator for our Mann-Whitney-Wilcoxon type of causal effect

and extend the results of Wager and Athey to show the asymptotic properties of our estimator.

Different from our previous work and other causal inference methods aimed at estimating

the average treatment effect, our goal is to explore the heterogeneous treatment effects for

pairs of subjects from the two treatment groups. Specifically, we consider applying random

forests to model Pr(Y (0)
i < Y (1)

j | Xi = X j = x). This model is particularly useful in personalized

medicine, when interest is centered on treatment differences at the individual-level. The approach
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of random forests matches coincidentally with the concept of heterogeneous treatment effects

estimation, since in growing the random forests we divide the sample into a few subgroups with

inference based on these subgroups. Each subgroup has a relatively small size, leading to a

higher sensitivity to outliers, and our rank-based method provides an effective solution to this

problem.

Although our main focus in this project is causal inference, the proposed random forests

method can be easily extended to model other types of between-subject outcomes defined by a

function of paired subjects’ outcomes, such as viral genetic linkage network in Chapter 2 and

microbiome beta diversity. The asymptotic properties derived in this work can also be extended

to inference about the other types of between-subject outcomes to facilitate analyses of emerging

high-dimensional data arising from different biomedical and psychosocial research areas.

4.2 Mann-Whitney-Wilcoxon Type of Causal Effect

The causal inference paradigm is introduced for a few purposes: (1) to define and

characterize causal effect, (2) to explicitly identify and control for factors of confounding

in studies that is not feasible or even ethical to apply randomization. Limitations of non-

randomization based studies, although rather obvious on intuitive grounds, are actually nearly

impossible to characterize analytically. In fact, such an inquiry raises a more fundamental

question as to how treatment effects are defined in the first place.

The concept of potential outcome addresses this fundamental gap. The idea is that

for every patient, there is a potential outcome for each treatment condition received, and the

treatment effect is defined by the difference between the outcomes in response to the respective

treatments from the same individual. Thus, treatment effect is defined for each subject based on

his/her differential responses to different treatments, thereby free of any confounder.

For notational brevity, consider two treatment conditions and let y(k)i denote the potential

outcome for the ith subject under the kth treatment (1 ≤ i ≤ n, k = 0,1). For convenience, let
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k = 1 (0) indicate the treated (controlled) condition. We observe only one of the two outcomes,

y(1)i or y(0)i , depending on the treatment received by the patient. The difference between y(1)i and

y(1)i is attributable to the differential effect of the treatments, since there is absolutely no other

factor that may also influence the outcome, or confounder, in this case. Thus, the causal effect

of the intervention for each subject is:

Individual causal effect: ∆i = y(1)i − y(0)i , 1 ≤ i ≤ n.

Although the potential outcomes and individual causal effect are well-defined, the latter ∆i cannot

be computed, since only one of the y(k)i ’s is available. This “missing data” feature in particular

precludes direct applications of conventional statistical methods for inference about causal effect

such as the sample mean.

By taking the mathematical expectation, we obtain:

Average (population) causal effect: E (∆i) = E
(

Y (1)
i −Y (0)

i

)
= E

(
Y (1)

i

)
−E

(
Y (0)

i

)
.

In the above form, E
(

Y (k)
i

)
is expressed as the (population) mean µk of Y (k)

i for the kth treatment.

Within the context of heterogeneous treatment effects, the causal effect at x is defined as:

τ(x) = E
(

Y (1)
i −Y (0)

i | Xi = x
)
= E

(
Y (1)

i | x
)
−E

(
Y (0)

i | x
)
.

As discussed in Section 4.1, in our between-subject outcomes setting, the causal effect at

x, δ (x), is defined as:

δ (x) = E
(

I
{

Y (0)
i ≤ Y (1)

j

}
| Xi = X j = x

)
. (4.1)

Note that unlike mean-based method, I
{

Y (0)
i ≤ Y (1)

i

}
for a single subject i is non-

identifiable because we only observe one of Y (1)
i and Y (0)

i at the same time. Thus, we replace
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Y (1)
i by Y (1)

j that has the same value of X .

4.3 Between-subject Random Forests

In this section, we aim to construct the between-subject random forests in a similar

manner to the within-subject random forests. Since random forests are ensemble of multiple clas-

sification/regression trees, we start by the splitting procedure for a single tree, which resembles

the widely known classification and regression tree (CART) analysis for within-subject outcomes

[14, 12].

Let Zi = (Yi,X i) be the observed data for subject i, where Yi is the outcome of interest

and X i is a vector of independent variables. We first recursively split the feature space into a

sets of leaves L, each contains a few training samples. Let Li be the leaf that contains subjects i

and L(w)
i as two subleaves corresponding to the two treatments around i-th subject (w = 0,1). A

single tree estimator δ̂tree is defined as

δ̂tree (x) =
1∣∣∣L(0)

i

∣∣∣ ∣∣∣L(1)
i

∣∣∣ ∑
Y j0∈L(0)

i

∑
Yl1∈L(1)

i

I
{

Yj0 < Yl1
}
.

By subsampling B times (B → ∞) and leveraging δ̂
(b)
tree, b = 1, ...,B obtained from each

subsample, we define a random forests estimator δ̂ (x) of (4.1) as follows:

δ̂ (x) =
1
B

B

∑
b=1

δ̂
(b)
tree (x) .

The details of how to construct the between-subject random forests are given in Algorithm 1.

4.4 Asymptotic Theory

The asymptotic theory including the convergence and consistency of within-subject

random forests has been studied in some previous work [10, 81, 97]. However, until recently,
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Algorithm 1. Between-subject Random Forests
The algorithm follows the double-sampling tree algorithm [ref], which indicates splitting the
whole subsample into 2 parts, half for building the tree and half for inference.

Input: a subsample (Zi,Wi) with i = 1, ...,s, s < n, where Wi is the treatment variable with a
value w.

1. Grow the tree for each of subsampling samples b by applying within-subject double-
sampling (or propensity) tree algorithm. The splitting criteria follows the standard one for
CART, that is minimizing mean-squared error of predictions.

2. Identify leaf node for subject i, denoted as Li, which consists of two subleaves, L(w)
i ,

corresponding to the two treatments around i-th subject (w = 0,1):

3. Estimate δ (x) by:

δ̂tree (x) =
1∣∣∣L(0)

i

∣∣∣ ∣∣∣L(1)
i

∣∣∣ ∑
Y j0∈L(0)

i

∑
Yl1∈L(1)

i

I
{

Yj0 < Yl1
}
,

where
∣∣∣L(w)

i

∣∣∣ denotes the size of L(w)
i . If we use double-sampling trees, this estimation

should be based on the set-apart testing set.

4. Aggregate all trees and calculate

δ̂ (x) =
1
B

B

∑
b=1

δ̂
(b)
tree (x) .
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the asymptotic normality has been shown by Wager and Athey in their seminal paper [96]. In

our work, we have successfully extended their work to show the asymptotic unbiasedness and

normality of our between-subject random forests. Before diving deep into the asymptotic theory,

let us first look at a few definitions for a single tree that consists the between-subject random

forests.

Definition 4. A tree grown based on a subsample (Z1, . . . ,Zs) is honest if the tree uses half of the

subsample to grow the tree and another half of the subsample to make inference, that is saying,

there are no overlap samples that are used for both tasks.

To ensure the randomness of the spit, in other words, to ensure the size of a terminal

node is no larger than other terminal nodes, we need the definition of a random-split tree.

Definition 5. A tree is a random-split tree if at every step of the tree-growing procedure, the

probability that the next split occurs along any one of the features is bounded below by π/d for

some 0 < π ≤ 1.

Finally, to ensure the size of each terminal node not diminishing, we have the following

regularity definition.

Definition 6. A tree predictor is (α,k)-regular for some α > 0 if each split leaves at least a

fraction α of the available samples on each side of the split and there are between k and 2k−1

observations in each terminal node of the tree.

Definition 7. A predictor is symmetric if the (possibly randomized) output of the predictor does

not depend on the order (i = 1,2, . . .) in which the training examples are indexed.

4.4.1 Bias

After introducing the splitting algorithm and definitions of regression trees, we start by

studying the asymptotic unbiasedness of such regression trees. We use the same definition of a

diameter of a leaf L(x) as in graph theory, which is the length of the longest path contained in
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L(x). The following Lemma 8 indicates the diameter of the terminal node is bounded away from

0 in probability.

Lemma 8. Let T be (α,k)-regular, random-split tree and let L(x) denote its leaf containing x.

Suppose that X1, ...,Xs ∼U([0,1]d) independently. Let s1(s0) be the number of cases (controls)

and s = s1 + s0, smin = min(s1,s0). Then, for any 0 < η < 1, and for large enough s,

Pr

diam j (L(x))≥
(

εs
2k−1

)− 0.99(1−η)log((1−α)−1)
log(α−1)

π

d

≤

(
smin

2k−1

−η2
2

1
log(α−1)

π

d

)
,

where ε is the asymptotic lower bound of smin/s to ensure positivity assumption.

Lemma 8 can imply an asymptotic bound on the bias of a single tree estimator δ̂tree (x).

Since δ̂ is the average of independent δ̂tree (x), we derive the following Theorem 9 for the

asymptotic unbiasedness.

Theorem 9. Under conditions of Lemma (8), suppose moreover that δ (x) is Lipschitz continuous

and the trees in the random forest are honest. Then, provided that α ≤ 0.2, the bias of the

random forest at x is bounded by

∣∣∣E [δ̂ (x)
]
−δ (x)

∣∣∣= O

(
(εs)

− 1
2

log((1−α)−1)
log(α−1)

π

d

)
.

The proof of Lemma 8 and Theorem 9 can be found in Appendix.

4.4.2 Asymptotic Normality

The proof of the asymptotic normality relies heavily on U-statistics theory. First, the

random forest (RF) is defined as

RF (x;Z1, . . . ,Zn) = Eξ∼Ξ [T (x;ξ ,Zi1, . . . ,Zis)] =

(
n
s

)−1

∑
(i1,...,is)∈Cn

s

T (x;Zi1, . . . ,Zis) . (4.2)
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And the Hájek projection of RF is defined as

R̊F (x;Z1, . . . ,Zn) =
n

∑
i=1

E [RF (x;Z1, . . . ,Zn) | Zi]− (n−1)θ (x) (4.3)

=
n

∑
i=1

(
n
s

)−1

∑
(i1,...,is)∈Cn

s

E [T (x;Zi1, . . . ,Zis) | Zi]− (n−1)θ (x)

where θ (x) = E [T (x;Zi1, . . . ,Zis)]. The projection in (C.4) can also be expressed in a centered

version by

R̊F (x;Z1, . . . ,Zn)−θ (x) =
n

∑
i=1

E {[RF (x;Z1, . . . ,Zn)−θ (x)] | Zi} (4.4)

=
n

∑
i=1

(
n
s

)−1

∑
(i1,...,is)∈Cn

s

E {[T (x;Zi1, . . . ,Zis)−θ (x)] | Zi} .

In classic U-statistics theory, the number of the arguments s in T (x;Zi1, . . . ,Zis) is finite

and constant, then the asymptotic properties can be straightforwardly derived for the Hájek

projection [ref]. However, in the RF case s → ∞ as n → ∞, the classic U-statistics theory could

not be applied directly and we seek a new proof for this more restrictive condition. To this end,

we first introduce two definitions to understand the tree estimator, k-potential nearest neighbors

(k-PNN) and PNN k-set [ref]. Consider a set of sample points X1, . . . ,Xs ∈Rd and a fixed x ∈Rd .

In Lin and Jeon 2006 [ref], they define a point Xi is a potential nearest neighbor (PNN) of x if an

axis-aligned hyperrectangle defined by vertices x and Xi contains no other points X j, j ̸= x. By

extending this notion to a set of PNN point, the definition of a PNN k-set is as follow.

Definition 10. A PNN k-set of x is a set of points Λ ⊆ {X1, . . . ,Xs} such that there exists an axis

aligned hyperrectangle L, with size k ≤ |L|< 2k−1, containing x,Λ, and no other points.

From definition 10, we could formalize a definition of k-PNN of x to help understanding

the estimation made by the data-driven nonpararmetric tree method. Upon defining k-PNN, any

decision tree that makes axis-aligned split and has leaf size between k and 2k−1 can be viewed
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as a k-PNN predictor, as described next.

Definition 11. A sample point Xi is called a k-PNN of x if there exists a PNN k-set of x containing

Xi. A k-PNN predictor T (x;Zi1, . . . ,Zis) at x ∈ Rd , where

{Zi1, . . . ,Zis}= {(X1,Y1) , . . . ,(Xs,Ys)} ∈
{
Rd ×Y

}s
,

is a predictor T always outputs the average of yi over a k-PNN set of x.

Prediction made by k-PNN predictor in our between-subject random forests case can be

written as:

T b (x;Z1, ...,Zs) =
s0

∑
j=1

s1

∑
l=1

S0 jS1lg
(
Y0 j,Y1l

)
,

g
(
Y0 j,Y1l

)
= I
(
Y0 j ≤ Y1l

)
,

where

S0 j =


∣∣{ j : X0 j ∈ L0 (x;Z) and R0 j = 0

}∣∣−1 if X0 j ∈ L0 (x;Z) ,

0 else,

S1l =


|{l : X1l ∈ L1 (x;Z) and R1l = 1}|−1 if X1l ∈ L1 (x;Z) ,

0 else ,

and R0 j(1l) is the treatment indicator, L0 (x;Z) =
{

X0 j : X0 j ∈ L(x;Z) and R0 j = 0
}

and

L1 (x;Z) = {X1l : X1l ∈ L(x;Z) and R1l = 1}.

Finally, the asymptotic normality result is summarized in Theorem 12 below, with a

detailed proof by leveraging the Lyapunov central limit theorem in Appendix.

Theorem 12. Assume that x1, ...,xs are independent and identically distributed samples on

[0,1]d with a density f < ∞. Suppose that E
[
g
(
Y0 j,Y1l

)
| X0 j = x,X1l = x

]
and
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E
[
g
(
Y0 j,Y1l

)2 | X0 j = x,X1l = x
]

are Lipschitz. Let T be a symmetric k-PNN predictor that

satisfies Definition 4, 5, 6, 7. Suppose, moreover, that the subsample size sn satisfies

lim
n→∞

sn = ∞ and lim
n→∞

sn log(n)d/n = 0

and that E
{∣∣g(Y0 j,Y1l

)
−E

[
g
(
Y0 j,Y1l

)
| X0 j,X1l

]∣∣2+δ | X0 j = X1l = x
}
≤ M for some

constants δ ,M > 0, uniformly over all x ∈ [0,1]d and Var
[
∑

n1
i1=1 S1i1g(Y0i0,Y1i1) | X0i0 = x

]
> 0.

Then, there exists a sequence σn(x)→ 0 such that the between-subject random forests predictions

are asymptotically Normal:
δ̂ (x)−δ (x)

σn(x)
⇒ N(0,1)

where N(0,1) is the standard normal distribution.

4.5 Simulation Study

To study the performance of our between-subject random forest estimator, we generate

data from the following setup for the potential outcome, confounder and treatment assignment

mechanism:

Y (0)
i = εi, εi ∼ N(0,1), i = 1, ...,500,

Y (1)
j = X1 j + εi εi ∼ N(0,1), j = 1, ...,500,

X i = (X1i, ...,Xpi), X1i, ...,Xpi ∼ N(0,1),

X j = (X1 j, ...,Xp j), X1 j, ...,Xp j ∼ N(0,1), p = 10,

δ (x) = Pr
[
Y (0)

i ≤ Y (1)
j |X i = X j = xe1

]
= Pr [N(x,2)≤ 0] .

Figure 4.1 shows the pointwise estimation for Mann-Whitney-Wilcoxon type of causal

effects defined in (4.1) by using between-subject random forests method discussed in Section

4.2. The estimation has the same linear increasing pattern and a similar slope as the true causal
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Figure 4.1. Between-subject random forests estimates of the Mann-Whitney-
Wilcoxon type of causal effects based on simualated data

effect. The 95% confidence band is computed by Bootstrap, which covers the true MWW type

of causal effect.

Chapter 4, in full, is currently being prepared for submission for publication of the

material as it may appear in Tuo Lin, Tsungchin Wu, Xinlian Zhang, and Xin Tu. Non-parametric

Causal Inference for Mann-Whitney-Wilcoxon Rank Sum Test Using Random Forest. The

dissertation author was the primary author of this paper.
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Chapter 5

Peak p-values for Gaussian Random Fields
on a Lattice

5.1 Introduction

Statistical parametric mapping (SPM) is widely used as a tool to conduct statistical

inference on neuroimaging data [43, 102, 103]. Recently, [37, 36] investigated the validity of

cluster size and voxelwise inference based on random field theory (RFT) and found that a number

of the assumptions that have been traditionally made do not hold in practice. One of these

important assumptions, which we address in this work, is that the data is sufficiently smooth so

that it can be treated as a continuous random field. Inference based on peaks or local maxima,

recognized as topological features of the statistical summary maps [26, 25, 43, 79, 23] strongly

relies on this assumption. In this paper, we circumvent this assumption and develop a method for

performing peak inference that is valid for data observed on a regular lattice.

The traditional approach to obtaining peak p-values in fMRI analysis has been to assume

that the data is distributed as a smooth stationary Gaussian random field. Given this, [69, 2, 21]

showed that the distribution of the height of peaks above a peak-defining threshold u ∈ R is

asymptotically exponential (as u → ∞). The choice of u is somewhat arbitrary and this result only

holds in practice for reasonably large choices of u. Recently, [21] obtained more general formula

to calculate the exact height distribution of local maxima in an isotropic Gaussian random field,

that is valid for all peak heights and does not require a pre-threshold. This distribution can
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be used to compute a p-value at each local maximum based on its height. The formula has a

single parameter κ , which only depends on the shape of the auto-correlation function near the

origin, and is invariant under spatial scaling. While elegant, the formula is only accurate when

the Gaussian random field is sampled on a continuous domain, instead of a discrete lattice grid,

which in practice can require a high level of applied smoothing. To give context, [80] suggest

that this formula is imprecise when data has an intrinsic FWHM that is lower than 7 voxels.

However, since the typical smoothing kernel in an fMRI study has an FWHM of 3 voxels, using

this formula provides conservative p-values in practice. Moreover, the isotropic assumption is

rather strong and is unlikely to hold in practice. Thus it is desirable to directly calculate the

height distribution of local maxima sampled on a discrete lattice, which we shall refer to as

discrete local maxima (DLM).

In order to address the difference between a discrete lattice and a smooth random field,

[101] and [87] introduced a method that targets the distribution of the global maximum on a

lattice in order to provide control of the voxelwise family-wise error rate. Although this method

aims to infer on the global maximum, it can also be used, after some modifications which we

develop here, to compute the height distribution of local maxima. However, their approach is

limited in that it is only valid for a narrow class of Gaussian random fields, namely the ones that

arise as the result of convolving Gaussian white noise with a separable kernel. In addition, they

require local maxima to be defined as those voxels with height values larger than its immediate

neighbors along the coordinate axes (i.e. excluding diagonally adjacent neighbors). Figure

5.1 gives a rough idea of why this assumption is restrictive in practice by comparing density

plots from peak height distributions calculated from both Worsley and Taylor’s analytical DLM

approach (which we shall refer to as ADLM) and Cheng and Schwartzman’s continuous RFT

approach.

To address these issues, we propose a simulation-based method called Monte Carlo DLM

(MCDLM) that works for any stationary Gaussian random field under arbitrary connectivity

(i.e. where local maxima are defined with respect to any desired neighborhood). This improves
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Figure 5.1. Theoretical peak height density function for local maxima. Left: 1D, Middle:
2D, Right: 3D. Each row is calculated using a different correlation between adjacent voxels.
In each plot the green curve is from ADLM and the red curve is from the continuous RFT
method. In the 1D case, when ρ is small, the ADLM density is narrower, but as ρ increases, the
discrepancy disappears and the two methods converge. In 2D and 3D, the differences between
the two methods remain for high ρ , with the ADLM density shifted to the left. This occurs
because ADLM does not consider diagonal voxels as neighbors, so distribution of local maxima
obtained from this method consists of smaller height values and is thus left shifted relative to the
continuous method as dimension increases. Note that in 1D there are no diagonal voxels and so
convergence occurs.

upon ADLM in that it allows the diagonal neighbors to be considered and makes relatively few

assumptions, allowing the accurate computation of the height distribution of local maxima on a

lattice. Our approach works by calculating (either theoretically or via empirical estimation) the

joint covariance of a voxel and its neighbors, and then simulating many times from a multivariate

Gaussian distribution with this covariance and storing the iterations for which the voxel takes

a value that is larger than its neighbors. This provides an empirical cdf for the height of local

maxima via numerical integration. A p-value for an observed peak in data can be obtained by

interpolating the cdf. We also extend this approach to calculate the height distribution of local

maxima of t-fields, by generating the simulations from a multivariate t-distribution.

For practical purposes, we recommend using MCDLM to calculate the p-values for peaks

in a stationary Gaussian random field that is observed on a lattice. When it is safe to assume that

the random field has arisen by convolving Gaussian white noise with a separable kernel and if

we only consider partial connectivity, ADLM may also be a good choice to calculate the peak

p-value. Alternatively if the field is smooth sufficiently and isotropic, then we recommend using

the method discussed in [21] to calculate the peak p-values as it provides a precise formula for
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the peak height distribution which can be quickly and accurately calculated. In addition, the

covariance matrix of a voxel and its neighbors in this case is nearly singular, leading to incorrect

p-values when applying estimated covariance in MCDLM.

The structure of this paper is as follows. Section 5.2 provides details about how to

calculate the peak height distribution using continuous RFT, the ADLM and the MCDLM

method. Section 5.3 and 5.4 apply the MCDLM to the isotropic Gaussian random fields, t-fields

and stationary Gaussian fields with unknown covariance and compares its performance with

the other two methods. Section 5.3 provides the simulation setup and Section 5.4 includes

all the simulation results. Section 5.5 gives the concluding remarks. All codes used in this

paper are available on GitHub (https://github.com/tuolin123/DLM-Code) and the RFTtoolbox

(https://github.com/sjdavenport/RFTtoolbox).

5.2 Theory and methods for calculating the height distribu-
tion of local maxima

Let {Z(s),s ∈ S} be a real-valued stationary Gaussian random field parametrized on a

D-dimensional set S, where D ∈ Z+. We assume that S is a regularly spaced discrete lattice, in

particular that

S ⊂

{
D

∑
d=1

vded : vd ∈ Z for 1 ≤ d ≤ D

}
,

where (ed)1≤d≤D is the standard basis in RD and vd represents the step size in the dth direction.

Our interest lies in calculating the peak height distribution, which for u ∈ R, is defined as

P(Z(s)> u|s is a local maximum) = P[Z(s)> u|Z(t)< Z(s),∀t ∈ N (s)], (5.1)

where N (s) denotes the set of neighbors of s ∈ S in the discrete lattice. The most relevant

neighborhoods are the partially connected and fully connected ones that are respectively defined
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as

NPC(s) = {s+ kdvded : kd ∈ {−1,1} for 1 ≤ d ≤ D} and (5.2)

NFC(s) =

{
s+

D

∑
d=1

kdvded : kd ∈ {−1,0,1} for 1 ≤ d ≤ D

}∖
{s} . (5.3)

Figure 5.2 illustrates the two types of neighborhoods for a point, s5, on a 2D regular

lattice. If s5 is partially connected to the adjacent pixels in the horizontal and vertical directions,

then NPC(s5) = {s2,s4,s6,s8}, shown in the left of Figure 5.2. If s5 is fully connected, meaning

it is connected to pixels in the horizontal, vertical and diagonal directions, then NFC(s5) =

{s1,s2,s3,s4,s6,s7,s8,s9} , shown in the right of Figure 5.2.

s2

s4

s5

s6

s8

s3

s2

s1 s4

s5

s6

s7

s8

s9

Figure 5.2. Local pixel neighborhood in 2D. The partially and fully connected neighborhoods
are shown on the left and right respectively. The point s5 (colored in red) is considered a local
maximum if its value is larger than its neighbors.

5.2.1 Analytical DLM method

The DLM approach of [101] and [87] provides closed form expressions for the family-

wise error rate in testing the signals of data that consists of Gaussian white noise smoothed with

a Gaussian kernel. They do not explicitly focus on the peak height distribution, however in

inferring on the global maximum they calculate probabilities of the form

P
[
{Z(s)> u}∩t∈NPC(s) {Z(t)< Z(s)}

]
.
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These probabilities can be used to calculate a peak height distribution since (5.1) can be written

as

P[Z(s)> u|Z(t)< Z(s),∀t ∈ NPC(s)] =
P
[
{Z(s)> u}∩t∈NPC(s) {Z(t)< Z(s)}

]
P[Z(t)< Z(s),∀t ∈ NPC(s)]

. (5.4)

Using partial results in [101] and [87], we expand the left hand side of (5.4) as
∫

∞

u fDLM(z)dz,

where fDLM(z) is the density function of the height distribution. Under the assumption that the

smoothing kernel is Gaussian and Z(s) is locally stationary, fDLM(z) has the form

fDLM(z) =
∏

D
d=1 Q(ρd,z)φ(z)∫

∞

−∞

(
∏

D
d=1 Q(ρd,z)

)
φ(z)dz

, (5.5)

where

hd =

√
1−ρd

1+ρd
,αd = sin−1

(√
(1−ρ2

d )/2
)
,z+ = max(z,0)

Q(ρd,z) = 1−2Φ(hdz+)+
1
π

∫
αd

0
exp
(
−1

2
h2

dz2/sin2
θ

)
dθ ,

and ρd is the correlation between two voxels along each axis direction d, given by ρd =

ρ(s,s+ vded), where ρ(·, ·) is introduced in (5.6). This approach also allows for the calculation

of the height of local maxima on the boundary of the image or a mask by substituting Q(ρd,z)

with 1−Φ(hdz) if a voxel on the boundary only has one neighbor, and with 1 if it has no

neighbors. Further details regarding the derivation of (5.5) are provided in Appendix D.1.2.

Since this method provides a closed form density function, we call it analytical DLM (ADLM)

method.

One critical assumption of the ADLM approach is that the correlation function has a

specific separable structure. Under this assumption things simplify because conditioned on

the center voxel, the distribution of the height of neighboring voxels along a given axis are

conditionally independent of the distribution of the height at neighboring voxels along the other
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(perpendicular) axis directions, described in the proposition below.

Proposition 13. Given data {Z(s),s ∈ S} such that the spatial correlation between s and t is

ρ(s, t) = exp[−(s− t)′Λ(s− t)/2], (5.6)

where Λ = diag(1/(2η2
1 ), ...,1/(2η2

D)), and (ηd)d=1,...,D is the standard deviation of the Gaus-

sian kernel in the dth direction. Assume that d1,d2 ∈ {1, ...,D}, ed is the standard basis in RD

and vd represents the step size in the dth direction and s± vd1ed1,s± vd2ed2 ∈ S, then

Z(s− vd1ed1)

Z(s+ vd1ed1)

⊥⊥

Z(s− vd2ed2)

Z(s+ vd2ed2)

∣∣∣∣Z(s).
Correlation function in (5.6) arises, for example, from integration of continuous white

noise against a Gaussian kernel. The result in Proposition 13 is stated in [87] and we provide a

short proof in Appendix D.1.1. To visualize it more precisely, in Figure 5.2, under the required

assumptions, we have

Z(s4)

Z(s6)

⊥⊥

Z(s2)

Z(s8)

∣∣∣∣Z(s5).

This conditional independence result holds along the horizontal and vertical axes and

allows for an expansion for the distribution of partially connected local maxima. However, it

does not imply independence when the diagonals are included, i.e.,

(Z(s1),Z(s3),Z(s7),Z(s9))
⊤ ⊥̸⊥ (Z(s2),Z(s4),Z(s6),Z(s8))

⊤ |Z(s5).

Thus, their method can only be used to calculate the height distribution of peaks that are greater

than their directly adjacent neighbors.
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Under the stationary assumption, the correlation ρd between two adjacent voxels along

each lattice axis d can be simplified from (5.6) to

ρd = ρ(s,s+ vded) = exp
[
−1

2

(
v2

d

2η2
d

)]
= exp

[
−

v2
d

4η2
d

]
, (5.7)

and if we assume Z(s) is isotropic with a common standard deviation of the Gaussian kernel

ηd = η and vd = 1, ρd can be further simplified to ρd = exp[−1/4η2], a function that does not

depend on d.

The ADLM approach allows the calculation of the height distribution of local maxima on

a discrete lattice. However, the method makes restrictive assumptions and its validity is limited

to partial connectivity.

5.2.2 The correlation function on the lattice

The methods which we will develop in what follows rely strongly on the correlation

function. In this section we provide some explicit expansions of this function under the assump-

tion that the fields are derived by smoothing i.i.d white noise with a kernel (we will relax this

assumption later on).

Define the correlation function ρ(s, t) : S×S → R to be the function that maps s, t ∈ S to

corr(Z(s),Z(t)). As a step toward our goal of calculating peak p-values for a Gaussian random

field on a regular discrete lattice, we shall calculate the spatial correlation of a special type of

Gaussian random field over the lattice analytically. Assume that W : S →R is a Gaussian random

field consisting of i.i.d. unit variance white noise and for some kernel K : RD → R,

Z(s) = ∑
l∈S

K(s− l)W (l) for each s ∈ S.
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The correlation function ρ(s, t) is then

ρ(s, t) =
E [∑l∈S K(s− l)W (l)∑l′∈S K(t − l′)W (l′)]√

Var [∑l∈S K(s− l)W (l)]Var [∑l′∈S K(t − l′)W (l′)]

=
E [∑l∈S ∑l′∈S K(s− l)K(t − l′)W (l)W (l′)]

Var [∑l∈S K(s− l)W (l)]

=
∑l∈S K(s− l)K(t − l)

∑l∈S K(s− l)2

since E[W (l)W (l′)] = 0 for l ̸= l′ and EW (l)2 = 1 for all l. In particular when K is an

isotropic Gaussian kernel, i.e., K(s) = 1
ηD φD

(
||s||
η

)
, for some η > 0 and each s ∈ S,

ρ(s, t) =
∑l∈S

1
η2D φD

(
||s−l||

η

)
φD

(
||t−l||

η

)
∑l∈S

1
η2D

[
φD

(
||s−l||

η

)]2 , (5.8)

where φD is the density function for the D dimensional standard Gaussian distribution.

As is common in fMRI analysis we will typically refer to this kernel using its full width at half

maximum (FWHM) which is defined as FWHM = 2
√

2ln2η . Applying (5.8) as the correlation

function to ADLM defined in (5.5) improves the performance of ADLM approach by applying

correlation (5.6).

More generally if K is an elliptical Gaussian kernel, i.e., K(s) = ∏
D
j=1

1
η j

φ1

(
[s] j
η j

)
, then

ρ(s, t) =
∑l∈S ∏

D
j=1

1
η2

j
φ1

(
[s−l] j

η j

)
φ1

(
[t−l] j

η j

)
∑l∈S ∏

D
j=1

1
η2

j
φ1

(
[s−l] j

η j

)2 , (5.9)

where [s−w] j and [s+v−w] j refer to the jth dimension of array s−w and s+v−w respectively.

5.2.3 Monte Carlo DLM method

In this section we introduce a new method based on Monte Carlo simulation to calculate

the height distribution of local maxima on a discrete lattice. Our approach is based on the
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observation that the probability that s ∈ S is a local maximum based entirely on the distribution

of s with its neighbors as in (5.1). Define

Z(s) = (Z(s),Z(n1(s)), ...,Z(nk(s)))
⊤ ,

where we have enumerated the neighborhood of s as N (s) = {n1(s), . . . ,nk(s)} for some k ∈ N.

N (s) can be either NPC(s) or NFC(s). In the case of the partially connected neighborhood

k = 2D and for the fully connected neighborhood, k = 3D −1. Under the stationarity assumption

Z(s)∼ N(0,Σ) for each s, where Σ = Cov(Z(s)) is constant over the domain. The covariance

matrix Σ can be derived analytically under certain assumptions or estimated from the data, see

below. Given Σ, the method calculates the peak height distribution via Monte Carlo simulation

as described in Algorithm 2.

Algorithm 2. MCDLM
Require: The number of iterations M ∈ N, and the covariance matrix Σ

1: procedure SIMULATELOCMAX(M,Σ)
2: for m = 1, . . . ,M do
3: Generate Xm ∼ N(0,Σ)
4: if Xm1 > max2≤ j≤k Xm j then
5: h = [h,Xm1]
6: end if
7: end for
8: return h
9: end procedure
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After obtaining the vector h = (h1,h2, ...,hN)
⊤, for u ∈ R, the MCDLM approximation

to the peak height distribution can be calculated as

F̂N(u) =
1
N

N

∑
i=1

1{hi ≤ u},

where 1{·} denotes the indicator function and N is the length of h. For an observed peak of

height u, a peak p-value can be computed as 1− F̂N(u). In order to make this empirical p-value

as accurate as possible, N should be taken to be as large as possible. In our examples we choose

M large enough to ensure that the number of resulting empirical samples is at least N = 106 for

FWHM < 11.7 and at least N = 2×105 for FWHM = 11.7.

Now we address the question of how to calculate Σ. We will first do this in a specific

parametric case discussed in the previous section of smoothing i.i.d Gaussian white noise with

an isotropic Gaussian kernel. In that case, assuming a fully connected neighborhood, it can be

shown that, up to reindexing of Z,

Σ = A⊗A⊗ ...⊗A︸ ︷︷ ︸
D terms of A

= A⊗D (5.10)

where

A =


1 ρ ρ4

ρ 1 ρ

ρ4 ρ 1

 .

with ρ the correlation between adjacent voxels as defined in (5.7). The proof of (5.10) is in

Appendix D.2.

Equation (5.10) holds under restrictive assumptions. For a general stationary field we

can instead use the data to estimate Σ. To do so we first center and standardize i.i.d Gaussian

random fields Z1, . . . ,Zn on S at every s ∈ S. We wish to infer on the distribution of peaks of the
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mean 1
n ∑

n
i=1 Zn. Next we estimate the Σ from the data as follows. For each s, t ∈ S,

Cov

(
1
n

n

∑
i=1

Zi(s),
1
n

n

∑
i=1

Zi(t)

)
=

1
n

Cov(Z1(s),Z1(t)), (5.11)

as such, using the assumption of stationarity, we can estimate this covariance as

Ĉov(Z1(s),Z1(t)) =
1

n|L|

n

∑
i=1

∑
(s′,t ′)∈L

Zi(s′)Zi(t ′) (5.12)

where L = {(s′, t ′) ∈ S×S : s′− t ′ = s− t}. If we assume that the fields are isotropic, then we

can improve the accuracy of this estimate by taking L = {(s′, t ′) ∈ S×S : ||s′− t ′||= ||s− t||}.

5.2.4 Continuous Gaussian random field theory method

Historically [26, 25, 80] it has been common to use the results of continuous Gaussian

random fields [2] to perform inference on the lattice. [21] derived a closed form for the distribu-

tion of the height of a local maximum. We briefly outline how this works in what follows and

explain how it can be used to provide peak height distributions for local maxima in a sufficiently

smooth random field. To do so, we now assume that S ⊂RD is a continuous domain, i.e., compact

with non-empty interior S̊. Suppose that Z is a C3 random field on S and let

∇Z(s) =
(

∂Z(s)
∂ s1

, ...,
∂Z(s)
∂ sD

)
,

∇
2Z(s) =

(
∂Z(s)
∂ si j

)
1≤i, j≤D

.

Then the local maxima of Z are defined to be the points s∈ S̊ such that ∇Z(s) = 0 and ∇2Z(s)< 0.

The event that a local maximum is observed at a given s ∈ S̊ has probability zero. As

such, in order to obtain a conditional peak height distribution, Palm distributions must be used
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(see [21] for details). For u ∈ R, they provide formulae to calculate

P[Z(s)> u | ∇Z(s) = 0 and ∇
2Z(s)< 0]. (5.13)

In general these expressions are difficult to evaluate. However under the assumption of isotropy,

[22] showed that they can be obtained explicitly. Recently, [24] extended these results to the

case where the field arises as a diffeomorphic transformation of an isotropic field. Details of how

to apply these methods to perform peak inference in fMRI data can be found in [80].

5.2.5 MCDLM for t-fields

We can also use our MCDLM approach to calculate the height distribution of local

maxima of a t-field. The t-fields are generated by voxelwise calculation of t-statistic using

T (s) =
ε(s)√

∑
N
i=1 Z2

i /N
, (5.14)

where Z1, ...,ZN and ε(s) are i.i.d isotropic Gaussian fields. In practice, the t-statistic is typically

used as the test statistic for regression coefficients.

In this setting the local neighborhood has a multivariate t-distribution. Thus, if we

know the estimate of the neighborhood covariance we can again apply MCDLM algorithm 2 by

changing the simulation from a multivariate Gaussian distribution to a multivariate t-distribution.

This approach works well in practice (see Section 5.4.2) however it is somewhat compu-

tational (especially as ρ and the degrees of freedom increase). To get around this we consider

a voxelwise Gaussianization transformation of the t-fields (as in [80]) which acts using the

distribution function as follows:

Z(s) =−Φ
−1[Ft,ν(−T (s))], (5.15)

where Ft,ν is the cdf of the t-distribution with ν degrees of freedom. We then apply the MCDLM
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method for the Gaussian field to the transformed t-field. As we will see in the simulations in the

next two sections, the changes in the covariance matrix do not influence the results much.

5.3 Simulation Setup

In this section we describe the different simulation settings we have considered in order

to compare the performance of the three methods introduced in Section 5.2, i.e. the ADLM,

MCDLM and continuous RFT method. For each simulation setting considered we generate a

large number of stationary Gaussian random fields (or t-fields), collect the heights of the peaks

across all fields and combine these to obtain a reference peak height distribution, which will

allow us to test the validity of each of the approaches.

For each method, we calculate a p-value at each peak. Local maxima were selected

based on the criteria that their height values are larger than their neighbors - we separately

consider both the fully connected and partially connected neighborhoods. We compare the

validity and accuracy of these p-values using pp plots which compare the sorted p-values to

the tail probability of the true peak height distribution. These are formally defined in Appendix

D.3. The closer each plot is to the identity function, the closer the approximation is to the true

distribution. The plots lying below the identity function correspond to conservative p-values

and plots above the identity function correspond to liberal p-values. We use these pp plots to

compare the performance of the three approaches in all of our simulation studies.

5.3.1 Isotropic Gaussian random fields

Our first set of simulations consists of isotropic Gaussian fields which are obtained by

convolving Gaussian white noise with a Gaussian kernel with specified FWHM and normalizing

so that the resulting fields have unit variance. To avoid any boundary effects the fields were

initially generated on a D-dimensional large grid of size (50+2×⌈4∗η⌉) at each direction

and the central subset is taken, as described in [33]. We do this in 2D and in 3D. The resulting

2D images are of size 50× 50 and the resulting 3D images are of size 50× 50× 50. In the
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simulations we choose the FWHM so that the correlation between adjacent voxels in each

perpendicular direction is equal to ρ ∈ {0.01,0.5,0.99} - this corresponds to FWHMs of 0.7,

1.5 and 11.7 voxels. In each setting we generate 10,000 random fields and compare the different

approaches using pp plots - as described above and in Appendix D.3. See Section 5.4.1 for the

corresponding results.

5.3.2 Isotropic t-fields

In this section, we consider the performance of the different approaches when it comes to

evaluating the height distribution of peaks of t-fields. To do so we generate fields with ν degrees

of freedom (taking ν = 20,50,100) by simulating i.i.d isotropic Gaussian fields Z1, ...,Zν and

ε(s) in (5.14) as in Section 5.3.1. We generate 10,000 t-fields in both 2D and 3D. In each setting

we calculate peak-height p-values using the MCDLM approach for t-fields discussed in Section

5.2.4. We also calculate p-values using the continuous RFT approach. Note that this is designed

for Gaussian random fields so we would not expect it to work as well in this setting. We compute

a final set of p-values using the actual simulated Gaussian random fields - as the number of

degrees of freedom of the t-field goes to infinity the t-field converges to a Gaussian random field

with the original covariance function so this provides a measure of the convergence of the fields.

Note that in practice this is not a viable measure for calculating a peak height distribution as it

requires us to have the original fields. We compare the p-values obtained using these different

approaches using pp-plots. The results are described in Section 5.4.2.

As discussed in Section 5.2.5, we also consider using Gaussianization transformation of

the t-field to improve the computational efficiency. We perform the same set of simulations but

where each of the t-fields is Gaussianized, with the same t-field as described above. We then

calculate p-values using the MCDLM for Gaussian fields and the continuous RFT approach. The

results are described in Appendix D.4.
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Figure 5.3. Examples of stationary Gaussian random fields which are obtained by convolving
white noise with an elliptical Gaussian kernel with ρ1 = 0.01,ρ2 = 0.5 in the left plot and
ρ1 = 0.5,ρ2 = 0.99 in the right plot.

5.3.3 Stationary Gaussian fields with unknown covariance

To test the performance of MCDLM, we consider two different simulation settings. In

the first we use n fields (n = 20,50,100,200 for small ρ and n = 20,50,100,200,1000 for large

ρ) to estimate the neighborhood covariance using the isotropic version of equation (5.12). We

compare the performance of MCDLM with this estimated covariance across different sample

sizes (once again using 10,000 simulations in each of the settings described in Section 5.3.1). In

the second we consider 2D non-isotropic Gaussian fields. To generate these we smooth Gaussian

white noise with an elliptical Gaussian kernel with smoothing FWHM in each direction chosen

such that the correlation between adjacent voxels in the vertical and horizontal directions is ρ1

and ρ2 respectively. Again, we estimate the neighborhood covariance using equation (5.9) using

n fields (n = 20,50,100,200). We consider two 2D examples, one where ρ1 = 0.01 and ρ2 = 0.5

and a second where ρ1 = 0.5 and ρ2 = 0.99 (example realizations of these fields are illustrated

in Figure 5.3). In each setting We compare the p-values obtained using different sample size and

using a theoretical covariance function by pp plots. The results are shown in Section 5.4.3.

In practice the spatial covariance of the observed random field is unknown and it may

not be reasonable to assume the field is isotropic. Thus Σ must be estimated from the data as

described in Section 5.2.3. Once the covariance function has been estimated we must ensure that

it is positive semi-definite (p.s.d). We proceed by pushing the negative eigenvalues of estimated
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covariance matrix to a small positive value, 1× 10−10. In a stationary Gaussian field, there

is a lot of structure that can be taken advantage of when estimating Σ. Under stationarity the

neighborhood covariance matrix has a block Toeplitz structure which makes it easier to estimate,

see examples in Appendix D.2.

5.4 Simulation Results

5.4.1 Results for isotropic Gaussian random fields

2D
3D

Figure 5.4. pp plots which compare the different methods of computing peak height p-values in
the isotropic Gaussian random field scenario. 2D and 3D results are displayed in the first and
second rows respectively. The correlations between adjacent voxels are ρ = 0.01,0.5,0.99. The
plots compare the performance of ADLM, MCDLM and the continuous RFT approach.

Results comparing all three methods in the isotropic Gaussian random fields setting

(described in Section 5.3.1) are presented in Figure 5.4. From this figure we see that the

MCDLM method obtains p-values which are uniformly distributed and thus provides accurate

and valid inference at all smoothness levels. The continuous approach is valid but conservative

unless the data is very smooth (large FWHM). The ADLM method gives liberal p-values at all
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smoothness levels though the severity of this reduces when the smoothness is very large. In

3D the results are similar though at the highest smoothness level the curve corresponding to

the MCDLM method is slightly rough, this could be made sharper if desired by increasing the

number of Monte Carlo runs used. As discussed in Section 5.2, we focus on the covariance

function calculated by (5.8) in the calculation of the MCDLM and ADLM distributions since

it is the actual covariance of the data. The results are slightly worse if (5.7) is used instead

(as was done in [101, 87]). The results for this are discussed in Appendix D.4.2. We also

generate a look-up table, which provides the same results under reduced computation time (for

the case of Gaussian white noise smoothed with an isotropic Gaussian kernel). The results of

using the lookup table are shown in Appendix D.4.3. Here we only consider the case where the

neighborhood is fully connected, results for partially connected neighborhoods (in which the

ADLM method performs much better than MCDLM method) are presented in Appendix D.4.1.

To quantify the difference of p-values from all three methods, we use the Root Mean

Squared Error (RMSE) to calculate the difference between p-value from each of the method

and 45 degree line. Our comparison focus on the region of p-value ≤ 0.05. The RMSE results

calculated from 2D isotropic Gaussian random fields with different ρ are shown in Table 5.1.

From the table, MCDLM performs better than ADLM and continuous RFT approach in all low

smoothness cases (FWHM ≤ 5.2). The MCDLM is outperformed by continuous RFT approach

when smoothness level is high (FWHM = 8.3 and 11.7).

5.4.2 Isotropic t-fields

The pp plots comparing the different methods in the setting of isotropic t-fields (described

in Section 5.3.2) are presented in Figure 5.5 (2D) and Figure 5.6 (3D). As shown in these two

figures, MCDLM obtains p-values which are uniformly distributed at all smoothness levels and

different degrees of freedom for 2D and lower smoothness levels for 3D. In the 3D case at high

smoothness levels, the MCDLM approach becomes a rough approximation because the number

of peaks generated is not sufficient. As such the height distribution computed is inaccurate,
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Table 5.1. RMSE results from 2D isotropic Gaussian random fields for comparing the p-values
from MCDLM, ADLM and continuous RFT methods. The smallest value in each row is
highlighted in red color.

MCDLM ADLM Continuous RFT
ρ = 0.01 (FWHM = 0.7) 1.71×10−4 5.77×10−3 8.18×10−3

ρ = 0.1 (FWHM = 1) 1.91×10−4 5.48×10−3 7.75×10−3

ρ = 0.3 (FWHM = 1.2) 6.16×10−5 4.83×10−3 6.53×10−3

ρ = 0.5 (FWHM = 1.5) 6.34×10−5 4.16×10−3 4.99×10−3

ρ = 0.7 (FWHM = 2) 1.22×10−4 3.58×10−3 3.01×10−3

ρ = 0.9 (FWHM = 3.6) 2.05×10−4 2.91×10−3 8.61×10−4

ρ = 0.95 (FWHM = 5.2) 1.12×10−4 2.56×10−3 5.04×10−4

ρ = 0.98 (FWHM = 8.3) 1.57×10−4 2.51×10−3 1.02×10−4

ρ = 0.99 (FWHM = 11.7) 2.87×10−4 2.54×10−3 1.29×10−4

as shown in the noisy subfigure in the bottom right of Figure 5.6. The continuous method is

designed for Gaussian fields rather than t-fields, so it is too liberal when ν is small while too

conservative when ν is large and ρ is small. Although in the case that the number of degrees of

freedom is large and FWHM large, the Gaussian field can approximate the t-field and continuous

method has improved performance, the MCDLM method always outperforms the continuous

method in all circumstances as long as we generate enough local maxima.

As discussed in Section 5.3.2, the Gaussianization approach is introduced to save com-

putation time. The results for this are shown in Appendix D.4. They show that the MCDLM

method performs well when the number of degrees of freedom is large whereas continuous

method requires both the degrees of freedom and FWHM to be large.
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ν
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ν
=

50
ν
=
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0

Figure 5.5. Comparing methods for calculating the peak height distribution of a 2D t-field
with ν degrees of freedom. From left to right: spatial correlation ρ = 0.01,0.5,0.99. From top
to bottom: ν = 20,50,200. The figure is generated based on the comparison of the p-values
calculated using Gaussian field with same correlation ρ , continuous RFT and MCDLM approach.
The reference is the true peak height distribution generated from the t field.
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Figure 5.6. Comparing methods for calculating the peak height distribution of a 3D t-field
with ν degrees of freedom. From left to right: spatial correlation ρ = 0.01,0.5,0.99. From top
to bottom: ν = 20,50,200. The figure is generated based on the comparison of the p-values
calculated using Gaussian field with same correlation ρ , continuous RFT and MCDLM approach.
The reference is the true peak height distribution generated from the t field.
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5.4.3 Stationary Gaussian fields with unknown covariance

In Figure 5.7, we compare the peak height distribution calculated from the MCDLM

method using both theoretical (i.e. true) neighborhood covariance in (5.8) and estimated neigh-

borhood covariance displayed in (5.12). Figure 5.7 shows that MCDLM with the estimated

neighborhood covariance performs as well as MCDLM with the theoretical neighborhood covari-

ance when ρ = 0.01 and 0.5. When ρ increases to 0.99, the MCDLM method with estimated

covariance function requires a large number of simulated peaks before it converges. This number

decreases with the number of voxels in the image (which is why the performance of the 3D

simulations are substantially better than the 2D ones), even when a very large sample size is

used to estimate it. Since with ρ = 0.99, even with 1000 instances to estimate the neighbor-

hood covariance the MCDLM method still performs poorly, we investigate more scenarios with

ρ = 0.9,0.93,0.95. The detailed results are included in Appendix D.4.5. Based on the results,

we recommend using the MCDLM method with estimated covariance function when ρ < 0.95,

or FWHM < 5.2 in practice.

The results for the second (non-isotropic) simulations discussed in Section 5.3.3 are

shown in Figure 5.8. From this plot we see that the estimated version works well when ρ1 = 0.01

and ρ2 = 0.5, and requires a larger number of realizations to converge when ρ1 = 0.5 and

ρ2 = 0.99.

5.5 Discussion

In this paper, we have proposed a new Monte Carlo method to calculate the distribution of

the height of a peak of a discrete Gaussian random field which works under minimal assumptions.

When inferring on the heights of the peaks of Gaussian field MCDLM performed well compared

to other approaches. Historically, continuous RFT method was used to calculate the distribution

of the height of local maxima in a continuous random field. However, in practice we observe

data on a lattice. As shown in [80], when the data is sufficiently smooth (FWHM ≥ 7), the
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2D
3D

Figure 5.7. Comparison of the peak height distribution calculated from using MCDLM with
different neighborhood covariance for 2D and 3D isotropic Gaussian fields. The covariance
functions used here are theoretical covariance function (Tcf) and empirically estimated covariance
function (Ecf). The number of random fields used to estimate the covariance function is denoted
using nsim. From left to right: ρ = 0.01,0.5,0.99.

Figure 5.8. Comparison of the peak height distribution calculated from using MCDLM method
with different covariance functions for 2D anisotropic stationary Gaussian fields. The left:
ρ1 = 0.01 and ρ2 = 0.5 and the right: ρ1 = 0.5 and ρ2 = 0.99.
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continuous formulae provide a good approximation to the height of local maxima, but in many

realistic situations (FWHM < 7) the data is not sufficiently smooth and using the continuous

formulae can lead to conservative inference. Furthermore, the continuous formulae only work

for an isotropic field or a field that can be deformed to an isotropic field, but in practice this

assumption is too restrictive. Additionally, the height distribution will be different for points

on the boundary of the domain and these cases are not considered when using the continuous

methods.

We showed that ADLM was liberal while the continuous RFT approach was conservative.

We thus recommend using MCDLM to infer on peak height at all smoothness levels. However,

when the data is very smooth and when it is reasonable to assume the data is isotropic, there may

not be much gain relative to the continuous RFT approach and since the latter is very efficient we

recommend it in that setting. In this case the covariance matrix is nearly singular, which causes

problems when applied to our MCDLM method with estimated covariance function. A detailed

running-time table for all methods under different scenarios is provided in Appendix D.5. The

advantage of MCDLM is that it works well for local maxima on a rough lattice. ADLM only

performs well under restrictive assumptions and for the partially connected neighborhood.

The proposed MCDLM method also works for t-fields, but it takes quite long time

to implement this approach when the number of degrees of freedom is large. To improve

the computational efficiency, we recommend using a Gaussianization transformation and then

applying MCDLM to the Gaussianized field. The continuous RFT approach works better when

both smoothness and degrees of freedom are high, but even when degrees of freedom increases to

200, it is still outperformed by MCDLM. Our approach can also easily be extended to obtain the

peak height of two-sample t-statistic and F-fields of a lattice. The proposed method is limited to

stationary Gaussian or Gaussian-derived random fields. However extensions to locally stationary

and non-stationary fields are possible and are an interesting avenue for future research.

Chapter 5, in full, is currently being prepared for submission for publication of the

material as it may appear in Tuo Lin, Armin Schwartzman and Samuel Davenport. Peak p-values
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for Gaussian random fields on a lattice. The dissertation author was the primary author of this

paper.
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Appendix A

Appendix for Chapter 1

A.1 Proof of equivalence of the nulls in (1.4) and (1.5).

Taking expectation on both sides of (1.3) yields:

nk

∑
i=1

E (Rki) = n1n2∆+
nk (nk +1)

2
. (A.1)

Since the Rki’s are natural numbers ranging over [1,n1 +n2], E (Rki) = ∑
nk
i=1 Rki/nk.

If E (R1i) = E
(
R2 j
)
, then substituting ∑

n1
i=1 R1i/n1 in place of ∑

n2
j=1 R2 j/n2 in the follow-

ing identity:
∑

n1
i=1 R1i +∑

n2
j=1 R2 j

n1 +n2
=

1
2
(n1 +n2 +1) ,

and simplifying yields:

E (R1i) =
∑

n1
i=1 R1i

n1
=

1
2
(n1 +n2 +1) .

Thus, E (R1i) = E
(
R2 j
)
= (n1 +n2 +1)/2. Substituting (n1 +n2 +1)/2 in place of E (R1i) in

(A.1) and simplifying yields: ∆ = 1/2.

If ∆ = 1/2, then (A.1) reduces to E(Rki) = (n1 + n2 + 1)/2, i.e., the groups have the

same mean rank.

98



A.2 Proof of Theorem 1

a) The null of equal median implies H0 : ∆ = 1
2 . We have:

∆ =
∫

I (ξ ≤ η) f1 (ξ ) f2 (η)dξ dη

=
∫
{ξ≥m,η≤m}

I (ξ ≤ η) f1 (ξ ) f2 (η)dξ dη +
∫
{ξ≤m,η≥m}

I (ξ ≤ η) f1 (ξ ) f2 (η)dξ dη+

+
∫
{ξ≥m,η≥m}

I (ξ ≤ η) f1 (ξ ) f2 (η)dξ dη +
∫
{ξ≤m,η≤m}

I (ξ ≤ η) f1 (ξ ) f2 (η)dξ dη

= Pr(y1i ≥ m)Pr
(
y2 j ≥ m

)
+ J,

where

J =
∫
{ξ≥m,η≥m}

I (ξ ≤ η) f1 (ξ ) f2 (η)dξ dη +
∫
{ξ≤m,η≤m}

I (ξ ≤ η) f1 (ξ ) f2 (η)dξ dη .

Since Pr(y1i ≥ m)Pr
(
y2 j ≥ m

)
= 1/4, we only need to show that J = 1/4.

Let y′1i = 2m− y1i and y′2 j = 2m− y2 j. Since yki have symmetric distribution, we have:

f ′1 (ξ ) = f1 (ξ ) , f ′2 (η) = f2 (η) , dξ
′ =−dξ , dη

′ =−dη ,

{y1i ≤ m}= {y′1i ≥ m}, {y2 j ≤ m}= {y′2 j ≥ m}, I (ξ ≤ η) = I
(
ξ
′ ≤ η

′) .
Thus, we have:

∫
{ξ≤m,η≤m}

I (ξ ≤ η) f1 (ξ ) f2 (η)dξ dη =
∫
{ξ ′≥m,η ′≥m}

I
(
ξ
′ ≥ η

′) f1
(
ξ
′) f2

(
η
′)dξ

′dη
′.
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It the follows that

J =
∫
{ξ≥m,η≥m}

[I (ξ ≤ η)+ I (ξ ≥ η)] f1 (ξ ) f2 (η)dξ dη

=
∫
{ξ≥m,η≥m}

f1 (ξ ) f2 (η)dξ dη

= 1/4.

b) The condition H0 : ∆ = 1
2 implies equal median. We show this by contradiction: if yki

have different medians, then ∆ ̸= 1/2.

Let mk denote the median of yki (k = 1,2). If m1 ̸= m2, then y1i−m1+m2 have the same

median m2 as y2 j. From a), we have

pr
(
y1i −m1 +m2 ≤ y2 j

)
=

1
2
.

Suppose that m1 > m2. Then,

pr(y1i −m1 +m2 ≤ c)> pr (y1i ≤ c)

for some c in the support of y1i, y1i −m1 +m2 and y2 j. Since y1i and y2 j are independent,

pr
(
y1i ≤ y2 j

)
= pr (y1i ≤ c) pr

(
y2 j ≥ c

)
,

pr
(
y1i −m1 +m2 ≤ y2 j

)
= pr (y1i −m1 +m2 ≤ c) pr

(
y2 j ≥ c

)
,

it follows that

∆ = pr
(
y1i ≤ y2 j

)
< pr

(
y1i −m1 +m2 ≤ y2 j

)
=

1
2
,

contradicting ∆ = 1/2. Similarly, if m1 < m2, we can show that

∆ = pr
(
y1i ≤ y2 j

)
> pr

(
y1i −m1 +m2 ≤ y2 j

)
= 1/2.
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A.3 Proof of Theorem 2

Let

Vn =
1
n1

1
n2

n1

∑
i=1

n2

∑
j=1

w1iw2 jI
(
y1i ≤ y2 j

)
=

1
n1

1
n2

n1

∑
i=1

n2

∑
j=1

h
(
y1i,w1i;y2 j,w2 j

)
. (A.2)

Then Vn is a two-sample U-statistic with kernel, h
(
y1i,w1i;y2 j,w2i

)
= w1iw2 jI

{
y1i ≤ y2 j

}
, and

two bivariate arguments, (y1i,w1i) from the first and
(
y2 j,w2 j

)
from the second sample [55].

Let xi denote a vector of design variables that define the unique sampling weights such that

yki ⊥ wki | xki (k = 1,2), where ⊥ denotes stochastic independence. We then have:

δ = E
[
h
(
y1i,w1i;y2 j,w2 j

)]
(A.3)

= E
{

E
[
w1iw2iI

(
y1i ≤ y2 j

)
| x1i,x2 j

]}
= E

{
E
(
w1iw2i | x1i,x2 j

)
E
[
I
(
y1i ≤ y2 j

)
| x1i,x2 j

]}
= E

[
E
(
w1iw2i | x1i,x2 j

)]
E
{

E
[
I
(
y1i ≤ y2 j

)
| x1i,x2 j

]}
= E (w1i)E (w2i)E

[
I
(
y1i ≤ y2 j

)]
= E (w1i)E (w2i)∆.

Let

h1k (yki,wki) = E
[
h
(
y1i,w1i;y2 j,w2 j

)
| yki,wki

]
,

h̃1k (yki,wki) = h1k (yki,wki)−δ , σ
2
hk
=Var

(
h̃k1 (yki)

)
, k = 1,2.
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By applying the theory of U-statistics, Vn has the same asymptotic distribution as its projection

[55]:

V̂n =
2

∑
k=1

1
nk

nk

∑
i=1

h̃1k (yki,wki)

=

√
n

√
n1

√
n1

n1

n1

∑
i=1

h̃11 (y1i,w1i)+

√
n

√
n2

√
n2

n2

n2

∑
i=1

h̃12 (y2i,w2i)

= Sn1 +Sn2.

By applying the central limit theorem to Snk, we have:

Snk →d N
(
0,ρ2

k σ
2
hk

)
, k = 1,2.

Since Snk are independent of each other, it follows from Slutsky’s theorem that

√
nV̂n = Sn1 +Sn2 →d N

(
0,σ2

V = ρ
2
1 σ

2
h1
+ρ

2
2 σ

2
h2

)
. (A.4)

A consistent estimate of the asymptotic variance σ2
V is given by:

σ̂
2
V =

n
n1

σ̂
2
1 +

n
n2

σ̂
2
2 . (A.5)

By expressing the MWW test statistic with sampling weights in (1.9) as a function of Vn,

we have:

Un =
1

w1·w2·
Vn. (A.6)
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It follows from the LLN, properties of convergence in probabilities and (A.3) that

wk· →p E (wki) ,

Un =
1

w1·

1
w2·

Vn

→p
1

E (w1i)E (w2i)
E (w1i)E (w2i)∆

= ∆,

establishing consistency in Theorem 2/a.

Also,

√
n(Un −∆) =

√
n
(

1
w1·w2·

Vn −∆

)
(A.7)

=
√

n
(

1
w1·w2·

Vn −
w1·w2·
w1·w2·

∆

)
=
√

n
[

1
w1·w2·

(Vn −w1·w2·∆)

]
=

1
w1·w2·

√
n

[
1
n1

1
n2

n1

∑
i=1

n2

∑
j=1

w1iw2iI
(
y1i ≤ y2 j

)
− 1

n1

1
n2

n1

∑
i=1

n2

∑
j=1

w1iw2i∆

]

=
1

w1·w2·

√
n

{
1
n1

1
n2

n1

∑
i=1

n2

∑
j=1

w1iw2i
([

I
(
y1i ≤ y2 j

)
−∆
])}

=
1

w1·w2·

√
nVn.

Theorem/(b) follows from (A.4) and an applications of Slutsky’s theorem to the last equality in

(A.7). Theorem/(c) follows from Theorem/(b) and (A.5).
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Appendix B

Appendix for Chpater 2

B.1 Consistency Proof

Consistency of ρ̂ in (2.3). Under ri j⊥yi j, it follows from the theory of U-statistics

(
n
2

)−1

∑
(i, j)∈Cn

2

ri j →p E (r12) ,

(
n
2

)−1

∑
(i, j)∈Cn

2

ri jyi j →p E (r12y12) = E (r12)E (y12) = E (r12)ρ.

Thus, we have:

ρ̂ =

 ∑
(i, j)∈Cn

2

ri j

−1

∑
(i, j)∈Cn

2

ri jyi j →p
E (r12)E (y12)

E (r12)
= E (y12) = ρ.

Consistency of ρ̂ IPW
n in (2.4). By the theory of U-statistics, we have

ρ̂
IPW
n =

(
n
2

)−1

∑
(i, j)∈Cn

2

ri j

πi j
yi j →p E

(
ri j

πi j
yi j

)
.
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Under ri j⊥yi j | zi,z j, it follows from the iterated conditional expectation

E
(

ri j

πi j
yi j

)
= E

[
E
(

ri j

πi j
yi j

)
| yi j,zi,z j

]
= E

[
1

πi j
yi jE

(
ri j | yi j,zi,z j

)]
= E

[(
1

πi j
yi jπi j

)]
= E

(
yi j
)

= ρ.

Consistency of ρ̂MSI
n in (2.7). By the theory of U-statistics, we have

ρ̂
MSI
n =

(
n
2

)−1

∑
i∈Cn

2

{
ri jyi j +

(
1− ri j

)
gi j
}
→p E

[
ri jyi j +

(
1− ri j

)
gi j
]
.

Under ri j⊥yi j | zi,z j, it follows from the iterated conditional expectation

E
[
ri jyi j +

(
1− ri j

)
gi j
]
= E

[
E
[(

ri jyi j +
(
1− ri j

)
gi j
)
| zi,z j

]]
= E

[
E
[
ri j
(
yi j −gi j

)
| zi,z j

]
+gi j

]
= E

[
E
[
ri j | zi,z j

]
E
[
yi j −gi j | zi,z j

]]
+E

[
gi j
]

= ρ.

Consistency of ρ̂DR
n in (2.8). By the theory of U-statistics, we have

ρ̂
DR
n =

(
n
2

)−1

∑
i∈Cn

2

{
ri j

πi j
yi j +

(
1−

ri j

πi j

)
gi j

}
→p E

[
ri j

πi j
yi j +

(
1−

ri j

πi j

)
gi j

]
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Under ri j⊥yi j | zi,z j, it follows from the iterated conditional expectation

E
[

ri j

πi j
yi j +

(
1−

ri j

πi j

)
gi j

]
= E

[
E
[

ri j

πi j
yi j +

(
1−

ri j

πi j

)
gi j | zi,z j

]]
= E

[
E
[

ri j

πi j

(
yi j −gi j

)
| zi,z j

]
+gi j

]
= E

[
E
[

ri j

πi j
| zi,z j

]
E
[
yi j −gi j | zi,z j

]]
+E

[
gi j
]

(B.1)

Now, if gi j = E
[
yi j | zi,z j

]
, then (B.1) reduces to

E
[
gi j
]
= ρ.

On the other hand, if πi j = E
[
ri j | zi,z j

]
= πi j, then (B.1) reduces to

E
[
E
[
yi j −gi j | zi,z j

]]
+E

[
gi j
]
= E

[
yi j
]
= ρ.

B.2 Proof of Theorem 2

Let’s first take a look at expressions for variance Vik specified in the estimating equation

for the doubly robust estimator.

Expressions for Variance Vik. For Vi1 and Vi2, we have:

Vi j1 =Var
(

fi j1 | zi,z j
)
= π (zi;γ)i (1−π (zi;γ))+π

(
z j;γ

)(
1−π

(
z j;γ

))
Vi j2 =Var( fi2 | zi,z j) = g

(
zi,z j;β

)(
1−g

(
zi,z j;β

))
.
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For Vi j3,

Vi j3 =Var
(

fi j3 | zi,z j
)

= E
(

f 2
i j3 | zi,z j

)
−E2 ( fi j3 | zi,z j

)
= E

[{
r2

i j

π2
i j

(
yi j −g

(
zi,z j,β

))2

}
| zi,z j

]

= E

[{
r2

i j

π2
i j

g
(
zi,z j,β

)(
1−g

(
zi,z j,β

))}
| zi,z j

]

= E

[{ (
ri
(
1− r j

))2(
πi
(
1−π j

))2 g
(
zi,z j,β

)(
1−g

(
zi,z j,β

))}
| zi,z j

]

= E

[{
ri
(
1− r j

)
(πi(1−π j))2 g

(
zi,z j,β

)(
1−g

(
zi,z j,β

))}
| zi,z j

]

=
1

πi(1−π j)
g
(
zi,z j,β

)(
1−g

(
zi,z j,β

))
.

Theorem 2 proof.

Proof. We first prove within-village case, where the two samples are from the same village. A

Taylor’s series expansion gives:

√
n(θ̂ −θ) =

(
− ∂

∂θ
⊤Un,i j(θ)

)−1√
nUn,i j(θ)+op(1).

Let Di j =
∂

∂θ
⊤ hi j (θ) and B = E

(
D⊤

i jV
−1
i j Di j

)
. From the theory of multivariate U-

statistics [55], we have

∂

∂θ
⊤Un,i j(θ) =

(
n
2

)−1

∑
(i, j)∈Cn

2

∂

∂θ
⊤

(
−D⊤

i jV
−1
i j hi j(θ)

)
→p E

[(
−D⊤

i jV
−1
i j

)
∂

∂θ
⊤hi j(θ)

]
=−E

(
D⊤

i jV
−1
i j Di j

)
=−B,
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and

√
nUn,i j =

(
n
2

)−1

∑
(i, j)∈Cn

2

Un,i j =
√

n
1
n

n

∑
i=1

2E
(
Un,i j | Yi,Xi

)
+op(1)

=
√

n
1
n

n

∑
i1=1

ṽi +op(1)

→d N (0,ΣU) .

By Slutsky’s Theorem, we obtain

√
n(θ̂ −θ) =

(
− ∂

∂θ
⊤Un,i j(θ)

)−1√
nUn,i j(θ)+op(1)

= B−1√n
1
n

n

∑
i1=1

vi +op(1)

→d N (0,Σθ ) ,

where Σθ = B−1ΣU B−⊤. Consistency can be shown straightforwardly by WLLN from above.

Next, we prove between-village case, where the two samples are from different villages.

Let’s denote n = nr +ns. Again by Taylor’s series expansion, we get

√
n(θ̂ −θ) =

(
− ∂

∂θ
⊤Un,i j(θ)

)−1√
nUn,i j(θ)+op(1).

Similarly, from the theory of multivariate U-statistics, we have

∂

∂θ
⊤Un,i j(θ) =

[(
nr

1

)(
ns

1

)]−1 nr

∑
i=1

ns

∑
j=1

∂

∂θ
⊤

(
−D⊤

i jV
−1
i j hi j(θ)

)
→p E

[(
−D⊤

i jV
−1
i j

)
∂

∂θ
⊤hi j(θ)

]
=−E

(
D⊤

i jV
−1
i j Di j

)
=−B,
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and

√
nUn,i j =

[(
nr

1

)(
ns

1

)]−1 nr

∑
i=1

ns

∑
j=1

Un,i j

=

√
n

√
nr

√
nr

nr

nr

∑
i=1

E
(
Un,i j | Yri,Xri

)
+

√
n

√
ns

√
ns

ns

ns

∑
j=1

E
(
Un,i j | Ys j,Xs j

)
+op(1)

= ρr

√
nr

nr

nr

∑
i=1

vri +ρs

√
ns

ns

ns

∑
j=1

vs j +op(1)

→d N (0,ΣU) ,

where ΣU = ρ2
r Var(vri)+ρ2

s Var(vs j) = ρ2
r Σr +ρ2

s Σs.

By Slutsky’s Theorem, we obtain

√
n(θ̂ −θ) =

(
− ∂

∂θ
⊤Un,i j(θ)

)−1√
nUn,i j(θ)+op(1)

= B−1

(
ρr

√
nr

nr

nr

∑
i=1

vri +ρs

√
ns

ns

ns

∑
j=1

vs j

)
+op(1)

→d N (0,Σθ ) ,

where Σθ = B−1ΣU B−⊤.
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Appendix C

Appendix for Chapter 4

C.1 Proof of Asymptotic Unbiasedness

Proof of Lemma 8. Let c(x) be the number of splits leading to the leaf L(x) and c j(x) be the

number of these splits along the j-th coordinates. By α-regular, we have sminαc(x) ≤ 2k− 1,

which implies c(x) ≥ log(smin/(2k−1))/log(α−1) for 0 < α < 1. Thus, the stochastic lower

bound for c j(x) is:

c j(x)≥ Binom
(

log(smin/(2k−1))
log(α−1)

;
π

d

)
.

By Chernoff’s inequality and smin/s ≳ ε by positivity assumption, it follows that

P
[

c j(x)≤
π

d
log(smin/(2k−1))

log(α−1)
(1−η)

]
≤ exp

[
−η2

2
log(smin/(2k−1))

π−1d log(α−1)

]
≤ exp

[
−η2

2
log(εs/(2k−1))
π−1d log(α−1)

]

=

(
εs

2k−1

)−η2
2

1
π−1 log(α−1)

.

From Wager and Walther (2015) [ref], we have

diam j(L(x))≤ (1−α)0.991c j(x).
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Combining with the Chernoff’s inequality we get the conclusion of lemma 8.

Proof of Theorem 9. Define g(Y (0)
i ,Y (1)

i ) = I{Y (0)
i ≤ Y (1)

i }, then

δ (x) = E
[

g(Y (0)
i ,Y (1)

i )

∣∣∣∣X i = x
]
.

In addition, δ̂
(b)
tree(x) can be written as

δ̂
(b)
tree(x) =

1∣∣∣L(0)
i

∣∣∣ ∣∣∣L(1)
i

∣∣∣ ∑
Z j0∈L(0)

i

∑
Zl1∈L(1)

i

s j0sl1g(Yj0,Yl1),

where s j0 = I{Z j0 ∈ L(0)
i } and sl1 = I{Zl1 ∈ L(1)

i }. Thus, by honesty,

E[δ̂ (b)
tree(x)]−E

[
g(Y (0)

i ,Y (1)
i )

∣∣∣∣X i = x
]

= E
[

E[g(Y j0,Yl1) | X j,X l ∈ Li]−E
[

g(Y (0)
i ,Y (1)

i )

∣∣∣∣X i = x
]]

.

By Lipschitz continuity of δ (x),

∣∣∣∣E[g(Yj0,Yl1) | X j,X l ∈ Li]−E
[

g(Y (0)
i ,Y (1)

i )

∣∣∣∣X i = x
]∣∣∣∣≤√

2C diam(Li).

Thus it suffices to show that the average diameter of leaf Li is bounded. To do so, let η =√
log((1−α)−1 . Since we assume α ≤ 0.2, we have η ≤ 0.48 and so 0.99 · (1−η) ≥ 0.51.

Since by Pythagorean theorem,

diam(Li)≥
√

d
(

εs
2k−1

)−0.51
log((1−α)−1)

log(α−1)
π

d


⊂
⋃

j

diam j(Li)≥
(

εs
2k−1

)−0.51
log((1−α)−1)

log(α−1)
π

d

 .
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Applying lemma (8) and union bound, we obtain, for large enough s,

P

diam(Li)≥
√

d
(

εs
2k−1

)−0.51
log((1−α)−1)

log(α−1)
π

d

≤ d
(

εs
2k−1

)− 1
2

log((1−α)−1)
log(α−1)

π

d

.

Let A be the event that diam(Li)≥
√

d
(

εs
2k−1

)−0.51
log((1−α)−1)

log(α−1)
π

d . For large s, we have

E
∣∣∣∣E[g(Y j0,Yl1) | X j,X l ∈ Li]−E

[
g(Y (0)

i ,Y (1)
i )

∣∣∣∣X i = x
]∣∣∣∣P(A)

≤ d
(

εs
2k−1

)− 1
2

log((1−α)−1)
log(α−1)

π

d

(C.1)

and

E
∣∣∣∣E[g(Yj0,Yl1) | X j,X l ∈ Li]−E

[
g(Y (0)

i ,Y (1)
i )

∣∣∣∣X i = x
]∣∣∣∣P(Ac)

≤
√

2C
√

d
(

εs
2k−1

)−0.51
log((1−α)−1)

log(α−1)
π

d

. (C.2)

Combining the above (C.1) and (C.2), we get

E
∣∣∣∣E[g(Yj0,Yl1) | X j,X l ∈ Li]−E

[
g(Y (0)

i ,Y (1)
i )

∣∣∣∣X i = x
]∣∣∣∣

≤ (d +
√

2C
√

d)
(

εs
2k−1

)− 1
2

log((1−α)−1)
log(α−1)

π

d

.

Thus the conclusion for Theorem 9 follows.
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C.2 Proof of Theorem 12

C.2.1 RF U-statistics

The random forest (RF) is defined as

RF (x;Z1, . . . ,Zn) = Eξ∼Ξ [T (x;ξ ,Zi1, . . . ,Zis)] =

(
n
s

)−1

∑
(i1,...,is)∈Cn

s

T (x;Zi1, . . . ,Zis) . (C.3)

And the Hajek projection of RF is defined as

R̊F (x;Z1, . . . ,Zn) =
n

∑
i=1

E [RF (x;Z1, . . . ,Zn) | Zi]− (n−1)θ (x) (C.4)

=
n

∑
i=1

(
n
s

)−1

∑
(i1,...,is)∈Cn

s

E [T (x;Zi1, . . . ,Zis) | Zi]− (n−1)θ (x)

where θ (x) = E [T (x;Zi1, . . . ,Zis)]. The projection in (C.4) can also be expressed in a centered

version by

R̊F (x;Z1, . . . ,Zn)−θ (x) =
n

∑
i=1

E {[RF (x;Z1, . . . ,Zn)−θ (x)] | Zi} (C.5)

=
n

∑
i=1

(
n
s

)−1

∑
(i1,...,is)∈Cn

s

E {[T (x;Zi1, . . . ,Zis)−θ (x)] | Zi}

Let

T1 (Zi) = E [T (x;Zi1, . . . ,Zis) | Zi] , T̃1 (Zi) = T1 (Zi)−θ (x) ,

en =
√

n
(
RF − R̊F

)
, σ

2
h = Var

[
T̃1 (Zi)

]
,

We will show:

1) en →p 0 as n → ∞ so that
√

n(RF −θ (x)) and
√

n
(
R̊F −θ (x)

)
have the same limit

distribution;

2) Find the limitting distribution of
√

n
(
R̊F −θ (x)

)
.
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To this end, we first derive a decomposition of RF in terms of the projection of RF onto

an filtration defined by (Z1, . . . ,Zk) for 1 ≤ k ≤ s. This decomposition can also be expressed for

a single tree T (x;Z1, . . . ,Zs) in terms of its projection onto the filtration.

Note that R̊F is the projection of RF onto the filtration defined by Z1.

Let F0 = { /0,Ω} and Fk = σ (Z1, . . . ,Zk) for 1 ≤ k ≤ s be a sequence of σ -field of

Z1, . . . ,Zk. For an integer k (1 ≤ k ≤ s), let

T̃ = T −θ (x) , Tk (Zi1, . . . ,Zis) = E (T | Z1, . . . ,Zk) , T̃k = Tk −θ (x) .

Then, Tk (Z1, . . . ,Zk) is a random variable since it is the conditional expectation of T given

Z1, . . . ,Zk. By law of iterated conditional expectation, it follows that

E (Tk | Fk−1) = E [E (T | Fk) | Fk−1] = E (T | Fk−1) = Tk−1 (C.6)

E
(
T̊k | Fk−1

)
= E (Tk | Fk−1)−θ (x) = Tk−1 −θ (x) = T̊k−1.

For notation brevity we express E(Tk | Z1, . . . ,Zk−1) using E(Tk | Fk−1).

For 1 < k ≤ s, define

g1(Z1) = T̃1

gk (Z1, . . . ,Zk) = T̃k −
k−1

∑
l=1

∑
(i1,...,il)∈Ck

l

gl (Zi1, . . . ,Zil) . (C.7)

By (C.6), we can readily show that E [gk (Z1, . . . ,Zk) | Fk−1] = 0 (1 ≤ k ≤ s). Also, since T̃k are

all centered, we have E [gk(Z1, . . . ,ZK)] = 0 (1 ≤ k ≤ s). Now, by Theorem 2 in Chapter 3 of

Kowalski and Tu (2007) [ref], let

Skn = ∑
(i1,...,ik)∈Cn

k

gk (Zi1, . . . ,Zik) , 1 ≤ k ≤ s.
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The RF has the following representation:

RF −θ (x) =
s

∑
k=1

(
s
k

)(
n
k

)−1

Skn. (C.8)

Since
(s

k

)(n
k

)−1
=
(n

s

)−1(n−k
s−k

)
(see below), by (C.6) we can also express the decomposi-

tion in (C.8) in terms of the s-argument kernel, or a single tree, T (x;Z1, . . . ,Zs) (replacing k with

s), which is also known as the ANOVA decomposition in Effron [ref]:

T (x;Z1, . . . ,Zs) = θ (x)+
s

∑
i=1

g1 (Zi)+ ∑
(i1,i2)∈Cs

2

g2 (Zi1 ,Zi2)+ · · ·+gs (Z1, . . . ,Zs) (C.9)

To see
(s

k

)(n
k

)−1
=
(n

s

)−1(n−k
s−k

)
, first we express it equivalently as:

(n
s

)(s
k

)
=
(n

k

)(n−k
s−k

)
.

We can view
(n

s

)(s
k

)
as the total of ways of choosing s from n subjects and then choosing k from

s subjects, which is the same as choosing k from n subjects and then choosing s− k from n− k

subjects.
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Thus we have from the definition of random forest in (C.3)

RF (x;Z1, . . . ,Zn) =

(
n
s

)−1

∑
(i1,...,is)∈Cn

s

T (x;Zi1, . . . ,Zis)

=

(
n
s

)−1

∑
(i1,...,is)∈Cn

s

θ (x)+
s

∑
i=1

g1 (Zi)+ ∑
(i1,i2)∈Cs

2

g2 (Zi1,Zi2)+

+ . . .+gs (Z1, . . . ,Zs)]

= θ (x)+
(

n
s

)−1
(n−1

s−1

) n

∑
i=1

g1(Zi)+

(
n−2
s−2

)
∑

(i1,i2)∈Cn
2

g2(Zi1 ,Zi2)+

+ . . .+ ∑
(i1,...,is)∈Cn

s

gs (Zi1, . . . ,Zis)

]

= θ (x)+
s

∑
k=1

(
s
k

)(
n
k

)−1

∑
(i1,...,ik)∈Cn

k

gk (Zi1, . . . ,Zik)

= θ (x)+
s
n

n

∑
i=1

g1 (Zi)+
s

∑
k=2

(
s
k

)(
n
k

)−1

∑
(i1,...,ik)∈Cn

k

gk (Zi1, . . . ,Zik) . (C.10)

Since

E(g1(Z1) | Z1) = g1(Z1) = T̃1

E(g2(Z1,Z2) | Z1) = E(T̃2 | Z1)−E [g1(Z1) | Z1]−E [g1(Z2) | Z1]

= T̃1 − T̃1 −E [g1(Z2)]

= 0

E(g3(Z1,Z2,Z3) | Z1) = E(T̃3 | Z1)−
3

∑
i=1

E [g1(Zi) | Z1]− ∑
(i, j)∈C3

2

E
[
g2(Zi,Z j) | Z1

]
= T̃1 − T̃1 −

3

∑
i=2

E [g1(Zi)]−E [g2(Z1,Z2) | Z1]−E [g2(Z1,Z3) | Z1]+

−E [g2(Z2,Z3)]

= 0,

116



and E(gk(Z1, . . . ,Zk) | Z1) = 0 for k ≥ 3 by proving in a similar manner, E(Skn | Z1) = 0 for

k ≥ 2. Thus, we can express (C.10) as:

R̊F −θ (x) =
n

∑
i=1

E {[RF (x;Z1, . . . ,Zn)−θ (x)] | Zi}

=
1
n

n

∑
i=1

sg1 (Zi) .

And (C.10) can also be expressesd in lieu of (C.8) as

RF −θ (x) =
(

s
1

)(
n
1

)−1

S1n +
s

∑
k=2

(
s
k

)(
n
k

)−1

Skn

=
1
n

n

∑
i=1

sg1 (Zi)+
s

∑
k=2

(
s
k

)(
n
k

)−1

Skn

= R̊F −θ +
s

∑
k=2

(
s
k

)(
n
k

)−1

Skn.

We can also define the Hajek projection T̊ of a single tree, or kernel, T as

T̊ −θ (x) =
s

∑
i=1

E [(T (x;Z1, . . . ,Zs)−θ (x)) | Zi]− (s−1)θ (x)

=
s

∑
i=1

g1 (Zi) .

Then, we can express T (x;Z1, . . . ,Zs) and RF (x;Z1, . . . ,Zn) in terms of their projections as:

T −θ (x) = T̊ + ∑
(i1,i2)∈Cs

2

g2 (Zi1,Zi2)+ · · ·+gs (Z1, . . . ,Zs) , (C.11)

RF −θ (x) = R̊F −θ (x)+
s

∑
k=2

(
s
k

)(
n
k

)−1

∑
(i1,...,ik)∈Cn

k

gk (Zi1, . . . ,Zik) .

To show that RF −θ (x) and R̊F −θ (x) have the same asymptotic distribution, it follows
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from (C.11)

√
n(RF −θ (x)) =

√
n
(
R̊F −θ (x)

)
+ en, (C.12)

en =
√

n
s

∑
k=2

(
s
k

)(
n
k

)−1

∑
(i1,...,ik)∈Cn

k

gk (Zi1, . . . ,Zik) ,

where en is the normalized difference between RF and R̊F . By iterated conditional expectation,

we can easily show that E
[
gs1(Zi1, ...,Zis1

)gs2(Z j1, ...,Z js2
)
]
= 0 for all s1 ̸= s2 or {i1, ..., is1} ̸=

{ j1, ..., js2} with 1 ≤ s1,s2 ≤ s.

In classic U-statistics theory,

E
(
e2

n
)
= n

s

∑
k=2

(
s
k

)2(n
k

)−1

Var [gk(Zi1, . . . ,Zik)]

= n

(s
2

)2(n
2

) Var [g2(Zi1 ,Zi2)]+ · · ·+n

(s
1

)2(n
s

) Var [gs(Zi1, . . . ,Zis)]

= nO(n−2)

→p 0

since s is a finite fixed constant. Thus, the U-statistic and its projection have the same asymptotic

distribution. In addition, Var(sg1 (Zi)) = s2 Var(g1 (Zi)) = sVar
(
T̊
)

is a finite constant. Then the

asymptotic distribution of
√

n
(
R̊F −θ (x)

)
is readily obtained by applying the classic Lindeberg

CLT for i.i.d. random sequence Zi to R̊F −θ (x) and is given by N
(
0,s2Var (g1 (Zi))

)
.

Within the context of random forests, s → ∞. Moreover, since only the Zi’s with Xi close

to x contribute to T̊ −θ (x), s2Var (g1 (Zi)) is no longer a constant. Under this case , R̊F −θ (x)

may not converge to 0 at the rate n−
1
2 . However, N

(
0, s2Var(g1(Zi))

n

)
is a valid asymptotic

distribution if s2Var(g1(Zi))
n → 0, as n,s → ∞. In this paper, contraints are imposed on the rate of

s → ∞ to ensure s2Var(g1(Zi))
n → 0, as n,s → ∞. Thus, unlike regular and asymptotically normal

estimators for semiparametric models, R̊F −θ (x)→ 0 no longer have n−
1
2 convergence rate.
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Thus we introduce the Lyapunov CLT to show asymptotic normality of R̊F −θ (x), rather than

the Lindeberg CLT.

C.2.2 Lyapunov CLT

Let’s first show the normalized difference between RF and R̊F is op(1). Let σ2
ns =

∑
n
i=1 Var [sg1 (Zi)] = ∑

n
i=1 s2 Var [g1(Zi)] = ns2 Var [g1(Zi)]. Multiplying 1√

σ2
ns
n

on both side of

(C.12) we obtain

√
n√
σ2

ns
n

(RF −θ (x)) =
√

n√
σ2

ns
n

(
R̊F −θ (x)

)
+

1√
σ2

ns
n

en.

Then it is equivalent to show that

E
[

n
σ2

ns
e2

n

]
→p 0.

To this end,

E
[

n
σ2

ns
e2

n

]
=

n
σ2

ns
E
[
e2

n
]

=
n

s2 Var [g1(Zi)]

s

∑
k=2

(
s
k

)2(n
k

)−1

Var [gk(Zi1, . . . ,Zik)]

≤ n
sVar

[
T̊
] (s

2

)(n
2

) s

∑
k=2

(
s
k

)
Var [gk(Zi1, . . . ,Zik)]

=
s−1
n−1

Var [T ]
Var
[
T̊
] . (C.13)

The last equality is because

Var [T ] =
s

∑
k=1

(
s
k

)
Var [gk(Zi1, . . . ,Zik)] .

Thus, it is critical to bound Var[T ]
Var[T̊ ]

asymptotically so that (C.13) converge to 0 in probability.

Note that as we discussed in Section C.2.1, in classic U-statistics when s is a finite constant,
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Var[T ]
Var[T̊ ]

= O(1). We will show the bound Var[T ]
Var[T̊ ]

, which is named as ν-incrementality in Wager and

Athey (2018) [ref], in Section (C.2.3).

Next, we apply Lyapunov CLT to derive the asymptotic normality of R̊F . We first show

that s2 Var(g1(Zi))→ ∞ at the rate of s
log(s)d , as s → ∞.

s2 Var(g1(Zi)) = s2 Var [E(T | Zi)]

≥ s2 Var [E(S1 | Z1)]Var(Y | X = x)

∼ Ω

(
s2 1

s log(s)d

)
∼ Ω

(
s

log(s)d

)
→ ∞, as s → ∞.

where the second inequality is from the intermediate steps in Section C.2.3. Thus, s2Var(g1(Zi))
n → 0

as n,s → ∞.

By applying Lyapunov CLT, to show

√
n√
σ2

ns
n

(
R̊F −θ (x)

)
=

√
n√
σ2

ns
n

1
n

n

∑
i=1

sg1 (Zi) =
1

σns

n

∑
i=1

sg1 (Zi)→d N (0,1) ,

we need to verify the following condition:

lim
n→∞

1

(σ2
ns)

1+ δ

2

n

∑
i=1

E
(
|sg1 (Zi)|2+δ

)
= 0, (C.14)

for δ > 0.

Note that unlike regular and asymptotically normal estimators for semiparametric models,
σ2

ns
n does not converge to a constant as n,s → ∞. However, since σ2

ns
n2 = s2 Var[sg1(Zi)]

n → 0 as
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n,s → ∞, √
n√
σ2

ns
n

(
R̊F −θ (x)

)
has a limiting normal, but R̊F −θ (x) converges to 0 at a rate slower than 1√

n .

Given that E (T | Zi)− θ (x) = sg1 (Zi), Es [g1(Zi)] = 0 and E (T ) = θ (x), (C.14) is

equivalent to

lim
n→∞

1

(∑n
i=1 Var [E (T | Zi)])

1+ δ

2

n

∑
i=1

E
[
|E (T | Zi)−θ (x)|2+δ

]
= 0. (C.15)

We first bound E
[
|E (T | Zi)−θ (x)|2+δ

]
. By the definition of k-PNN,

T =
n0

∑
j=1

n1

∑
l=1

S0 jS1lg
(
Y0 j,Y1l

)
.

Let i0 be the set of i that includes all the samples in group 0, and i1 be the set of i that

includes all the samples in group 1. The Hajek projection of T is defined as

E (T | Zi) = E
(
T | Z0 j

)
I {i ∈ i0}+E (T | Z1l) I {i ∈ i1} .

We consider E
(
T | Z0 j

)
I {i ∈ i0} first, and E (T | Z1l) I {i ∈ i1} will be considered using
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similar strategy. By adding and subtract ∑
n0
j=1 ∑

n1
l=1 S0 jS1lE

[
g
(
Y0 j,Y1l

)
| X0 j,X1l

]
, we get

E
(
T | Z0 j

)
−E (T ) = E (T | Z01)−E (T )

= E

(
n0

∑
j=1

n1

∑
l=1

S0 jS1lg
(
Y0 j,Y1l

)
(C.16)

−
n0

∑
j=1

n1

∑
l=1

S0 jS1lE
[
g
(
Y0 j,Y1l

)
| X0 j,X1l

]∣∣∣∣Z01

)

+E

(
n0

∑
j=1

n1

∑
l=1

S0 jS1lE
[
g
(
Y0 j,Y1l

)
| X0 j,X1l

]∣∣∣∣Z01

)
−E (T )

= E

(
n0

∑
j=1

n1

∑
l=1

S0 jS1l
(
g
(
Y0 j,Y1l

)
−E

[
g
(
Y0 j,Y1l

)
| X0 j,X1l

])∣∣∣∣Z01

)
+

+E

(
n0

∑
j=1

n1

∑
l=1

S0 jS1lE
[
g
(
Y0 j,Y1l

)
| X0 j,X1l

]∣∣∣∣Z01

)
−E (T ) (C.17)

By honesty, we can verify that for any index j > 1,

E
(

S0 jS1l
(
g
(
Y0 j,Y1l

)
−E

[
g
(
Y0 j,Y1l

)
| X0 j,X1l

])∣∣∣∣Z01

)
= E

(
E
(
S0 jS1l

(
g
(
Y0 j,Y1l

)
−E

[
g
(
Y0 j,Y1l

)
| X0 j,X1l

])
| Z01,X0 j,X1l

)
| Z01

)
= E

(
E
(
S0 jS1l | Z01,X0 j,X1l

)
E
({

g
(
Y0 j,Y1l

)
−E

[
g
(
Y0 j,Y1l

)
| X0 j,X1l

]}
| Z01,X0 j,X1l

)
| Z01

)
= 0,

since

E
({

g
(
Y0 j,Y1l

)
−E

[
g
(
Y0 j,Y1l

)
| X0 j,X1l

]}
| Z01,X0 j,X1l

)
= E

({
g
(
Y0 j,Y1l

)
−E

[
g
(
Y0 j,Y1l

)
| X0 j,X1l

]}
| X0 j,X1l

)
= 0.

Note: Although
(
Y0 j,X0 j

)
⊥Z01 for any index j > 1, S0 j⊥Z01 may not be true, since S0 j

may contain Z01.
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Therefore (C.17) reduces to

E
(
T | Z0 j

)
−E (T ) = E

(
n1

∑
l=1

S01S1l (g(Y01,Y1l)−E [g(Y01,Y1l) | X01,X1l])

∣∣∣∣Z01

)
+

+E

(
n0

∑
j=1

n1

∑
l=1

S0 jS1lE
[
g
(
Y0 j,Y1l

)
| X0 j,X1l

]∣∣∣∣Z01

)
−E (T ) .

Note that the two right-hand-side terms above both have mean-zero, because

E

[
E

(
n1

∑
l=1

S01S1l (g(Y01,Y1l)−E [g(Y01,Y1l) | X01,X1l])

∣∣∣∣Z01

)]

= E

(
n1

∑
l=1

S01S1l (g(Y01,Y1l)−E [g(Y01,Y1l) | X01,X1l])

)

=
n1

∑
l=1

E (S01S1l (g(Y01,Y1l)−E [g(Y01,Y1l) | X01,X1l]))

=
n1

∑
l=1

E (S01S1lg(Y01,Y1l))−
n1

∑
l=1

E (S01S1lE [g(Y01,Y1l) | X01,X1l])

=
n1

∑
l=1

E (S01S1lg(Y01,Y1l))−
n1

∑
l=1

E (E (S01S1lE [g(Y01,Y1l) | X01,X1l] | X01,X1l))

=
n1

∑
l=1

E (S01S1lg(Y01,Y1l))−
n1

∑
l=1

E (E (S01S1lg(Y01,Y1l) | X01,X1l))

= 0

Similarly, we can get

E

(
E

(
n0

∑
j=1

n1

∑
l=1

S0 jS1lE
[
g
(
Y0 j,Y1l

)
| X0 j,X1l

]∣∣∣∣Z01

))
= E (T )

Let

w1 = E

(
n1

∑
l=1

S01S1l (g(Y01,Y1l)−E [g(Y01,Y1l) | X01,X1l])

∣∣∣∣Z01

)

w2 = E

(
n0

∑
j=1

n1

∑
l=1

S0 jS1lE
[
g
(
Y0 j,Y1l

)
| X0 j,X1l

]∣∣∣∣Z01

)
−E (T ) .
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It follows from Jensen’s inequality that

(
w1 +w2

2

)2+δ

≤ 1
2

w2+δ

1 +
1
2

w2+δ

2 ,

which yields

2−(1+δ )
(
E
(
T | Z0 j

)
−E (T )

)2+δ

≤ E

(
n1

∑
l=1

S01S1l (g(Y01,Y1l)−E [g(Y01,Y1l) | X01,X1l])

∣∣∣∣Z01

)2+δ

+

[
E

(
n0

∑
j=1

n1

∑
l=1

S0 jS1lE
[
g
(
Y0 j,Y1l

)
| X0 j,X1l

]∣∣∣∣Z01

)
−E (T )

]2+δ

.

It then follows by triangular inequality that

2−(1+δ )E
{
|E
(
T | Z0 j

)
−E (T ) |2+δ

}
≤ E

∣∣∣∣∣E
(

n1

∑
l=1

S01S1l (g(Y01,Y1l)−E [g(Y01,Y1l) | X01,X1l])

∣∣∣∣Z01

)∣∣∣∣∣
2+δ


+E

∣∣∣∣∣E
(

n0

∑
j=1

n1

∑
l=1

S0 jS1lE
[
g
(
Y0 j,Y1l

)
| X0 j,X1l

]∣∣∣∣Z01

)
−E (T )

∣∣∣∣∣
2+δ
 .

Now, again by honesty, E (S01S1l | Z01,Z1l) = E (S01S1l | X01,X1l).

Since we assume that E
{
|g
(
Y0 j,Y1l

)
−E

[
g
(
Y0 j,Y1l

)
| X0 j,X1l

]
| | X0 j = X1l = x

}
≤ M,
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we have

E

∣∣∣∣∣E
(

n1

∑
l=1

S01S1l (g(Y01,Y1l)−E [g(Y01,Y1l) | X01,X1l])

∣∣∣∣Z01

)∣∣∣∣∣
2+δ


= E

∣∣∣∣∣E
(

E

(
n1

∑
l=1

S01S1l | X01,X1l

)
E (g(Y01,Y1l)−E [g(Y01,Y1l) | X01,X1l] | X01,X1l)

∣∣∣∣Z01

)∣∣∣∣∣
2+δ


≤ E

∣∣∣∣∣E
(

E

(
n1

∑
l=1

S01S1l | X01,X1l

)
M
∣∣∣∣Z01

)∣∣∣∣∣
2+δ


≤ E

M2+δ E

(
n1

∑
l=1

S01S1l | Z01

)2+δ


≤ M2+δ E

( n1

∑
l=1

S01S1l | Z01

)2


since S01,S1l ≤ 1 for all 1 ≤ l ≤ n1. Also, since E [g(Y0 j,Y1l) | X0 j = x,X1l = x] is Lipschitz, let u =

sup
{∣∣E [g(Y0 j,Y1l) | X0 j = x,X1l = x]

∣∣ : x ∈ [0,1]d
}

. Then,

E

∣∣∣∣∣E
(

n0

∑
j=1

n1

∑
l=1

S0 jS1lE [g(Y0 j,Y1l) | X0 j,X1l]

∣∣∣∣Z01

)
−E (T )

∣∣∣∣∣
δ


≤ E

∣∣∣∣∣u
{

E

(
n0

∑
j=1

n1

∑
l=1

S0 jS1l

∣∣∣∣Z01

)
−E

(
n0

∑
j=1

n1

∑
l=1

S01S1l

)}∣∣∣∣∣
δ


≤ (2u)δ ,
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and

E

∣∣∣∣∣E
(

n0

∑
j=1

n1

∑
l=1

S0 jS1lE [g(Y0 j,Y1l) | X0 j,X1l]

∣∣∣∣Z01

)
−E (T )

∣∣∣∣∣
2


= Var

[
E

(
n0

∑
j=1

n1

∑
l=1

S0 jS1lE [g(Y0 j,Y1l) | X0 j,X1l]

∣∣∣∣Z01

)]

≤ u2 Var

[
E

[
n0

∑
j=1

n1

∑
l=1

S0 jS1l

∣∣∣∣Z01

]]

= u2 Var

[
E

[
n1

∑
l=1

S01S1l

∣∣∣∣Z01

]
+E

[
n0

∑
j=2

n1

∑
l=1

S0 jS1l

∣∣∣∣Z01

]]

≤ 2u2

(
Var

[
E

[
n1

∑
l=1

S01S1l

∣∣∣∣Z01

]]
+Var

[
E

[
n0

∑
j=2

n1

∑
l=1

S0 jS1l

∣∣∣∣Z01

]])
.

The last inequality above could be derived by

2Cov

(
E

[
n1

∑
l=1

S01S1l

∣∣∣∣Z01

]
,E

[
n0

∑
j=2

n1

∑
l=1

S0 jS1l

∣∣∣∣Z01

])

≤ Var

(
E

[
n1

∑
l=1

S01S1l

∣∣∣∣Z01

])
+Var

(
E

[
n0

∑
j=2

n1

∑
l=1

S0 jS1l

∣∣∣∣Z01

])
.

Summarizing the above, we have

E

∣∣∣∣∣E
(

n0

∑
j=1

n1

∑
l=1

S0 jS1lE [g(Y0 j,Y1l) | X0 j,X1l]

∣∣∣∣Z01

)
−E (T )

∣∣∣∣∣
2+δ


≤ (2u)δ 2u2

(
Var

[
E

[
n1

∑
l=1

S01S1l

∣∣∣∣Z01

]]
+Var

[
E

[
n0

∑
j=2

n1

∑
l=1

S0 jS1l

∣∣∣∣Z01

]])

≤ (2u)δ 2u2

(
2Var

[
E

[
n1

∑
l=1

S01S1l

∣∣∣∣Z01

]])

≤ (2u)2+δ E

E

(
n1

∑
l=1

S01S1l

∣∣∣∣Z01

)2
 .

Thus, we conclude

E
[∣∣E (T | Z0 j)−θ(x)

∣∣2+δ
]
≤C1E

E

(
n1

∑
l=1

S01S1l

∣∣∣∣Z01

)2
 ,
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for some constant C1 < ∞. Similarly, we can also show

E
[
|E (T | Z1l)−θ(x)|2+δ

]
≤C2E

E

(
n2

∑
j=1

S0 jS11

∣∣∣∣Z11

)2
 ,

for another constant C2 < ∞.

The condition in (C.14) or (C.15) can thus be simplifies to

lim
n→∞

nE

[
E
(

n1

∑
l=1

S01S1l

∣∣∣∣Z01

)2
]

{nVar (E (T | Z01))}1+δ/2 = 0, (C.18)

when i ∈ i0, and

lim
n→∞

nE

E

(
n2

∑
j=1

S0 jS11

∣∣∣∣Z11

)2


{nVar (E (T | Z11))}1+δ/2 = 0, (C.19)

when i ∈ i1.

Let’s focus on showing (C.18) and (C.19) can be shown in a similar way. From theorems and

lemmas in Section C.2.3 and Lemma 4 and Theorem 5 in Wager and Athey (2018), we have

Var (E (T | Z01)) = Ω

E

E

(
n1

∑
l=1

S01S1l

∣∣∣∣Z01

)2
Var

[
n1

∑
i1=1

S1i1g(Y0i0 ,Y1i1) | X0i0 = x

] ,

Var

[
n1

∑
i1=1

S1i1g(Y0i0 ,Y1i1) | X0i0 = x

]
> 0,

nE

E

(
n1

∑
l=1

S01S1l

∣∣∣∣Z01

)2


−δ/2

≲

(
C f ,d

2k
n

s log(s)d

)−δ/2

→ 0 .
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Therefore the condition in (C.14) further reduces to

lim
n→∞

nE

[
E
(

n1

∑
l=1

S01S1l

∣∣∣∣Z01

)2
]

{
nΩ

(
E

[
E
(

n1

∑
l=1

S01S1l

∣∣∣∣Z01

)2
]

Var
[
∑

n1
i1=1 S1i1g(Y0i0 ,Y1i1) | X0i0 = x

])}1+δ/2

≤ lim
n→∞

1

nδ/2E

[
E
(

n1

∑
l=1

S01S1l

∣∣∣∣Z01

)2
]δ/2

Var
[
∑

n1
i1=1 S1i1g(Y0i0 ,Y1i1) | X0i0 = x

]1+δ/2

→ 0.

C.2.3 ν-incrementality

Recall that our between-subjects causal tree is defined as

T (x;Z1, ...,Zs) =
n0

∑
j=1

n1

∑
l=1

S0 jS1lg(Y0 j,Y1l) ,

g(Y0 j,Y1l) = I (Y0 j ≤ Y1l) ,

where

S0 j =


∣∣{ j : X0 j ∈ L0 (x;Z) and R0 j = 0

}∣∣−1 if X0 j ∈ L0 (x;Z) ,

0 else,

S1l =


|{l : X1l ∈ L1 (x;Z) and R1l = 1}|−1 if X1l ∈ L1 (x;Z) ,

0 else ,

and R0 j(1l) is the treatment indicator, L0 (x;Z) =
{

X0 j : X0 j ∈ L(x;Z) and R0 j = 0
}

and L1 (x;Z) =

{X1l : X1l ∈ L(x;Z) and R1l = 1}.

First we focus on Var [E [T (x;Z1, . . . ,Zs) | Z1]]. An independent term of the Hájek projection of

T (x;Z1, . . . ,Zs) can be written as
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E (T (x;Z1, . . . ,Zs) | Z01) = E

[
n0

∑
j=1

(
n1

∑
l=1

S0 jS1lg(Y0 j,Y1l)

)∣∣∣∣Z01

]

= E

[
n0

∑
j=1

S0 j

(
n1

∑
l=1

S1lg(Y0 j,Y1l)

)∣∣∣∣Z01

]
.

By Theorem 5 of Wager and Athey 2018, we have

Var [E [T (x;Z1, . . . ,Zs) | Z01]]≳ Var [E (S01 | Z01)]Var

[
n1

∑
i1=1

S1i1g(Y0i0 ,Y1i1) | X0i0 = x

]
.

Combining with Lemma 4 in Wager and Athey 2018, we obtain

Var [E [T (x;Z1, . . . ,Zs) | Z01]]≳
1
k

ν(s)
s

Var

[
n1

∑
i1=1

S1i1g(Y0i0 ,Y1i1) | X0i0 = x

]
.

By Lipschitz continuity,

∣∣∣∣∣E
[

n1

∑
l=1

S1lg(Y0 j,Y1l) | X0 j ∈ L(x;Z)

]
−E

[
n1

∑
i1=1

S1i1g(Y0i0 ,Y1i1) | X0i0 = x

]∣∣∣∣∣≤ n1

∑
l=1

S1lC diam(Li),

for some constant C. Combining with Lemma 8 and E
[
∑

n1
i1=1 S1i1g(Y0i0 ,Y1i1) | X0i0 = x

]
< ∞ since

|E [g(Y0i0 ,Y1i1) | X0i0 = x]| is bounded, we have

E

[
n1

∑
l=1

S1lg(Y0 j,Y1l) | X0 j ∈ L(x;Z)

]
→p E

[
n1

∑
i1=1

S1i1g(Y0i0 ,Y1i1) | X0i0 = x

]
,

which implies

(
E

[
n1

∑
l=1

S1lg(Y0 j,Y1l) | X0 j ∈ L(x;Z)

])2

→p

(
E

[
n1

∑
i1=1

S1i1g(Y0i0 ,Y1i1) | X0i0 = x

])2

. (C.20)

Moreover,

E

( n1

∑
l=1

S1lg(Y0 j,Y1l)

)2
= E

[
n1

∑
l=1

S2
1lg(Y0 j,Y1l)

2

]
+E

 ∑
(l1,l2)∈Cn1

2

S1l1S1l2g(Y0 j,Y1l1)g(Y0 j,Y1l2)

 .
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Again by Lipschitz continuity,

∣∣∣∣∣E
[

n1

∑
l=1

S2
1lg(Y0 j,Y1l)

2 | X0 j ∈ L(x;Z)

]
−E

[
n1

∑
i1=1

S2
1i1g(Y0i0 ,Y1i1)

2 | X0i0 = x

]∣∣∣∣∣≤ n1

∑
l=1

S2
1lC1 diam(Li),∣∣∣∣∣∣E

 ∑
(l1,l2)∈Cn1

2

S1l1S1l2g(Y0 j,Y1l1)g(Y0 j,Y1l2) | X0 j ∈ L(x;Z)

+
− E

 ∑
(i1,i′1)∈Cn1

2

S1i1S1i′1
g(Y0i0 ,Y1i1)g(Y0i0 ,Y1i′1

) | X0i0 = x

∣∣∣∣∣∣
=

∣∣∣∣∣∣E
 ∑
(l1,l2)∈Cn1

2

S1l1S1l2g(Y0 j,Y1l1)(g(Y0 j,Y1l2)−g(Y0i0 ,Y1l2)) | X0 j ∈ L(x;Z),X0i0 = x

+
+E

 ∑
(i1,i′1)∈Cn1

2

S1i1S1i′1
(g(Y0 j,Y1i1)−g(Y0i0 ,Y1i1))g(Y0i0 ,Y1i′1

) | X0 j ∈ L(x;Z),X0i0 = x


≤

n1

∑
l=1

S1lS1l2C2 diam(Li)

for some constant C1,C2. The second equation is because

E

 ∑
(l1,l2)∈Cn1

2

S1l1S1l2g(Y0 j,Y1l1)g(Y0i0 ,Y1l2) | X0 j ∈ L(x;Z),X0i0 = x


= E

 ∑
(i1,i′1)∈Cn1

2

S1i1S1i′1
g(Y0 j,Y1i′1

)g(Y0i0 ,Y1i1) | X0 j ∈ L(x;Z),X0i0 = x

 .
Thus, we have

E

[
n1

∑
l=1

S2
1lg(Y0 j,Y1l)

2 | X0 j ∈ L(x;Z)

]
→p E

[
n1

∑
i1=1

S2
1i1g(Y0i0 ,Y1i1)

2 | X0i0 = x

]
, and

E

 ∑
(l1,l2)∈Cn1

2

S1l1S1l2g(Y0 j,Y1l1)g(Y0 j,Y1l2) | X0 j ∈ L(x;Z)


→p E

 ∑
(i1,i′1)∈Cn1

2

S1i1S1i′1
g(Y0i0 ,Y1i1)g(Y0i0 ,Y1i′1

) | X0i0 = x

 ,
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which implies

E

( n1

∑
l=1

S1lg(Y0 j,Y1l)

)2

| X0 j ∈ L(x;Z)

→p E

( n1

∑
i1=1

S1i1g(Y0i0 ,Y1i1)

)2

| X0i0 = x

 . (C.21)

By (C.20) and (C.21),

Var

[
n1

∑
l=1

S1lg(Y0 j,Y1l) | X0 j ∈ L0(x;Z)

]
→p Var

[
n1

∑
i1=1

S1i1g(Y0i0 ,Y1i1) | X0i0 = x

]
.

Next,

Var[T ] =Var

[
n0

∑
j=1

n1

∑
l=1

S0 jS1lg(Y0 j,Y1l)

]

=Var

[
E

(
n0

∑
j=1

n1

∑
l=1

S0 jS1lg(Y0 j,Y1l) | X0 j

)]
+E

[
Var

(
n0

∑
j=1

n1

∑
l=1

S0 jS1lg(Y0 j,Y1l) | X0 j

)]

=Var

[
n0

∑
j=1

E (S0 j | X0 j)E

(
n1

∑
l=1

S1lg(Y0 j,Y1l) | X0 j

)]
+

+E

Var

 ∑
{ j:X0 j∈L0(x;Z)}

1
|L0(x;Z)|

n1

∑
l=1

S1lg(Y0 j,Y1l) | X0 j ∈ L0(x;Z)


=Var

 ∑
{ j:X0 j∈L0(x;Z)}

1
|L0(x;Z)|

E

(
n1

∑
l=1

S1lg(Y0 j,Y1l) | X0 j ∈ L0(x;Z)

)+
+ ∑
{ j:X0 j∈L0(x;Z)}

1

|L0(x;Z)|2
E

[
Var

(
n1

∑
l=1

S1lg(Y0 j,Y1l) | X0 j ∈ L0(x;Z)

)]
(C.22)

so that

|L0(x;Z)|Var[T ]

→p Var

[
E

[
n1

∑
i1=1

S1i1g(Y0i0 ,Y1i1) | X0i0 = x

]]
+E

[
Var

[
n1

∑
i1=1

S1i1g(Y0i0 ,Y1i1) | X0i0 = x

]]

= Var

[
n1

∑
i1=1

S1i1g(Y0i0 ,Y1i1) | X0i0 = x

]
.
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Thus

k Var[T ]≤ |L0(x;Z)|Var[T ]

→p Var

[
n1

∑
i1=1

S1i1g(Y0i0 ,Y1i1) | X0i0 = x

]
.

And we conclude that

Var[T̊ (x;Z1, . . . ,Zs)]

Var[T (x;Z1, . . . ,Zs)]
≳ k

sVar [E [T (x;Z1, . . . ,Zs) | Z01]]

Var
[
∑

n1
l=1 S1lg(Y0 j,Y1l) | X0 j = x

] ≳ ν(s),

where ν(s) =C f ,d/log(s)d for some constant C f ,d from Wager and Athey (2018) Theorem 5.
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Appendix D

Appendix for Chapter 5

D.1 Theory for ADLM

D.1.1 Proof of Proposition 13

Proof. Without loss of generality, we assume that Z is mean zero and unit variance. For s ∈ S, taking

N (s) to be the partially connected neighborhood of s, for sa,sb ∈ N (s), we have


Z(s)

Z(sa)

Z(sb)

∼ N

0,

ΣAA ΣAB

ΣBA ΣBB


 ,

where ΣAA = Var(Z(s)) = 1, ΣAB = Σ⊤
BA = [Cov(Z(s),Z(sa)) Cov(Z(s),Z(sb))] = [ρ(s,sa) ρ(s,sb)] and

ΣBB = Var


Z(sa)

Z(sb)


=

 1 ρ(sa,sb)

ρ(sa,sb) 1

.

For z ∈ R, the covariance of Z(sa) and Z(sb) conditional on Z(s) = z is

Var


Z(sa)

Z(sb)

∣∣∣∣∣Z(s) = z

= ΣBB −ΣBAΣ
−1
AAΣAB

= ΣBB −ΣBAΣAB

=

 1 ρ(sa,sb)

ρ(sa,sb) 1

−

 ρ(s,sa)
2 ρ(s,sa)ρ(s,sb)

ρ(s,sa)ρ(s,sb) ρ(s,sb)
2

 .
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Under the assumption that Z is obtained by integrating Gaussian white noise against a separable

Gaussian kernel, the off-diagonal entries are

ρ(sa,sb)−ρ(s,sa)ρ(s,sb) = ρ
||sa−sb||2 −ρ

||sa−s||2
ρ
||sb−s||2 = ρ

||sa−sb||2 −ρ
||sa−s||2+||sb−s||2 ,

where ρ is the correlation between two adjacent voxels and || · || denotes the Euclidean norm. Thus,

if ||sa − sb||2 = ||sa − s||2 + ||sb − s||2, then Cov(Z(sa),Z(sb)|Z(s)) = 0. Now (Z(sa),Z(sb)) follows a

bivariate Gaussian distribution so it follows that Z(sa) and Z(sb) is independent conditional on Z(s5).

When sa = s± ed1 and sb = s± ed2 , where d1 and d2 denote different lattice directions, ||sa − sb||2 =

||ed1 ± ed2 ||2 which equals ||sa − s||2 + ||sb − s||2 = ||ed1 ||2 + ||ed2 ||2 and so the result follows.

D.1.2 Theoretical derivation of the probability density function of
ADLM method

Under the condition of 13. For each s ∈ S assume that NPC(s) is the partially connected neigh-

bourhood defined in (5.2). Then

P[Z(s)> u|Z(t)< Z(s),∀t ∈ NPC(s)] =
∫

∞

u

(
∏

D
d=1 Q(ρd ,z)(z)

)
φ(z)dz∫

∞

−∞

(
∏

D
d=1 Q(ρd ,z)(z)

)
φ(z)dz

Proof. First, by the law of iterated expectations,

P
[
{Z(s)> u}∩t∈NPC(s) {Z(t)< Z(s)}

]
=
∫

∞

−∞

P [{z > u}∩{Z(t)< z,∀t ∈ NPC(s)|Z(s) = z}]φ(z)dz

=
∫

∞

−∞

1{z>u} ·P [{Z(t)< z,∀t ∈ NPC(s)|Z(s) = z}]φ(z)dz

=
∫

∞

u
P [{Z(t)< z,∀t ∈ NPC(s)|Z(s) = z}]φ(z)dz.

Next, by applying Proposition 13,

P [{Z(t)< z,∀t ∈ NPC(s)|Z(s) = z}] = P
[ D⋂

d=1

(Z(t)< z, ∀t = s± vded |Z(s) = z)
]
=

D

∏
d=1

Q(ρd ,z),
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where

Q(ρd ,z) = P{Z(t)< z, ∀t = s± vded |Z(s) = z}.

Thus we have

P
[
{Z(s)> u}∩t∈NPC(s) {Z(t)< Z(s)}

]
=
∫

∞

u

( D

∏
d=1

Q(ρd ,z)
)

φ(z)dz.

By Bayes Rule,

P[Z(s)> u|Z(t)< Z(s),∀t ∈ NPC(s)] =
P[{Z(s)> u}∩{Z(t)< Z(s),∀t ∈ NPC(s)}]

P[Z(t)< Z(s),∀t ∈ NPC(s)]

=

∫
∞

u P
[
(Z(t)< z,∀t ∈ NPC(s)|Z(x) = z)

]
φ(z)dz∫

∞

−∞
P
[
(Z(t)< z,∀t ∈ NPC(s)|Z(x) = z)

]
φ(z)dz

=

∫
∞

u

(
∏

D
d=1 Q(ρd ,z)(z)

)
φ(z)dz∫

∞

−∞

(
∏

D
d=1 Q(ρd ,z)(z)

)
φ(z)dz

.

Thus, the peak height density is

fDLM =
∏

D
d=1 Q(ρd ,z)φ(z)∫

∞

−∞

(
∏

D
d=1 Q(ρd ,z)

)
φ(z)dz

.

Follow the proof from [87],

Q(ρd ,z) = 1−2Φ(hdz+)+
1
π

∫
αd

0
exp(−1

2
h2

dz2/sin2
θ)dθ .

where

hd =

√
1−ρd

1+ρd
,αd = sin−1

(√
(1−ρ2

d )/2
)
,z+ = max(z,0).
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D.2 The neighbourhood covariance matrix in the fully
connected setting

D.2.1 Theoretical derivation of the neighbourhood covariance for the
integral convolution field

To prove (5.10), it suffices to establish following claim:

Claim: Let Z be a D dimensional isotropic Gaussian random field on a discrete lattice S with

mean zero and unit variance. Assume that Z is derived by integrating continuous white noise against a

Gaussian kernel. Let s0, t0 ∈ S, we first define a special indexing of NFC(s0) and NFC(t0), the elements

of the fully connected neighbourhood of s0 and t0 defined in (5.3). We index the neighbours in the order

of 0,1,2 in each direction. A 2D example of NFC(s0) for s0 = (1,1) is given as

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2).

Let s = (s1, . . . ,sD)
⊤ and t = (t1, . . . , tD)⊤ be the vector that is one element inside of NFC(s0) and NFC(t0).

Then

Cov(Z(s),Z(t)) = [A⊗A⊗ ...⊗A]m,n , (D.1)

where

A =


1 ρ ρ4

ρ 1 ρ

ρ4 ρ 1

 ,

ρ is the correlation between adjacent voxels, and m = ∑
D
i=1 3i−1si +1 and n = ∑

D
i=1 3i−1ti +1.

Proof. Because of the form of Z, Cov(Z(s),Z(t)) = ρ ||s−t||2 . We have that [A⊗A⊗ ...⊗A]m,n =∏
D
i=1 Asiti .
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If ||si − ti||= 0, Asiti = 1 = ρ0; if ||si − ti||= 1, Asiti = 1 = ρ and if ||si − ti||= 2, Asiti = ρ4. Thus,

Asiti = ρ
||si−ti||2 ,

and hence

D

∏
i=1

Asiti = ρ∑
D
i=1 ||si−ti||2 = ρ

||s−t||2 .

As such both sides of (D.1) match and the result follows.

This proof relies on a special indexing of Z. However, this is in practice not a restriction as a

re-indexing of Z can be treated as a linear transformation, i.e. Z = T Zo, where Zo is the vector with the

special indexing. In that case Σ then can be calculated by

Σ = T Cov(Zo)T⊤.

D.2.2 Neighbourhood covariance matrix for a 3D stationary Gaussian
random field

Figure D.1 shows the theoretical covariance function for a 3D stationary field. The construction

and indexing of this 27× 27 matrix follow the logic from Section D.2.1. The numbers r0,r1, ...,r61

denote all 62 distinct values of covariance between two voxels. We use the same color to denote all

3×3 matrices with the same values. One useful conclusion from this figure is this covariance matrix is a

block Toeplitz matrix with 9 blocks, and each block is still a block Toeplitz matrix with 9 sub-blocks. In

addition, each sub-block is a Toeplitz matrix.

D.3 Introduction to the pp plot

The pp plots are used throughout Section 5.3 and 5.4. In this section, we will formally define

this pp plot. pp plots are used to compare the peak p-values computed using the ADLM, MCDLM

and continuous methods we discussed in Section 5.2 to the reference tail probability of the true peak
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Figure D.1. The theoretical covariance function for a 3D stationary field.

height distribution, i.e. the reference p-value. We obtain the latter from simulation. To do so, first we

generate N i.i.d. random fields as described in each setting in Section 5.3. Let n be the number of obtained

local maxima across all fields, where the local maxima are selected based on the criteria that their height

values are larger than all their neighbours in the specified neighbourhood (we will consider both the fully

connected and partially connected neighbourhoods). Let g1, . . . ,gn be the heights of the recorded local

maxima. For each peak this allows us to compute an estimation of the reference p-value as

pi =
1
n

n

∑
j=1

1[g j > gi], 1 ≤ i ≤ n, (D.2)

where 1[·] denotes the indicator function, pi is the p-value when observed value is gi. As n → ∞, pi

calculated by (D.2) converges to the true tail probability. Moreover for each peak, we calculate a p-value

for each of the three approaches. Next we plot the reference p-values against the p-values obtained

using each method. Since the reference distribution converges to the true peak height distribution as the

number of instances converges to infinity, the closer these plots are to the identity function, the closer the

approximation to the true distribution. We use these pp plots to compare the performance of the three

approaches in all of our simulation studies.

The idea of this pp plot is similar to the one used in [80]. Although the two plotting mechanisms

look different, the logic behind is the same, as we justify below.

Our two plotting mechanisms are

• Plot p(i) vs. i/n and q(i) vs. i/n ([80]),
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• Plot p(i) vs. p(i) and q(i) vs. p(i) (pp plot).

Let F(z) be true cdf of z, G(z) be one of the other cdfs of z used for comparison purpose. Next,

we define

p = 1−F(z)

q = 1−G(z)

Suppose that we now generate n p-values for both the true distribution and the distribution for comparison

purpose, i.e., we generate p1, ..., pn and q1, ...,qn as in (D.2). Denote p(i) and q(i) as the order statistics

of p1, ..., pn and q1, ...,qn. Then under monotonicity,

ecdf(p(i)) =
1
n

n

∑
i=1

I[pi ≤ p(i)] =
i
n

ecdf(q(i)) =
1
n

n

∑
i=1

I[qi ≤ q(i)] =
i
n

If z is distributed according to F , p-values are uniformly distributed on [0,1]. Thus, by the LLN,

ecdf(p) =
1
n

n

∑
i=1

I(pi ≤ p)→p P(pi ≤ p) = p

Thus, when p is from the true distribution and n is large enough, we expect the two plotting

mechanisms provide similar plots. The comparison of two method is shown below in Figure D.2.

Figure D.2. Comparison of two plotting mechanism using the height distribution generated
from 2D isotropic Gaussian field with spatial correlation ρ = 0.01. Left is from the plotting
mechanism in [80] and right is from the plotting mechanism in this paper

.
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D.4 Additional results

D.4.1 Partial connectivity case

In Section 5.2 we discussed some of the disadvantages of ADLM. In particular local separability

(i.e. the result of Proposition 13) does not apply to diagonal neighbours and so ADLM cannot be used for

peaks of the fully connected neighbourhood. However (when its assumptions hold) it can be used to infer

on the the peak height of peaks in the partially connected neighbourhood defined in ((5.5)). We illustrate

this here with in the same simulation setting of Section 5.3.1.

2D
3D

Figure D.3. Comparison of the peak height distribution for peaks in a partially connected
neighbourhood calculated via the different methods for 2D and 3D isotropic Gaussian fields.

Figure D.3 shows the comparison between MCDLM, ADLM and the continuous RFT method in

2D and 3D. In all three scenarios, the p-value distribution of ADLM and MCDLM match and are close to

a uniform distribution. As in the main text the continuous RFT approach is conservative.

D.4.2 Applying the neighborhood covariance function in (5.7)

In this section we perform the same simulations as in Section 5.3.1 but with the neighbourhood

covariance of [101] (given in (5.7)) instead of the actual neighbourhood covariance (which we derived in
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(5.9).

The results are shown in Figure D.4. They are similar to those of Figure 5.4. However, as

exemplified in the ρ = 0.5 case the MCDLM approach is incorrect when this covariance function is used.

This is because it is not in fact the correct neighbourhood covariance.

2D
3D

Figure D.4. Comparison of peak height distribution calculated from different methods for 2D
and 3D isotropic Gaussian field using neighborhood covariance function in (5.7).

D.4.3 Applying the look-up table

Since our method is Monte Carlo based method, it is desirable to reduce the computation time in

certain settings. We list the computation time under different scenarios in Appendix D.5. In order to cut

the time of running the simulation each time for a different height threshold u and spatial correlation ρ , it

is possible to use a look-up table to pre-record the simulation results for 105 possible local maxima height

values at different values of ρ when the Gaussian random field is isotropic. To do so we vary ρ form 0.01

to 0.99 with increments of 0.01. In order to calculate a look up table we do the following.

1. Loop through the array of different values of ρ and obtain 105 local maxima for each ρ .

2. From the union obtained in step 1, sample 105 local maxima, which consist a set of local maxima,
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u, that we want to evaluate the CDF, F(·), at.

3. Loop through the array of different values of ρ again. For each value of ρ , interpolate F(·) at each

of u we get in step 2. Record all the F(u;ρ) in a matrix of look-up table with row the ρ and column

the u.

To evaluate the p-value at a given threshold u and correlation ρ , we interpolate F(·) at u and ρ through

pre-recorded look-up table, and the p-value is calculated by 1−F(u;ρ).

After generating a look-up table, we apply the cubic spline smoothing to smooth the noisy look-up

table. The procedure of our smoothing is as follow:

1. Use the Cubic spline smoothing to smooth the matrix across ρ;

2. Use the Cubic spline smoothing to smooth the matrix we smoothed in step 1 across u.

In doing so, we aim to reduce the violation of monotonicity across u but also retain the smoothness.

The smoothing parameters in Cubic spline smoothing is selected by 5-fold cross validation in each scenario

separately.

Figure D.5. This figure shows F(u;ρ) of selected 50 samples across ρ from pre-smooth table
(left) and after-smooth table (right). Same color is used for the same sample before and after-
smoothing.

In Figure D.5, we select 50 columns of both pre-smooth and after-smooth look-up table generated

from 3D Gaussian random field and plot the CDF across different ρ values. Different samples selected

within one look-up table are denoted by different colors, while same color means same sample between

two tables. The pre-smooth plot shows that the look-up table we generated is very noisy across ρ ,
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Figure D.6. From left to right are the 10, 50000 and 99990 column of the pre-smooth table (red)
and after-smooth table (blue).

especially at some large values of ρ . This will cause big problems in computing p-values for different

values of ρ . For example, if two are interested in calculating the p-values for a ρ close to 1, a slightly

difference in picking the ρ will bring a significant change in p-values, and such ambiguity could finally

result in an inconsistent interpretation of the scientific findings. From the after-smooth plot, we observe

that the look-up table is smooth enough to provide consistent results.

In addition, we explore to what extent the smoothing works in figure D.6. In this figure, we select

three columns of both pre-smooth table and after-smooth table and then compare. The u that we select are

-0.401, 1.906 and 4.57, which are in both ends and middle of the support. From these three plots, the noise

before the smoothing is obvious, but the cubic spline smoothing fits the curve perfectly, in the sense that it

preserves the general shape of the curve yet removes the noise.

D.4.4 Applying Gaussianization transformation of the t-fields

As discussed in Section 5.3.2, to improve the computation efficiency for the height distribution

of peaks of t-fields, we consider using Gaussianization transformation of the t-fields. In this section we

perform the same simulations as in Section 5.3.2 but the simulated t-fields were Gaussianized by (5.15)

and compared with the MCDLM for Gaussian field and continuous RFT approach.

The results are shown in Figure D.7 (2D) and Figure D.8 (3D). MCDLM works well when degrees

of freedom is large and ρ is small. At high smoothness, MCDLM and continuous RFT work similarly.

They are only correct when degrees of freedom is large since in this case the t-fields can approximate

Gaussian fields.
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Figure D.7. Comparison methods for calculating the peak height distribution of a Gaussianized
2D t-field with ν degrees of freedom.
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Figure D.8. Comparison methods for calculating the peak height distribution of a Gaussianized
3D t-field with ν degrees of freedom.
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D.4.5 Additional simulation results for MCDLM based on estimated
neighborhood covariance

In Section 5.4.3 we discuss that the performance of MCDLM is worsen as ρ increases to 0.99.

Since we observe when ρ = 0.5 both 2D and 3D have good performance, we consider exploring 3 more

scenarios in between, ρ = 0.9,0.93,0.95. In Figure D.9, when ρ < 0.95, or FWHM < 5.2, MCDLM

with estimated covariance works well for both 2D and 3D cases with enough number of random fields to

estimate the covariance function (nsim ≥ 50). By comparing the neighborhood covariance matrices (D.3)

(theoretical covariance) and (D.4) (estimated covariance) for ρ = 0.99 in 2D case, the estimation is very

close to the true covariance. However, the covariance matrix in this case is nearly singular, which causes

problems when applied to our MCDLM method.



1.0000 0.9900 0.9606 0.9900 0.9801 0.9510 0.9606 0.9510 0.9227

0.9900 1.0000 0.9900 0.9801 0.9900 0.9801 0.9510 0.9606 0.9510

0.9606 0.9900 1.0000 0.9510 0.9801 0.9900 0.9227 0.9510 0.9606

0.9900 0.9801 0.9510 1.0000 0.9900 0.9606 0.9900 0.9801 0.9510

0.9801 0.9900 0.9801 0.9900 1.0000 0.9900 0.9801 0.9900 0.9801

0.9510 0.9801 0.9900 0.9606 0.9900 1.0000 0.9510 0.9801 0.9900

0.9606 0.9510 0.9227 0.9900 0.9801 0.9510 1.0000 0.9900 0.9606

0.9510 0.9606 0.9510 0.9801 0.9900 0.9801 0.9900 1.0000 0.9900

0.9227 0.9510 0.9606 0.9510 0.9801 0.9900 0.9606 0.9900 1.0000



(D.3)
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

1.0000 0.9906 0.9612 0.9903 0.9809 0.9516 0.9606 0.9513 0.9228

0.9906 1.0000 0.9906 0.9811 0.9903 0.9809 0.9518 0.9606 0.9513

0.9612 0.9906 1.0000 0.9521 0.9811 0.9903 0.9237 0.9518 0.9606

0.9903 0.9811 0.9521 1.0000 0.9906 0.9612 0.9903 0.9809 0.9516

0.9809 0.9903 0.9811 0.9906 1.0000 0.9906 0.9811 0.9903 0.9809

0.9516 0.9809 0.9903 0.9612 0.9906 1.0000 0.9521 0.9811 0.9903

0.9606 0.9518 0.9237 0.9903 0.9811 0.9521 1.0000 0.9906 0.9612

0.9513 0.9606 0.9518 0.9809 0.9903 0.9811 0.9906 1.0000 0.9906

0.9228 0.9513 0.9606 0.9516 0.9809 0.9903 0.9612 0.9906 1.0000



(D.4)

2D
3D

Figure D.9. Comparison of the peak height distribution calculated from using MCDLM with
different neighborhood covariance for 2D and 3D isotropic Gaussian fields. The covariance
functions used here are theoretical covariance function (Tcf) and empirically estimated covariance
function (Ecf). The number of random fields used to estimate the covariance function is denoted
using nsim. From left to right: ρ = 0.9,0.93,0.95.

147



D.5 Computation time table

The simulation time under different scenarios are shown in Table D.1. In the case of 2D Gaussian

fields, applying MCDLM with full or partial connectivity is comparable in terms of running time, but the

look up table is much faster (between 5 and 50 times faster), getting more efficient as the field correlation

increases. In the case of 3D Gaussian fields, running times are 5 to 10 times larger than in 2D. However,

the look up table method is just as fast as in 2D, making its use very worthwhile from a computational

standpoint. In the case of 2D t-field, the running times increase about 10 to 15 times from degrees of

freedom equals 20 to 200. In the case of 3D t-field, the running times are 5 to 10 times larger than in 2D,

making the code stop at a pre-specified threshold when degrees of freedom increases to 200. The MCDLM

with empirical covariance function has similar running times to MCDLM with theoretical covariance

function, in the case of 2D Gaussian field with the number of fields to estimate the covariance small (200

or 1000). In 3D case, when the number of fields to estimate the covariance is 200, the running times are

2 times larger than the case of applying the theoretical covariance function. When the number of fields

increases to 1000, the time to estimate the covariance further increases, leading to the running times 4-8

times larger than the case of applying the theoretical covariance function.
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Table D.1. Running time (in seconds) of our MCDLM method under different scenarios. For
ρ = 0.01 and ρ = 0.05, the code is targeted to obtain at least n = 1e6 peak height values and for
ρ = 0.99, n = 2e5 peak height values. In some extreme cases, the code stops at a pre-specified
threshold with the number of instances generated recorded in parentheses.

ρ = 0.01 (n = 1e6) ρ = 0.5 (n = 1e6) ρ = 0.99 (n = 2e5)
2D Gaussian field

Full connectivity (continuous covariance function) 9.81 13.83 106.41
Full connectivity (discrete covariance function) 9.95 14.76 112.24
Partial connectivity (discrete covariance function) 7.43 12.15 110.86
Full connectivity (look up table) 1.67 1.77 1.88

2D t-field
ν = 20 74.48 105.74 835.80
ν = 50 217.63 307.56 1992.58
ν = 200 1064.24 1356.55 1646.86 (n = 37289)

3D Gaussian field
Full connectivity (continuous covariance function) 41.79 64.16 1395.14 (n = 1e5)
Full connectivity (discrete covariance function) 41.79 66.32 1377.69 (n = 1e5)
Partial connectivity (discrete covariance function) 13.87 29.18 1753.71
Full connectivity (look up table) 1.56 2.04 1.76

3D t-field
ν = 20 659.09 1043.29 2199.84 (n = 11614)
ν = 50 1719.52 2755.58 2611.89 (n = 11244)
ν = 200 5325.24 (n = 74403) 5159.63 (n = 46409) 11914.56 (n = 402)

2D isotropic Gaussian field (empirical covariance case)
number of fields = 200 9.56 15.13 208.33
number of fields = 1000 9.91 14.19 145.04
number of fields = 10,000 14.56 18.05 119.83

3D isotropic Gaussian field (empirical covariance case)
number of fields = 200 82.94 105.66 1412.21
number of fields = 1000 320.91 290.76 1722.92
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