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Systems/Circuits

Sensory and Choice Responses in MT Distinct from Motion
Encoding

Aaron J. Levi,1p Yuan Zhao,2p Il Memming Park,2 and Alexander C. Huk1,3
1Center for Perceptual Systems, Departments of Neuroscience and Psychology, The University of Texas at Austin, Austin, Texas 78705,
2Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794, and 3Fuster Laboratory, University of
California Los Angeles, Los Angeles CA 90095

The macaque middle temporal (MT) area is well known for its visual motion selectivity and relevance to motion perception,
but the possibility of it also reflecting higher-level cognitive functions has largely been ignored. We tested for effects of task
performance distinct from sensory encoding by manipulating subjects’ temporal evidence-weighting strategy during a direc-
tion discrimination task while performing electrophysiological recordings from groups of MT neurons in rhesus macaques
(one male, one female). This revealed multiple components of MT responses that were, surprisingly, not interpretable as behaviorally
relevant modulations of motion encoding, or as bottom-up consequences of the readout of motion direction from MT. The time-vary-
ing motion-driven responses of MT were strongly affected by our strategic manipulation—but with time courses opposite the subjects’
temporal weighting strategies. Furthermore, large choice-correlated signals were represented in population activity distinct from its
motion responses, with multiple phases that lagged psychophysical readout and even continued after the stimulus (but which preceded
motor responses). In summary, a novel experimental manipulation of strategy allowed us to control the time course of readout to
challenge the correlation between sensory responses and choices, and population-level analyses of simultaneously recorded ensembles
allowed us to identify strong signals that were so distinct from direction encoding that conventional, single-neuron-centric analyses
could not have revealed or properly characterized them. Together, these approaches revealed multiple cognitive contributions to MT
responses that are task related but not functionally relevant to encoding or decoding of motion for psychophysical direction discrimi-
nation, providing a new perspective on the assumed status of MT as a simple sensory area.

Key words: choice-related activity; decision-making; population decoding; temporal weighting; visual motion

Significance Statement

This study extends understanding of the middle temporal (MT) area beyond its representation of visual motion. Combining
multineuron recordings, population-level analyses, and controlled manipulation of task strategy, we exposed signals that
depended on changes in temporal weighting strategy, but did not manifest as feedforward effects on behavior. This was dem-
onstrated by (1) an inverse relationship between temporal dynamics of behavioral readout and sensory encoding, (2) a
choice-correlated signal that always lagged the stimulus time points most correlated with decisions, and (3) a distinct choice-
correlated signal after the stimulus. These findings invite re-evaluation of MT for functions outside of its established sensory
role and highlight the power of experimenter-controlled changes in temporal strategy, coupled with recording and analysis
approaches that transcend the single-neuron perspective.

Introduction
Primate middle temporal (MT) area plays a critical role in the
perception of visual motion. A long line of study has established
that MT’s encoding of motion direction is quantitatively consist-
ent with perceptual sensitivity, that noise in its responses is cor-
related with behavioral variability, and that causal perturbations
of its activity affect motion perception in lawful and substantial
ways (Newsome and Paré, 1988; Britten et al., 1992; Salzman et
al., 1992; Britten et al., 1996). Owing to this powerfully integrated
set of findings, many models and experiments have been able to
assume that MT is the key place that the brain looks to for infor-
mation about visual motion. However, these successes do not
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logically imply that MT only carries sensory information, leaving
our understanding of MT at risk of overlooking additional sig-
nals and computations that are not aligned with representing
motion for the sake of motion perception. In this work, we show
that a novel manipulation of temporal strategy during motion dis-
crimination reveals large signals in MT that are precisely related to
components of performing the task, but neither of these sen-
sory-related and choice-correlated signals directly impact psy-
chophysical performance or reflect straightforward links
between perceptual decisions and the sensory responses that
informed them.

To directly test for and characterize nonsensory signals in
MT, we manipulated the time course of psychophysical weight-
ing while monkeys performed a direction-discrimination task,
coupled with multineuron recordings analyzed via population-
level approaches. We explicitly manipulated whether early or late
parts of the stimulus had stronger or weaker motion evidence on
average, which affected the time course of how subjects weighted
the motion stimulus during task performance. This manipula-
tion of the temporal weighting strategy caused a surprising and
strong modulation of the sensory responses themselves that was
not directly related to forming decisions about motion, and also
provided critical leverage for “stress-testing” the relation between
the time courses of decision formation and of choice-correlated
activity.

When perceptual weighting was unconstrained, direction dis-
crimination behavior was based primarily on early portions of
the stimulus, and the sensory representation showed a standard
and modest falloff over the course of stimulus presentation.
When we shifted the temporal readout strategy to favor late por-
tions of the stimulus, behavior relied preferentially on later stim-
ulus epochs, but the sensory response did not change to match
the time course of behavior. When subjects’ temporal weighting
strategy was then manipulated to preferentially rely on earlier por-
tions of the stimulus, later portions of the sensory response were
increased rather than decreased. The effects of this last condition
were most striking, as a steep falloff in perceptual weighting over
time was accompanied by an increase in late sensory-driven activ-
ity that led to a nonmonotonic time course of motion-driven
response.

Choice-correlated activity during the stimulus was also altered
by changes in the psychophysical weighting, and across these be-
havioral time courses, was always lagged relative to the periods
when the subjects were “reading out” MT activity. The consis-
tently decision-lagged signal negates a major role of feedforward
sensory noise in the origin of choice-related signals in MT.
Furthermore, this signal was not simple feedback linking a sensory
response and a subsequent, corresponding decision, not just
because the choice signals affected MT population activity dif-
ferently than visual motion did; we also observed a distinct
choice-related signal after stimulus offset that was linked to
impending response, and which was distinct from simple pre-
motor activity.

These multiple components of the MT response were lawful
functions of the time course of decision formation and the antici-
pation of the response; however, they cannot be interpreted as ei-
ther modulations of the encoding that play out in perceptual
reports or as effects of readout mechanisms that would either
correlationally (via feedforward mechanisms) or causally (via
straightforward feedback mechanisms) align with the sensory
response. Thus, there appear to be multiple, large components of
MT activity that both affect its stimulus-driven response but are
separable from it. These were evident even during a well studied

direction discrimination task with tight control over motion
readout strategy, expanding the conventional designation of MT
as a simple, low-dimensional, sensory-encoding area.

Materials and Methods
Experimental design

Stimulus presentation and design. Stimuli were presented using the
Psychophysics Toolbox with MATLAB (MathWorks) using a DATAPixx
I/O box (VPixx) for precise temporal registration (Eastman and Huk,
2012). Sample stimulus presentation code is available on request. Eye posi-
tion was tracked using an Eyelink eye tracker (SR Research), sampled at
1 kHz. Monkey L was seated 57 cm away from a 150 cm � 86 cm rear-
projection screen (IRUS; Draper) covering the central 106° � 73° of
visual angle. Images were projected onto the screen by a PROPixx
Projector (VPixx Technologies) driven at a resolution of 1920� 1080
pixels at 120Hz. Monkey N (M2) viewed stimuli on a 55 inch LCD
(LG) display (resolution = 1920� 1080 pixels; refresh rate = 60Hz;
background luminance = 26.49 cd/m2) that was corrected to have a
linear g function. M2 viewed the stimulus from a distance of 118 cm
(such that the screen width subtended 54° of visual angle, and each pixel
subtended 0.0282° of visual angle). Auditory feedback was played at the
end of every trial, and fluid reward was delivered through a computer-
controlled solenoid.

Subjects were required to discriminate the net direction of a motion
stimulus and communicate their decision with an eye movement to one
of two targets, placed on either side of the stimulus. The sequence of task
events is presented in Figure 1a. A trial began with the appearance of a
fixation point. Once the subject acquired fixation and held for 750–
1300ms, two targets appeared and remained visible until the end of the
trial. Five hundred to one thousand milliseconds after target onset, the
motion stimulus was presented at a range of eccentricities from 4° to 12°
for a duration of 1050ms. The fixation point was extinguished 500–
1000ms after motion offset, and the subject was then required to shift
their gaze toward one of the two targets within 600ms (saccade end
points within 3° of the target location were accepted). All randomly var-
ied stimulus events were drawn from a uniform distribution. If the ani-
mals ever moved their eyes outside of a 3° diameter window around the
fixation point (before the fixation point disappeared), the trial was
aborted. The timing of each event was randomly and independently jit-
tered from trial to trial.

The reverse-correlation motion stimulus contained motion toward
one direction or the opposite, with varying motion strength. Spatially,
the stimulus consisted of a hexagonal grid of 19 Gabor elements, where
individual Gabor elements were set to approximate the receptive field
(RF) size of a V1 neuron, and the entire motion stimulus approximated
the RF size of an MT neuron, which scaled based on eccentricity from
fixation (Van Essen et al., 1981). Motion was presented by varying the
phase of the sine-wave carrier of the Gabor elements. Each Gabor element
underwent a sinusoidal contrast modulation over time with independent
random phase. Gabor spatial frequency (0.8 cycles/°; s =0.1� eccentricity)
and temporal frequency of 5–6Hz, yielding velocities of 5.55–6.66°/s,
respectively) were selected to match the approximate sensitivity of MT neu-
rons (Bair andMovshon, 2004).

Each motion stimulus presentation consisted of seven consecutive
motion pulses lasting 150ms each (9 frames on the 60Hz display; 18
frames on the 120Hz display), producing a motion sequence of 1050ms
in total duration. On any given pulse, a number of Gabor elements
would have their carrier sine waves drift in unison to produce motion
(“signal elements”), and the remaining would counter-phase flicker
(“noise elements”). Within any given pulse, signal elements were spa-
tially assigned at random within the grid, and all signal elements drifted
in the same direction.

Motion strength on pulse i was defined as the proportion of signal
elements of the total number of elements, the value of which was drawn
from a Gaussian distribution, Xi N(mk,s) and rounded to the nearest inte-
ger, where k is the distribution index for the five trial types (strong left,
weak left, zero-mean, weak right, strong right). Thus, while each pulse
within a sequence could take on any value (and either sign/direction)
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from distribution N(mk,s), the expectation of a sequence would be mk

(Fig. 1b–d). The subjects were rewarded for selecting the target consist-
ent with the sign of the motion pulse sequence sum (i.e., the net direc-
tion), independent of the distribution mk from which the pulses were
drawn.

Subjects performed the motion discrimination task with three varia-
tions of temporal stimulus statistics (Levi et al., 2018). First was the flat-
stimulus, in which expected motion strength was uniform over time
within a trial. In other words, the mean of the motion strength distribu-
tion N(mk,s) would be held constant throughout a stimulus presentation
(i.e., the mean of the distribution from which Xi was drawn was fixed at
mk), for pulses 1–7 (Fig. 1b).

Next, subjects encountered the late-stimulus, where motion strength
was reduced substantially in early pulses, but not in late pulses (Fig. 1c).
In this condition, mk is set to 0 for the first pulse (i=1), and reaches its
expected value (mk) by pulse 7. Finally, the opposite is done for the
“early-stimulus” condition (Fig. 1d), in which the first pulses maintain
mean motion strength equal to mk and later pulses have a mean near
zero. In the late and early-stimulus conditions, the transition from mk at
pulse 1 tomk at pulse 7 is governed by a logistic function with parameters
chosen to result in a smooth transition between the first three and last
three pulses (midpoint = four pulses; slope= 0.3).

All subjects began the experiments with the flat-stimulus condition
(Monkey L, 13 sessions; Monkey N, 10 sessions). After multiple sessions
of stable psychophysical performance, the stimulus was changed to the
late-stimulus conditions (Monkey L, 11 sessions; Monkey N, 11 ses-
sions). Finally, after multiple sessions of stable psychophysical perform-
ance the stimulus was changed to the early-stimulus condition (Monkey
L, 11 sessions; Monkey N, 15 sessions). Subjects were exposed to only
one stimulus condition per session and were not cued as to which stimu-
lus condition they were viewing before or during any given session
(other than the stimulus statistics themselves).

Throughout all conditions, there existed a subset of “zero mean” tri-
als in which mk = 0 for all seven pulses, regardless of whether the

stimulus condition is flat, late, or early. Sessions also contained 5–10%
frozen seed trials, which were identical stimulus displays. The “frozen
noise” stimulus always summed to zero, had the same temporal structure
across sessions, and was completely identical within sessions. Subjects
were rewarded at random on frozen noise trials.

Electrophysiology. We performed electrophysiological recordings
from MT of two rhesus macaques, one male (age, 6 years) and one
female (age, 11 years). A custom titanium chamber was fabricated and
placed over the superior temporal sulcus and intraparietal sulcus to allow
for a dorsal approach to access area MT. Chamber placement was as
guided by structural MRI and cranial landmarks. Extracellular record-
ings were performed using linear electrode arrays from Plexon (U-Probe,
V-Probe, or S-Probe; 24 or 32 channels; spacing, 50–100 mm).

MT was identified using electrode depths and paths (i.e., sulcal anat-
omy), and functional mapping. Functionally, MT was identified via the
size and location of RFs, and the preponderance of direction-selective
neurons. MT units were hand mapped using a field of moving dots with
experimenter control of stimulus location, aperture size, dot speed, dot
size, and dot density. Upon choosing the stimulus location that maxi-
mally drove the highest number of neurons, direction tuning was meas-
ured by 500ms presentations of a randomly drawn direction of motion
from 1 of 12 directions from 0° to 330°. A total of 71 recording sessions
were performed: 23 during the flat-stimulus condition (Monkey L, 13
sessions; Monkey N, 10 sessions); 22 during the late-stimulus condition
(Monkey L, 11 sessions; Monkey N, 11 sessions); and 26 during the
early-stimulus condition (Monkey L, 11 sessions; Monkey N, 15 ses-
sions). As would be expected given our use of multielectrode arrays and
a dorsal approach to area MT, we often encountered samples of neurons
with diverse sets of tuning preferences during a single experimental ses-
sion. For each session, the motion discrimination task was performed
along the axis that corresponded to the preferred direction of the maxi-
mum number of units.

Spike sorting was performed using KiloSort (Pachitariu et al., 2016)
followed by manual merging and splitting of clusters as necessary. A
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Figure 1. Sequence of trial events and manipulation temporal stimulus statistics. a, Subjects fixated on a central point through the appearance of targets and motion stimulus until the dis-
appearance of the fixation point (“go”). Choices were made with saccades to the target corresponding to the perceived net direction of motion. Initial fixation time, target-on duration, and
time until fixation point disappearance were randomly varied. b–d, Average stimulus strength per pulse (bold lines) and individual trial examples (semi-transparent lines) for trials of different
strength and direction (denoted by sign). b, In the flat stimulus, motion strength is constant over time on average. c, In the late stimulus, motion strength is reduced on average in the first
three pulses such that the highest motion expectation is late. d, In the early stimulus, motion strength is reduced in the last three pulses such that the highest motion expectation is early.
Motion pulse values in individual trials (semitransparent traces) vary considerably (for details, see Materials and Methods).
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total of 583 units were identified: 161 during the flat-stimulus condition;
219 during the late-stimulus condition; and 203 during the early-stimu-
lus condition.

Statistical analysis
Behavioral analysis. Subject choices in the direction-discrimination

task were analyzed with a maximum likelihood fit of a three-parameter
logistic function (Wichmann and Hill, 2001), assuming a Bernoulli distribu-
tion of binary choices, in which the probability of a rightward choice is p
and leftward choice is 1� p, where p is given by the following:

p ¼ g 1 1� 2gð Þ 1
1 1 e�b ðx�aÞ ;

where x is the net motion strength value (z scored over all sessions for
each subject separately), a is the bias parameter (reflecting the midpoint
of the function in units of motion strength), b is the slope (i.e., sensitiv-
ity, in units of log-odds per motion strength), and g captures the lapse
rate as the offset from the 0 and 1 bounds. Error estimates on the param-
eters were obtained from the square root of the diagonal of the inverse
Hessian (second derivative matrix) of the negative log-likelihood. The
temporal weighting kernel (which we also refer to as “temporal weight-
ing strategy” or “temporal weighting profile”) was computed using ridge
regression via maximum likelihood. The log-posterior of the psycho-
physical weights is given by the following:

LðwÞ ¼
XN
i¼1

Yiw
>Xi � log 11 exp w>Xið Þ� �� �

1l k wk2;

where Y [ {0,1} is the choice for a given trial and X is a vector of motion
strength for the seven pulses in the trial, augmented by a column of ones
(to capture bias). Motion strength is represented as the number of signal
elements out of the total number of (signal plus noise) elements. The
regularizer l was estimated using evidence optimization (Sahani and
Linden, 2003). Psychophysical weights are normalized by the Euclidean
norm of the vector of weights. The seven temporal weights assigned to
the seven motion pulses, w, were computed by using all trials within a
session. These include trials, where mk was set to zero (i.e., “zero-mean
trials,” where motion on a given pulse is temporally independent of all
other pulses in the sequence), and trials where mk was set to a nonzero
value (“signal trials,” where motion is correlated over pulses).

Logistic regression neural decoder. To interrogate the roles and rela-
tionship of direction-related and decision-related signals, we used vari-
ous decoding methods to approximate how information may be gleaned
from groups of MT neurons. The first method we used was logistic
regression directly between spike counts and the binary direction or
choice on each trial (Kiani et al., 2014; Yates et al., 2020). The regression
is done for each session such that each neuron is a feature in the model,
where every neuron received a weight according to how well it predicts
the binary outcome of interest. The result is a linear readout model that
allows for maximal prediction of the stimulus direction or the choice of
the animal.

Specifically, the decoding weights are calculated as coefficients in a
logistic regression between trial spike counts (summed over a window
starting at stimulus onset and ending 150 ms after stimulus offset) and
one of two binary variables (the stimulus direction, or the observer’s
choice) using the MATLAB function glmfit. The choice decoder weights
were calculated using only the zero-sum, frozen noise trials, while the
direction decoder used all other trials.

The probability of the stimulus direction of a trial or the choice given
the firing rate of each neuron is given by the following:

pðXjY; b Þ ¼ expðYbÞ
11 expðYbÞ ;

where b = b 0 1 PN
i=1

b iXi for N neurons present during a session. X is a
vector of spike counts per neuron, and the choice or direction is Y [ {0, 1}.

The weights are then applied to the temporally binned trial spike rates of
their respective neuron. Spikes were counted in 10ms bins and smoothed
with a 50ms boxcar. This was expressed in terms of rates by dividing by the
bin size. The result is a population response that best represented stimulus
or choice information present in a recording session.

The resulting decoder output was then used to calculate population-
level choice probability (CP) for each session. We measured CP over the
course of stimulus presentation as a metric of trial-by-trial correlation
between neural activity and decisions, given a fixed stimulus. CP was cal-
culated as the area under the receiver operating characteristic curve gen-
erated from choice-conditioned distributions of the reweighted activity
in each temporal bin. CP time course traces were smoothed with a
100ms boxcar for visualization.

Latent factor analysis. To better understand how stimulus and per-
ceptual choices are encoded across the population, we used the varia-
tional latent Gaussian process (vLGP) method (Zhao and Park, 2017) to
extract single-trial, low-dimensional latent factors from population
recordings in area MT. Conventional analysis methods such as tradi-
tional factor analysis or principal component analysis make incorrect
assumptions for spiking activity (e.g., Gaussian distributed) or assume
linear dynamics that lack the complexity to describe nontrivial computa-
tions. vLGP overcomes these disadvantages by imposing a general (non-
linear) Gaussian process prior on the latent factors and assuming a
point-process observation model to account for spikes. The method is
explained in more detail below.

Spike counts were binned at 10ms, using the time between target
onset and reward. We assumed that the spatial dimensions of latent fac-
tors are independent and imposed a Gaussian process before the tempo-
ral correlation of each dimension, where xk denotes the kth dimension
of the latent factors, as follows:

xk ;Nð0;KÞ:

To obtain smoothness, we used the squared exponential covariance
function and respective covariance matrix K in the case of discrete time.
Let ytn denote the occurrence of a spike of the nth neuron at time t, ytn =
1 if there was a spike at time t, and ytn = 0 otherwise. yt is a vector of
length N, the total number of neurons in a session, that concatenates all
neurons at time t. The spikes yt are assumed to be a point-process gener-
ated by the latent state xt at that time via a linear–nonlinear model, as
follows:

yt ;PoissonðexpðAxt1bÞÞ:

To infer the latent factors (xt for each trial) and the model parameters
(A and b), we used a variational inference technique, as the pair of prior
and likelihood do not have a tractable posterior. We assumed parametric
variational posterior distribution of the latent factors, as follows:

qðxkÞ ¼ Nðlk;RkÞ:

We analyze the mean {lk} as the latent factors in this study. The
dimensionality of the latent factors was determined to be four by leave-
one-neuron-out cross-validation on the session with the largest popula-
tion. All the sessions with at least four simultaneously recorded units
were included in this analysis (Monkey N, 13 sessions; Monkey L, 28
sessions).

Pulse-triggered average. To measure the relationship between the
time-varying pulse strength and the inferred latent factors, we measured
the contribution of pulses to the latent factors. The pulse-triggered aver-
age (PTA) measures the change in latent factors resulting from an addi-
tional pulse at a particular time of unit strength. To calculate the PTA,
we used the pulse stimulus and latent response at 1ms resolution. For
each session, let si denote the value of the ith motion stimulus, and let xtk
denote the kth dimension of the latent factors at time t. All trials were
concatenated such that the latent factors X is a matrix of length, T� 4,
where T is the total time. For the ith pulse, si is the number of Gabor ele-
ments pulsing, with si . 0 for pulses in one direction and si , 0 for
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pulses in the other direction. To calculate the temporal lags of the PTA,
we built design matrices, D = [D1, D2, . . ., D7]. For the ith pulse, the
design matrixDi is a T� 28 matrix that consists of four cosine basis func-
tions at the 4i1 1, 4i1 2, . . ., 4i1 4th columns and 0 elsewhere. These
basis functions start at 0, 50, 100, and 150ms after the onset, last 100ms
each, and span the rows of Di. The magnitude of the bases is equal to the
corresponding pulse value si. We calculated a separate Di value for each of
the seven pulses, concatenated them to obtain a design matrix for all seven
pulses, and estimated the weights with L2 regularization, as follows:

X ¼ DW1E

W ¼ argmin k X�DW k22 1l 9 k Wk2;

whereW is the weight matrix to estimate, E is the Gaussian noise matrix,
and the regularization hyperparameter l 9 was chosen by the generalized
cross-validation (GCV; Golub et al., 1979). The estimation was per-
formed using scikit-learn (Pedregosa et al., 2011). The PTA was calcu-
lated with the design matrices of unit-strength pulse and the estimated
weights W. We smoothed the PTA with a temporal Gaussian kernel
(width, 40ms). Individual session PTAs are normalized by the peak
response to highlight temporal dynamics within the stimulus period.

Subject to arbitrary rotations, a latent trajectory forms an equivalence
class of which the members have the same explanatory power in the
vLGP model. We seek a particular rotation for each session that makes
the encoded task signal concentrate in the first few dimensions. By sin-
gular value decomposition,W> = USV>, we rotate the factors x to U>x.
The regression weights are thus sorted by the task signal explanatory
power, as are the factors.

Choice decoder. Since there were some recording sessions with a less
than ideal number of frozen trials (identical visual motion trials), we
used the “weak” trials where the discrimination accuracy of the monkeys
was,65% to calculate choice probability. We started at the trials of zero
pulse coherence and gradually increased the magnitude of coherence
(absolute value) until the correct rate reached the threshold. One session
contained ,100 weak trials and was excluded from this analysis. Note
that weak trials were included only for vLGP analyses, while the logistic
regression decoder (which was in strong accordance with vLGP) used
only zero-sum, frozen noise trials.

We removed the stimulus information that is encoded in the latent
factors of weak trials by regressing out the pulses and analyzing the resid-
uals. The latent factors were rebinned at 100ms resolution where the value
of each bin is the sum of latent state xt or spike counts yt over the bin for
t=1,2, ... ,T. For each t, we assumed the following linear model:

xt ¼
X7

i¼1

wtisi 1 e;

where si denotes the strength of the ith pulse, wti is the weight vector cor-
responding to the bin and pulse, and e is the homogeneous Gaussian
noise across all bins. We estimated the weight vector by least-squares
with L2 regularization to prevent overfitting, as follows:

wti ¼ argmin
wti

k xt �
X7

i¼1

wtisi k22 1 el k wti k22 :

Again, the regularization hyperparameter el was chosen by GCV.
We then analyzed the contribution of behavioral choice on the residuals,
as follows:

rt ¼ xt �
X7

i¼1

wtisi:

For the whole trial, we used the sum residual of the windows r =
P

t rt .
The range of t depends on the period of interest. We trained logistic mod-
els, which we referred to as choice decoders, to predict the choice on each

trial using latent factors. The weights b and bias b 0 were estimated by
maximum likelihood with L2 regularization, as follows:

b; b 0 ¼ argmax
b;b 0

logLðchoicejr;b; b 0Þ � l̂ k b; b 0 k22 :

The regularization hyperparameter l̂ was chosen via fivefold (bal-
anced classes in test set) cross-validation for every session individually.
The estimation was performed using scikit-learn.

Choice mapping. The conventional choice probability applies only to
univariate variables. However, the latent factors and population activity
are multivariate. We transformed the multivariate variables mentioned
above onto a one-dimensional subspace that has the same direction as
the choice through the choice decoders, as follows:

c ¼ 1

1 1 e�b>r�b 0
:

We refer to this transform as the “choice mapping.” The quantity c is
a normalized value within [0, 1] that maps the residual onto the choice
direction (Lueckmann et al., 2018) and enables pooling across sessions.

To prevent potential inflation of choice probability because of multi-
dimensionality (3D), we regularized the choice decoder and used only
the choice mapping on the test set (pooled samples held out by cross-val-
idation). This approach guarantees that choice probability will not be
overestimated.

We pooled these mappings across all sessions. Using different subsets
of latent factors as r in the mapping, we obtained the choice mapping of
the stimulus and nonstimulus dimensions of the latent factors. Then we
calculated the choice probability of the corresponding dimensions based
on the values. To investigate the time course of choice probabilities, we
performed choice mapping on the whole dataset with nonoverlapping
moving windows. For the fixed readout analysis, we estimated the
weights using the mean value of 0–1.2 s from stimulus onset for the
stimulus period, and �0.5 to 0 s from the saccade for the delay period.
We use the weights to obtain readout and CP values with a 10ms mov-
ing window and smoothed the CP values with a 100ms boxcar. Finally,
for dynamic readout, we estimated the weights and calculated the CP
values within 100ms moving windows individually.

Results
We measured the time course of sensory-correlated and choice-
correlated responses from simultaneously recorded groups of
MT neurons using linear and nonlinear decoding approaches
while rhesus monkeys performed a motion direction discrimina-
tion task. We manipulated the time course of stimulus evidence
and confirmed that the subjects shifted their temporal weighting
strategy to rely preferentially on the stronger periods of stimulus
motion. We began recordings in each subject with a baseline
“flat” stimulus phase for several experimental sessions, in which
stimuli had a constant average motion strength over time within
a trial, as is the case in most related experiments (Gold and
Shadlen, 2007). We then shifted to several sessions in a “late” re-
gime, in which the stronger motion was present in the second
half of the stimulus. Finally, we performed several sessions in an
“early” regime, in which the stronger motion was present in the
first half.

Observers change temporal weighting strategies according to
stimulus statistics
Two trained rhesus macaques viewed sequences of seven motion
pulses and indicated perceived net motion with a saccade to one
of two response targets (Fig. 1a). We measured traditional psycho-
metric performance (i.e., accuracy as a function of net motion
strength on each trial), as well as the time course of weighting
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within each trial (i.e., the “psychophysical kernel,” which was esti-
mated using logistic regression between motion strength at each
pulse, and the binary choices; see Materials and Methods). We
refer to the resulting set of regression coefficients, or weights, as
the temporal weighting strategy.

The motion discrimination task was performed in three con-
texts to manipulate the time course of behavioral weighting (Levi
et al., 2018). First, in the flat-stimulus condition (Fig. 1b), the av-
erage motion over time was equal within a trial. Given that many
traditional sensory decision-making studies use stimuli with uni-
form information over time, this flat-stimulus condition served
as conventional baseline and reference conditions for our experi-
ments. Subjects’ temporal weighting strategies were biased to
have higher weight on early stimulus periods, despite uniform
motion expectation over time (Fig. 2a). This default early weight-
ing strategy is consistent with many other findings (Huk and
Shadlen, 2005; Kiani et al., 2008; Nienborg and Cumming, 2009;
Yates et al., 2017; Kawaguchi et al., 2018) and likely reflects a
combination (Okazawa et al., 2018; Levi and Huk, 2020) of
improved sensory encoding at stimulus onset (Osborne et al.,

2004; Churchland et al., 2010), and the consequences of early ter-
mination of the decision process, because of mechanisms like
bounded accumulation (Kiani et al., 2008).

Next, we performed a series of experimental sessions in which
the stimulus statistics were manipulated such that the average
motion strength was high for the last three pulses, while the first
three pulses were near zero. We refer to this as the late-stimulus
condition (Fig. 1c). Although the first three pulses had motion
strength near zero on average (regardless of full-trial net motion
strength), it is important to appreciate that on individual trials
there was still variable nonzero motion possible for any pulse
(and hence, still provided useful information for decision-mak-
ing). Subjects were rewarded based on the actual net motion
direction presented on that particular trial, as opposed to the av-
erage or expected value based on the condition from which the
trial was generated. This produced robust behavioral changes
that tracked motion expectation in the stimulus design, such that
weight on the first three pulses decreased substantially, and the
highest psychophysical weight was placed on the later pulses
(Fig. 2b).
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Finally, we performed a series of sessions in which the stimu-
lus statistics were changed such that the average motion strength
was now high in the early half of the stimulus and was near
zero for the last half of the stimulus; we refer to this as the
early-stimulus condition (Fig. 1d). This successfully changed tem-
poral weighting behavior back to pronounced early weighting, in
which the first pulses received drastically higher weight than the
remainder of the stimulus (Fig. 2c), in a manner overall similar to
the default strategy during the flat-stimulus [flat: –0.091 (95% CI,
–0.113, 0.069); late: 0.083 (95% CI, 0.015, 0.151); early: –0.109
(95% CI, –0.136, –0.081); slope of linear fit to the psychophysical
kernel].

Importantly, the changes in temporal weighting occurred along-
side otherwise stable psychometric performance. This confirms that
temporal weighting changes were indeed a targeted shift in strategy
and not merely a result of the more general effects of learning.
Stimulus sensitivity could vary session to session, but did not show
general learning effects over time, which would manifest as
higher sensitivity as sessions progress, regardless of stimulus
condition (Fig. 2h). In fact, psychometric sensitivity decreased
slightly as the experimental conditions went on [Fig. 2d–f; flat:
2.5208 (95% CI, 2.3616, 2.6800); late: 2.0421 (95% CI, 1.9183,
2.1659); early: 1.6961 (95% CI, 1.5862, 1.8060); slope of psy-
chometric function]. Likewise, while there was some variation
in median reaction times (RTs) across sessions, it varied only
slightly between the conditions at large (Fig. 2i; flat: 95% CI,
0.2880 6 0.0011 s; late: 95% CI, 0.2960 6 0.0011 s; early: 95%
CI, 0.2810, 6 0.0010 s), and did not get increasingly faster as
sessions progressed, as one might expect from the general
effects of learning.

In summary, the temporal weighting strategy shifted in con-
cert with the time course of expected motion strength, placing
higher weight on portions of the stimulus when higher motion
strength was expected based on the experimental phase. This
confirms that our manipulation of stimulus statistics affected the
time course of psychophysical weighting, allowing us to interpret
the timescale of neural responses relative to the subject’s readout
of MT for motion discrimination, and to rely on an experimental
manipulation that shifted this time course systematically across
conditions.

Changes in sensory encoding run opposite changes in
temporal weighting strategy
We recorded ensembles of single and multiunit activity from
area MT while monkeys performed the direction discrimination
task across the manipulation of the temporal weighting strategy
described in the previous section. We used both linear and nonlin-
ear ensemble decoding frameworks to extract information about
visual motion direction (i.e., stimulus) and decisions (i.e., choice)
from groups of simultaneously recorded MT neurons (Fig. 3a). As
a simple starting point, we used logistic regression (“logReg”)
between the raw trial spike count vectors and either the stimulus
direction (the “direction” axis) or the psychophysical choice (the
“choice” axis) to find a reweighted population response that best
mapped neural activity to the binary stimulus or choice (Fig. 3a,
left). Such linear models are likely easy for the brain to implement,
but are limited in how they can capture relations between neurons
and between neural activity and experimental factors. We there-
fore also used a more advanced nonlinear dimensionality reduc-
tion technique (vLGP model) to extract smooth low-dimensional
latent factors that explain correlations within the population spike
trains (Zhao and Park, 2017; Zhao et al., 2020; Fig. 3a, right). This
provides the ability to more effectively capture the complex joint

statistics of the neural population by leveraging the low-dimen-
sional assumption and effectively denoises the spiking activity.
Decoding based on vLGP also uses logistic regression to map the
intermediate representation of ensemble activity (i.e., the inferred
latent factors) to the stimulus or the choice.

Surprisingly, we observed large changes to the time-vary-
ing sensory response of the MT that were incommensurate
with perceptual readout. To describe the time-varying gain
on motion throughout each trial, we calculated the pulse-trig-
gered average, which characterizes the change in the neural
response to unit-strength motion (i.e., a single Gabor element
drifting in one direction) relative to the onset of each of the seven
pulse epochs (for details, see Materials and Methods). As the
temporal weighting strategy shifted across conditions, one might
expect nothing to change in MT, consistent with a constant (and
thus largely veridical) representation of visual information
despite changes in readout/weighting strategy. An alterna-
tive hypothesis, based on temporal attention, would predict
gain modulation congruent with behaviorally upweighted
and downweighted stimulus epochs (Ghose and Maunsell,
2002). Instead, to our surprise, we observed changes to sen-
sory encoding with an unintuitive, if almost paradoxical,
link to psychophysical direction discrimination.

In the flat-stimulus condition, there was a modest decrease in
the sensory response over time (i.e., PTA magnitude fell across
the seven pulse epochs; Fig. 3b,e). Such a gradually declining
time course is consistent with known adaptation phenomena in
many visual brain areas and has been observed in MT during
viewing of this same stimulus (Yates et al., 2017). However, dur-
ing the late-stimulus condition, the average time course of the
sensory response was not distinguishable from that of the flat-
stimulus [exponential fit, a · exp(b · x); flat: a = 0.86 (95% CI,
0.77, 0.96); b = �0.09 (95% CI, �0.12, �0.06); late: a= 0.86
(95% CI, 0.67, 1.06); b = �0.15 (95% CI, �0.21, �0.08); Fig.
3c,f]. Most importantly, this gradual decrease over the seven
pulses is precisely the opposite of the behavioral profile, which
shows relative downweighting of early pulses and upweighting
of later pulses. And, most strikingly, when subjects switched
to the early-stimulus condition, the sensory response showed
a stark upweighting of later pulses, resulting in a dramatically
nonmonotonic, U-shaped profile (Fig. 3d,e). While the flat
and late conditions were well described by an exponential model
(flat, R2 = 0.93; late, R2 = 0.87), the drastic change in shape means
that the early condition was not (early, R2 = 0.05). Indeed, the
early condition was the only time when responsivity significantly
increased as time progressed [maximum (6SE): pulse 4, 0.46
(0.41 6 0.51); to pulse 5, 0.67 (0.62 6 0.71)]. Likewise, the
responses to pulses 5, 6, and 7 were significantly greater than
those of both the flat and early conditions [flat: pulse 5, 0.56
(1 SEM, 0.46 6 0.66); pulse 6, 0.49 (1 SEM, 0.39 6 0.59); pulse
7, 0.46 (1 SEM 0.39 6 0.54); early: pulse 5, 0.67 (1 SEM, 0.62
6 0.71); pulse 6, 0.64 (1 SEM, 0.58 6 0.69); pulse 7, 0.68
(1 SEM, 0.61 6 0.74); mean pulse maximum]. This is unex-
pected because of the relative lack of average stimulus strength
in the final three pulses during the early condition compared
with the flat and late conditions. Once again, this is also
directly at odds with the temporal weighting of behavior,
which sharply favors the first two to three pulses over the
rest. This modulation is counterintuitive from standard per-
spectives, which would predict that if any changes in sensory
response are evident, they would be reflected by increases in
response to stimulus portions that were weighted more strongly
for decision-making.
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Instead of gain changes that reflect behavioral readout strat-
egy, the sensory response modulations we observed make more
sense viewed as compensating for the “missing” signal relative to
a time-stationary motion expectation. In our experiments, both
animals were trained extensively on the flat condition before
undergoing temporal manipulation. The change in gain thus
manifested as a function of the mismatch between this appa-
rently “default” temporally uniform expectation of motion and

the statistics of the currently encountered condition. In more
detail, during the late condition motion strength was decreased
in the early portions of the stimulus, but the PTA did not reveal
a decrease in the response to those pulses (Fig. 3c,f ). In fact, the
only noteworthy difference from the flat to the late condition
was a decrease in the response to pulse 4, which can be inter-
preted as a faster falloff of the floor responsivity of the popula-
tion, just before the highest behaviorally weighted pulses [pulse
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4: flat mean peaks (6SE), 0.60 (0.52, 0.68); late mean peaks, 0.37
(0.26 0.47)]. During the early condition, the motion strength on
later pulses was decreased, but the PTA revealed a striking gain
increase on these portions of the stimulus for which the expected
motion was quite weak (Fig. 3d,g). Thus, while the temporal
weighting evident in behavior changed across conditions in a
way that tracked changes in stimulus statistics (i.e., weighting the
stronger periods of motion more, and the weaker periods of
motion less), the response of MT to motion was changed inver-
sely to those patterns.

Consistent with prior work (Zhao et al., 2020), the motion
stimulus was primarily present in one dimension within the
space of the vLGP latent factors, termed the stimulus axis. In
fact, we found that the sensitivity of a neuron to task-relevant
motion directions (d9) was highly correlated with its response in
the stimulus axis (r=0.484), but not with the null space (three
dimensions, r=0.106). The vLGP-based PTA values (Fig. 3e–g)
were estimated on the stimulus axis. Thus, the correlation between
the d9 value of a neuron and the stimulus axis (but not the other
latent factors) confirms that, despite counterintuitive changes to
the time course of the PTA, it is still directly and proportionally
informed by the neurons most sensitive to the task.

Choice-correlated activity in MT is large but does not align
with stimulus encoding or behavioral readout
We observed the presence of substantial choice-correlated activ-
ity in the MT population response (evident via both logReg and
vLGP), achieving large peak magnitudes (.0.6), as measured by
CP; although we use CP as a conventional metric in this article,
we emphasize that by calculating it on various dimensions of the
ensemble response, we have generalized it beyond the classical
approach of only looking at choice-correlated activity defined
along the stimulus axis for one neuron at a time (Britten et al.,
1996).

The largest choice-correlated activity was present in the popu-
lation activity in a manner distinct from how the stimulus drove
the ensemble of MT neurons. Via logReg, this was evident in sig-
nificantly larger CPs along the choice axis over the direction axis
(Fig. 4a–c), stemming from a weak correspondence between the
weight of a neuron in one model compared with the other
(r=0.146), given that the sensitivity of a neuron to task-relevant
motion (d9) was strongly correlated with its weight along the
direction axis (Fig. 4d, left; r= 0.651), but not at all correlated
with its weight along the choice axis (Fig. 4d, right; r= 0.039).
The vLGP analysis showed that stimulus encoding was well
described by a single dimension (the stimulus axis), but the stim-
ulus axis had little choice information (rarely exceeding 0.5)
when compared with the combined choice information in the
top four latent factors altogether (Zhao et al., 2020; Fig. 4a–c).
This is evident further in the correlation between the d9 value of
an individual neuron and the loading weight for the stimulus
dimension (Fig. 4e, left; r = 0.434) and the lack of a correlation
between the d9 value and the combined weight in the remain-
ing three nonstimulus, or choice, dimensions (Fig. 4e, right;
r = 0.106). The value of the ensemble-level decoding approaches
(implemented via logReg and/or vLGP) is highlighted by the fact
that conventional, single neuron-based CP time courses are nois-
ier and smaller in magnitude, with only small deflections from
chance (Fig. 4f–h). Averaging over all neurons obscures the cor-
relations between activity and choices that are revealed by the
weighting schemes of the two population decoders.

Importantly, both analysis methods revealed that across pro-
nounced, experimenter-induced, changes in temporal weighting

strategy, the time course of choice-correlated activities never mir-
rored the time course of psychophysical readout (Fig. 4a–c).
Instead, choice-correlated activity was consistently highest after
the stimulus periods that were weighted the highest in the
behavior. In the flat condition, both analysis approaches dem-
onstrated increased choice probability during the last half
of the stimulus, despite early weighting in the behavior. In
the late condition, when behavior exhibited the strongest
dependence on later portions of the stimulus, the strongest
choice-correlated activity was still distinct from the stimu-
lus-driven activity, and exhibited a more muted and flatter
time course, though still characterized by an even later peak
relative to the flat-stimulus condition. Finally, when subjects
returned to an early weighting strategy in the early stimulus con-
dition, the time course of choice probability returned to a similar
rising profile, as originally measured during the flat condition.
These observations are inconsistent with classical interpretations
that choice probabilities reflect the feedforward consequences of
sensory noise being read out as information about the stimulus
because the bulk of the choice-correlated activity arose after the
psychophysical readout of MT occurred. But, the form of the
choice-related activity also challenges more recent interpreta-
tions that choice probabilities reflect feedback (Nienborg and
Cumming, 2009; Wimmer et al., 2015; Cumming and Nienborg,
2016; Goris et al., 2017; Bondy et al., 2018; Zhao et al., 2020),
because differential MT responses correlated with choice were
not strongly aligned with the motion responses that gave rise to
those decisions, and thus are difficult to interpret as a choice sig-
nal being “sent back” to the sensory neurons with direction pref-
erences consistent with the decision. Rather, the sensory and
nonsensory signals appear to be multiplexed at the population
level in a way that suggests they are not likely to interact in a
straightforward feedforward or feedback manner, if at all (Yu
and Gu, 2018; Zhao et al., 2020; Quinn et al., 2021).

Large choice-correlated activity also exists in the absence of
the motion stimulus
We also observed another choice-related signal in MT of sub-
stantial magnitude. The vLGP analysis revealed significant
choice-correlated activity after the offset of the motion stimu-
lus, in anticipation of an upcoming saccade. There was a mini-
mum 500ms window between the stimulus offset and the
disappearance of the fixation point that signaled the monkey
could move their eyes to make their choice, and during this
window we saw choice probabilities.0.7 (Fig. 5a). To be sure
that this presaccadic CP was not contaminated by small eye
movements within the fixation window, we calculated the speed
of eye movements projected along the target–response vector in
the same 500ms window. We found only minuscule eye move-
ments within this window, none of which showed any pattern
with respect to time, or varied systematically with motion strength
(median drift speed: strong trials, 0.024°/s; weak trials, 0.039°/s;
zero-mean trials = 0.038°/s; ANOVA, p = 0.51). A similar lack of
systematic effects of relative eye position (as opposed to velocity)
was also noted.

The magnitude of poststimulus choice probability is compara-
ble to, and often greater than, what we observed during the stimu-
lus period, and is quite high compared with traditional measures
of choice probability based on single-neuron measurements. Most
importantly, the finding of large amounts of choice-correlated ac-
tivity without the presence of a visual stimulus in MT strengthens
the case for such signals being nonsensory in origin. The choice
signal measured during the delay period is present when there is
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no sensory drive whatsoever, further ruling out interpreta-
tions of choice probabilities as a product of noise in sensory
representations. Instead, its full magnitude (revealed by
“looking off” the stimulus axis), late time course, and pres-
ence up to the response are more similar to the choice-
related activity seen in a multitude of areas that are often
considered much more cognitive or associative in nature,
such as lateral intraparietal area and prefrontal cortex
(Roitman and Shadlen, 2002; Mante et al., 2013).

Interestingly, the onset of CP during the delay period varied
with RT in a way that suggests the choice signal is not simple
premotor activity. If this were the case, we would expect that CP
would increase later on trials with longer RTs compared with tri-
als with shorter RTs. Instead, when reaction times were longer
than the median RT, the saccade-aligned CP increased noticeably
earlier than on trials with reaction times in the shorter half of the
RT distribution (Fig. 5b). This was true of all three temporal
stimulus conditions. The result is striking, especially given the

fixed-stimulus experimental design and the coarse division of
“short” and “long” RTs by median. Temporally divorced from
stimulus processing and not tightly linked to motor behavior
timing, this delay period choice signal appears to have a more
cognitive origin reflecting the maintenance of choice information
between stimulus and response.

Time-varying readout of population activity confirms the
dynamics of choice-related signals
In all analyses leading up to this point, the weights used to
decode the stimulus or the choice were calculated using the neu-
ral responses and/or the derived latent factors from the entire
stimulus period. Even with this fixed temporal readout scheme,
we saw nuanced temporal dynamics in both sensory-related
and choice-related activity that differed from the time course of
temporal weighting evident in the psychophysical behavior.
Although, from a decoding perspective, using temporal fixed
weights makes for a readout process that the brain might find
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easier to implement, we know very little
about how sophisticated the decoding
machinery of the brain might be (and
indeed, our ability to manipulate the time
course of motion weighting suggests that
temporally static decoding is not a hard
limit). Furthermore, from a purely statis-
tical perspective, we were also motivated
to consider decoding with a temporally
dynamic readout scheme to confirm that
the rich dynamics we observed were nei-
ther constrained nor distorted by the
assumption of constant readout weights.
We therefore performed further latent
factor analyses in which weights were fit-
ted and applied based on the activity
within individual 100ms bins for both the
delay and motion periods (Fig. 6).

The time course of choice-correlated
activity was quite similar from fixed to
dynamic readout models. With temporally
varied readout weights, the same pattern
persisted: high CP late in the stimulus pe-
riod regardless of temporal stimulus condi-
tion (Fig. 6, left). This is strong support
for CP as a top-down signal that arrives
in MT mostly after decisions have been
made; that is, after the pulses with the
highest weight in the psychophysical ker-
nel. In this interpretation, during the late condition we have
in essence delayed the decision and thus further delayed the deci-
sion-correlated activity that follows. The time-varying readout
schemes also confirmed the dynamics in the poststimulus
delay period. In all three conditions, CP was high throughout
the delay period, but increased over the last 200ms (Fig. 6, right).
Along the stimulus axis, CP was flatter and closer to chance.
Altogether, the similarity in CP time course between fixed and
dynamic readout models suggests that a fixed weighting
scheme is sufficient to describe the temporal patterns of
choice information in MT during motion information both
during and after the stimulus.

Discussion
By manipulating the temporal weighting strategy of subjects
while they performed a direction discrimination task, aided by
ensemble recordings and population-level decoding analyses, we
discovered multiple signals in MT that are distinct from its repre-
sentation of motion direction. These findings expand our concep-
tion of MT, whose sensory representation of motion is solidly
established to be used by later decision stages for perceptual
reports and behavior. Striking changes in sensory response
were associated with the mismatch between the current strength
of sensory evidence and the learned time courses of sensory evi-
dence. Although these large modulations affected the sensory
encoding, they appear not to have affected the psychophysical be-
havior. Choice-correlated activity was also surprisingly strong, but
was delayed relative to temporal weighting behavior, although the
psychophysical temporal weighting strategy was under direct exper-
imenter control. Furthermore, the choice-correlated activity was
evident at the population level in a manner that was distinct from
stimulus-driven responses in MT and was “readout irrelevant,” in

that it was largest when the subjects were not primarily reading out
the stimulus or even viewing a stimulus at all.

The changes we observed in sensory responses may seem par-
adoxical at first, as the gain was increased for periods of the stim-
ulus during which the subjects applied the smallest amount of
weight in forming decisions. This is opposite to the notion of
attention affecting gain for parts of a stimulus that are more rele-
vant for decisions (Treue and Maunsell, 1996; Seidemann and
Newsome, 1999). But, these modulations appear more sensible
when viewed as resulting from a mismatch between trained statis-
tics and the current ones. The hyporesponsivity to late pulses in
the late condition, and the hyper-responsivity to those same late
pulses during the early condition, could both reflect a compensa-
tory response to motion in the current condition compared with
the expectation of the temporally uniform stimulus on which ani-
mals were trained. Indeed, potentially related homeostatic mecha-
nisms have been observed in sensory cortex (Benucci et al., 2013).
Through this lens, the temporal changes in the PTA reflect a
recalibration of incoming information to meet the expectation
of a temporally flat stimulus. Thus, even the sensory responses
of MT are strongly affected by cognitive factors in ways that
are dissociable from its well established—but no longer singu-
lar—role of representing retinal motion for the sake of percep-
tion and/or behavior.

Our findings regarding choice-related activity also add to the
case for MT carrying substantial nonsensory signals. Having pre-
viously used ensemble recordings and population decoding to
show that stimulus-related and choice-related activity in MT are
distinguishable (Zhao et al., 2020), our findings in this study add
several important facets. First, we exerted explicit control over
the time course of psychophysical weighting, which allowed us to
experimentally dissociate the psychophysical weighting from the
time course of choice-correlated activity. By shifting the temporal
weighting strategy, we effectively changed the average time of the
decision, allowing us to confirm that choice signals followed
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Figure 5. Presence of large choice-related signals in MT during poststimulus delay period. a, CP along the choice (dashed
lines) and direction (solid lines) axes, aligned to the time of the saccade. In all three conditions, there is high CP in the choice
axis for the entire 500 ms preceding the saccade, without any stimulus drive. CP increased over the last 200 ms leading up to
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true in all three conditions.
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primary decision formation when under explicit experimenter
control. Second, we saw choice activity of substantial magnitude
during the poststimulus delay period. This result rejects vir-
tually any stimulus-based interpretation, as the choice signal
was present when the sensory stimulus was not. These results
also rule out straightforward forms of feedback creating choice-
related activity, as those explanations require the decision-related
feedback to be aligned with the sensory responses that gave rise to
the corresponding choice. Furthermore, the delay period choice sig-
nal was not entirely explainable as premotor. Given all these distinc-
tions, the parsimonious interpretation is that choice-related activity
in MT is a distinct cognitive signal (or set of signals) that is best
understood outside of the encoding of visual motion of MT.
Although the presence of large choice-related but readout-irrelevant
signals in macaque MT may be surprising at first, recent work in
other species (also using ensemble recordings and analyses) has
revealed widespread representations of choice-related and other

task-correlated signals (Gründemann et al.,
2018; Stringer et al., 2018; Musall et al., 2019).

Implications of sequential experimental
design
Because we used a sequential design in which
we slowly changed across our three stimulus
conditions, it is important to consider the pos-
sible effects of general learning that might
have occurred gradually over time, and not
as a result of our manipulation of stimulus
statistics. We can rule out any general learning
effects in our behavioral results, as we would
expect these to manifest as higher sensitivity as
sessions progress, regardless of stimulus con-
dition. This was not true, as psychometric sen-
sitivity decreased slightly as the experimental
conditions went on (slope of psychometric
function 6 95% CI: flat, 2.52 6 0.15; late,
2.04 6 0.12; early, 1.70 6 0.11). Similarly, we
can rule out such effects on the neural stimu-
lus and choice signals. If changes in neural
responses from the flat condition to the late
condition were a result of generalized learning,
we would expect those effects to continue on
from the late condition to the early condition.
This is not true of either the sensory or choice
signals we saw in MT, in which the patterns
were distinct to the stimulus condition and
showed no general trends across the full set of
experiments.

We used an experimental design in which
we changed the temporal weighting condi-
tion after several sessions to examine how
neurons adapted and learned in the periods
when the observer adjusted from one tempo-
ral weighting strategy to a new one. However,
we found ourselves unable to do so because
the change in stimulus statistics was such a
powerful manipulation that the monkeys
shifted their strategies rather quickly, leaving
us with little opportunity to examine what
happens as they learned the new expected sta-
tistics. It would be interesting to know
whether the results would change in any way
given a different experimental order, or given
a design that incorporates all stimulus condi-

tions within experimental sessions. Indeed, future studies would
be wise to incorporate random, short blocks in similar experi-
ments to further rule out possible sequential effects; this would
also allow for recording from the same groups of neurons during
all experimental conditions.

Population decoding approaches enable otherwise
inaccessible insights
Our two analysis approaches revealed the temporal dynamics of
the stimulus and choice responses of the MT that would not be
as easily evident from classical, single neuron-based analyses.
In the case of the response to motion, the average PTA of all
recorded neurons showed trends reminiscent of those from our
population decoders, but the temporal modulations were muted
and could easily be overlooked and interpreted as stable across the
three conditions. In the case of the choice signal, this was similarly
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evident in lower-magnitude CP and noisier time courses. We
believe this is a relatively straightforward consequence of making
simultaneous ensemble-scale recordings, as a raw average treats all
neurons equally, regardless of their tuning to stimulus or choice,
and would thus have detrimental effects on revealing signals.

This distinction between conventional metrics and popula-
tion-level analyses highlights the value of the approaches used
here. Indeed, even a simple weighted average, achieved via our
logReg weights, was quite useful. It is important to appreciate
that our samples of MT neurons within a session often contained
a variety of tuning preferences, and that, while we ran the experi-
ments along the directional axis that drives the greatest number
of neurons according to their direction preference, there were of-
ten multiple cells with distinct tuning properties being fed into
our decoders. By using logistic regression, we weighed each neu-
ron according to its ability to predict the stimulus direction, and
came away with an interpretable average that effectively down-
weighted the response of less relevant neurons. Although the
brain may not be performing logistic regression per se, weighting
the appropriate neurons for readout is a common assumption.

Likewise, not every neuron in MT, or in our samples of MT,
is tuned for the choices of the animal (i.e., has high choice proba-
bility). In fact, we found that many neurons without strong
direction selectivity had strong choice selectivity, and vice versa.
Indeed, the choice response in MT appears to be a majority sepa-
rate signal that lives nearly independent of its encoding of
motion. We would have been blind to such relationships without
the advantages of our current methods.

Thus, we view the logReg-weighted population response as a
minimum necessary analysis for interpreting the nuances of
high-dimensional recordings during complex behavior, and view
vLGP as the more sophisticated approach that allows for deeper
understanding of the population dynamics, which are made pos-
sible by leveraging assumptions of low-dimensional representa-
tions that explain the correlations within a high-dimensional
space.

Conclusions
These findings provide new connections between MT function
and well established conceptual and empirical frameworks. The
sensory modulations associated with mismatches between
expected and observed time courses of motion align with both
predictive coding and reinforcement learning models, both of
which are abstractly based on errors between expected and
encountered elements within a task (Rescorla and Wagner, 1972;
Engel et al., 2015). Although our findings run opposite to the
known effects of temporal attention (Ghose and Maunsell, 2002)
or to attention-related gating of sensory responses (Seidemann et
al., 1998), some work has decoupled attentional modulations in
MT area and medial superior temporal (MST) area from task per-
formance (Zénon and Krauzlis, 2012). Our dissociation between
MT modulations and task performance may be related, although
in our case, their dependence on the strategic history of the sub-
jects revealed signals that are not wholly irrelevant to the task, but
are just not related to the formation of decisions on a trial-by-trial
basis. This opens up the possibility that some attention-like phe-
nomena may arise from expectations of stimulus statistics, instead
of being modulations of sensory data per se. The poststimulus
choice signals we observed in MTmay be related to prior observa-
tions of small-amplitude, but tuned, persistent activity in MT
(Bisley et al., 2004). Our findings suggest that those initial obser-
vations of relatively small changes in spike rate may have
simply caught a glimpse of larger nonsensory signals

preceding the saccadic decisions mostly missed by single-
unit recordings that cannot see alternate effects on popula-
tion activity across diversely tuned neurons. Finally, related
work using a motion categorization task has revealed strong
nonsensory, category-related activity in area MST, but not area
MT (Freedman and Assad, 2006; Zhou et al., 2020). Such cate-
gory-related activity can also be thought of as “choice-correlated,”
as distinct from purely sensory driven. Although the tasks, train-
ing histories, and analytic approaches differ between that work,
our findings suggest that the apparent distinction between
MT and MST areas regarding the presence of such category/
choice activity might be less strict than previously observed.
Again, the potential for ensemble recordings and corresponding
analyses may have been critical for not just observing these non-
sensory signals in MT, but for appreciating their substantial
magnitude.

To conclude, our manipulation of temporal weighting strat-
egy revealed a dissociation of sensory response gain that did not
appear to play out in decisions about visual motion. Likewise,
our approach of using ensemble recordings and population
decoding allowed us to see large choice-related signals that were
not just temporally dissociated from psychophysical weighting
(or even stimulus viewing), but that were large in magnitude and
distributed across the population in a manner distinct from how
visual motion direction is represented. Together, these signals and
modulations call for consideration of MT well beyond its role in
the encoding of retinal motion and, more generally, challenge sim-
ple conceptions of sensory gain and decision-related feedback as
being clearly task relevant. Understanding the population coding
structure and functional roles of such task-related but nonsensory
computations are new open questions.
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