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ABSTRACT 8 

Numerous Lamb wave dispersion curve estimation methods have been developed to support damage 9 

detection and localization strategies in non-destructive evaluation/structural health monitoring 10 

(NDE/SHM) applications. In this paper, the covariance matrix is used to extract features from an 11 

ultrasonic wavefield imaging (UWI) scan in order to estimate the phase and group velocities of S0 12 

and A0 modes. A laser ultrasonic interrogation method based on a Q-switched laser scanning system 13 

was used to interrogate full-field ultrasonic signals in a 2-mm aluminum plate at five different 14 

frequencies. These full-field ultrasonic signals were processed in three-dimensional space-time 15 

domain. Then, the time-dependent covariance matrices of the UWI were obtained based on the vector 16 

variables in Cartesian and polar coordinate spaces for all time samples. A spatial covariance map was 17 

constructed to show spatial correlations within the full wavefield. It was observed that the variances 18 

may be used as a feature for S0 and A0 mode properties. The phase velocity and the group velocity 19 

were found using a variance map and an enveloped variance map, respectively, at five different 20 

frequencies. This facilitated the estimation of Lamb wave dispersion curves. The estimated dispersion 21 

curves of the S0 and A0 modes showed good agreement with the theoretical dispersion curves.  22 

 23 

Keywords: Ultrasonic wavefield imaging, laser ultrasonic, covariance matrix, covariance mapping, 24 

dispersion curves 25 

 26 

1. INTRODUCTION 27 

Ultrasonic Lamb waves are popular in non-destructive evaluation and structural health monitoring 28 

applications because they can offer an effective, relatively long range/area method to estimate the 29 

location, severity, and type of damage in structures. Lamb waves are dispersive and multimodal 30 

elastic waves that propagate along a plate of relatively small thickness. The dispersive profile of 31 

Lamb waves is typically characterized by phase and group velocity curves. 32 

 33 

Many studies have employed Lamb waves dispersion curves themselves for damage detection and 34 

localization strategies [1-5]. Numerous group velocity measurement methods are introduced to 35 

improve the accuracy of the damage detection and localization. One of the methods, time-of-flight 36 

(ToF) measurement [6-11], has a rich history for group velocity estimation. Particularly, threshold 37 

crossing techniques [8, 10, 11] and temporal cross-correlation techniques [6, 9, 12] are typical 38 
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methods for ultrasonic parameter extraction. A threshold crossing technique is a generalized approach 39 

and has been widely used to extract the ToF of a specific mode; specifically, the first arrival mode in 40 

most cases when the raw signal amplitude crosses a threshold. However, it shows less efficiency in 41 

estimating ToF when the monitoring mode is highly attenuated below the threshold. Therefore, a 42 

certain amount of prudence (and to some degree, non-quantitative judgment) is needed to define 43 

threshold level. The cross-correlation technique is another ToF measurement technique that estimates 44 

the arrival time difference by cross-correlating the amplitudes of two signals [6]. In general, the cross-45 

correlation method is employed with the assumption that the response signal is only a shifted and 46 

scaled version of a reference signal with Gaussian white noise. However, when the measured signal in 47 

an experiment undergoes shape distortion, such as the dispersion of a propagating Lamb wave, then 48 

the time-based cross-correlation method may become less effective  [9]. 49 

 50 

Besides these two techniques, signal decomposition techniques have also been introduced. One of the 51 

decomposition techniques is the time-frequency analysis (e.g. wavelet transform method). In the 52 

wavelet transform method, the ToF measurement may be performed since the peak of the magnitude 53 

of wavelet transform in the time–frequency domain is related to the arrival time of an ultrasonic wave 54 

signal of each frequency component [10, 11, 13-15]. In addition, the cross-correlation-based ToF 55 

measurement supplemented by wavelet transform was enhanced the accuracy of ToF estimation [16]. 56 

Another signal decomposition technique is the chirplet matching decomposition [9, 17], and it 57 

demonstrated better efficiency than the cross-correlation technique with acceptable error of around      58 

2% [9]. A spectral decomposition technique was proposed [18, 19] as well to develop the group 59 

velocity curves of Lamb waves in an aluminum plate. The method enabled to reconstruct the 60 

dispersion curves of the fundamental modes with relative errors around 2%. However, the accuracy of 61 

the estimation method depended upon the bandwidth of the filter. Beyond ToF estimation methods, a 62 

model-based algorithm was proposed [20] to adaptively estimate Lamb waves dispersion curves using 63 

minimal a priori information and assumptions. Recently, phase array beamforming method [21] was 64 

proposed and demonstrated the ability to estimate group velocity curves for both isotropic and 65 

anisotropic materials.  66 

 67 

Numerous methods have been investigated for phase velocity curve estimation as well. Typically, for 68 

the phase velocity measurement, ultrasonic signals are measured first using a pitch-catch method 69 

within a distance range from an/a excitation/sensor point and the measured signals are formed in a B-70 

scan image; then, the time difference between the two-different fixed spatial points at the same ridge 71 

was determined for the phase velocity calculation of each mode, especially the fundamental Lamb 72 

wave modes. In time-domain analysis, the zero-crossing technique was proposed to estimate the time 73 

delay for the phase velocity measurement of S0 [22] and A0 [23] modes. The main idea of the 74 

technique was that using some threshold level the half period of the signal exceeding this level was 75 
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determined. Then, the time instance at which the signal crosses the zero level was estimated. However, 76 

the accuracy of this technique depended upon the sampling frequency set during the signal acquisition 77 

process. 78 

 79 

From the past decades, laser ultrasonic techniques (LUTs) have been under investigation and 80 

development for the inspection of mechanical engineering structures, as well as for phase velocities 81 

estimation [24, 25]. Then, in the current laser scanning technology, the experimental configuration 82 

setup of LUT for acquiring two-dimensional (2D) space domain is became simple and with high space 83 

resolution capability. With these advancements, B-scan data is easily obtained with high space 84 

resolution for the phase velocity estimation [26, 27]. Besides estimating the phase velocity directly 85 

from the B-scan data in the time-space domain, the phase velocity curves are estimated in an 86 

alternative form—frequency and wavenumber—by transforming the B-scan data from time-space 87 

domain to the frequency-wavenumber domain using two-dimensional Fourier transform method [28, 88 

29]. Some studies also demonstrated that the LUTs incorporated with wavelet transform [10, 30] and 89 

statistical threshold estimation method [11] to measure ToF for group velocity estimation. 90 

 91 

Since laser ultrasonic techniques provide high space resolution and large full-field ultrasonic data sets 92 

in three-dimensional (3D) space-time domain, a richer set of informative features may be extracted 93 

about the health condition of a structure. In the past decades, features extraction based on variance 94 

and/or covariance structure has been exploited, [31, 32]. This paper proposes a new approach based 95 

on spatial covariance to estimate phase and group velocities of S0 and A0 modes from full-field 96 

ultrasonic data. The computational burden of this proposed method is much lower than the spectral 97 

transformation methods. The covariance method is directly applied to the unprocessed “raw” 98 

measurement data, so there is no information loss on the spatial/temporal localization of features. 99 

Furthermore, the processing time needed for this proposed method is also shorter than the signal 100 

decomposition methods because the signal decomposition methods need preset dictionary elements to 101 

run iterative processing loops for results. 102 

 103 

The following sections of this article will present the experimental setup for obtaining the full-field 104 

ultrasonic data using a laser ultrasonic generator, the theory and implementation of the covariance 105 

matrix for ultrasonic wavefield imaging, the analysis of the relationships between the spatial 106 

covariance matrix and the S0 and A0 mode waves, and the implementation of the variance map and 107 

the enveloped variance map for the phase and group velocities estimation.  108 

 109 
2. EXPERIMENTAL SETUP 110 

Figure 1(a) shows a schematic diagram of a laser ultrasonic interrogation system, which consists of a 111 

laser interrogator, a signal conditioning device, a data acquisition (DAQ) module, a contact sensor, 112 
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and a computer used for operation control and signal processing. The laser scanning system consists 113 

of a 2D laser mirror scanner and a diode-pumped solid-state Q-switched Nd:YAG laser with 527 nm 114 

wavelength. In this paper, a 2-mm thick aluminum plate was setup at a standoff distance of 1780 mm 115 

from the 2D laser mirror scanner. Figures 2(a) and (b) show the theoretical phase velocity and group 116 

velocity curves of the two fundamental Lamb waves modes—the antisymmetric A0 mode and the 117 

symmetric S0 mode—for the 2-mm thickness aluminum plate. The dispersion curves were calculated 118 

with the commercial software (Vallen Dispersion) at the longitudinal wave velocity and shear wave 119 

velocity of 6320 m/s and 3100 m/s. In this paper, five different frequencies, 100, 150, 200, 300, and 120 

400 kHz were considered to develop these dispersion curves. 121 

 122 

 123 
Figure 1. (a) Laser ultrasonic interrogation system configuration and (b) inspection configuration of a 124 

2-mm aluminum plate. 125 

 126 

Figure 1(b) shows two different configurations of scanning areas on the aluminum plate. First, the 127 

area of 200 mm ´ 200 mm was scanned with a scan interval of 1 mm for the frequency point of 400 128 

kHz using a PZT sensor (S1) that was mounted at the center plate using cyanoacrylate adhesive. The 129 

laser scanning process was performed at an average pulse energy of 1 mJ (fluence of 23 mJ/cm2) and 130 

the pulse repetition rate (PRR) was set to 20 Hz to avoid reverberation interference during the 131 

scanning process. The generated ultrasound was received and conditioned in an in-line bandpass filter 132 

through the PZT sensor. To obtain the dispersion curves at the frequency of 400 kHz, the bandpass 133 

filter was set at the center frequency of 400 kHz with the bandwidth of ±10 kHz. Subsequently, the 134 

filtered ultrasound was digitized in the DAQ module as shown in Fig. 1(a). The DAQ module was set 135 

with a sampling of Ts = 0.2 µs and K = 1000 total sample points. Once the scanning process was 136 

completed, the ultrasound in 2-D space with N and M grid points on the target were generated and 137 

formed in a 3D N by M by K space, indexed by spatial x-direction, spatial y-direction, and time t, 138 

respectively, along each dimension as shown in the left side of Fig. 3(a), named as ultrasonic 139 

wavefield imaging. Next, the experiment was repeated with the same configuration and the scanning 140 
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process was performed separately for the UWI at different frequencies of 200 and 300 kHz 141 

respectively.  142 

 143 

 144 
Figure 2. Theoretical (a) phase velocity and (b) group velocity curves of the two fundamental Lamb 145 

waves (A0 and S0 modes) of a 2-mm thick aluminum plate. 146 

 147 

As shown in the phase velocity curves (Fig. 2(a)), the wavelengths of the S0 and A0 modes get longer 148 

at lower frequency. For the experimental setup in this paper, it was determined that the corresponding 149 

wavelength (l3 = 53 mm) of S0 mode at the frequency point of 100 kHz is the longest wavelength as 150 

compared to the other frequency. Henceforth, to allow S0 mode waves with 100 and 150 kHz to 151 

develop completely in the wavefield, the second scanning area was set to 300 mm ´ 300 mm as 152 

shown in Fig. 1(b). The experiment was performed with the same experimental setup as stated above, 153 

except that the sensor S1 was removed and reallocated, denoted as S2, at the edge of the plate, 100 154 

mm away from the scanning area, as shown in Fig. 1(b). The center frequencies of the bandpass filter 155 

were set to 100 and 150 kHz respectively, to obtain the UWIs as desired for this experiment. The 156 

UWIs generated for each respective frequency will be used to estimate the dispersion curves via the 157 

proposed method. In this paper, ten sets of UWI at each frequency were generated to evaluate the 158 

reliability and precision of the proposed statistical method.  159 

 160 

3. THE COVARIANCE MATRIX FOR ULTRASONIC WAVEFIELD IMAGING 161 

Covariance (as a linear dispersion estimator) is defined as the mean value of the product of the 162 

standard deviations of two variables from their respective means. When it comes to a two-dimensional 163 

covariance problem, it may be expressed as a covariance matrix. Figure 3(a) shows that the 2D spatial 164 

waves of the S0 and A0 modes propagate as time progresses in the UWI; however, it does not show 165 

how the spatial local waves interact with or correlate to each other in the wavefield. Since the 166 

covariance method is principally used to learn the correlation among the variable vectors of a data set, 167 

it reveals the characteristics of the spatial correlation among the local waves at each instant in time. 168 

Consequently, it is hypothesized that the phase and group velocities of S0 and A0 modes waves may 169 
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be estimated via the change of the spatial correlation response at a local point for a given time range. 170 

In this section, the covariance matrix of an UWI is studied to analyse the interaction (or unscaled 171 

correlation) of the ultrasonic wave responses between the two spatial samples of a spatial direction in 172 

Cartesian coordinate space, as well as polar coordinate space, as time evolves. Then, the diagonal of 173 

the covariance matrix (the variance) is extracted and its relationship to the Lamb waves is analyzed as 174 

well. 175 

 176 

 177 
Figure 3. Overview of variance map generation based on ultrasonic wavefield imaging in (a) 178 

Cartesian coordinate and (b) polar coordinate spaces   179 

3.1 Cartesian Coordinate Space 180 

Figure 3(a) shows the generation of a spatial covariance image and subsequent variance map based on 181 

an UWI along T-axis in the Cartesian coordinate space. The covariance imaging is generated by 182 

calculating the covariance matrix of 2-D spatial ultrasonic wavefield imaging for each time-index k 183 

and the integer index k is in relation of time sample t = kTs in T-axis. Since the ultrasonic wavefield 184 

imaging for each time-index k is formed in N ´ M matrix as shown in the left side of Fig. 3(a), the 185 

elements of the N ´ M matrix are ultrasonic amplitudes in space domain and grouped into two random 186 

vectors, column vector and row vector. In X-axis, the column vector is formed and m is an index 187 

that assigns a number to each spatial sample x with relation of , ranging from 1 to 188 

M in x-direction, as shown in Fig. 4(a). In Y-axis, the row vector  is formed and n is an index that 189 

mX

[( 1) ]x m M x= - - D

nY
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assigns a number to each spatial sample y with relation of , ranging from 1 to N 190 

in y-direction, as shown in Fig. 4(b). Then, Dx and Dy are the spatial sample interval (scan interval) 191 

for X- and Y-axes respectively. In this paper, both spatial sample intervals were set to 1 mm and M 192 

and N were set to 200 for the scan area 1 (200 mm ´ 200 mm) and 300 for the scan area 2 (300 mm ´ 193 

300 mm) as shown in Fig. 1(b), respectively. 194 

 195 

 196 

Figure 4. Assignments of column vectors of (a) , (b) , and (c)  for ultrasonic wavefield 197 

imaging in Cartesian coordinate and polar coordinate spaces respectively.  198 

 199 

For the covariance matrix of , M column vectors are considered in the covariance matrix 200 

calculation. As shown in Fig. 4(a), is a column vector with a set of ultrasonic 201 

amplitude values (denoted as ) in spatial samples with the index n ranging from 1 to N along Y-202 

axis. The covariance matrix of at a time-index is denoted as and expressed below: 203 

  (1) 204 

and the elements of  are defined as: 205 

  (2) 206 

with the indices . The and are the mean of column vector . Since the 207 

covariance matrix in Eqn. (1) is a symmetric matrix with the matrix size of M ´ M , for i = j the 208 

diagonal elements ( ) contain the variances, denoted as , of column vector ; and for i ¹ j 209 

[( 1) 2]y n N y= - - D

mX nY pR

mX

1, 2, ,{ , , , }m m m N mx x x=X !
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the off-diagonal elements contain the covariances between all possible pairs of column vector . 210 

Based on Eqn. (1), the covariance matrix of the 2-D spatial ultrasonic wavefield imaging for all the 211 

time-index k is calculated and denoted as . Lastly, the covariance matrix  is 212 

formed as covariance imaging as shown in the center of Fig. 3(a). 213 

 214 

As for the covariance matrix of , the matrix N ´ M of the ultrasonic wavefield imaging (Fig. 4(b)) is 215 

transposed first and yielded a column vector with a set of ultrasonic 216 

amplitude values (denoted as ) in spatial samples (Fig. 4(b)). Hence, the elements of the 217 

covariance matrix of  is defined as below: 218 

  (3) 219 

And . The and are the means of column vector . Since the covariance matrix is 220 

a symmetric matrix (N ´ N), for i  = j the diagonal elements ( ) contain the variances, denoted as221 

, of column vector ; and for i ¹ j the off-diagonal elements estimate the covariances 222 

between all possible pairs of column vector . For that, the covariance matrix of the 2D spatial 223 

ultrasonic wavefield imaging is calculated for all the time-index k and denoted as . Lastly, 224 

the covariance matrix  is referred to as a covariance image. 225 

 226 

3.2 Polar Coordinate Space 227 

Figure 3(b) shows the UWI in polar coordinate with R-, q-, and T-axes, which are generated by 228 

transforming the UWI in Cartesian coordinate space based on the expression below: 229 

  (4) 230 

where, x and y are the spatial samples of the X- and Y-axes of the UWI. The r and q are the spatial 231 

radius and circumferential angle, with the indices of p and q, respectively. The index p is assigned as a 232 

number to each spatial radius sample with the relation , ranging from 1 to P; and, the 233 

index q is assigned as number to each circumferential angle with the relation , 234 

ranging from 1 to Q. In this paper, the radius interval Dr was set to 1 mm and P was set to 200 for the 235 

scan area 1 (200 mm ´ 200 mm) and 300 for the scan area 2 (300 mm ´ 300 mm) as shown in Fig. 236 

1(b). The sensor point was set as the origin of the radius. The circumferential angle ranging was set 237 

from -30° to 30°. A simple linear interpolation process was performed with the Q = 120 on the results 238 

mX

( , , )i j kXC ( , , )i j kXC

nY

1, 2, ,{ , , , }T
n n n M ny y y=Y !

,m ny

nY

( )( ), ,
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1
1

M
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m
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obtained from Eqn. (4) in order to obtain the angle interval of Dq = 0.5° for the circumferential angle 239 

range. 240 

 241 

In Fig. 3(b), each time-index of the UWI is formed in Q ´ P matrix and the elements are ultrasonic 242 

amplitude values as shown in Fig. 4(c). The elements are grouped into a random vector, column 243 

vector with the total of P column vectors for the covariance matrix calculation. As shown in Fig. 244 

4(c),  is a column vector with a set of ultrasonic amplitude values (denoted as245 

) in the circumferential angles with the index q ranging from 1 to Q along q-axis, as shown in Fig. 246 

4(c). The covariance matrix of is determined in the same manner of the covariance matrix in 247 

Eqn. (1), and it is denoted as with the elements below: 248 

 , (5) 249 

where, . The  and are the means of column vector . Since the covariance 250 

matrix in Eqn. (5) is a symmetric matrix with the matrix size of P ´ P, for i = j the diagonal elements, 251 

denoted as , contain the variances, denoted as , of column vector ; and for i ¹ j the off-252 

diagonal elements contain the covariance between all possible pairs of column vector . The 253 

process of determining the covariance matrix is executed for all the time indices to generate the 254 

covariance image, denoted as , as shown in the center of Fig. 3(b). 255 

 256 

Lastly, the variance maps , , and  were generated by mapping each 257 

variances of covariance matrices , , and for all k into 2D array matrix 258 

forms, represented in X-T plane and Y-T for Cartesian coordinate space and in R-T plane for polar 259 

coordinate space, as shown in Figs. 5(a-c) respectively. 260 

 261 
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 262 

Figure 5. Variance maps based on the covariance matrices (a) , (b) , and (c) 263 

. 264 

 265 
3.3 Relationships between UWI and Covariance Imaging 266 

Next, the relationships between UWI and covariance imaging are analyzed. The UWI used later for 267 

the discussion was obtained from the experiment as explained in previous section. To ease the 268 

analysis discussion, the ultrasonic wavefield image and the covariance image at a time sample of 40 269 

µs (k = 200) with 400 kHz were considered for Cartesian and polar coordinate spaces. 270 

 271 

Figures 6(a) and (b) show the UWI with 400 kHz at the time 40 µs and the corresponding covariance 272 

image , respectively, in Cartesian coordinate space. Based on the reciprocity of 273 

ultrasonic propagation [33], the omnidirectional ultrasonic waves were omitted from the sensor, 274 

located at (0,0), as shown in the wavefield image (Fig. 6(a)). The Lamb waves, S0 and A0 modes, 275 

were clearly visible in the ultrasonic wavefield image (Fig. 6(a)) at the first arrival distances of -140 276 

mm (shaded blue-line) and -85 mm (shaded black-line), respectively. Figure 6(b) shows that the 277 

covariance image was symmetry along the diagonal line (shaded red-line). The diagonal values were 278 

the variances in relative to the spatial samples of X-axis and plotted in the inset of Fig. 6(b). Then, 279 

each off-diagonal element of  described the degree to which two spatial signals tended to 280 

correlate to each other.  281 

( , , )i j kXC ( , , )i j kYC

( , , )i j kRC

( , , 200)i jXC

( , , 200)i jXC
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 282 
Figure 6. Cartesian coordinate space: (a) ultrasonic wavefield image and (b) its corresponding 283 

covariance image (inset: variance signal), and polar coordinate space: (c) ultrasonic wavefield 284 

imaging and (d) its corresponding covariance image (inset: variance signal), at 40 µs. 285 

 286 

Figure 7(a) shows the covariance responses between the spatial signal and  for m = 1, 2, …, 287 

200. Since m and j were same in Eqn. (2), the index of j = 81 was referred to  and the 288 

corresponding spatial signal was at x = -120 mm. In Fig. 6(b), the covariances at the points of P1, P2, 289 

and P3 along a shaded yellow-line x = -120 mm were obtained based on the spatial signals at x = 290 

-120 mm ( ) with x = -180 mm ( ), with x = -133 mm ( ), and with x = -126 mm 291 

( ) respectively and the respective covariances were shown in Fig. 7(a). Figure 7(b) shows the 292 

two spatial signals at x = -120 mm and x = -180 mm obtained from UWI in Fig. 6(a). The spatial 293 

signal at -180 mm showed as noise floor in Fig. 6(a) at 40 µs and the spatial signal at -120 mm 294 

showed the dominant energy in S0 mode wave. Hence, using Eqn. (2), the covariance of both spatial 295 

signals was determined to be zero at P1 as shown in Fig. 7(a), which indicates both signals are 296 

uncorrelated. For x = -120 mm with x = -133 mm, both signals were in similar wave pattern (in-297 

81m=X mX

81m=X

81m=X 21m=X 68m=X

75m=X
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phase) and yield positive covariance at P2. On the other hand, when x = -126 mm is out-of-phase to 298 

the x = -120 mm (Fig. 7(c)), the negative covariance was obtained at P3 as shown in Fig. 7(a). The 299 

values of the covariance elements indicated the degree to which two spatial signals tended to correlate 300 

to each other spatially. 301 

 302 

 303 

Figure 7. (a) Covariance responses between the spatial signal (x = -120 mm) and  for all m; 304 

and the spatial signals of UWI at (b) x = -180 mm, (c) x = -133 mm, and (d) x = -126 mm in 305 

comparison to x = -120 mm. 306 

 307 

Two distinguishable covariance responses were observed in -140 mm < x < -85 mm and -85 mm < x 308 

< -50 mm as shown in Fig. 6(b) and relationship to the S0 mode and A0 mode in Fig. 6(a) 309 

respectively. The corresponding variance signal (the inset of Fig. 6(b)) showed two wave packets with 310 

multiple peaks in both ranges. The variance signal indicated that the first arrival distances of the wave 311 

packets estimated at x = -140 mm and at x = -85 mm were approximately same as the first arrival 312 

distances of the S0 and A0 modes in Fig. 6(a), respectively. 313 

 314 

Figure 8(a) shows the waveform of the ultrasound along spatial sample x at y = 0 mm in Fig. 6(a) with 315 

the peaks and troughs amplitudes of S0 mode (-133 mm, -126 mm, -120 mm) and A0 mode (-72 316 

mm, -69 mm, -66 mm). Based on the peaks and throughs obtained in these S0 and A0 modes, the 317 

wavelengths of these S0 and A0 modes were determined at 13 mm and 6 mm based on the two 318 

consecutive peak locations (–120 mm and –133 mm) and (–66 mm and –72 mm), respectively.  319 

 320 

81m=X mX
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Figures 8(b) and (c) show the zoomed first and second wave packets of the variance signal in the inset 321 

of Fig. 6(b). The peak locations of the zoomed first and second wave packets of the variance signal 322 

indicated that have the same peaks and troughs locations in the S0 and A0 mode waves in Fig. 8(a). 323 

 324 

 325 
Figure 8. (a) Spatial signal at y = 0 mm of UWI in Fig. 6(a) and the zoomed (b) first and (c) second 326 

wave packets of the variance signal of ; and (d) spatial signal at q = 0° of UWI in Fig. 6(c) and the 327 

zoomed (e) first and (f) second wave packets of the variance signal of . 328 

 329 

Regards to this, the variance signal demonstrated association to the S0 and A0 modes. Thereupon, the 330 

wavelengths of the Lamb wave modes may be estimated based on the location of the peaks in a 331 

variance signal, as an alternative approach to estimate the wavelengths of Lamb wave modes. Based 332 

on the peaks locations of the variance signal in Figs. 8(b) and (c), the wavelengths of the S0 and A0 333 

modes were estimated at 13 mm and 6 mm with the wavelength deviation errors of 2.3 % and 11% in 334 

comparison to the theoretical wavelengths of l1 = 13.3 mm and l2 = 5.4 mm obtained from the phase 335 

velocity curves (Fig. 2(a)) at the frequency of 400 kHz. 336 

 337 

Next, the covariance matrix calculation based on is considered. Figures 9(a) and (b) show the 338 

UWI at 40 µs and the corresponding covariance image obtained from Eqn. (3), respectively. The 339 

covariance image of  showed an “X”-pattern which was different from the covariance 340 

image of  in Fig. 6(b). This is because of the symmetry in the ultrasonic wavefield (Fig. 341 

9(a)) at y = 0 mm, where any two arbitrary spatial signals in taken for the covariance calculation 342 

were similar to each other (e.g. one spatial signal at y = -50 mm ( ) and the other spatial signal at 343 

XC

RC

T
nY

( , , 200)i jYC

( , , 200)i jXC
T
nY

51
T
n=Y



14 
 

y = 50 mm ( )). The inset of Fig. 9(b) shows also that the corresponding variance signal was 344 

symmetry as different from the variance signal of . 345 

 346 

 347 
Figure 9. Cartesian coordinate space: Ultrasonic wavefield image and its corresponding covariance 348 

image (inset: variance signal) at (a)(b) 40 µs and (c)(d) 30 µs for . 349 

 350 

Figures 10(a) and (b) show the zoomed first and second wave packets of the variance signal in the 351 

inset of Fig. 9(b), and the peaks locations of (-71 mm, -68 mm, -66 mm) and (64 mm, 67 mm, 70 352 

mm) showed same to the peaks locations of the A0 mode (-72 mm, -69 mm, -66 mm) in Fig. 8(a). 353 

Both peaks locations showed that the wavelengths were determined at 5 mm and 6 mm with the 354 

relative errors of 7.4% and 11% to the theoretical wavelength of A0 mode (l2 = 5.4 mm) respectively. 355 

 356 
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 357 
Figure 10. Zoomed view of variance signals at (a)(b) 40 µs and (c)(d) 30 µs. 358 

 359 

Looking at the variance in the inset of Fig. 9(b), the peak responses of the S0 mode in y < -85 mm 360 

and y > 85 mm were not being able to obtain for the estimation. For that, the UWI at 30 µs was 361 

considered as shown in Fig. 9(c) and the corresponding covariance image was obtained as shown in 362 

Fig. 9(d). The inset of Fig. 9(d) shows that the multiple peaks were obtained in the ranges of -80 mm 363 

< y < -50 mm and 50 mm < y < 80 mm of the variance signal. Figures 10(c) and (d) show the zoomed 364 

variance signal in both ranges with the peaks locations of (-72 mm, -66 mm, and -59 mm) and (58 365 

mm, 65 mm, and 71 mm). Both peaks locations demonstrated the ability of estimating the wavelength 366 

of the S0 mode at 13 mm and the relative error of 2.3%. 367 

 368 

In this paper, the covariances  (Fig. 6(b)) and (Fig. 9(b)) correspond to the spatial correlation 369 

in the x-direction and y-direction, respectively. It is observed that the variance signal (desired variance) 370 

indicates the ability to capture the wave fronts of the S0 and A0 modes when the propagation 371 

direction of these wave fronts is parallel to the spatial correlation direction. For example, the spatial 372 

correlation in the x-direction was considered in the inset of Fig. 6(b). The desired variance was 373 

obtained when the propagation direction of the wave fronts of the S0 and A0 modes was parallel to 374 

the x-direction, ranging from -60 mm to -140 mm as shown in Fig. 6(a).  375 

 376 

In contrast, the variance signal (undesired variance) was not able to capture the wave fronts of the S0 377 

and A0 modes when these wave fronts were not parallel to the spatial correlation direction. Since the 378 

XC YC
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ultrasound was emitted omnidirectionally from the Cartesian coordinate space origin as shown in Fig. 379 

6(a), the undesired variance was obtained, ranging from 0 mm to -60 mm, when the propagation 380 

direction of the wave fronts was not parallel to the x-direction in this range. In this paper, the 381 

undesired variances are called “ripple waves” in the variance signal, which showed no relation to the 382 

wave fronts of the S0 and A0 modes. Above observations inferred that the desired variance can be 383 

only obtained when the propagation direction of the wave fronts is parallel to the considered 384 

correlation estimation direction. 385 

 386 

Figure 3(a) shows that the propagation direction of the wave fronts in the aluminum plate was radial 387 

and symmetric in Cartesian coordinate space. Alternatively, the propagation direction of these wave 388 

fronts was also unidirectional in the R-q plane of polar coordinate space as shown in Fig. 3(b). 389 

Subsequently, the covariance  of the R-q plane for all k was obtained as shown in the middle of 390 

Fig. 3(b). Then, the response of  was analyzed and further verify the observations above on the 391 

emergence of the desired/undesired variance signal. 392 

 393 

Figures 6(c) and (d) shows the wave fronts of the ultrasonic waves, ranging from -30° to 30°, 394 

propagating unidirectionally along R-axis in the R-q plane at 40 µs and the corresponding covariance 395 

image  respectively. The covariance image showed symmetry along the diagonal and 396 

two distinguishable covariance responses in 85 mm < r < 140 mm and 50 < r < 85 mm. Similar to the 397 

Cartesian coordinate case in Figs. 6(a) and (b), the corresponding variance signal in the inset of Fig. 398 

6(d) showed multiple peaks in the two wave packets. The first arrival distances of the wave packets 399 

were estimated at r = 140 mm and r = 85 mm which were same as the S0 and A0 modes in Fig. 6(c). 400 

 401 

Figure 8(d) show the waveform of the ultrasound along r at q = 0° in Fig. 6(c) with the peaks and 402 

troughs of S0 mode (120 mm, 126 mm, 133 mm) and A0 mode (66 mm, 68 mm, 71 mm). Figures 8(e) 403 

and (f) show that the peak locations of the zoomed first and second wave packets of the variance 404 

signal were same as the peak locations of the S0 and A0 mode waves in Fig. 8(d). Then, the estimated 405 

wavelengths were 13 mm and 5 mm with the deviation errors of 2.3% and 7.4% in comparison with 406 

the theoretical wavelengths of l1 = 13.3 mm (S0 mode) and l2 = 5.4 mm (A0 mode) in Fig. 2(a) at the 407 

frequency of 400 kHz, respectively. 408 

 409 

Previously, the ripples waves were generated which were dependent upon the wave fronts’ 410 

propagation direction in Cartesian coordinates. Conversely, the ripples waves of the variance signal in 411 

polar coordinate space were not generated as shown in Fig. 6(d). This was because the spatial 412 

correlation direction of the r-direction was parallel to the propagation direction of the S0 and A0 413 

RC
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( , , 200)i jRC



17 
 

modes in the R-q plane. Figure 8(f) shows that the peaks of A0 modes locations (r < 60 mm) were 414 

captured and able to estimate the wavelength as compared to the cases in Cartesian coordinate spaces 415 

(x > -60 mm in Fig. 8(c) and y > -60 mm in Fig. 9(b)). In addition, the peaks of variance signal in r < 416 

60 mm have the same location to the peaks of A0 mode, for example at r = 54 mm and r = 59 mm, 417 

and the wavelength of 5 mm was estimated which was same as the estimation results obtained in 418 

previous cases. 419 

 420 

 421 
Figure 11. Spatial ultrasonic signal responses: (a) x = -133 mm and (b) -72 mm in Cartesian 422 

coordinate space, and (c) r = 133 mm and (d) 71 mm in polar coordinate space, at 40 µs respectively. 423 

  424 

The variance signals of both coordinate spaces were different to each other as shown in the insets of 425 

Figs. 6(b) and (d). Overall, the variance signal related to S0 mode in Cartesian coordinate space was 426 

higher than the polar coordinate space, while the variance signal related to A0 mode in Cartesian 427 

coordinate space was lower than the polar coordinate space. It is because the mean values obtained in 428 

both cases were different as shown in Fig. 11. 429 

 430 

Figures 11(a) and (b) show the spatial distances, x = -133 mm ( ) and x = -72 mm ( ) with 431 

the respective mean values of = 0.0495 V and = 0.1543 V for the Cartesian coordinate space. 432 

Figures 11(c) and (d) show the spatial distance, r = 133 mm ( ) and r = 71 mm ( ) with the 433 

respective mean values of = 0.091 V and = 0.321 V for the polar coordinate space. In 434 

previous discussion, the peaks at x = -133 mm and r = 133 mm, as related to S0 mode in Fig. 8, were 435 

68m=X 129m=X
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134p=R 72p=R

134R 72R



18 
 

the same but both mean values were different due to the difference of their variable amplitudes as 436 

shown in Figs. 11(a) and (c).  437 

 438 

Figure 11(a) shows that the high dominant energy of S0 mode wave concentrated in between -50 mm 439 

< y < 50 mm, which led to the high variance value. Since the amplitudes of the wave fronts of the S0 440 

mode at a given radius were same for all the circumferential angles, the amplitudes of S0 mode at r = 441 

133 mm were about constant to the mean value for all the circumferential angles as shown in Fig. 442 

11(c). Thus, the variances obtained in polar coordinate space were smaller than the variances obtained 443 

in Cartesian coordinate space, as shown in Figs. 8(b) and (e) which were related to S0 mode waves. 444 

Supposedly, the variance signal related to A0 mode waves is small as well since the amplitudes of the 445 

A0 mode is the same at a r with small deviation, but the variance signal of A0 mode showed high 446 

values and bigger than the variance signal in Cartesian coordinate space as shown in Figs. 8(c) and (f). 447 

 448 

In Fig. 11(d), the amplitudes of the A0 mode at r = 71 mm in polar coordinate space were not constant, 449 

as it supposed to be constant like the S0 mode case. For that, the corresponding mean value (0.321 V) 450 

was higher than the mean value (0.1543 V) obtained in the Cartesian coordinate case and caused the 451 

high value of the variance signal in polar coordinate space. Even though the variance signal related to 452 

A0 mode was high, the corresponding peaks of the variance signal were still demonstrated in 453 

association to the wavelength of the A0 mode as discussed previously in Figs. 8(c) and (f). Authors 454 

suspected that the scan interval of 1 mm set was too high, which caused the low spatial resolution for 455 

the Cartesian-polar coordination transformation in Eqn. (4) and led to the transformation error. This 456 

transformation error may be reduced or avoided in future by using circular scanning method for LUIS 457 

instead of the raster scanning method. 458 

 459 

4. PHASE VELOCITY ESTIMATION VIA VARIANCE MAP 460 

In the previous section, the covariance method was employed to analyze the spatial correlation in the 461 

ultrasonic wavefield as projected in to Cartesian and polar coordinates. The method demonstrated that 462 

the variance signals have a strong relationship to the S0 and A0 modes waves when the wave fronts’ 463 

propagation direction was parallel to the considered spatial correlation direction. Because of that, in 464 

the Cartesian coordinate case, the variance signal was only able to capture the wave fronts in the local 465 

spatial area, where the wave fronts propagated along x-direction or y-direction as shown in Figs. 6(a) 466 

and 9(a). In contrast, in polar coordinate case, the variance signal was able to capture all the wave 467 

fronts since they propagated unidirectionally along r-direction in R-q plane as shown in Fig. 6(c). 468 

 469 

Looking at these responses, the variance signal based on polar coordinates is superior as a feature for 470 

the phase and group velocities estimation compared to Cartesian coordinates. However, in this paper, 471 
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the variance signal based on Cartesian coordinates was also considered as well. This is because the 472 

wave fronts in a local area of the aluminum plate have the same material properties over the 473 

aluminum plate (isotropic material), and the waves are radial and symmetric. Hence, it is still 474 

nonetheless useful to know also the feasibility of the variance signal used as a feature to estimate the 475 

phase and group velocities of the ultrasonic waves in an isotropic structure in Cartesian coordinate 476 

case. 477 

 478 

In this paper, the variance signals related to the S0 and A0 modes, named as S0 and A0 modes 479 

variances, were formed into the variance maps ( and ) and were used to estimate 480 

the phase and group velocities. But, the  was not considered in this paper because the S0 481 

and A0 modes variances in the  (Fig. 5(b)) were not separated sufficiently in time, 482 

especially for the S0 and A0 modes with the larger wavelength, for the phase and group velocities 483 

estimation.  484 

 485 

 486 
Figure 12. Cartesian coordinate space: Zoomed views of variance map (a) S0 mode and (b) A0 mode 487 

and arbitrary variance signals between (c) AA¢ and (d) BB¢.  488 
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 489 

First, the change of S0 and A0 modes variances in time domain in the and  were 490 

investigated in order to be used for the phase and group velocities estimation.  491 

 492 

Figures 12(a) and (b) show the zoomed view of the S0 mode and A0 mode variances in the 493 

 in Fig. 5(a) respectively. The ridges and grooves were observed in both zoomed variance 494 

maps. As explained in previous section, the variance map was formed by mapping each variance 495 

signal of covariance matrix, hence these ridges and grooves in the variance map were formed by the 496 

peaks and troughs of the S0 and A0 modes variances for all time-index k. Regards to this, a ridge in 497 

the variance map was representing a peak of S0 or A0 mode variance propagation along a spatial 498 

distance as time evolved. 499 

 500 

Figures 12(a) and (b) show the shaded white lines from point A(-126 mm, 40 µs) to point A¢(-186 501 

mm, 51.2 µs) and from point B (-131 mm, 58.2 µs) to point B¢(-151 mm, 67.4 µs) along the same 502 

ridges of S0 and A0 modes variances, respectively. Figure 12(c) shows a series of the corresponding 503 

S0 mode variances in Fig. 12(a), ranging from -126 mm to -186 mm. The variance peak was 504 

propagated from the point A(-126 mm) to the point A¢(-186 mm) and the corresponding variance 505 

value was reduced as the time increased from 40 µs to 51.2 µs. Figure 12(d) shows a series of the 506 

corresponding A0 mode variances in Fig. 12(b) ranging from -131 mm to -151 mm. The variance 507 

peak was propagated from the point B to B¢ but the corresponding variance value was increased which 508 

was differed from the S0 mode variances. 509 

 510 

A series of the 1-D spatial ultrasonic signals along spatial samples x at y = 0 mm in the UWI as shown 511 

in Fig. 6(a) was extracted from 40 µs to 51.2 µs and 58.2 µs to 67.4 µs to investigate the amplitude 512 

response of the S0 and A0 modes variances as time evolved. 513 

 514 

Figure 13(a) shows the extracted 1-D spatial ultrasonic signals from 40 µs to 51.2 µs. The location of 515 

the blue solid circle (the top of Fig. 13(a)) at the trough (-126 mm) of the S0 mode wave was same to 516 

the location and time of the peak at A in Fig. 12(c). As the time progressing, the blue solid circle 517 

indicated that the same trough of the S0 mode propagated to the point (the bottom of Fig. 13(a)) that 518 

has the same location of the peak A¢ of the variance signal in Fig. 12(c).  519 

 520 
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 521 
Figure 13. Cartesian coordinate space: Corresponding Lamb waves (a) S0 mode and (b) A0 mode 522 

between points AA¢ and BB¢ respectively. 523 

 524 

For A0 mode waves at 58.2 µs, the red solid circle (the top of the Fig. 13(b)) located at the trough 525 

(-131 mm) was also same to the location and time of the peak at B in Fig. 12(d). The red solid circle 526 

indicates also that the same trough of the A0 mode propagated linearly to the point (the bottom of Fig. 527 

13(b)) that same to the peak B¢ of the variance signal in Fig. 12(d). These demonstrated that the peaks 528 

of the variance signals in Figs. 12(c) and (d) for all k were related to the S0 and A0 modes as time 529 

evolved. This was demonstrated that the earlier claimed of the two peaks at the different points along 530 

the same ridges were the same as time evolved. 531 

 532 

For that, the phase velocity of the S0 and A0 modes may be determined in the variance map in space-533 

time domain based on the following expression: 534 

   (6) 535 

where,  and  are the selected two spatial points on the same ridge along the spatial sample of the 536 

variance map, and  and  are the corresponding times. For example, the phase velocity of S0 mode 537 

( ) ( )2 12 1pV t td d= --

1d 2d

1t 2t
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at 400 kHz from the two points A(d1 = -126 mm, t1 = 40 µs) and A¢(d1 = -186 mm, t2 = 51.2 µs) was 538 

determined at 5357.1 m/s with the relative errors of 0.2% to the theoretical phase velocity of 5344.5 539 

m/s (Fig. 2(a)). Then, the phase velocity of the A0 mode at 400 kHz was determined at 2173.9 m/s 540 

with the relative errors of 0.38% to the theoretical phase velocity of 2182.24 m/s. 541 

 542 

For the A0 mode wave at 400 kHz, the theoretical phase velocity (2182.24 m/s) is slower than the 543 

group velocity (3077.88 m/s) and the phenomena was demonstrated in Fig. 13(b). The location of the 544 

red solid circle (B) was 2.5l (l denoted as one wavelength of the A0 mode wave) away from the first 545 

arrival wave (shaded blue line) of the A0 mode wave at 58.2 µs as shown in the top of Fig. 13(b). 546 

Then, when the time was at 67.4 µs, the location of the red solid circle (B¢) was moved 3.5l away 547 

from the first arrival wave of the A0 mode wave as shown in the bottom of Fig. 13(b). The increment 548 

of the number of the wavelength demonstrated that the group velocity was faster than the phase 549 

velocity which was showed good agreement to the theoretical phase and group velocities curves in Fig. 550 

2. Figure 13(b) shows also that the amplitude of the peak corresponding to the red solid circle was 551 

increased due to the increment of group energy as the wave packet propagating from 58.2 µs to 67.4 552 

µs as shown in Fig. 12(d). With that, the variance values are associated with the energy of the S0 and 553 

A0 modes as they travel, which is an interesting topic for future consideration. 554 

 555 

For polar coordinate space, Figs. 14(a) and (b) show the zoomed view of the S0 mode and A0 mode 556 

variances in the  in Fig. 5(c) respectively. Figures 14(a) and (b) show the shaded white 557 

lines from point C(75 mm, 30 µs) to point C¢(125 mm, 39.4 µs) and from point D(75 mm, 39 us), 558 

point D¢(95 mm, 48.2 us) to point D¢¢(125 mm, 61.8 us) along the same ridges, respectively. Similar 559 

to Cartesian coordinate case, the peak travelling from C to C¢ was the same, as well as the peak from 560 

D, D¢ to D¢¢.  561 

 562 

Figure 14(c) shows a series of the corresponding S0 mode variances in Fig. 14(a) ranging from 75 563 

mm to 125 mm. The S0 mode variance peak was propagated from C to C¢ as the time evolved from 30 564 

µs to 39.4 µs. In the same manner, by comparing to the 1-D signals of S0 mode waves in Fig. 15(a), 565 

the amplitude (blue solid circle) of the trough of the S0 mode wave demonstrated related to the S0 566 

mode variance peak from 30 µs to 39.4 µs in Fig. 14(c).  567 

 568 
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 569 
Figure 14. Polar coordinate space: Zoomed views of variance map (a) S0 mode and (b) A0 mode and 570 

arbitrary variance signals between (c) CC¢ and (d) DD¢¢. 571 

 572 

Figure 14(d) shows a series of the corresponding A0 mode variances in Fig. 14(b), ranging from 75 573 

mm to 125 mm. Figure 14(d) shows that the variance peak value was raised from D to D¢ and then 574 

declined back from D¢ to D¢¢. In previous case, as shown in Fig. 13(b), the variance values were 575 

related to the amplitudes of the A0 mode wave and changed due to the difference of the group 576 

velocity and phase velocity. Hence, as shown in Fig. 15(b), the wavelength difference between first 577 

arrival wave of the A0 mode wave packet and the red solid circle (the same location of D in Fig. 14(d)) 578 

was 0.5l and then this wavelength difference was increased to 4.5l from 39 µs to 61.8 µs as the red 579 

solid circle travelling to 125 mm (D¢¢). During this wave propagation, the amplitude at the red solid 580 

circle (Fig. 15(b)) was increased negatively from -0.3987 V (at 75 mm and 39 µs) to -1.0740 V (at 581 

95 mm and 48.2 µs) and then decreased negatively back to -0.5864 V (at 125 mm and 61.8 µs). The 582 

change of the amplitude at these three different space-time points was caused to the change of the 583 

variance value at D, D¢ and D¢¢. 584 

 585 

Based on Eqn. (6), the phase velocity of S0 mode at 400 kHz from the two points C(d1 = 75 mm, t1 = 586 

30 µs) and C(d2 = 125 mm, t2 = 39.4 µs) was determined at 5319.1 m/s with the relative errors of 0.5% 587 

to the theoretical phase velocity of 5344.5 m/s (Fig. 2(a)). For A0 mode, the phase velocities were 588 
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determined at 2173.9 m/s (D(d1 = 75 mm, t1 = 39 µs) to D¢(d2 = 95 mm, t2 = 48.2 µs)) and 2205.9 m/s 589 

(D¢(d1 = 95 mm, t1 = 48.2 µs) to D¢¢(d1 = 125 mm, t1 = 61.8 µs)) with the relative errors of 0.38% and 590 

1.08% in comparison to the theoretical phase velocity of 2182.24 m/s. 591 

 592 

 593 
Figure 15. Polar coordinate space: Corresponding Lamb waves (a) S0 mode and (b) A0 mode 594 

between points CC¢ and DD¢¢ respectively. 595 

 596 

Based on the previous analysis in Figs. 12 and 14, the variance map was demonstrated that the map 597 

may be used as an alternative method for the phase velocities estimation of S0 and A0 modes. In this 598 

paper, ten variance maps of  generated for each five different frequencies were obtained and the 599 

ten measurements of the corresponding phase velocities for each frequency points were measured 600 

based on Eqn. (6). As shown in Fig. 16, the measured phase velocities of S0 and A0 modes based on 601 

 and , denoted as  and , were plotted to compare with the theoretical phase velocities 602 

curves as plotted in solid lines. The mean phase velocities of S0 and A0 modes, denoted as  and 603 

, were calculated as well and plotted in Fig. 16. Figure 16 shows that the measured and mean 604 
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phase velocities demonstrated good agreement to the theoretical phase velocity curves in both 605 

coordinate spaces.  606 

 607 

 608 
Figure 16. Theoretical phase velocity curves and phase velocity measurements for S0 and A0 modes 609 

in (a) Cartesian coordinate and (b) polar coordinate spaces. 610 

 611 

Tables 1 and 2 present the mean phase velocity and the corresponding mean relative errors for both 612 

coordinate spaces. Table 1 shows that the S0 mode phase velocities at 100 kHz were measured with 613 

the mean velocities of 5561.57 m/s and 5357.42 m/s and standard deviations of ±192.97 m/s and 614 

±248.26 m/s for both coordinate spaces respectively. Then, both corresponding mean relative errors 615 

were the highest deviations with 3.51% and 3.76% as compared to the other measurements as shown 616 

in Table 2. On the other hand, the S0 mode phase velocities at 300 kHz were precisely measured with 617 

the mean velocity of 5357.14 m/s and zero standard deviation for both coordinate spaces. Furthermore, 618 

the S0 mode phase velocities at 300 kHz were accurately measured with the lowest mean relative 619 

errors of 0.29% among the measurements as shown in Table 2. 620 

 621 

For A0 mode, the phase velocities at 100 kHz were measured with the mean velocities of 1393.83 m/s 622 

and 1460.94 m/s and the measurements were less accurate with the highest relative errors of 5.91% 623 

and 11.00% (Table 2) as compared to the other measurements for Cartesian and polar coordinate 624 

spaces respectively. In contrast, the phase velocities of A0 mode at 400 kHz were measured with high 625 

accuracy at the relative errors of 0.62% and 0.48% for both coordinate spaces as shown in Table 2. 626 

 627 

Table 2 shows also the tendency of the accuracy for both S0 and A0 modes phase velocities was to 628 

reduce as the frequency decreases. The highest mean relative errors in the phase velocities of A0 629 

mode at 100 kHz were obtained might due to the high dispersive characteristic for A0 mode waves at 630 

the low frequency ranges, where the dispersion might be caused by the specimen surface quality. 631 

Besides that, the high errors in the estimation is also because the bandwidth set in the bandpass filter 632 

during the signal acquisition in the in-line filter since the bandwidth of the filter has the influence in 633 

the phase velocity estimation [18]. The mean relative errors of S0 mode waves at 100 kHz were the 634 



26 
 

highest among the measurements. This was suspected that the S0 and A0 modes was not separated 635 

sufficiently in time since the long wavelength of the S0 mode waves was generated at 100 kHz. 636 

 637 

Table 1. Mean phase velocity measurements of S0 and A0 modes.  638 

Phase Velocity (m/s) 
Frequency (kHz) 

100 150 200 300 400 
 Cartesian Coordinate Space 

S0 
 

Mean ( ) 5561.57 5436.87 5495.50 5357.14 5328.95 
Standard Deviation 192.97 113.37 77.54 0 45.40 

A0 
 

Mean ( ) 1393.83 1610.86 1795.37 2028.57 2183.57 
Standard Deviation 12.33 8.20 8.31 19.72 20.37 

 Polar Coordinate Space 

S0 Mean ( ) 5357.42 5275.76 5416.67 5357.14 5319.15 
 Standard Deviation 248.26 93.40 95.84 0 0 

A0 Mean ( ) 1460.94 1600.52 1764.71 2024.32 2178.74 
 Standard Deviation 46.24 4.30 0 8.55 15.28 
 639 

Table 2. Mean relative errors of mean phase velocity of S0 and A0 modes.  640 

Relative Error of  
Phase Velocity (%) 

Frequency (kHz) 
100 150 200 300 400 

  Cartesian Coordinate Space 
S0 
 

Mean 3.51 1.62 1.96 0.29 0.62 
Standard Deviation 3.02 1.47 1.44 0 0.62 

A0 
 

Mean 5.91 4.00 3.92 1.42 0.67 
Standard Deviation 0.09 0.53 0.48 0.96 0.61 

 Polar Coordinate Space 
S0 Mean 3.76 2.36 1.35 0.29 0.48 
 Standard Deviation 2.48 1.5 1.2 0 0 
A0 Mean 11.00 3.34 2.14 1.19 0.53 
 Standard Deviation 0.46 0.28 0 0.41 0.46 
 641 

5. GROUP VELOCITY ESTIMATION VIA VARIANCE MAP 642 

In previous section, the variance signal demonstrated related to the Lamb waves S0 and A0 modes in 643 

UWI and the ability to estimate the phase velocities of the S0 and A0 modes. Now, the variance map 644 

is further used to estimate the group velocities of the S0 and A0 modes waves in Cartesian coordinate 645 

and polar coordinate spaces. 646 

 647 
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 648 
Figure 17. Flow chart of S0 and A0 modes group velocity estimation algorithm. 649 

 650 

Figure 17 shows the flow chart of S0 and A0 modes group velocities estimation algorithm. First, the 651 

variance signals in the variance map are enveloped. As shown in Fig. 18, to obtain enveloped variance 652 

map, all variance signals in time-domain are enveloped for all spatial samples using the peak envelope 653 

function, “envelope”, from MATLAB R2017b. In the envelope process, the peaks of the variance 654 

signal are extracted and then interpolated by the spline interpolation algorithm to obtain the envelope 655 

of the signal. For example, a variance signal at x = -150 mm (Fig. 18) was extracted from the 656 

variance map, the corresponding peaks were extracted (blue dots), and the corresponding peaks were 657 

interpolated (red curve). Then, the enveloped variance map is generated by repeating the same 658 

envelope process to the variance signal for all the spatial samples and mapping all the enveloped 659 

variance signals into 2D array matrix form as shown in the left bottom of Fig. 18. 660 

 661 
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 662 
Figure 18. Schematic diagram of enveloped variance map process based on peak envelope method 663 

using spline interpolation over local maxima method (MATLAB, R2017b). 664 

 665 

The enveloped variance map is then plotted in the contour format as shown in Fig. 19(a). Figure 19(a) 666 

shows that the variance waves of the modes are visualized as multiple contour lines. Since the wave 667 

fronts of S0 and A0 modes waves are related to variance waves, the first arrival wave fronts of the 668 

variance waves may be determined by extracting the contour line based on the threshold-crossing 669 

method. In this paper, as shown in Fig. 19(a), the wave fronts of the variance wave related to S0 mode 670 

wave were distinguishable and represented as a contour line. Hence, to extract the first arrival of the 671 

variance wave related to S0 mode wave, the threshold crossing method is employed and the threshold 672 

level is set based as 673 

   (7) 674 

where n is iteration integer number (0, 1, 2, …), D is increment (step), and  is the standard 675 

deviation of the variance noise (Fig. 19(a)). The mean noise  is determined by averaging all the 676 

variance noise at time 0 µs for all spatial x samples as shown in Fig. 19(a).  677 

 678 
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 679 
Figure 19. (a) Contour plot of enveloped variance map and (b) enveloped variance signal at X = -100 680 

mm. 681 

 682 

On the other hand, for A0 mode, the first arrival of the variance wave related to A0 mode wave is 683 

complex to estimate based on Eqn. (7) because the wave front of the variance wave might interfere 684 

with the residual waves of the S0 mode. Commonly, the signal-to-noise ratio (SNR) of S0 mode 685 

waves is weaker than the SNR of A0 mode as shown in Fig. 19(b). Thus, the peak of the S0 mode 686 

variance wave packet ( ) is assigned as an initial value of the threshold level, and the threshold 687 

level is expressed as below: 688 

   (8) 689 

where, n is iteration integer number (0, 1, 2, …), D is increment (step), and  is set only valid in 690 

the range of from  to (the peak of A0 mode wave packet as shown in Fig. 19(b)). 691 

 692 

The  is selected by opting the second highest peak in the enveloped variance signal with the 693 

consideration of no enveloped variance signals that related to the reflected waves in the enveloped 694 

variance signal since in some cases the reflected waves may be higher than the . Hence, the 695 

enveloped variance signal related to the reflected signal is singled out before the peak selection 696 

process by setting the prior known time range from the variance map. For example, the variance map 697 

based on the frequency of 400 kHz was set with the time range of from 0 µs to 100 µs as shown in 698 

Figs. 5(a) and (c). On the other frequency case, the time range was changed to larger time range since 699 

the A0 mode wave at lower frequency needs a longer time to propagate as due to its lower group 700 
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velocity. Thus, in this paper, the larger time range of from 0 µs to 250 µs was set for the proposed 701 

frequency of 100 kHz as shown in Fig. 20(a), and this time range was also set for the proposed 702 

frequency of 150 kHz. 703 

 704 

 705 
Figure 20. Enveloped variance maps at (a) 100 kHz and (b) 400 kHz. 706 

 707 

Given that the contour line is associated with the Lamb wave fronts as shown in Fig. 19(a), the 708 

linearity of that contour line may then be used to estimate the group velocity via linear regression fit. 709 

However, the contour line is not perfectly straight, especially for the wave fronts generated in the 710 

near-field, e.g., the shaded circle as shown in Fig. 20(b). Subsequently, to avoid obtaining inaccurate 711 

estimation, the starting point of the contour line is considered at a point that is far away from the 712 

sensor. In this paper, the distance range was set from -50 mm to -150 mm for the S0 mode group 713 

velocity estimation for the proposed frequencies. As for the A0 mode group velocity estimation, the 714 

distance range for the proposed frequencies of 200, 300, and 400 kHz was set from -100 mm to -150 715 

mm, and then distance range for the proposed frequencies of 100 and 150 kHz was set to -150 mm to 716 

-200 mm. 717 

 718 

After the threshold level and the two spatial endpoints of the contour line are set, the extraction 719 

process (Fig. 17) starts to extract the contour line based on the threshold level set. When the 720 
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corresponding contour line is crossed the present threshold level, the contour line is then linearly 721 

regressed as shown in the flow chart in Fig. 17. If the fitted model is obtained with R-squared more 722 

than or equal to a preset R-squared, then the corresponding gradient ( ) of the linear model is 723 

extracted, else a new threshold level in Eqn. (7) or (8) will be set by increasing the n to extract another 724 

new contour line for the next fitting process to estimate the group velocity of the S0 mode or the A0 725 

modes. Lastly, the group velocities of S0 mode or A0 mode are determined by inverting the gradient 726 

of the linear model. In this paper, the D in Eqns.(7) and (8) was arbitrarily set to 0.001 and R-squared 727 

was set to 99% for both modes group velocities estimation process. The estimation process discussed 728 

above was repeated to estimate the group velocity for all the frequencies that were set to develop the 729 

group velocity curves for S0 and A0 modes. 730 

 731 

 732 
Figure 21. Theoretical group velocity curves and group velocity measurements for S0 and A0 modes 733 

in (a) Cartesian coordinate and (b) polar coordinate spaces. 734 

 735 

Figures 21(a) and (b) show the measured group velocities of the S0 and A0 modes for Cartesian and 736 

polar coordinate spaces, denoted as  and , respectively. The mean group velocities, denoted 737 

as  and , were calculated as well and plotted in Fig. 21. The measured and mean group 738 

velocities indicated good agreement with the theoretical group velocities for both S0 and A0 modes.  739 

 740 

Tables 3 and 4 present the mean group velocity and the corresponding mean relative errors for both 741 

coordinate spaces. Table 3 shows that the group velocities of S0 and A0 modes for both coordinate 742 

spaces were less precise as compared to the measurement of the phase velocity in Table 1.  743 

 744 

In Cartesian coordinate space, the group velocities of S0 mode at 300 kHz were measured at the mean 745 

group velocity of 5199.18 m/s and less precise as compared to other measurements with the highest 746 

standard deviation of 175.53 m/s. But, the measured group velocity of the S0 mode at 300 kHz was 747 

more accurate as compared to the measurement at 200 kHz that was the highest mean relative errors 748 
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of 5.97%. As for in polar coordinate space, the group velocities of S0 mode at 200, 300, and 400 kHz 749 

were measured less accurate as compared to the Cartesian coordinate space and the corresponding 750 

mean relative errors were 5.06%, 7.31%, and 6.80% respectively. In both coordinate spaces, the group 751 

velocities of S0 mode were measured with high mean relative errors as the frequencies increased and 752 

this might due to the wave packet of the S0 mode was getting dispersive as the frequency increased. 753 

 754 

Figure 21 shows that the A0 group velocity measurement was more accurate than the S0 mode group 755 

velocity. This was because that the S0 mode has low SNR and may easily get contaminated by the 756 

noise as compared to the A0 mode. In polar coordinate space, the group velocity of the A0 mode at 757 

100 kHz has the highest mean relative errors at 10.55% and it might due to the A0 mode wave at this 758 

frequency was highly dispersive as compared to the other. Table 4 shows also that the group velocities 759 

at the frequency of 400 kHz for both coordinate spaces were measured accurately with only mean 760 

relative error, as low as 0.09%.  761 

 762 

Table 3. Mean group velocity measurements of S0 and A0 modes.  763 

Group Velocity (m/s) Frequency (kHz) 
100 150 200 300 400 

  Cartesian Coordinate Space 

S0 
 

Mean ( )  5478.55 5366.55 5042.54 5199.18 5188.04 

Standard Deviation 158.07 122.57 102.27 175.53 84.24 

A0 
 

Mean ( ) 2327.91 2721.81 2717.48 2958.17 3062.64 

Standard Deviation 52.62 24.59 22.44 2.82 3.50 
  Polar Coordinate Space 

S0 Mean ( ) 5350.15 5281.60 5633.82 4919.16 4869.48 

 Standard Deviation 148.80 103.37 161.25 127.33 93.57 

A0 Mean ( ) 2519.08 2514.96 2831.53 2872.53 3077.97 

 Standard Deviation 8.83 1.87 19.69 5.33 4.09 
 764 

Table 4. Mean relative errors of mean group velocity of S0 and A0 modes.  765 

Relative Error of  
Group Velocity (%) 

Frequency (kHz) 
100 150 200 300 400 

  Cartesian Coordinate Space 
S0 
 

Mean 2.46 1.69 5.97 3.29 1.38 
Standard Deviation 2.16 1.45 1.91 1.87 1.02 

A0 
 

Mean 2.27 4.85 2.10 0.68 0.50 
Standard Deviation 2.19 0.95 0.81 0.09 0.11 

  Polar Coordinate Space 
S0 Mean 2.09 2.05 5.06 7.31 6.80 
 Standard Deviation 1.85 1.66 3.00 2.40 1.79 
A0 Mean 10.55 3.12 2.01 3.55 0.09 
 Standard Deviation 0.39 0.07 0.71 0.18 0.09 
 766 
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6. CONCLUSION 767 

In this paper, a spatial covariance matrix was employed to statistically investigate ultrasonic 768 

wavefield imaging based on laser ultrasonic generation on a 2-mm aluminum plate. The covariance 769 

matrix was generated and formed in covariance imaging based on the vector variables of  and  770 

in Cartesian coordinate space and  in polar coordinate space for all time samples. The 771 

relationships between the UWI and the convariance imaging were analyzed and the findings are 772 

summarized as follows: 773 

• A variance (covariance diagonals) signal showed a strong relationship to the S0 and A0 774 

modes waves when the wave fronts of the S0 and A0 modes propagate parallel to an axis 775 

which is taken for the covariance matrix calculation. 776 

• The circumferential ultrasound demonstrated the variance signal obtained more accurate by 777 

generating all the peaks in relation to all the wave fronts of the S0 and A0 modes. 778 

• The peaks of the variance signal in space domain in variance map demonstrated a relation to 779 

the wave fronts of S0 and A0 modes and these peaks were able to estimate the wavelength of 780 

the S0 and A0 modes. 781 

• The peaks of the variance signal in the time domain in variance map demonstrated relation to 782 

the wave propagation of S0 and A0 modes and these peaks were able to estimate the phase 783 

and group velocities of the S0 and A0 modes. 784 

Based on these findings, the variance maps and enveloped variance maps for both coordinate spaces 785 

were generated to estimate the phase velocities and group velocities of the S0 and A0 modes 786 

respectively at five different frequencies to develop the dispersion curves. The estimated dispersion 787 

curves showed good agreement to the theoretical dispersion curves. These promising results made the 788 

variance map a new alternative approach for phase and group velocities dispersion curve estimation, 789 

often needed for ultrasonic NDE/SHM applications.  790 

In this study, it was also found that the settings of the scanning area and the scanning interval depend 791 

upon the considered frequency region of the dispersion curves. When a lower frequency region is 792 

considered, the scanning area may need to set large enough for the longer wavelength of the mode to 793 

be fully spatially observable. Of course, the wavelength of the mode decreases as the frequency 794 

increases. In general, the scanning area must be set in accordance with the given mode’s spatial 795 

Nyquist theorem. Thus, given an appropriate scanning interval, the proposed method may be used to 796 

estimate the velocity of arbitrarily higher modes (S1, A1, etc.). Moreover, the ultrasound generated by 797 

the pulsed laser is normally in the broadband frequency range, up to few megahertz, where the higher 798 

modes appear.  799 

Since the covariance matrix demonstrated the ability to extract the features of S0 and A0 modes, a 800 

new development of damage detection algorithms based on the variance-covariance matrix may be 801 
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possible. Future will consider more complex, anisotropic (e.g., composite) structures for dispersion 802 

curve estimation via the variance map based on polar coordinate space. 803 
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