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Systems of interacting nanomagnets known as artificial spin 
ice1–4 have allowed the design, realization and study of geo-
metrically frustrated exotic collective states5–10 that are absent 
in natural magnets. We have experimentally measured11,12 the 
thermally induced moment fluctuations in the Shakti geom-
etry of artificial spin ice. We show that its disordered moment 
configuration is a topological phase described by an emergent 
dimer-cover model13 with excitations that can be character-
ized as topologically charged defects. Examination of the low-
energy dynamics of the system confirms that these effective 
topological charges have long lifetimes associated with their 
topological protection, that is, they can be created and anni-
hilated only as charge pairs with opposite sign and are kineti-
cally constrained. This manifestation of classical topological 
order14–19 demonstrates that geometrical design in nanomag-
netic systems can lead to emergent, topologically protected 
kinetics that can limit pathways to equilibration and ergodicity.

Artificial spin ices are lithographically fabricated systems of 
interacting single-domain nanomagnets. These systems can be 
used to investigate the collective magnetic behaviour of interact-
ing moments as effective models for understanding the complex 
phenomena of frustration. Each nanomagnet moment aligns along 
the edges of a lattice and points towards or away from the lattice 
vertices. In their low-energy collective states, the moments enter a 
so-called ice-manifold; an ensemble in which, at each vertex, the 
difference between the number of moments pointing in and out is 
minimized, leading to the ice-rule (2-in/2-out20 at vertices where 
four moments meet or 1-in/2-out, 2-in/1-out at vertices where three 
moments meet). Originally inspired by rare-earth pyrochlore spin 
ice materials, these artificial spin ice systems evolved towards new 
geometries5,6, with exotic phases absent in natural magnets2,3,7,8,21. 
Recent experimental works have characterized the thermal fluctua-
tions of the individual magnetic moments, opening new vistas in 
the real-time, real-space analysis of frustration11,12,22–25.

The Shakti lattice geometry5–7 (Fig. 1) is a decimation of the 
square ice lattice geometry. In Fig. 1e, we show the possible moment 
configurations at vertices and label them by the number of islands 
at each vertex (the coordination number, z) and by their relative 
energy hierarchy. The collective ground state is a configuration in 
which the z =  2 and z =  4 vertices are all in their lowest energy state 
(that is, type I4 for the four-island vertices and type I2 for the two-
island vertices) while only half of the z =  3 vertices lie in their lowest 

energy state (type I3). The other half lie in their first excited state 
(type II3) and are distributed in a disordered fashion throughout 
the lattice5–7. These protected local excitations are typical of a new 
class of ‘vertex-frustrated’2,5,26 geometries. Instead of frustrating the 
pairwise interactions between moments as in regular spin ice, the 
geometry frustrates the allocation of vertex configurations, that is, 
not all vertices can be in their minimal energy states, and disorder 
comes from freedom in the allocation of the unavoidable ‘unhappy 
vertices’, forced into locally excited states5. Crucially, the low-energy 
collective states of these vertex-frustrated systems are described 
through the global allocation of unhappy vertices, rather than by 
the configuration of local moments. Here we show that excitations 
within this emergent description are topologically protected and 
experimentally demonstrate classical topological order.

We used photoemission electron microscopy (PEEM)27,28 to 
study Shakti artificial spin ice arrays as shown in Fig. 1a–c. The 
islands are thin enough that their blocking temperature is compa-
rable to room temperature, and thermal energy can flip the moment 
of an island from one stable orientation to the other. Note that the 
previous experimental study of Shakti artificial spin ice involved 
thermalization by heating above the Curie temperature of permal-
loy (~800 K)7 to reduce the ferromagnetic magnetization, followed 
by a slow cooldown. In the present work, by contrast, the island 
moments flip without suppressing the ferromagnetism, as our stud-
ies are all conducted well below the Curie temperature, thus provid-
ing a robust vista on the kinetics of binary moments on this lattice. 
Details of the samples and the measurement techniques are pro-
vided in the Methods.

We performed a quenching procedure that brings the system 
close to the collective Shakti artificial spin ice ground state, but 
with a sizable population of excitations. A typical moment configu-
ration is illustrated in Fig. 2a. In Fig. 2d we plot the deviation of 
vertex populations from their expected frequencies in the ground 
state and show that it seems to be almost temperature independent, 
and observations at fixed temperature show them to be nearly time 
independent. Surprisingly, this remains the case at the highest tem-
perature under study, with 70% of the moments showing at least 
one change in direction during the 250 s data acquisition. Individual 
excitations are observed with a finite lifetime as shown in Fig. 2c, 
but the overall system does not further approach the ground state. 
Studies of the moments during a slow cooldown on another sam-
ple confirm this finding (see Supplementary Methods Section 1  
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for details) and Glauber spin dynamic simulations also show a 
finite distance from the ground state (see Supplementary Methods  
Section 3). By contrast, a square ice sample of the same lattice spac-
ing and island size, and thus of equal coupling strength, remained 
in a fully ordered ground state at all temperatures throughout the 
quenching under the same conditions, suggesting that the geom-
etry of the Shakti lattice prevents the moments from reaching the 
ground state. Furthermore, we compared the flip rate with that in 
a square ice lattice with a large lattice constant of 1,200 nm, which 
approximated uncoupled moments. We found that the Shakti lattice 
had a lower rate of flipping and slowed down faster with decreasing  
temperature (Fig. 2b). This further indicates that the longer life-
times of certain excitations at lower temperature (Fig. 2c) originate 
from the collective dynamics.

The failure of Shakti artificial spin ice to reach its disordered 
ground state after our thermalization process and the prolonged 
lifetime of its excitations both suggest a global topological order 
in which excitations cannot be easily reabsorbed because they 
are topologically protected. In general, classical topological 
phases14,15,18 entail a locally disordered manifold that cannot be 
obviously characterized by local correlations, yet can be classified 
globally by a topologically non-trivial, emergent field whose topo-
logical defects represent excitations above the manifold. Then, 
because evolution within a topological manifold is possible only 
via highly energetic collective changes of entire loops, any realistic 

low-energy dynamics happens necessarily above the manifold, 
through the creation, motion and annihilation of opposite pairs 
of topological charges15,16. Pyrochlore spin ices, for instance, are 
recognized as topological phases16,17,19 with effective magnetic 
monopoles (type III4 on z =  4 vertices) as topological charges29. 
However, effective monopoles in Shakti artificial spin ice (again, 
type III4 on z =  4 vertices) are not topologically protected: they can 
be created and reabsorbed within the manifold by gaining or losing 
charge towards the nearby z =  3 charged vertices. Indeed, Fig. 2c  
shows that, unlike in pyrochlore spin ice, these effective magnetic 
monopoles are transient states of even shorter lifetime than any 
other excitation.

We now show, by mapping to a stringent topological struc-
ture, that the kinetics behaviours are constrained by the topologi-
cal charges, which can explain the difficulty in reaching the Shakti 
ice ground state in our experiments. We consider the Shakti lattice 
through disordered allocation of the unhappy vertices, those three-
island vertices of type II3. Previously6,7, we described the ground 
state of Shakti lattice by showing how the allocation of its unhappy 
vertices maps into an emergent Rys F model at a fictitious tempera-
ture. Such mapping, however, cannot accommodate kinetics and 
excitations. The low-energy dynamics of Shakti ice can, however, 
be mapped into another well-known model, the topologically pro-
tected dimer-cover. Excitations in this emergent description are 
topologically protected, and subjected to a non-trivial kinetics, 
which explains their long lifetime.

Each unhappy vertex is located between three constituent rect-
angles of the lattice. The lowest energy configuration can be param-
eterized as two of those neighbouring rectangles being ‘dimerized’ 
by a single unhappy vertex between them, along the direction that 
separates the pair of islands that are in unfavourable alignment 
(Figs. 1e and 3a). To visualize this construct, we draw a ‘dimer-
cover’ lattice over the Shakti lattice, as shown in Figs. 1d and 3b, 
where this dimer-cover lattice is simply the connection of ‘cover 
vertices’ placed at the centres of all of the Shakti lattice’s constituent 
rectangles. This lattice is a bipartite square lattice (Fig. 3c,d) and the 
ground state moment configuration of the Shakti artificial spin ice is 
equivalent to a ‘complete cover’, a dimer state for which every cover 
vertex is touched by only one dimer, a celebrated model that can be 
solved exactly13.

To this picture, one can add the main ingredient of topological 
protection: a discrete, emergent vector field E perpendicular to each 
edge. The signs and magnitudes of the vector fields E are assigned 
based on the rule described in Fig. 3d15,30. Its line integral, ∫ ⋅

γ
E ld  

along a directed line γ crossing the edges, is the sum of the vec-
tor along the line with its sign taken along the line’s direction. The 
emergent field is irrotational (∮ ⋅ =

γ
E ld 0) for a complete cover, 

providing topological protection, as only collective moment flips of 
entire loops can maintain irrotationality of the field. As those are 
highly unlikely, the kinetics proceeds via low-energy excitations 
above the manifold. Figure 3e–h demonstrates that moment excita-
tions over the Shakti ice manifold are defects of the complete dimer 
cover corresponding to multiple occupancies or to ‘monomers’, that 
is, undimerized vertices of the cover lattice. With such excitations, 
the emergent vector field E becomes rotational, and its circulation 
around any topologically equivalent loop encircling a defect defines 
the topological charge of the defect as ∮= ⋅

γ
Q E ld1

4
 (Fig. 3h).

With the above mapping, we have characterized our system in 
terms of a topological phase, that is, a disordered system, described 
by the degenerate configurations of an emergent field, whose exci-
tations are topological charges for the field. A detailed analysis of 
the measured fluctuations of the moments (see Supplementary 
Methods Section 2 and Supplementary Movie) shows that the topo-
logical charges are conserved in the low-energy dynamics, in which 
only two transitions are allowed (See Extended Data Fig. 4): one 
corresponds to the creation (annihilation) of two opposite charges; 
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Fig. 1 | the Shakti lattice. a, Scanning electron microscopy image showing 
the structure of the Shakti artificial spin ice lattice. b, XMCD-PEEM image 
of the Shakti lattice. The black and white contrast indicates the sign of  
the projected component of an island’s magnetization onto the incident 
X-ray direction, which is indicated by a yellow arrow. c, The moment map 
that corresponds to the experimental PEEM image in b. Each arrow along 
an island represents the magnetic moment orientation of the island.  
d, The dimer-cover lattice that is obtained by connecting the centres of 
neighbouring constituent rectangles in the Shakti lattice. e, Vertices of 
coordination z =  4,3,2, with vertices for each z value listed in order of 
increasing energy; for type II3, the unhappy vertices in this lattice, a blue 
line shows the selection of dimer location in the dimer lattice.
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the other corresponds to the coalescence (fractionalization) of two 
equal charges onto one with twice the magnitude.

Further evidence of the appropriate nature of the topological 
description is given in Fig. 4, showing the conservation of topologi-
cal charge as a function of time at a temperature of 200 K (fluctua-
tions of the net charge, typically around 5% of the charge, are due 
to charges entering and exiting the limited viewing area). Our mea-

sured value of the topological charges does not depend on tempera-
ture in the range of 220 K to 180 K as is shown in Fig. 4b. Figure 4c  
shows the lifetime of the topological charges, which is considerably 
longer than that of the monopole excitations (type III4) shown in 
Fig. 2, as expected, illuminating the otherwise counterintuitive data 
for the excitation lifetimes of Fig. 2c. Indeed, although monopole 
excitations (type III4) are not associated with any topological charge 

III4

II4

II2

a

c

b d

180 190 200 210 220
0.001

0.01

0.1

1
Uncoupled islands
Shakti lattice

Temperature (K)

180 190 200 210 220
Temperature (K)

F
lip

pi
ng

 r
at

e 
(s

–1
)

0

50

100

150

200

250
II4
III4
II2

Li
fe

tim
e 

(s
)

–30

–20

–10

0

10

20

30

E
xc

es
s 

ve
rt

ic
es

 (
%

)

–30

–20

–10

0

10

20

30

E
xc

es
s 

ve
rt

ic
es

 (
%

)

I2
II2

180 190 200 210 220

I4 III4
II4 IV4

Temperature (K)

180 190 200 210 220
Temperature (K)

Fig. 2 | excitations above the ground state. a, Map of the moments in Shakti artificial spin ice, with highlighted type II4, type III4 and type II2 excitations.  
b, Average moment flipping rate as a function of temperature both for the Shakti lattice and for a widely spaced (largely non-interacting) square ice lattice. 
c, Average lifetime of an excited vertex during a data acquisition window of 250 ±  30 s. Note that the monopoles, type III4, are particularly short-lived. The 
error bar is the standard error of all lifetimes calculated from all vertices of the same type. d, Excess of vertex population from the ground state population 
as a function of temperature after the thermal quench as described in the text. The top plot describes the excess of z =  2 vertices and the bottom plot 
describes the excess of z =  4 vertices. The error bar is the standard error calculated from six frames of exposure.
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Fig. 3 | the dimer model. a, Disordered moment ensemble for the ground state of Shakti artificial spin ice manifold: all z =  2 and z =  4 vertices are in the 
lowest energy configurations (type I4, type I2); however, only half of the z =  3 vertices are in the lowest energy (type I3) configuration, and the other half 
are excited unhappy vertices (type II3). b, Each unhappy vertex, indicated by an open circle, can be represented as a dimer (blue segment) connecting 
two rectangles, making the ground state equivalent to the decoration of a complete dimer-cover lattice (orange lines) with vertices (orange dots) in the 
centres of the Shakti lattice rectangles. c, The dimer cover without the underlying Shakti lattice is composed of squares and rhombuses and is topologically 
equivalent to a square lattice. d, The equivalent square lattice, also showing the emergent vector field, EE, perpendicular to the edges. The field EE has 
magnitude 1 (3) if the edge is unoccupied (occupied) by a dimer, and direction entering (exiting) a grey square along 135°, and exiting (entering) it along 
45°. e, Sample experimental data showing moment configurations with excitations above the ground state of Shakti artificial spin ice. Red and blue dots 
denote the locations of the excitations. f, g, The corresponding emergent dimer-cover representations. Excitations over the ground state correspond to any 
cover lattice vertices with dimer occupation other than one. h, A topological charge, Q, can be assigned to each excitation by taking the circulation of the 
emergent vector field around any topologically equivalent anticlockwise loop γ (dashed green path) encircling them.
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and thus have short lifetimes, excitations of type II4 and type II2 are 
demonstrably linked to our topological charges (Figs. 3a and 4 and-
Supplementary Methods Section 2), and are thus long-lived. Note 
that our images are taken sufficiently far from the edges of the sam-
ples to avoid edge effects. A similar quenching process in another 
sample shows that the stability of charges is reproducible.

The above results demonstrate that the Shakti ice manifold 
is a topological phase supporting kinetics of excitations among 
the emergent dimers, where topological charge is conserved. 
Charged excitations can only disappear in pairs, yet their kinet-
ics is limited to either annihilation or coalescence transition (see 
Supplementary Methods Section 2 for examples of local jam-
ming of charges), preventing Brownian diffusion/annihilation of 
charges31 and equilibration into the collective ground state. This 
explains the experimentally observed persistent distance from the 
ground state and the long lifetime of excitations. Furthermore, as 
the conservation of local topological charge implies that the phase 
space is partitioned in kinetically separated sectors of different 
net charges, the system is described by a kinetically constrained 
model32–34 that limits the exploration of the full phase space 
through weak ergodicity breaking, as expected in the low-energy 
kinetics of topologically ordered phases13 (see Supplementary 
Methods for more details)

The Shakti lattice thus provides a designable, fully characteriz-
able artificial realization of an emergent, kinetically constrained 
topological phase, allowing for future exploration of memory-
dependent dynamics, aging and rejuvenation. More generally, 
artificial spin ice systems offer innumerable other topologically 
constraining geometries in which to further explore such phases, 
and which can be compared with other exotic but non-topological 
phases, such as tetris ice8, or to explore similar topological phe-
nomenology in superconductors and other electronic systems. This 
could be accomplished either by templating with magnetic mate-
rials in proximity or through constructing vertex-frustrated struc-
tures from those electronic systems; one can easily anticipate that 
unusual quantum effects could become relevant with the likelihood 
of further emergent phenomena.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41567-018-0077-0.
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Methods
We experimentally studied artificial spin ice arrays made of permalloy (Ni81Fe19) 
with lateral dimensions of 170 nm ×  470 nm. We used electron-beam lithography to 
write the patterns onto a bilayer resist above a silicon substrate. Various thicknesses 
of permalloy followed by 2 nm aluminium capping layers were deposited by 
molecular beam epitaxy with e-beam evaporation (permalloy was deposited at 
a rate of 0.5 A s−1 and aluminium at a rate of 0.2 A s−1 with deposition pressure of 
approximately 10−8 torr). Samples with 2.5 nm to 2.8 nm of permalloy are thermally 
active within the accessible temperature range (100 K to 380 K) while the thermal 
activities are slow enough to be resolvable by PEEM at the lower end of that 
temperature range. More details regarding sample fabrication have been described 
in previous work8. Although the quantitative details of the results, for example, the 
absolute value of topological charges and the range of thermal activity, varied due 
to slight differences in island size and shape, the results from different samples were 
qualitatively consistent.

Data were taken at the PEEM 3 station of the Advanced Light Source, Lawrence 
Berkeley National Lab using X-ray magnetic circular dichroism (XMCD), which 
exploits the dependence of the X-ray absorption on the relative direction of the 
sample magnetization and the circular polarization component of the X-rays. 
The incoming X-ray has a designated polarization sequence: beginning with two 
exposures of a right polarized beam, followed by another two exposures of a left 

polarized beam and repeat. By adjusting the measurement temperature, we can 
access a flip rate that is sufficiently slow to allow the PEEM technique to capture 
individual moment changes within the collective moment configuration. The 
field of view of PEEM includes about 700 islands. The exposure time is set to 
be 0.5 s. Between exposures with the same polarization, the computer interface 
needed a 0.5 s gap time to read out the signal. Between exposures with different 
polarizations, in addition to the computer read-out time, the undulator also needs 
time to switch polarization, resulting in a gap time of about 6.5 s. By converting 
the average PEEM intensities of different islands into binary data, then combining 
with the information about X-ray polarization, we can unambiguously resolve the 
moments of islands.

Our quenching procedure is as follows: we quenched the sample from 290 K 
to 220 K, recorded data at two different locations for 250 ±  30 s each, then repeated 
the measurements after cooling the samples at 2 K intervals down to 180 K. At 
temperatures above 220 K, the moment fluctuations were sufficiently fast that the 
PEEM technique could not capture the moment configuration due to the finite 
exposure time. At temperatures below 180 K, the moment configuration was 
essentially static in that we observed almost no fluctuations.

Data availability. The data that support the plots within this paper and other 
findings of this study are available from the corresponding author upon request.
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