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Mapping the QCD phase diagram with statistics friendly distributions

Adam Bzdak1, ∗ and Volker Koch2, †

1AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, 30-059 Kraków, Poland
2Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA

We demonstrate that the multiplicity distribution of a system located in the vicinity of a first-order
phase transition can be successfully measured in terms of its factorial cumulants with a surprisingly
small number of events. This finding has direct implications for the experimental search of a QCD
phase transition conjectured to be located in the high baryon density region of the QCD phase
diagram.

One of the key questions of the physics of strong in-
teractions is the possible existence of a first-order phase
transition accompanied by a critical point. While lat-
tice QCD has established that the transition at vanishing
net-baryon density is an analytic cross over [1], the pres-
ence of a first-order transition accompanied by a critical
point has been conjectured based on many model cal-
culations (see e.g. [2, 3] for a review). To search for
such a possible transition in experiment, fluctuations of
conserved charges in relativistic heavy ion collisions have
been considered as promising probes [4–18]. Special at-
tention has been paid to the cumulants of the net-baryon
or net-proton1 number distribution as they are particu-
larly sensitive to the details of the transition from hadron
gas to quark-gluon plasma in the cross-over region [7, 14]
as well as near a potential critical point [6]. This sensitiv-
ity is expected to increase with the order of the cumulant
[6], the measurement of which is commonly believed to
require increasing statistics.

In this paper we show, quite generally, that it requires
surprisingly few events to determine if a system is located
close to a first-order phase transition. This finding has
direct implications on the search for the QCD phase tran-
sition, but will also be relevant for any other (mesoscopic)
systems where fluctuation measurements are meaningful.
It is well known that the multiplicity distribution of a
system close to a first-order phase transition is a two-
component or bi-modal distribution reflecting the two
(dense and dilute) phases. If the system is right at the
transition it has two maxima of equal magnitude, reflect-
ing the equal probability of the two phases. As one moves
away from the transition, one of the maxima becomes
smaller, reflecting the fact that away from the transition
one phase is much more probable than the other. Thus,
for small systems and not too far from the transition, the
presence of the other phase still shows up in the multi-
plicity distribution (for a detailed discussion, see [24]).
As discussed in [24], such a two-component multiplicity

1 Experimentally, one is usually restricted to the measurement of
cumulants of the net-proton distribution [19–21] since neutrons
are difficult to measure. However, as shown in [22, 23] given fast
isospin-exchange processes due to the abundance of pions the
connection to the net-baryon number cumulants can be made.

distribution, even in the case when one of the components
is rather small, has a very characteristic behavior of its
factorial cumulants: with increasing order they increase
rapidly in magnitude with alternating sign (in contrast,
ultrarelativistic quantum molecular dymamics (UrQMD)
calculations give higher order factorial cumulants consis-
tent with zero [25]). This characteristic may be used to
establish the existence of a two-component multiplicity
distribution, which in turn would provide strong evidence
that the system is close to a first-order phase transition.2

Such a characterization requires factorial cumulants of
many orders that are commonly believed to require large
statistics. However, as we show, the two-component dis-
tributions relevant for a first-order phase transition are
remarkably statistics friendly in the sense that for a given
and rather limited number of events factorial cumulants
can be reliably extracted to a surprisingly high order.
Surprisingly, this is even the case if the second mode
(component) is rather tiny and is difficult to see directly
in the multiplicity distribution. This finding, therefore,
demonstrates that a search for a first-order phase transi-
tion via fluctuation measurements is practically feasible
and does not require unrealistic levels of statistics.

In the following we illustrate our findings in the con-
text of preliminary results of the STAR Collaboration.
However, our arguments are quite general and are not
restricted to the QCD phase transition. The prelimi-
nary results from the STAR Collaboration for the ratio
of fourth-order over second-order (net)-proton cumulants
show an intriguing pattern [27]. It grows rapidly with
decreasing beam energy from

√
s = 19.6 GeV reaching a

large value at 7.7 GeV. It was argued [26] that this behav-
ior is caused by a strong increase of multi-proton corre-
lations with decreasing energy. In addition it was found
[24], that at the lowest energy,

√
s = 7.7 GeV, where

the deviation of the cumulants from a Poisson baseline

2 A two-component distribution could in principle also result from
different effects, such as production vs. stopping of protons,
problems with centrality determination, deuteron enhancement
in some events, possible issues with a detector etc. However, it
seems these effects should be also visible at, say, 19.6 GeV, where
the higher order factorial cumulants are consistent with zero [26]
and a two-component distribution is not visible.
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(or rather binomial due to baryon conservation) are the
largest, the first four (factorial) cumulants, so far mea-
sured by STAR, are consistent with a two-component
proton multiplicity distribution, albeit with the second
component being rather small. Of course the first four
cumulants are not enough to sufficiently constrain the
multiplicity distribution. Therefore, it is essential to
measure (factorial) cumulants of higher order to either
confirm or rule out that the underlying distribution is
indeed a two-component one consistent with a first-order
phase transition. As we show this is possible due to the
“statistics friendly” properties of these two-component
distributions even for the very limited statistics of the
present STAR data set.

Specifically, in this paper we study various proton mul-
tiplicity distributions to evaluate the statistical errors
of higher order factorial cumulants. In our studies we
choose a rather small number of events, approximately
150000 (144393 to be more precise [28]), which is the
statistics underlying the STAR measurement for the most
central Au+Au collisions at

√
s = 7.7 GeV at RHIC

[20, 27]. We will only consider multiplicity distributions
of one species of particles, which are protons in our case.3

To evaluate the statistical errors numerically, we sam-
ple the number of protons, N , nevents = 144393 times
from a given multiplicity distribution P (N). We then
calculate the cumulants, Kn and the factorial cumulants
Cn for n = 2, ..., 9.4 Next we repeat this sampling nrun
times, where nrun is sufficiently large so that the results
presented below do not depend on nrun. This procedure
then gives us nrun “measurements” or samples of Kn and

Cn, {K(1)
n , . . . ,K

(nrun)
n } and {C(1)

n , . . . , C
(nrun)
n }.

From these samples we calculate the variance, for ex-
ample, in the case of the factorial cumulants Cn we have

Var (Cn) =
1

nrun

nrun∑
i=1

(
C(i)

n

)2
−

(
1

nrun

nrun∑
i=1

C(i)
n

)2

. (1)

The expected absolute error, ∆Cn, is then given by
∆Cn =

√
Var (Cn), whereas the relative error is

∆Cn/Cn, where Cn denotes the true value directly cal-
culated from the multiplicity distribution P (N).

An alternative way to calculate the expected error is
by means of the delta method (see, e.g., [10, 29, 30] for
details). In the case at hand, where we want to cal-
culate the errors for (factorial) cumulants, application
of the delta method is straightforward. Let us discuss

3 It would be interesting to explore if similar statistics friendly
distributions also exist for more than one species, such as net-
proton distributions which involve protons and anti-protons.

4 As a reminder, the cumulants and factorial cumulants are
obtained from the multiplicity distribution P (N) as Kn =
dn

dtn
ln
[∑

N P (N)eNt
]∣∣∣

t=0
, Cn = dn

dzn
ln
[∑

N P (N)zN
]∣∣∣

z=1
.

this in more detail for the case of the factorial cumu-
lant. The random variables are the moments about zero,
µk =

〈
Nk
〉
. Therefore, we express the factorial cumu-

lant, Cn, in terms of the moments, Cn = F (µ1, . . . , µn).
Then according to the delta method the variance of Cn

for a sample with nevents events is given by

Var (Cn) =

n∑
i=1

n∑
j=1

∂F

∂µi

∂F

∂µj
Cov (µi, µj) , (2)

Cov(µi, µj) =
1

nevents
(µi+j − µiµj) . (3)

The absolute error is then again given by ∆Cn =√
Var (Cn). For example, we obtain the following for

the variance of C2 (after re-expressing the moments µi in
terms of factorial cumulants)

Var (C2) =
1

nevents

[
2 (C1 + C2)

2
+ 2C2 + 4C3 + C4

]
.

(4)

We find that the so obtained errors are in perfect agree-
ment with those determined via the aforementioned nu-
merical sampling method.

After having presented the methods for error determi-
nation let us turn to the results. The essential point of
the present paper is the observation that a small devi-
ation from Poisson or binomial distributions can result
in rather peculiar distributions, which we call statistics
friendly distributions. From these distributions one may
obtain factorial cumulants of high orders with a rather
limited number of events. One example is a simple two-
component distribution discussed recently in Ref. [24]

P (N) = (1− α)P(a)(N) + αP(b)(N), (5)

where both P(a) and P(b) are the proton multiplicity dis-
tributions characterized by small or even vanishing fac-
torial cumulants.5 This distribution not only serves as
a nice example for a statistics friendly distribution, but
also, as argued recently in Ref. [24], such a distribution
would be consistent with a system with a finite num-
ber of particles being close to a first-order phase transi-
tion. The analysis in Ref. [24] found that P (N) given
by Eq. (5) with α ≈ 0.0033, P(a)(N) given by binomial
(B = 350, p ≈ 0.1144) and P(b)(N) given by Poisson
(〈N(b)〉 = 25.3525) is able to reproduce the preliminary
results by the STAR Collaboration for the proton cumu-
lants at

√
s = 7.7 GeV [27]. In addition it was found

that the above distribution predicts factorial cumulants
to roughly scale like Cn+1/Cn ∼ −15, i.e., they alter in

5 The simplest two-component distribution could result from two
Poissons with different means. We take the main distribution to
be binomial to conserve the baryon number, however, this is not
important for our conclusions.
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sign from order to order while increasing in absolute value
by more than an order of magnitude.6 In other words, the
small admixture of a Poisson distribution changes the fac-
torial cumulants dramatically, from being close to zero to
almost exponentially increasing in magnitude. The same
dramatic difference can also be seen in the expected er-
ror for a finite sampling. This is shown in Fig. 1, where

in panel (a) we show the histogram of C
(i)
n /Cn from our

numerical sampling (based on nevents = 144393 events)
for the binomial distribution only, i.e., P(a)(N).7 For
completeness we note that the analytical values of Cn for
binomial are given by Cn = (−1)n+1(n − 1)!Bpn. The
distribution gets very wide already for C3. In contrast,
in panel (b) of Fig. 1 we show equivalent histograms
for the two-component distribution, Eq. (5). Again, the
small admixture of a Poisson distribution changes the sit-
uation dramatically. In this case the distributions are so
narrow that a measurement of even the 8-th order fac-
torial cumulants may be feasible with as little as 150000
events.

This finding is quantified in Fig. 2, where we show the
relative errors ∆Cn/Cn for various distributions again
based on nevents = 144393 event. The relative error for
both the binomial distribution and the negative bino-
mial distribution (NBD)8 with 〈N〉 = 40 and k = 80,
increase essentially exponentially with increasing order
of the factorial cumulant. Obviously all of these dis-
tributions are statistics hungry, and the measurement
of higher order factorial cumulants with good accuracy
requires very large statistics. For the two-component
model, labeled “Binomial + Poisson”, on the other hand
the relative errors remain very small even for C9. The
actual values for the relative errors are (0.036, 0.16, 0.13,
0.14, 0.18, 0.26, 0.42, 0.91) for (∆C2/C2, . . . ,∆C9/C9).

We also show as “Binomial + Poisson + effi” the result
one would obtain, if one takes a finite detection efficiency
of ε = 0.65 into account, that is

〈
N(b)

〉
= 25.3525 ×

ε, p = 0.1144 × ε so that 〈N〉 = 40 × ε. Again, the
relative error for the factorial cumulants remains small
but larger than that in the case without efficiency. Here
we have (0.056, 0.29, 0.27, 0.31, 0.41, 0.61, 1.06, 2.55)
for (∆C2/C2, . . . ,∆C9/C9). This also means that using
the efficiency uncorrected STAR data one could try to
measure the factorial cumulants up to the seventh order
where ∆C7/C7 = 1± 0.61.

6 The actual ratios slightly decrease with increasing n: C4/C3 =
−17, C5/C4 = −15.56, C6/C5 = −15.46, C7/C6 = −15.04,
C8/C7 = −13.85, C9/C8 = −10.66, and for C10 the pattern
breaks and C10/C9 = 0.72.

7 We found that the absolute error of Cn for the binomial distribu-
tion is close to that of the Poisson distribution, which can be eas-
ily calculated using Eq. (2) and is given by

√
n!〈N〉n/2/

√
nevents.

8 For the NBD Cn = (n − 1)!〈N〉n/kn−1, where k measures
the deviation from a Poisson distribution, e.g., 〈N2〉 − 〈N〉2 =
〈N〉(1 + 〈N〉/k).
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FIG. 1. Histogram (normalized to unity) of the factorial cu-

mulant, C
(i)
n , fluctuating from experiment to experiment, di-

vided by a known (evaluated analytically) value, Cn, based
on 144393 events sampled from (a) the binomial distribution
(B = 350, p = 0.114, 〈N〉 = pB ≈ 40) and (b) a distribution
given by Eq. (5) (see text for details). The statistical er-
rors are given by the widths of the corresponding histograms.
In the panel (a), the histograms’ order by the height at the
maximum is (from largest to smallest) C2, C3, and C4. In the
panel (b) the order (from largest to smallest) is: C2, C4, C5,
C3, C6, C7, and C8.

The above results may be understood qualitatively in
the following way. In general we have two types of multi-
plicity distributions, P (N). One where the higher order
factorial cumulants are driven by the tails (Poisson, bino-
mial, NBD etc.) and the other one where the higher order
factorial cumulants are driven by some structure away
from the tails. This is exactly the case of our model.9 To
be a bit more precise the factorial cumulants of Eq. (5),
assuming α� 1 are given by10

Cn ≈ C(a)
n + (−1)nαNn, (6)

9 Another example of a statistics friendly distribution is a uniform
distribution. For example, taking P (N) = const for N ∈ [0, 80]
we obtain (0.0026, 0.0309, 0.0071, 0.0447, 0.0114, 0.0477, 0.0157,
0.0487) for (∆C2/C2, . . . ,∆C9/C9).

10 Again, we assume that both P(a) and P(b) are the proton mul-
tiplicity distributions characterized by small (or even vanishing)
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FIG. 2. The relative error, ∆Cn/Cn, of factorial cumu-
lants for various proton multiplicity distributions based on
144393 events, as present in the most central Au + Au colli-
sions at RHIC. The binomial and negative binomial distribu-
tions presented here are statistically very demanding, whereas
the distribution given by. Eq. (5) (Binomial+Poisson) with
〈N〉 = 40, allows to successfully measure higher order facto-
rial cumulants with a relatively small number of events. This
feature is also present for the efficiency uncorrected distribu-
tion (Binomial+Poisson+effi) where 〈N〉 = 40× 0.65.

where C
(a)
n is a factorial cumulant characterizing P(a)(N)

and N = 〈N(a)〉 − 〈N(b)〉. For C
(a)
n being a Poisson or

binomial the values of Cn are completely dominated by
the term αNn, which results in very large factorial cu-
mulants. The error, ∆Cn, on the other hand, is of the

same magnitude as that of the first term, ∆C
(a)
n (in prac-

tice ∆C
(a)
n /∆Cn ranges from ∼ 0.95 for n = 2 to ∼ 0.2

for n = 9). Thus we have a situation, where the er-
ror of the factorial cumulant is of the same magnitude
as that of a binomial distribution, but the factorial cu-
mulant is orders of magnitude larger. Consequently, and
not surprisingly, the relative error is much smaller for the
two-component distribution than for the binomial distri-
bution. It is worth noting that Cn scales linearly with α
and the two-component distribution is statistics friendly
even if the second mode is tiny, i.e., α is small (provided
Nn is large enough).

Finally, we note that in the case of Eq. (5), the regular
cumulnats are less statistics friendly. This is presented
in Fig. 3. The reason for this is the same as just stated.
The absolute errors for both cumulants and factorial cu-
mulants are of the same magnitude, ∆Kn ∼ ∆Cn. On
the other hand, for the two-component model, the facto-
rial cumulants are very large while the regular cumulants
are only modestly larger than that of a simple binomial
distribution. This is a result of the alternating signs of
the factorial cumulants. For example, the sixth order cu-

factorial cumulants. The whole idea is to obtain large factorial
cumulants from two rather standard distributions.

2 3 4 5 6 7 8 9
factorial cumulant or cumulant order
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FIG. 3. The relative errors of the factorial cumulants,
∆Cn/Cn, and the regular cumulants, ∆Kn/Kn, based on
144393 events sampled from a distribution given by Eq. (5).

mulant, K6, is given in terms of the factorial cumulants
as K6 = 〈N〉+31C2 +90C3 +65C4 +15C5 +C6 (see e.g.,
Ref. [24]). For our example of ”binomial+Poisson+effi”,
where we see a rapid increase in the relative error, we
have C6 ≈ 3080, 15C5 ≈ −4600 and 65C4 ≈ 1970. As
a result, K6 ≈ 180 � C6, and consequently the relative
error is much larger for K6 as compared to C6.

In summary, we demonstrated that for the multiplic-
ity distribution given by Eq. (5), which is relevant in
the context of searching for structures in the QCD phase
diagram, factorial cumulants of high orders can be deter-
mined with a relatively small number of events. This is in
contrast to various statistics hungry distributions (Pois-
son, binomial, NBD, etc.), for which the error increases
nearly exponentially with increasing order. As shown in
Ref. [24], the distribution, Eq. (5), describes the prelim-
inary STAR data for proton cumulants (up to the forth
order) in central Au+Au collisions at

√
s = 7.7 GeV. Be-

cause this distribution is statistics friendly, it can be fur-
ther tested by evaluating the higher order factorial cu-
mulants even with the presently available STAR data set
of 144393 events for the most central collisions. We also
pointed out that factorial cumulants are more statistics
friendly when compared to regular cumulants, which, in
the case of Eq. (5), results from a delicate cancellation of
large factorial cumulants. Assuming that C4 = 170 (as
extracted from preliminary STAR data) we predict:

C5 = −307 (1± 0.31), C6 = 3085 (1± 0.41),

C7 = −30155 (1± 0.61), C8 = 271492 (1± 1.06),

for efficiency uncorrected data and

C5 = −2645 (1± 0.14), C6 = 40900 (1± 0.18),

C7 = −615135 (1± 0.26), C8 = 8520220 (1± 0.42),

for 〈N〉 = 40, corresponding to the efficiency corrected
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data.11 In the next phase of the RHIC beam energy
scan the statistics is expected to increase by roughly a
factor of ∼ 25 [31] reducing the above errors by about a
factor of 5. It would be desirable to also analyze C5 and
higher order proton (not net-proton) factorial cumulants
at much higher energies, say,

√
s = 200 GeV, where a

first-order phase transition is not anticipated. Thus the
factorial cumulants are not expected to alter in sign while
increasing in absolute value. It was checked in Ref. [26]
that C3 and C4 alter in sign but their magnitudes are
very small.

Our message does not rely on the ability to estimate
the errors of Cn in an experiment. The reason is the
following. We conjecture that the multiplicity distribu-
tion at 7.7 GeV is a two-component one and describe the
preliminary data up to the fourth order. Next, we run a
sufficient number of independent experiments with each
experiment resulting in one measured number Cn. The
histogram of the measured values, as shown in Fig. 1(b),
is narrow if the distribution is given by our conjectured
one. Now STAR makes one measurement only and ob-
tains C5, C6, C7, C8. If our conjecture is correct, that
is, the distribution is a two-component one, the num-
bers measured by STAR should be consistent with our
predictions. If the numbers are significantly off our pre-
dictions, then our conjecture is falsified. We also note
that this procedure is quite general and not restricted
to the STAR data discussed here: Measure the first four
factorial cumulants then see if they are consistent with a
two-component distribution. If so, test this distribution
by comparing the measured higher factorial cumulants
with the prediction of the two-component model.

In conclusion, we have shown that two-component mul-
tiplicity distributions as expected in the vicinity of a first-
order phase transition are “statistics-friendly”. This al-
lows for the determination of factorial cumulants of high
order even with limited statistics, and opens a novel way
to search for the phase structure of mesoscopic systems.
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