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Rates of RNFL thinning in distinct glaucomatous optic disc 
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Weinreb, MD1
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Abstract

Purpose: To compare spectral-domain optical coherence tomography (SDOCT) measured 

circumpapillary retinal nerve fiber layer (cpRNFL) among four glaucomatous optic disc 

phenotypes in early glaucoma.

Design: Clinical cohort study

Methods: In this study, 218 early glaucoma eyes that had at least 3 years of follow-up and 

a minimum of 4 SDOCT scans were recruited. The optic discs were classified into four types 

based on appearance: 76 generalized cup enlargement (GE), 53 focal ischemic (FI), 22 myopic 

glaucomatous (MY), and 67 senile sclerotic (SS). A linear mixed-effect model was used to 

compare the rates of global and regional cpRNFL thinning among optic disc phenotypes.

Results: After adjusting for confounders, the SS group (mean (95% CI): −1.01 (−1.30, −0.73) 

μm/year) had the fastest mean rate of global cpRNFL thinning followed by FI (−0.77 (−0.97, 

−0.57) μm/year), MY (0.59 (−0.81, −0.36) μm/year) and GE (−0.58 (−0.75, −0.40) μm/year) 

at p<0.001. The inferior temporal sector had the fastest rate of cpRNFL thinning among the 

regional measurements except for the MY group (−0.68 (−1.10, −0.26) μm/year), p=0.002). In 
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the multivariable analysis, GE (p=0.002) and MY (p=0.010 ) phenotypes were associated with 

significantly slower global rates of cpRNFL thinning when compared to the SS phenotype.

Conclusions: Rates of cpRNFL thinning were different among the four glaucomatous optic 

disc phenotypes. Those patients with early glaucoma with SS phenotype have the fastest cpRNFL 

thinning. These patients may benefit from more frequent monitoring and the need to advance 

therapy if cpRNFL thinning is detected.

Keywords

retinal nerve fiber layer; optic disc phenotypes; glaucoma; progression

Introduction

Glaucoma is an optic neuropathy characterized by progressive structural changes, loss of 

retinal ganglion cells (RGCs) and their axons, and damage to the visual field (VF).1, 2 

The chronic and progressive nature of glaucoma requires timely detection of the disease 

through analysis of structural and functional changes. Optical coherence tomography (OCT) 

quantifies structural parameters of the optic disc and circumpapillary retinal nerve fiber layer 

(cpRNFL) with good precision and reproducibility.3-5 In early glaucoma, cpRNFL thinning 

can occur without VF changes and can be detected using OCT.6 Moreover, faster rate of 

global cpRNFL loss has been implicated with higher risk of developing visual field defect in 

glaucoma suspects.7

Glaucomatous damage to the optic disc can manifest with different morphological patterns.8 

It has been proposed that certain patterns of optic disc damage are secondary to specific 

pathophysiological mechanisms and patients can be categorized into four clinical subtypes 

based on the appearance of the optic nerve.9, 10 Morphological subtypes of glaucomatous 

optic disc damage may therefore help to differentiate the wide clinical spectrum of open-

angle glaucoma.

This study determined patterns of cpRNFL thinning in the four glaucomatous optic disc 

phenotypes of patients with early glaucoma followed prospectively for several years.

Methods

This was an observational cohort study in participants from a prospective longitudinal study 

designed to evaluate optic nerve structure and visual function in glaucoma (Diagnostic 

Innovations Glaucoma Study [DIGS] and African Descent and Glaucoma Evaluation Study 

[ADAGES]).11 Participants in these cohorts were longitudinally evaluated according to a 

pre-established protocol that included regular follow-up visits in which patient underwent 

a clinical examination, imaging, and functional tests. All participants from the DIGS and 

ADAGES study who met the inclusion criteria described below were enrolled in the current 

study. Informed consent was obtained from all participants. The University of California, 

San Diego Human Subject Committee approved all protocols, and the methods described 

adhered to tenets of the Declaration of Helsinki.
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Participants

All patients underwent an annual comprehensive ophthalmologic examination, including 

best-corrected visual acuity, slit-lamp biomicroscopy, Goldmann applanation tonometry, 

gonioscopy, dilated fundus examination, stereoscopic optic disc photography, ultrasound 

pachymetry, and standard automated perimetry (SAP) in both eyes. Semi-annual 

examinations included intraocular pressure (IOP) measurement, spectral-domain optical 

coherence tomography (SDOCT) imaging, and SAP testing.

Glaucoma was defined as the presence of glaucomatous optic nerve damage (i.e., the 

presence of focal thinning, notching, or localized or diffuse atrophy of the RNFL) with 

a reliable (fixation losses <33%, false negatives <33% and false positives <33%) and 

repeatable abnormal SAP tests using the 24-2 Swedish Interactive Threshold Algorithm with 

either a Pattern Standard Deviation outside the 95% normal limits or a Glaucoma Hemifield 

Test result outside the 99% normal limits. Patients with baseline 24-2 mean deviation (MD) 

>−6.0 dB were included in this study.

Inclusion criteria included (1) older than 18 years of age, (2) open angles on gonioscopy, (3) 

best-corrected visual acuity of 20/40 or better and (4) at least 3 years of follow-up with a 

minimum of 4 SDOCT scanning sessions.

Exclusion criteria included (1) history of trauma or intraocular surgery (except for 

uncomplicated cataract surgery or glaucoma surgery), (2) coexisting retinal disease, (3) 

uveitis, or (4) non-glaucomatous optic neuropathy. Participants with the diagnosis of 

Parkinson’s disease, Alzheimer’s disease, dementia, or a history of stroke were also 

excluded. Those with unreliable visual fields (VFs) or poor-quality SDOCT scans were 

also excluded from this report.

Optic Disc Classification

All color simultaneous stereophotographs were taken using a Nidek Stereo Camera Model 

3-DX (Nidek Inc, Palo Alto, CA) after maximal pupil dilation. All photograph evaluations 

were performed using a simultaneous stereoscopic viewer (Asahi Pentax Stereo Viewer II; 

Pentax, Tokyo, Japan) with a standard fluorescent light bulb. As described by Nicolela 

and Drance9 and then in our previous study,12 the optic discs were classified into 

four types based on appearance: generalized cup enlargement (GE), focal ischemic (FI), 

myopic glaucomatous (MY), and senile sclerotic (SS). For optic discs with GE, the cup 

is concentrically enlarged and there are no localized areas of neuroretinal rim loss or 

pallor. For focal optic disc damage, the neuroretinal rim has a localized notch inferiorly or 

superiorly, while the remaining tissue is relatively well preserved. For optic discs classified 

as the high myopia phenotype, there is a tilted appearance, shallow cupping, and a myopic 

crescent of peripapillary atrophy. Optic discs with sclerotic damage have shallow cupping 

with marked areas of peripapillary atrophy. The classification of optic disc phenotype was 

evaluated by two experienced graders (EE and SM) using a stereoscopic viewer. Each grader 

was masked to the subject’s identity and the other test results. All included photographs 

were judged to be of adequate quality or better. Discrepancies between the two graders were 
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resolved by consensus or adjudication by a third experienced grader. Inability to reach a 

consensus resulted to exclusion of the case.

OCT Measurements

The Spectralis SDOCT (software version 5.4.7.0, Heidelberg Engineering, Inc.) was used 

to obtain circumpapillary retinal nerve fiber layer (cpRNFL) measurements. Details of 

its operation have been discussed elsewhere.13 The high-resolution protocol was used, 

obtaining 1536 A-scans from a 3.45mm circle centered at the optic disc, providing an 

axial resolution of 3.9μm and a lateral resolution of 6μm. The Spectralis SDOCT included 

an automatic real time function that gathers multiple frames (B-scans) to increase image 

quality. The images were then averaged for noise reduction. The quality score ranges 

from 0 dB (poor) to 40 dB (excellent). To be included, all images were reviewed by 

experienced graders of the Imaging Data Evaluation and Assessment (IDEA) Center for 

non-centered scans, accurate segmentation, and a signal strength > 15dB. The cpRNFL 

measurements evaluated in this study included the mean global index, temporal quadrant 

(316 – 45 degrees), superior temporal sector (46 – 90 degrees), superior nasal sector (91 – 

135 degrees), nasal quadrant (136 – 225 degrees), inferior nasal sector (226 – 270 degrees) 

and inferior temporal sector (271 – 315 degrees).

Statistical analysis

Descriptive statistics were calculated as the mean and 95% confidence interval (95% CI). 

Categorical variables were compared using the chi-square test. The kappa value was used 

to estimate the extent of agreement between the 2 observers. Mixed-effects modeling 

was used to compare ocular parameters among groups. Models were fitted with ocular 

measurements as response variable and classification groups as fixed effects. Measurements 

of bilateral eyes were nested within subject to account for the fact that eyes from the 

same individual were more likely to have similar measurements. Contributory factors 

affecting cpRNFL thinning were examined using a univariable and multivariable linear 

mixed model. Multivariable models were constructed including the following potential 

confounding factors: age, gender, baseline 24-2 mean deviation (MD) and any other ocular 

parameters in which the p value was <0.1 in univariable analysis.

The evaluation of the effect of optic disc phenotype parameters on mean rates of change 

in cpRNFL in each group were performed using a linear mixed model with random 

intercepts and random slopes.14-16 In this model, the average evolution of the outcome 

variable (cpRNFL measurements) was explored using a linear function of time, and random 

intercepts and random slopes were introduced with patient- and eye-specific deviations from 

this average evolution. The model can account for the fact that different eyes can have 

different rates of cpRNFL thinning over time, while accommodating correlations between 

both eyes of the same individual.14, 15 Because cpRNFL decline may depend on disease 

severity, an unstructured covariance between random effects was assumed, allowing for 

correlation between intercepts and slopes of change.17 In addition to putative predictors to 

examine the effect of variables on the baseline cpRNFL, interaction terms between time and 

predictors were included in the model to explore whether there is a significant effect of the 

predictor on changes of the outcome variable over time. Age, race, baseline 24-2 MD, and 
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mean IOP during follow-up were used as predictors in this investigation. In the evaluation 

of progressors, individual slopes in each phenotype were classified into groups according to 

pre-established range for mean rates of global cpRNFL thinning: slow, if change was greater 

than −1.0 μm/year; moderate, if between −1.0 to −2.0 μm/year; and fast, if change was less 

than −2.0 μm/year.18

All statistical analyses were performed with commercially available software (Stata version 

14; StataCorp, College Station, Texas, USA). Statistical significance for tests was set at 

p≤0.05.

Results

Overall, 218 eyes from 173 glaucoma subjects met our inclusion criteria and were enrolled 

in this longitudinal study. Of these eyes, the optic disc appearance of 76 eyes were classified 

as generalized cup enlargement (GE), 53 eyes as focal ischemic (FI), 22 eyes as myopic 

glaucomatous (MY), and 67 eyes as senile sclerotic (SS). The kappa value for interobserver 

agreement in classification into the 4 types of glaucomatous optic disc phenotypes was good 

at 0.833 (95% CI: 0.807 - 0.840).

The baseline demographics of the subjects with GE, FI, MY, and SS groups, are summarized 

in Table 1. The mean baseline age of the SS group (74.3 years) was the oldest compared 

to the other 3 groups (p=0.001). The GE group was predominantly of African American 

descent (54.1%, p=0.001). The incidence of self-reported diabetes mellitus was higher in the 

GE (29.5%) especially when compared to FI and MY groups (p=0.004). The MY group had 

a longer mean axial length (AL) among the groups and was statistically significant when 

compared to GE and FI groups (p=0.051). Baseline 24-2 MD was higher in the GE and 

MY groups compared to SS and FI groups (p<0.001). Similarly, the GE and MY groups 

had statistically significant thicker baseline global cpRNFLs when compared to FI and SS 

groups (p<0.001). The SS group had higher central corneal thickness measurements among 

phenotypes and was statistically significant when compared to GE group (p=0.160). Other 

variables including baseline IOP, mean IOP during follow-up, follow-up time and number of 

OCT follow-up scans were comparable among phenotype groups.

SDOCT measurements, including global and regional rates of cpRNFL thinning are 

presented in Table 2. The difference in the global rate of cpRNFL thinning were statistically 

significant between optic disc phenotypes (p<0.001). SS group (mean (95% CI): −1.01 

(−1.30, −0.73) μm/year) had the fastest mean rate of global cpRNFL thinning followed 

by FI (−0.77 (−0.97, −0.57) μm/year), MY (0.59 (−0.81, −0.36) μm/year) and GE (−0.58 

(−0.75, −0.40) μm/year). The inferior temporal sector had the fastest rate of cpRNFL 

thinning among other regional measurements in most groups except for MY group (−0.68 

(−1.10, −0.26) μm/year), p=0.002). Temporal and nasal quadrants were the least affected 

in all phenotypes. However, in pairwise comparison, the SS group (−0.76 (−1.05, −0.47) 

μm/year) had statistically significant faster rate of cpRNFL thinning in the temporal 

quadrant when compared to GE (−0.20 (−0.37, −0.04) μm/year) and FI (−0.20 (−0.50, 

0.11) μm/year) groups at p<0.05. After adjustments for age, race, 24-2 MD at baseline, 

and mean IOP during follow-up, the results were similar. Figure 1 depicts the estimated 
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mean rates of global and regional cpRNFL thinning in each glaucomatous optic disc 

phenotype. Furthermore, the SS and FI groups had higher proportion of both moderate 

to fast progressors compared to other phenotypes (p=0.015). The frequency of eyes in each 

phenotype classified as slow, moderate, and fast progressors according to the previously 

determined range is shown in Figure 2.

Factors contributing to the rate of cpRNFL thinning among the subjects are shown in Table 

3. In the multivariable analysis, higher mean IOP during follow-up (p<0.001) and optic disc 

phenotype (p=0.014) were associated with increased cpRNFL thinning. The GE (p=0.002) 

and MY (p=0.010) phenotypes were also associated with statistically significant slower rates 

of cpRNFL thinning when compared to SS phenotype.

Discussion

In this study, glaucomatous optic disc phenotypes were associated with the rates of cpRNFL 

thinning in early glaucoma patients. Senile sclerotic (SS) and focal ischemic (FI) phenotypes 

showed faster rates of global cpRNFL thinning compared to generalized cup enlargement 

(GE) and myopic glaucomatous (MY) phenotypes. Characteristic patterns of cpRNFL 

thinning were also seen in each group. These findings suggest that the assessment and 

classification of optic nerve head phenotypes may enhance the evaluation of the risks and 

behavior of glaucoma structural progression.

Development and progression of primary open angle glaucoma (POAG) is likely dependent 

on the risk factors of an individual patient. Several risk factors were associated with certain 

optic disc phenotypes. SS phenotypes are associated with older age and several systemic 

risk factors.10 Various studies suggest that age is an independent risk factor for both 

the prevalence19 and progression of glaucomatous damage.20-22 The extent of physiologic 

stress and strain that the ONH connective tissues are exposed to over a lifetime could be 

related to increased susceptibility of the aged ONH to glaucoma. It has been proposed 

that senile sclerotic ONHs are more likely to have stiffer connective tissues23-25 and 

compromised vasculature26-28 with an increased susceptibility to damage of the superior and 

inferior vulnerable regions. In another study comparing lamina cribrosa (LC) depth among 

phenotypes, LC depth of SS group was notably shallow and similar to that of the healthy 

group.29 Furthermore, our recent study on estimated circumpapillary capillary density loss 

among phenotypes showed a similar pattern of deterioration and concluded that lower 

vessel density was significantly associated with SS group.12 In the current study, amidst 

the appearance of a shallow saucer-shaped cup, the SS group had a distinct faster pattern 

of deterioration affecting both the superior and inferior vulnerable zones of glaucoma. 

Moreover, the SS group had the fastest global and regional rates of cpRNFL thinning 

among phenotypes. We hypothesize that the fast cpRNFL thinning in SS group resulted from 

combined mechanical and vascular mechanisms present in aged ONHs.

Focal notching of the neuroretinal rim with a corresponding visual field (VF) defect, 

which threatens fixation early in the disease is described as focal ischemic type of 

glaucoma.9, 30, 31 Earlier age of onset, female gender, occurrence of disc hemorrhage and 

primary vascular dysregulation syndromes (vasospasm, migraine, nocturnal hypotension, 
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Raynaud’s phenomenon) are associated with FI phenotype.9, 30, 32, 33 Presence of a notch 

in the optic disc neural rim has been highly associated with glaucoma.34 Subsequent 

studies showed the association between focal LC defects and glaucomatous rim narrowing.35 

Impaired vascular supply to the laminar region, either independent of or associated with 

increased IOP, may be another factor that can lead to structural changes of the LC, 

weakening the laminar beams and making them prone to collapse.36, 37 In this study, the 

FI group showed both rapid focal and global cpRNFL thinning. Inferior quadrant was more 

affected compared with the superior quadrant involving more of the superior temporal sector 

only. Monitoring for regional and global glaucomatous progression in the FI phenotype is 

of great importance due to its characteristic early age of onset, rapid rate of both local 

and global deterioration, and possible earlier effect on fixation which are all detrimental to 

vision-related quality of life for patients.

Myopia has been consistently associated with the prevalence of glaucoma. A meta-analysis 

study by Marcus et al, documented that myopia had a pooled odds ratio of 1.92 for 

glaucoma.38 It has been proposed that myopic optic nerve head deformations may increase 

the predisposition for glaucomatous injury.39, 40 Myopic eyes with open angle glaucoma 

exhibited increased quantity of lamina cribrosa defects and large pores at similar locations 

as those with healthy myopic eyes, suggesting that these focal alternations of the lamina 

in myopia may develop into larger defects in glaucoma.41 In the current study, having 

comparable IOP exposure among groups, the MY group had a slower rate of cpRNFL 

thinning. These findings suggest that in the myopic glaucoma continuum, lamina cribrosa 

defects may develop in an IOP-independent process that results in further glaucomatous 

changes only when exposed to elevated IOP. A study by Sung et al,42 revealed that 

the location of RNFL damage was consistent with the direction of optic disc rotation in 

almost 60% of normal tension glaucoma (NTG) eyes, showing optic disc rotation-VF defect 

correspondence. In addition, Han et al, also observed that NTG with myopia seems to have 

a slow VF progression rate even without glaucoma medications.43 In this study, myopic 

POAG eyes showed a similar slow rate of glaucomatous progression.

Increased excavation is one of the most commonly described feature among glaucomatous 

optic nerve changes.44 Patients with GE are usually associated with higher pretreatment 

maximal IOP and average IOP during follow-up.10 Furthermore, eyes with concentric 

optic disc appearance were evaluated to have significantly higher IOP elevation during 

the nocturnal period compared to the eyes with non-concentric optic disc appearance.45 

Greater LC depth was also associated with the GE phenotype.29 It was postulated that 

glaucomatous damage occurs in this phenotype at a younger age where laminar tissue might 

have been more compliant. Therefore, posterior deformation ensues prior to initiation of 

IOP-lowering therapy.29 In this study, the GE group presented with slower global rate of 

cpRNFL thinning similar to MY group; however, GE group had a localized inferior pattern 

of deterioration comparable with the FI group. This may indicate that GE group may have 

a localized glaucomatous progression even with a slow global rate of cpRNFL progression. 

In the Ocular Hypertension Treatment Study (OHTS), every 0.1-unit increase in the baseline 

cup to disc ratio was associated with a 1.4-fold increase in the incidence of POAG among 

study subjects with ocular hypertension.20 Interestingly in a study by Nakazawa et al, the 

GE phenotype was noted to be the predominant form in advanced POAG. It was proposed 
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that GE is a result of progressive axonal loss in glaucoma.46 Therefore, whether distinct 

features of the optic disc such as concentric excavation are congenital variants or the result 

of progressive axonal loss is unclear. In this study, only pure optic disc phenotypes in early 

glaucoma were included to increase reliability in the measurement of the different effects of 

each morphological optic disc features on the rates of cpRNFL thinning. These data suggest 

that the four optic disc phenotypes may have different mechanisms of injury in producing 

distinct patterns of cpRNFL thinning.

Unique patterns of structural and functional glaucoma progression among optic disc 

phenotypes have been described previously.9, 12, 29, 47-50 In the current study, most 

phenotypes had their fastest rates of cpRNFL thinning involving the inferior temporal 

sector followed by the superior temporal sector. These locations have been implicated as 

vulnerable zones in the disease.51-53 The temporal and nasal quadrants were less affected by 

progression among the regions. A study by Takada et al.54 found that RNFL thinning was 

significantly more frequent in both the superior and inferior quadrants among phenotypes. 

Omodaka et al.50 demonstrated that the region of the disc with the highest correlation 

coefficient between structure and function differed based on optic disc phenotypes. In 

this study, phenotypes differed in terms of rates of cpRNFL thinning and patterns of 

deterioration. The MY and GE phenotypes both had significantly slower global rate of 

deterioration when compared to SS group. The MY group showed a characteristic slower 

rate of cpRNFL deterioration in the inferior temporal sector among the phenotypes. In 

comparison, a more localized inferior cpRNFL thinning was observed in the GE and FI 

groups. Finally, the SS group had a distinct rapid rate of cpRNFL thinning both in the 

superior and inferior quadrants. Therefore, in early stages of glaucoma, these patterns of 

cpRNFL thinning among phenotypes should be analyzed with caution, as some may have 

rapid localized forms of progression masked by a slow rate of global progression.

After adjusting for optic disc phenotypes, higher mean IOP during follow-up was 

significantly associated with faster cpRNFL thinning over time in glaucoma subjects. 

Although IOPs were comparable among the disc phenotype groups, phenotypes had 

different patterns of cpRNFL thinning. A study that evaluated the association between 

IOP and cpRNFL loss determined that the rates of cpRNFL deterioration for each mmHg 

was greater in glaucoma progressors compared to non-progressors, suggesting heterogenous 

susceptibility to IOP levels.55 These findings suggest that optic disc phenotypes may be used 

as surrogate for vulnerability to IOP.

This study has some limitations. First, optic disc phenotype classification was based on 

subjective observation. To address this limitation, two experienced graders were tasked 

with classifying optic disc phenotypes and demonstrated good interobserver agreement in 

determining the final classification (κ = 0.833). Second, uncontrolled differences in ocular 

and systemic characteristics between optic disc phenotype groups could affect the cpRNFL 

measurements. Third, although, the optic discs were classified into four different phenotypes 

as described by Nicolela and Drance,9 optic disc appearances with a mixed phenotype 

are possible and common.12, 56 Only pure optic disc phenotypes were included in this 

study. Finally, the diagnosis of glaucoma may have led to the initiation or intensification of 
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IOP-lowering therapy in disease treatment, potentially decreasing the true effect of distinct 

phenotypes on the rates of cpRNFL thinning.

In conclusion, this longitudinal study demonstrated different rates of glaucomatous cpRNFL 

thinning among four distinct optic disc phenotypes. Those patients with early glaucoma and 

the SS optic disc phenotype have faster cpRNFL thinning. These patients may benefit from 

more frequent monitoring and the need to advance therapy if cpRNFL thinning is detected.
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Figure 1. 
Diagrams showing estimated mean rates of circumpapillary retinal nerve fiber layer 

(cpRNFL) thinning for generalized cup enlargement (GE), focal ischemic (FI), myopic 

glaucomatous (MY) and senile sclerotic (SS) eyes in early glaucoma. Data are presented as 

cpRNFL change rate (μm/year).
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Figure 2. 
Frequency of eyes classified as slow, moderate, and fast progressors according to pre-

established range of mean rates of global circumpapillary retinal nerve fiber layer (cpRNFL) 

thinning for generalized cup enlargement (GE), focal ischemic (FI), myopic glaucomatous 

(MY) and senile sclerotic (SS) eyes in early glaucoma.
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Table 1.

Demographics and Baseline Clinical Characteristics of Subjects

GE FI MY SS p value

By Subject (No.) 61 46 18 48

Age (years) 66.8 (64.3, 69.3) 66.2 (63.3, 69.2) 63.3 (58.9, 67.6) 74.3 (71.4, 77.2) <0.001 §¶#

Gender (M/F) 30/31 17/29 5/13 23/25 0.215

Race Non-African American/
African American 28/33 30/16 13/5 36/12 0.001 †‡§

Self-reported HTN, n (%) 41 (67.2%) 24 (52.2%) 13 (72.2%) 33 (68.8%) 0.235

Self-reported DM, n (%) 18 (29.5%) 4 (8.7%) 7 (38.9%) 9 (18.8%) 0.004 †∥

By Eye (No.) 76 53 22 67

Axial Length (mm) 23.8 (23.6, 24.0) 23.9 (23.7, 24.2) 24.6 (24.1, 25.1) 24.0 (23.7, 24.2) 0.051 ‡∥

CCT (μm) 530.0 (519.5, 540.5) 531.9 (519.3, 544.5) 545.5 (522.4, 568.5) 550.0 (537.2, 562.8) 0.160 §

Baseline IOP (mmHg) 14.6 (13.7, 15.6) 14.9 (13.7, 16.1) 15.7 (13.7, 17.7) 15.7 (14.5, 16.9) 0.606

Mean IOP (mmHg) 14.4 (14.2, 14.7) 13.7 (13.4, 14.0) 15.0 (14.4, 15.5) 15.2 (14.9, 15.4) 0.251

Baseline 24-2 MD (dB) −1.4 (−1.8, −1.0) −2.7 (−3.2, −2.2) −1.3 (−2.1, −0.5) −2.3 (−2.8, −1.9) <0.001 †§∥#

Baseline global cpRNFL (μm) 83.7 (80.3, 87.1) 73.4 (70.2, 76.5) 79.4 (74.9, 83.9) 72.6 (69.6, 75.5) <0.001 †§∥#

Follow-up (years) 5.9 (5.8, 6) 6.0 (5.8, 6.1) 6.1 (5.9, 6.2) 5.6 (5.5, 5.7) 0.572

Number of SDOCT Follow-up 
Scans

10.5 (10.3, 10.8) 10.9 (10.5, 11.3) 11.6 (11.1, 12.2) 11.6 (11.3, 11.9) 0.627

CCT = central corneal thickness; cpRNFL = circumpapillary retinal nerve fiber layer; dB = decibel; DM = diabetes mellitus; F = female; FI = 
focal ischemic; GE = generalized cup enlargement; HTN = hypertension; IOP = intraocular pressure; M = male; MD = mean deviation; MY = 
myopic glaucomatous; SDOCT = spectral-domain optical coherence tomography; SS = senile sclerotic. Values are shown in mean (95% confidence 
interval), unless otherwise indicated. Statistically significant p values shown in bold.

Tukey honestly significant difference test p<0.05 for:

†
GE vs. FI

‡
GE vs MY

§
GE vs SS

∥
MY vs FI

¶
SS vs FI

#
SS vs MY.
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Table 2.

Comparison of Rates of cpRNFL Thinning among Glaucomatous Optic Disc Phenotypes in Early Glaucoma

GE FI MY SS p value
(adjusted)

Global cpRNFL Change Rate (μm/year)

Mean Global −0.58
(−0.75, −0.40)

−0.77
(−0.97, −0.57)

−0.59
(−0.81, −0.36)

−1.01
(−1.30, −0.73)

<0.001
§#

(<0.001)
§#

Regional cpRNFL Change Rate (μm/year)

Temporal −0.20
(−0.37, −0.04)

−0.20
(−0.50, 0.11)

−0.37
(−0.70, −0.05)

−0.76
(−1.05, −0.47)

0.002
§¶

(0.042)
§¶

Nasal −0.40
(−0.69, −0.11)

−0.59
(−0.92, −0.25)

−0.54
(−0.89, −0.19)

−0.57
(−0.88, −0.26)

0.118
(0.010)

§

Superior temporal −0.84
(−1.17, −0.52)

−1.10
(−1.52, −0.68)

−0.80
(−1.30, −0.30)

−1.40
(−1.86, −0.93)

0.003
§

(0.074)

Superior nasal −0.44
(−0.75, −0.13)

−0.60
(−0.92, −0.27)

−0.71
(−1.16, −0.26)

−1.15
(−1.54, −0.77)

0.012
§¶

(0.042)
§¶

Inferior temporal −1.43
(−1.84, −1.01)

−1.68
(−2.21, −1.14)

−0.68
(−1.10, −0.26)

−1.82
(−2.33, −1.31)

0.002
∥#

(0.003)
∥#

Inferior nasal −0.78
(−1.09, −0.46)

−1.08
(−1.43, −0.73)

−0.66
(−1.10, −0.21)

−1.03
(−1.45, −0.62)

0.001
(<0.001)

#

cpRNFL = circumpapillary retinal nerve fiber layer; FI = focal ischemic; GE = generalized cup enlargement; MY = myopic glaucomatous; SS = 
senile sclerotic. Values are shown in mean (95% confidence interval), unless otherwise indicated.

Statistically significant p values shown in bold.

Tukey honestly significant difference test p<0.05 for:

†
GE vs. FI

‡
GE vs MY

§
GE vs SS

∥
MY vs FI

¶
SS vs FI

#
SS vs MY.

Am J Ophthalmol. Author manuscript; available in PMC 2022 September 12.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

David et al. Page 17

Table 3.

Factors Contributing to the Rate of cpRNFL Thinning Over Time in Early Glaucoma Eyes by Univariable and 

Multivariable Mixed Model Analysis

Univariable Multivariable

β, 95 % CI p value β, 95 % CI p value

Age, per 10 years older 0.07 (−0.05, 0.18) 0.262 0.10 (−0.03, 0.22) 0.146

Gender: M/F −0.05 (−0.29, 0.19) 0.696

Race:Non-African American / African American −0.06 (−0.30, 0.19) 0.654 −0.03 (−0.29, 0.22) 0.787

Self-reported HTN 0.20 (−0.05, 0.45) 0.122

Self-reported DM 0.22 (−0.05, 0.49) 0.111

Axial length, per 1mm longer 0.003 (−0.12, 0.13) 0.958

CCT, per 10μm thinner −0.01 (−0.03, 0.02) 0.617

Mean IOP, per mmHg higher −0.08 (−0.11, −0.04) <0.001 −0.07 (−0.11, −0.03) <0.001

Baseline 24-2 MD, per 1 dB worse −0.02 (−0.08, 0.05) 0.623 −0.01 (−0.07, 0.06) 0.878

Phenotypes <0.001 0.014

SS vs GE −0.43 (−0.72, −0.15) 0.003 −0.50 (−0.83, −0.18) 0.002

SS vs FI −0.23 (−0.54, 0.09) 0.158 −0.24 (−0.57, 0.10) 0.169

SS vs MY −0.43 (−0.85, −0.02) 0.041 −0.58 (−1.02, −0.14) 0.010

CCT = central corneal thickness; cpRNFL = circumpapillary retinal nerve fiber layer; dB = decibel; DM = diabetes mellitus; F = female; FI = 
focal ischemic; GE = generalized cup enlargement; HTN = hypertension; IOP = intraocular pressure; M = male; MD = mean deviation; MY = 
myopic glaucomatous; SS = senile sclerotic. Values are shown in β coefficient (95% confidence interval), unless otherwise indicated. Statistically 
significant p values shown in bold.
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