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ABSTRACT: Chronic kidney disease (CKD) results in significant dyslipidemia and profound changes in lipid and lipoprotein
metabolism. The associated dyslipidemia, in turn, contributes to progression of CKD and its cardiovascular complications. To
gain an in-depth insight into the disorders of lipid metabolism in advanced CKD, we applied UPLC-HDMS-based lipidomics to
measure serum lipid metabolites in 180 patients with advanced CKD and 120 age-matched healthy controls. We found significant
increases in the levels of total free fatty acids, glycerolipids, and glycerophospholipids in patients with CKD. The levels of free
fatty acids, glycerolipids, and glycerophospholipids directly correlated with the level of serum triglyceride and inversely correlated
with the levels of total cholesterol and eGFR. A total of 126 lipid species were identified from positive and negative ion modes.
Out of 126, 113 identified lipid species were significantly altered in patients with CKD based on the adjusted FDR method.
These results pointed to profound disturbance of fatty acid and triglyceride metabolisms in patients with CKD. Logistic
regression analysis showed strong correlations between serum methyl hexadecanoic acid, LPC(24:1), 3-oxooctadecanoic acid,
and PC(20:2/24:1) levels with eGFR and serum creatinine levels (R > 0.8758). In conclusion, application of UPLC-HDMS-
based lipidomic technique revealed profound changes in lipid metabolites in patients with CKD. The observed increases in serum
total fatty acids, glycerolipids, and glycerophospholipids levels directly correlated with increased serum triglyceride level and
inversely correlated with the eGFR and triglyceride levels.

KEYWORDS: chronic kidney disease, lipidomics, lipid metabolism, fatty acid metabolism, triglyceride metabolism,
glomerular filtration rate

1. INTRODUCTION

By promoting tubulo-interstitial fibrosis and glomerulosclerosis
the fibrotic process constitutes the final pathway in progression
of all forms of chronic kidney disease (CKD). Renal fibrosis is
characterized by myofibroblasts transformation, accumulation
of fibrillary collagen, loss of capillary network, and inflammatory

cell infiltration.1 Earlier studies have demonstrated the role of
lipid mediators in progression of CKD.2−5 In fact, recent in vivo
and in vitro studies demonstrated the role of impaired fatty acid
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oxidation, depressed mitochondrial ATP generation, and enhanced
reactive oxygen species production in the pathogenesis of
oxidative stress, tubular epithelial cell death, and interstitial
inflammation and fibrosis.6

Different kidney diseases result in marked alterations of lipid
metabolism and serum lipid profile.7 The associated lipid dis-
orders, in turn, contribute to progression of kidney disease and
its numerous comorbidities including cardiovascular disease,
impaired energy metabolism, diminished exercise capacity,
and various other complications. Severity of renal failure and
presence and severity of proteinuria independently impact the
nature of lipid disorders in patients with kidney disease.8 In
addition, dietary and drug regimens and renal replacement ther-
apies (i.e., hemodialysis, peritoneal dialysis, and renal trans-
plantation) significantly affect the lipid profile in this popula-
tion.9,10

Although the nature and mechanisms of the abnormalities of
serum lipid and lipoproteins in CKD and nephrotic syndrome
are well-known, their effect on the lipid metabolites have not
been fully elucidated. In the past several years, lipidomics has
been increasingly used to determine the changes of lipid
metabolites and identify the biomarker of various diseases in
animal and humans.11,12 Ultra performance liquid chromatog-
raphy-quadrupole time-of-flight high-definition mass spectrom-
etry (UPLC-QTOF/HDMS) has been increasingly applied
to lipidomics.13−17 A large number of clinical studies demon-
strated that abnormal lipid metabolism and serum lipid profile
may contribute to the pathogenesis and progression of CKD,
and a few studies have addressed the lipidomic profile of kidney
diseases using untargeted lipidomic approach.18 Lipidomic
studies have demonstrated remarkable elevation of serum free
fatty acid (FFA), saturated FFA, eicosanoid, lysophosphatidyl
ethanolamine, and lysophosphatidyl inositol levels in prehe-
modialysis patients compared to the healthy controls.19

Lipidomics has been applied to the determination of the lipid
profile of low density lipoprotein (LDL), which showed sig-
nificant increases in triacylglycerides and significant decreases
in phosphatidylcholines, plasmenyl ethanolamines, sulfatides,
ceramides, and cholesterol sulfate in patients with advanced
CKD.20 In the present study, we conducted an untargeted
serum lipidomic analysis in a group of patients with advanced
CKD and a group of healthy controls using UPLC-QTOF/
HDMS.

2. METHODS

2.1. Chemicals and Reagents

Ostro 96-well plate was provided by Waters Technologies
(Shanghai) Ltd. (Shanghai, China). Formic acid and ammo-
nium formate were purchased from Sigma Chemical Co., Ltd.
(Sigma Corp., St. Louis, MO). LC-grade chloroform, methanol,
2-propanol, and acetonitrile were purchased from the Baker
Chemical Co. (Phillipsburg, NJ). Lipid analytical standards
were purchased from the Avanti polar lipids Inc. (Alabaster,
Alabama). Ultra purity water was prepared using a Milli-Q
water purification system (Billerica, MA). Other chemicals were
of analytical grade, and their purity was above 99.5%.
2.2. Participants

In this cross-sectional study, patients with CKD were recruited
at the Xi’an Fourth Hospital and the Traditional Chinese Med-
icine Hospital between February 2013 and November 2014.
Serum from a total of 200 adult individuals (>18 years old),
including 120 patients and 80 healthy controls, were collected

for the discovery phase and from an additional 100 individuals,
including 60 patients and 40 healthy controls for the valida-
tion phase. Patients with stage 4 and 5 were referred by
nephrologists and were diagnosed based on clinical criteria (i.e.,
kidney damage, reduced estimated glomerular filtration rate
(eGFR) for at least 3 months, and in some cases kidney
biopsy). Patients with acute kidney injury, liver disease, patients
treated with immunosuppressive agents in the past six months,
or chemotherapy within the past two years, as well as patients
undergoing chronic dialysis or kidney transplantation were
excluded. The underlying causes of CKD were hypertension
(n = 100), chronic tubulointerstitial nephritis (n = 22), chronic
glomerulonephritis (n = 42), and obstructive uropathy (n = 16).
To isolate the effects of CKD from those caused by systemic
disorders, patients with diabetes, lupus erythematosus, amy-
loidosis etc. were excluded from the study. The study was
approved by the Ethical Committee, and all patients had been
given written informed consent prior to entering the study.

2.3. Demographics and Medical Information

Baseline information included sex, age, body mass index (BMI),
blood pressure, primary renal diseases, and medication his-
tories. Blood samples were obtained after an overnight fasting.
Serum was immediately separated by centrifugation and stored
at −80 °C. The eGFR was calculated using the modified
equation of Diet of Renal Disease. Serum biochemistry was
determined by Olympus AU640 automatic analyzer. Serum
high sensitivity C-reactive protein (CRP) was measured by an
automated immunoturbidimetric assay. Serum interleukin-6
and tumor necrosis factor-α (TNF-α) were measured using the
commercially available ELISA kits.

2.4. Lipid Profiling

UPLC-HDMS was used for the determination of lipid profile
of all samples. The lipid profile procedure including sample
preparation, lipid separation, lipid detection, data preprocess-
ing, and statistical analysis for lipid identification was performed
following our published protocols with minor modifications.21

Briefly, serum total lipids were extracted using Ostro 96-well
plate. One hundred microliters of serum sample was loaded
into each well in Ostro preparation plate fitted onto a vacuum
manifold. Three hundred microliters of elution solvent (1:1,
CHCl3/CH3OH) was added to each well and mixed aspirating
the mixture 10× by a micropipette. A vacuum of approximately
15″ Hg was used to the plate until the solvent was drained.
This step was repeated 3 times and obtained the total extract
to approximately 900 μL. The eluate fraction was dried down
under nitrogen and reconstituted with 200 μL 1:1 (v/v)
CHCl3/CH3OH. The extracted sample was then injected into
the UPLC-HDMS system. Chromatographic separation was
carried out at 45 °C on an ACQUITY UPLC HSS T3 column
(2.1 × 100 mm, 1.8 μm, UK). A gradient of 10 mM ammonium
formate in 2-propanol/acetonitrile (90/10) in 0.1% formic acid
and 10 mM ammonium formate in ACN/H2O (60/40) in 0.1%
formic acid was used as follows: a linear gradient from 0 to
10 min, 35.0−99.0% A, and from 10.0 to 12.0 min, 99.0−
35.0% A. The flow rate was 0.5 mL/min. The temperatures of
the autosampler and column were maintained at 4 and 55 °C,
respectively. Every 5 μL sample solution was injected for each
run. Mass spectrometry was carried out by a Xevo G2 QTof.
The scan range was from 100 to 1500 m/z in both positive and
negative ion modes, the cone and capillary voltages were set at
60 V and 3.0 kV, respectively. The desolvation gas and cone gas
was set to 900 L/h and 50 L/h, respectively. The gas temperature
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and source temperature was set to 500 and 120 °C, respec-
tively. Waters Unifi software was used for the data acquisition
and analysis.

2.5. Data Analysis, Model Development, Lipid Selection,
and Cross Validation

The raw data from UPLC-HDMS were first preprocessed by
Progenesis QI (Waters, Manchester, U.K.). Principal component
analysis (PCA) and orthogonal partial least-squares-discriminant
analysis (OPLS-DA) were performed to discriminate between
patients with CKD and healthy controls. The variables were
selected based on variable importance in the projection (VIP >
1.0) from the peak intensity. We reduced the resulting matrix
by removing any ion peaks with zero value in the samples to
obtain consistent differential variables. Variables were selected
by one-way analysis of variance (ANOVA) with a threshold of
P < 0.05 in SPSS 19.0. On the basis of previous literature, the
variables were identified and confirmed by comparing MS data,
MS/MS fragments, molecular weights, and elemental compo-
sitions with the available reference chemicals.22,23

Identified lipids were subjected to further statistical analysis
by univariate and multivariate statistical methods. Fold change
(FC) was calculated based on mean ratios for CKD/controls.
Lipids were also selected by Mann−Whitney U test with a
threshold of P < 0.05. The resultant P values from ANOVA
were further adjusted by a false discovery rate (FDR) based on
the Hochberg-Benjamini method. Significantly altered variables
were defined and further identified by a VIP > 1.0, P < 0.05, and
FDR < 0.05. Variables or lipids are visualized using heatmap and
z-score plots analyses. The z-score of lipids was calculated
according to reference distribution of the control samples.
Then each lipid was centered by the control mean and scale by
the control standard deviation. Pearson correlation coefficient
was performed to find the correlations between the potential
lipids.

2.6. Binary Logistic Regression (BLR) and Receiver
Operating Characteristics (ROC) Curve Analysis

BLR and ROC curve were performed by SPSS software. On the
basis of the binary outcome of patients with CKD and healthy

controls as dependent variables, we developed a BLR model to
find the best combination of significantly altered lipid species.
The methods of the forward stepwise regression and Wald test
were used for selecting altered lipid classes and assessing
significance in BLR prediction model, respectively. The method
was used to discover the most important lipid species until
there were no more significant predictors from the data. The
Wald test provided a P value to each individual lipid species to
assess their significance. PLS-DA-based ROC analysis was per-
formed for evaluating significantly altered lipid species using
MedCalc 14.0.

3. RESULTS

3.1. General Data

To isolate the effects of CKD from those caused by systemic
disorders, patients with diabetes, systemic lupus erythematosus,
amyloidosis, etc. were excluded from the study. The general
clinical and demographic data are presented in Table 1. There
were no significant differences in age and BMI between the
two groups. Patients with CKD had higher SBP and DBP and
lower eGFR compared to the healthy controls. Serum creatinine,
BUN, LDL-C, and triglycerides were significantly increased, and
serum HDL-C was significantly decreased in patients with CKD
compared to the healthy controls. Patients with CKD had
higher serum CRP, IL-6, and TNF-α levels.
3.2. Selection and Identification of Significantly Altered
Lipid Classes

To evaluate the changes of lipidome in patients with CKD and
find significantly altered lipid species, a two-predictive com-
ponent OPLS-DA was performed using data from patients
with CKD and healthy controls. The OPLS-DA score plots
could readily be divided into two clusters, indicating that serum
lipid metabolic patterns were significantly altered in patients
with CKD (Figure S1). Initially, 287 and 196 variables were
selected according to the VIP values from S-plots, respectively
(Figure S1). On the basis of authentic standards, analogue
structure of authentic chemicals or databases, 77 and 49 lipid
species were identified from positive ion mode and negative ion

Table 1. Summary of Clinical and Demographic Baseline Characteristics of Patients with CKD and Healthy Controls in This
Studya

discover phase validation phase

clinical characteristics healthy controls patient with CKD healthy controls patient with CKD

male/female 45/35 70/50 23/17 35/25
age (years) 55.7 ± 11.2 57.3 ± 14.5 54.1 ± 9.6 57.1 ± 15.8
body mass index (kg/m2) 24.3 ± 3.5 25.4 ± 5.2 23.3 ± 2.8 25.9 ± 4.9
SBP (mm Hg) 121.7 ± 12.6 144.2 ± 15.2c 119.5 ± 13.3 141.2 ± 16.8c

DBP (mm Hg) 75.1 ± 11.3 82.4 ± 12.5c 74.6 ± 10.3 83.7 ± 10.8c

eGFR (mL/min/1.73m2) 99.5 ± 15.1 14.4 ± 5.1c 97.4 ± 23.2 13.2 ± 4.2c

BUN (mmol/L) 5.11 ± 1.05 33.0 ± 16.2c 5.06 ± 0.87 34.6 ± 17.6c

serum creatinine (μmol/L) 68.7 ± 14.1 516 ± 208c 73.8 ± 17.2 486 ± 216c

serum albumin (g/L) 47.3 ± 3.7 35.9 ± 6.7c 47.5 ± 2.3 36.7 ± 5.5c

HDL-cholesterol (mmol/L) 1.32 ± 0.68 1.14 ± 0.53* 1.41 ± 0.64 1.24 ± 0.48*
LDL-cholesterol (mmol/L) 2.85 ± 1.03 3.16 ± 1.09* 2.89 ± 1.05 3.19 ± 1.04*
triglycerides (mmol/L) 1.62 ± 0.53 1.91 ± 0.67b 1.63 ± 0.46 1.90 ± 0.72b

VLDL-cholesterol (mmol/L) 0.32 ± 0.08 0.34 ± 0.14 0.34 ± 0.09 0.33 ± 0.13
urine proteins (g/24h) N/A 1.89 ± 1.38c N/A 1.80 ± 1.47c

high sensitive CRP (mg/L) 1.19 ± 0.75 4.15 ± 1.42c 1.22 ± 0.72 3.97 ± 1.18c

interleukin-6 (pg/mL) 1.32 ± 0.34 2.52 ± 0.77c 1.35 ± 0.41 2.61 ± 0.81c

TNF-γ (pg/mL) 1.46 ± 0.45 2.42 ± 0.86c 1.51 ± 0.56 2.34 ± 0.79c

aResults are expressed as the means ± standard deviation. b**P < 0.01. c***P < 0.001 compared with healthy controls. N/A, not available.
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Table 2. Plasma Differential Lipid Species in Patients with CKD Compared with Healthy Controls

no. lipid VIPa FCb Pc FDRd AUC 95% CI sensitivity (%) specificity (%)

1 PG(16:0/16:1)e 16.8 7.96 4.04 × 10−98 4.24 × 10−97 1.00 0.982−1.00 100 100
2 LPC(24:1)g 14.0 7.87 8.59 × 10−98 8.32 × 10−97 1.00 0.982−1.00 100 100
3 PE(P-18:1/14:1)e 12.8 8.89 1.80 × 10−99 7.58 × 10−98 1.00 0.982−1.00 100 100
4 PE(16:1/18:1)e 9.81 10.97 2.34 × 10−99 7.38 × 10−98 1.00 0.982−1.00 100 100
5 LSM(d18:0)e 6.42 13.31 9.98 × 10−99 1.26 × 10−97 1.00 0.982−1.00 100 100
6 MG(20:4)e 6.01 11.15 1.10 × 10−99 1.39 × 10−97 1.00 0.982−1.00 100 100
7 DG(18:3/22:6)e 5.63 14.24 3.23 × 10−88 2.26 × 10−87 1.00 0.980−1.00 100 98.0
8 LPC(20:4)f 5.54 13.33 8.00 × 10−89 6.30 × 10−88 1.00 0.982−1.00 100 100
9 PA(16:0/18:2)e 4.52 25.77 4.82 × 10−73 2.64 × 10−72 1.00 0.982−1.00 100 100
10 PE(22:4/P-18:0)e 4.44 10.44 1.75 × 10−73 1.00 × 10−72 1.00 0.982−1.00 100 100
11 docosatrienoic acidf 3.85 9.89 3.70 × 10−95 3.11 × 10−94 1.00 0.982−1.00 100 100
12 LPE(18:0)f 3.77 7.96 6.75 × 10−99 1.06 × 10−97 1.00 0.982−1.00 100 100
13 LPE(22:4)f 3.55 9.32 5.89 × 10−97 5.30 × 10−96 1.00 0.858−0.943 100 90.0
14 methyl hexadecanoic acidg 3.24 3.46 1.33 × 10−10 1.92 × 10−10 0.89 0.982−1.00 100 100
15 LPE(24:1)f 3.13 9.49 1.40 × 10−98 1.61 × 10−97 1.00 0.982−1.00 100 100
16 PGP(18:0/18:1)e 2.71 9.6 4.46 × 10−99 9.36 × 10−98 1.00 0.982−1.00 100 100
17 PE(18:4/14:0)e 2.42 27.21 1.74 × 10−56 7.05 × 10−56 1.00 0.982−1.00 100 100
18 chenodeoxycholic acid sulfatef 2.34 12.3 5.74 × 10−67 2.89 × 10−66 1.00 0.980−1.00 98.3 98.7
19 PGP(18:3/22:5)e 2.13 8.39 3.04 × 10−99 7.67 × 10−98 1.00 0.982−1.00 100 100
20 PG(18:0/20:3)e 2.07 3.95 3.04 × 10−62 1.37 × 10−61 1.00 0.982−1.00 100 100
21 eicosatrienoic acidf 2.04 0.23 7.12 × 10−75 4.27 × 10−74 1.00 0.982−1.00 100 100
22 DG(20:4/20:5)e 1.92 9.17 5.91 × 10−80 3.73 × 10−79 1.00 0.982−1.00 100 100
23 DG(22:5/18:4)e 1.91 16.48 5.93 × 10−99 1.07 × 10−97 1.00 0.982−1.00 100 100
24 palmitic acidg 1.85 13.93 1.76 × 10−57 7.40 × 10−57 1.00 0.982−1.00 100 100
25 PC(22:0/24:0)e 1.83 14.41 6.38 × 10−63 2.98 × 10−62 1.00 0.980−1.00 100 98.0
26 3-hydroxytetradecanedioic acidf 1.82 17.66 7.79 × 10−67 3.77 × 10−66 1.00 0.982−1.00 100 100
27 LPC(14:0)g 1.81 0.64 1.88 × 10−28 4.08 × 10−28 0.92 0.878−0.975 89.2 87.5
28 PG(16:0/20:3)e 1.64 18.63 2.13 × 10−88 1.58 × 10−87 1.00 0.982−1.00 100 100
29 PC(18:2/22:0)e 1.55 15.53 1.69 × 10−99 1.06 × 10−97 1.00 0.980−1.00 100 98.0
30 DG(22:5/20:4)e 1.52 18.84 5.63 × 10−85 3.73 × 10−84 1.00 0.982−1.00 100 100
31 9-oxooctadecanoic acidf 1.43 12.49 7.46 × 10−26 1.52 × 10−25 1.00 0.973−1.00 99.2 98.7
32 TG(14:1/20:0/20:3)e 1.34 2.62 1.49 × 10−24 2.80 × 10−24 0.92 0.873−0.953 87.5 87.5
33 TG(15:0/20:1/15:0)e 1.32 9.19 6.96 × 10−56 2.74 × 10−55 1.00 0.982−1.00 100 100
34 LPC(18:2)e 1.23 20.21 7.61 × 10−99 1.07 × 10−97 1.00 0.982−1.00 100 100
35 12-hydroxyheptadecanoic acidf 1.21 6.83 1.45 × 10−55 5.54 × 10−55 1.00 0.978−1.00 98.3 100
36 MG(18:4)f 1.15 15.09 2.20 × 10−48 7.51 × 10−48 1.00 0.982−1.00 100 100
37 MG(20:5)f 1.13 8.19 7.36 × 10−69 3.86 × 10−68 1.00 0.979−1.00 98.3 98.7
38 18-hydroxyarachidonic acidf 8.54 0.66 6.59 × 10−47 2.19 × 10−46 0.98 0.948−0.994 90.0 96.2
39 3-oxooctadecanoic acidg 7.41 3.97 1.03 × 10−33 2.61 × 10−33 0.98 0.943−0.992 91.7 100
40 arachidonic acidg 4.86 0.13 1.92 × 10−28 4.11 × 10−28 0.98 0.952−0.995 94.2 98.7
41 DG(20:1/22:2)e 4.54 0.18 1.28 × 10−54 4.75 × 10−54 0.99 0.960−0.998 100 100
42 2-arachidonylglycerole 4.15 0.63 8.59 × 10−50 3.01 × 10−49 0.98 0.952−0.995 89.2 100
43 TG(18:4/20:4/22:6)e 3.08 4.12 7.73 × 10−46 2.50 × 10−45 0.99 0.958−0.997 91.7 97.5
44 TG(14:1/14:0/16:1)e 2.78 0.66 1.18 × 10−42 3.63 × 10−42 0.96 0.927−0.985 89.2 93.7
45 PC(20:2/24:1)f 2.53 0.62 8.46 × 10−35 2.37 × 10−34 0.95 0.904−0.973 87.5 93.7
46 TG(22:0/22:4/14:1)e 2.11 8.61 3.85 × 10−34 1.03 × 10−33 0.95 0.906−0.974 88.3 100
47 DG(20:0/18:3)e 1.98 0.32 1.06 × 10−11 1.59 × 10−11 0.92 0.874−0.954 85.8 92.5
48 PE(24:1/24:1)e 1.69 1.73 4.30 × 10−29 9.84 × 10−29 0.94 0.893−0.966 91.7 93.7
49 DG(22:0/15:0)e 1.64 0.10 4.35 × 10−50 1.57 × 10−49 0.99 0.961−0.998 98.3 98.7
50 bisnorcholic acide 1.53 0.74 3.49 × 10−34 9.57 × 10−34 0.95 0.905−0.973 90.8 88.7
51 MG(14:0)f 1.32 0.16 4.02 × 10−42 1.21 × 10−41 0.98 0.950−0.995 94.2 97.5
52 TG(22:2/22:5/22:6)e 1.28 6.20 6.05 × 10−34 1.56 × 10−33 0.95 0.915−0.978 90.0 100
53 prostaglandin E2g 1.25 0.16 3.54 × 10−23 6.55 × 10−23 0.98 0.944−0.993 95.8 97.5
54 DG(20:1/22:5)e 1.23 2.62 4.61 × 10−39 1.35 × 10−38 0.99 0.961−0.998 95.8 97.5
55 DG(22:5/22:0)e 1.22 0.09 1.06 × 10−35 3.04 × 10−35 0.96 0.923−0.983 93.3 95.0
56 PG(18:1/18:2)e 1.21 11.33 2.14 × 10−15 3.29 × 10−15 1.00 0.978−1.000 98.3 98.7
57 PE(24:1/18:1)e 1.20 6.66 2.52 × 10−31 6.10 × 10−31 0.98 0.945−0.993 95.8 98.7
58 TG(18:3/22:4/22:5)e 1.18 6.15 2.39 × 10−20 4.01 × 10−20 0.94 0.892−0.966 87.5 91.7
59 8,9-Epoxyeicosatrienoic acide 1.17 0.67 1.02 × 10−57 4.43 × 10−57 1.00 0.978−1.000 97.5 100
60 chenodeoxycholic acidg 1.17 0.16 1.10 × 10−27 2.32 × 10−27 0.94 0.901−0.971 85.0 91.2
61 leukotriene B4g 1.12 0.17 5.94 × 10−43 1.87 × 10−42 0.98 0.948−0.994 95.0 97.5
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mode, respectively. PCA score plots and the heatmap showed
that 126 lipid species could separate patients with CKD from
healthy controls (Figure S2). Having a P < 0.05 were 113 out of
126 lipid species based on one-way ANOVA and adjusted FDR.
Subsequent analysis showed that 88 out of 113 lipid species
had an AUC > 0.85 based on ROC analysis and 59, 19, and
10 lipids were identified by the MS and MS/MS using
databases, analogue structure of authentic chemicals, and
authentic chemicals, respectively (Table 2). PCA score plots
and heatmap showed that 88 lipid species could separate
patients with CKD from healthy controls (Figure 1). For the
lipid species, 64 out of 113 have sensitivity and specificity equal
to or greater than 85% (Table 2).
The potential relationships of the lipid species were analyzed

using hierarchical clustering analyses. In accordance with their
Pearson correlation coefficients, 64 lipid species and the closely
associated lipids were clustered (Figure 2A). Three main lipid
classes including glycerophospholipids (PC, PE, PG, LPC, and
LPE), glycerolipids (MG, DG, and TG), and fatty acids were
observed in four major clusters. Additionally, SAM was further
used for lipid species selection.24 SAM identified 54 altered
lipid species (Figure 2B). To predict diagnostic performance
for each sample, predicted class probabilities was performed on
71 lipid species (Figure 2C). All 120 serum samples from CKD
were correctly grouped with 100% sensitivity. Data from all
80 control individuals were located in the control area with
100% specificity. Therefore, these lipid species were closely asso-
ciated with abnormal lipid metabolism in patients with CKD.

Significantly increased total fatty acids, glycerolipids, and
glycerophospholipids were observed in patients with CKD
compared to the healthy controls (Figure 3A). To further
confirm the significant changes in serum profile with severity of
CKD, we analyzed the relationships among total fatty acids,
glycerolipids and glycerophospholipids, triglyceride (TG), and
total cholesterol (TC) with eGFR in patients with CKD. The
serum level of total fatty acids, glycerolipids, and glycerophos-
pholipids directly correlated with serum TG and inversely
correlated with the eGFR and TC (Figure 3, panels B to C).
Figure 4 showed the intensities of 60 individual lipid species.
Significant increases in 6 saturated fatty acids (SFA) and 14
glycerolipids as well as significant decreases in 7 polyunsatu-
rated fatty-acids (PUFA) and 8 glycerolipids were observed in
patients with CKD. Except for 1 PC and 1 LPC, 22 glycerophos-
pholipids were significantly increased in patients with CKD.

3.3. BLR and ROC Curve Analysis

On the basis of the 64 differential lipid species, a logistic
regression model was developed to assess the potential utility of
significantly altered lipid species for the discrimination between
patients with CKD and healthy controls. Through a forward
stepwise analysis, methyl hexadecanoic acid, LPC(24:1), 3-oxo-
octadecanoic acid, and PC(20:2/24:1) were identified as reliable
lipid species in the regression model. Significantly increased
methyl hexadecanoic acid, LPC(24:1), and 3-oxooctadecanoic
acid and decreased PC(20:2/24:1) were observed in patients
with CKD.

Table 2. continued

no. lipid VIPa FCb Pc FDRd AUC 95% CI sensitivity (%) specificity (%)

62 leukotriene A4f 1.11 0.66 1.06 × 10−25 2.05 × 10−25 0.97 0.933−0.988 91.7 98.7
63 PG(18:0/22:4)e 1.09 9.04 1.50 × 10−28 3.31 × 10−28 0.92 0.872−0.952 90.0 93.7
64 DG(15:0/18:0)e 1.05 0.28 8.64 × 10−04 1.02 × 10−03 0.91 0.858−0.943 87.5 88.7
65 PC(22:0/14:0)e 1.32 0.39 3.59 × 10−31 8.53 × 10−31

66 PC(o-18:1/18:2)e 1.26 0.59 3.17 × 10−22 5.48 × 10−22

67 TG(18:4/20:4/20:5)e 6.26 0.79 1.24 × 10−22 2.23 × 10−22

68 TG(24:0/20:4/22:4)e 5.52 0.77 1.13 × 10−28 2.54 × 10−28

69 TG(18:3/18:3/20:5)e 4.69 0.79 2.20 × 10−22 3.90 × 10−22

70 ceramide(d18:1/16:0)e 4.44 0.33 8.38 × 10−26 1.65 × 10−25

71 TG(18:4/18:4/20:5)e 3.26 3.31 9.72 × 10−20 1.61 × 10−19

72 LPE(22:1)e 2.67 0.39 1.81 × 10−18 2.89 × 10−18

73 PC(24:0/24:0)e 2.62 0.52 9.23 × 10−23 1.69 × 10−22

74 Cer(t18:0/16:0)e 2.31 0.31 1.70 × 10−21 2.90 × 10−21

75 PE(24:1/22:2)e 1.97 0.52 2.72 × 10−22 4.76 × 10−22

76 MG(20:3)e 1.87 0.77 1.09 × 10−26 2.25 × 10−26

77 TG(24:0/18:3/20:1)e 1.86 0.26 3.86 × 10−10 5.46 × 10−10

78 TG(12:0/12:0/12:0)e 1.86 0.32 2.68 × 10−11 3.97 × 10−11

79 DG(14:1/18:1)e 1.54 0.54 6.96 × 10−32 1.72 × 10−31

80 TG(20:3/22:5/22:4)e 1.44 0.63 5.86 × 10−34 1.54 × 10−33

81 LPE(16:1)f 1.39 0.30 3.18 × 10−19 5.20 × 10−19

82 TG(15:0/20:5/22:6)e 1.38 1.53 6.86 × 10−18 1.08 × 10−17

83 DG(20:3/16:0)e 1.34 0.21 8.91 × 10−07 1.13 × 10−06

84 DG(15:0/20:0)e 1.28 0.26 2.94 × 10−07 3.81 × 10−07

85 PG(18:1/18:0)e 1.18 0.73 8.72 × 10−25 1.66 × 10−24

86 tetracosahexaenoic acidg 1.16 0.45 7.61 × 10−26 1.52 × 10−25

87 taurocholic acid 3-sulfatef 1.15 0.30 1.87 × 10−29 4.36 × 10−29

88 TG(24:1/22:6/22:6)e 1.03 1.67 3.63 × 10−10 5.20 × 10−10

aVIP was obtained from OPLS-DA model with a threshold of 1.0. bFC was obtained by comparing those metabolites in patients with CKD with the
healthy controls; FC with a value >1 indicated a relatively higher intensity presenting in patients with CKD, whereas a value <1 indicated a relatively
lower intensity compared with the healthy controls. cP values from one-way ANOVA. dValue of FDR was obtained from the adjusted P value of FDR
correction by Benjamini-Hochberg method. eMetabolites were predicted according to the MS and MS/MS using databases. fMetabolites validated
with their analogue structure of authentic chemicals. gMetabolites validated with authentic chemicals.
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Figure 1. Lipidomic profiling of plasma samples from 88 lipid species from both positive ion mode and negative ion mode that distinguish patients
with CKD from healthy controls. (A) PCA of two components of lipid species from 120 CKD samples and 80 control samples. (B) Different
principal components have a different contribution to separating CKD from healthy controls in this study. Red triangles and green crosses represent
patients with CKD and healthy controls, respectively. (C) Heatmap of altered lipid species between patients with CKD and healthy controls.
Red and green indicate increased and decreased levels, respectively. Rows: lipid species; columns: plasma sample.
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Figure 2. Analysis of Pearson correlation coefficients and diagnostic performances. (A) Hierarchical clustering analyses of the identified significant
lipid species. Four clusters were identified, indicating the patients with CKD and healthy controls of lipid species. Pearson correlation coefficients of
the seventy-one identified significant lipid species were shown on the plot. (B) The result of SAM scatter plot of observed scores plotted versus the
expected scores with a delta value of 3.0. The diagonal solid line indicates where these two measures are the same, whereas the dotted lines indicate
the significance threshold based on Delta = 3.0. The dotted lines are drawn at a distance of delta from the solid line. The significant lipid species are
represented in green. The green open circles above and below the dotted lines correspond to the increased and decreased lipid intensities,
respectively. (C) Diagnostic performances of the 71 differential lipid species based on the PLS-DA model.
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3.4. Validation of Four Significantly Altered Lipid Species

For validation of four lipid species, these lipid species were
measured in the serum of an independent cohort. The results
confirmed that the four lipid species could separate patients
with CKD from the healthy controls with high sensitivity,
specificity, and diagnostic performances (Figure 5, panels A, B,
and C). Diagnostic performances showed all 60 CKD samples
were located in the CKD area (100% sensitivity) and 38 out of
the 40 control samples were correctly grouped (95% spec-
ificity) (Figure 5D). Significantly increased methyl hexadeca-
noic acid, LPC(24:1) and 3-oxooctadecanoic acid and
decreased PC(20:2/24:1) were observed in 60 patients with
CKD compared to the 40 healthy controls (Figure 6A). To
further validate candidates that might be useful in detecting
CKD, we analyzed the relationship between each lipid species
and eGFR and serum creatinine levels. The analysis showed
that methyl hexadecanoic acid, LPC(24:1), and 3-oxooctade-
canoic acid were inversely correlated while PC(20:2/24:1) were
positively correlated with eGFR. Methyl hexadecanoic acid,
LPC(24:1), and 3-oxooctadecanoic acid were positively cor-
related while PC(20:2/24:1) was inversely correlated with
serum creatinine level. Figure 6 demonstrates the strong cor-
relation between each lipid species and eGFR and serum
creatinine (R > 0.8758).

4. DISCUSSION

In this study, we found significant increases in the serum
levels of total fatty acids, glycerolipids, and glycerophospho-
lipids in patients with CKD. The serum levels of total
fatty acids, glycerolipids, and glycerophospholipids were
positively correlated with the TG and inversely correlated
with the eGFR and TC. In addition, we found significant
increases in 7 fatty acids and 14 glycerolipids as well as
significant decreases in 7 fatty acids and 8 glycerolipids in
patients with CKD. Except for one PC and one LPC, twenty-two
glycerophospholipids were significantly increased in patients
with CKD. Increased methyl hexadecanoic acid, LPC(24:1),
and 3-oxooctadecanoic acid levels as well as the decreased
PC(20:2/24:1) level were chosen using BLR. These findings
were confirmed using an independent cohort employed in the
discovery phase.
Interestingly, our study showed that SFA levels were sig-

nificantly increased while PUFA levels were significantly
decreased in patients with CKD compared to the healthy con-
trols. High levels of free fatty acids (FFA) and SFA are closely
associated with a higher risk of cardiovascular disease in
patients with CKD. Many studies have reported that the serum
levels of FFA and SFA are significantly increased in patients
with kidney disease. Increased serum FFA and SFA levels have

Figure 3. Intensity of total fatty acyls, glycerolipids, and glycerophospholipids were correlated with eGFR, TG, and TC. (A) Significantly increased
total fatty acyls, glycerolipids, and glycerophospholipids. (B) Correlations between eGFR and the total fatty acyls, glycerolipids, and
glycerophospholipids. (C) Correlations between triglyceride and the total fatty acyls, glycerolipids, and glycerophospholipids. (D) Correlations
between total cholesterol and the total fatty acyls, glycerolipids, and glycerophospholipids.
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been observed in the prehemodialysis patients compared to the
healthy controls.19 In fact, an increased serum SFA level has
been shown to be associated with an increased risk of sudden
cardiac death in hemodialysis patients.25 Methyl hexadecanoic
acid and 3-oxooctadecanoic acid are both SFA. Metabolomics
study demonstrated that methyl hexadecanoic acid was
identified from bronchoalveolar lavage fluid in preterm infants
complicated by respiratory distress syndrome.26 3-Oxooctade-
canoic acid was an intermediate product in fatty acid bio-
synthesis, and it was converted from malonic acid via the
enzyme. In humans, fatty acids are mainly formed in the liver
and adipose tissue and mammary glands. Recent metabolomics
study showed that 3-oxohexadecanoic acid was an important
metabolite in the saliva of the γ-irradiation-induced mice.27 Our
study showed that significant increased methyl hexadecanoic
acid and 3-oxooctadecanoic acid levels were well-correlated
with eGFR and serum creatinine in patients with CKD,
which are consistent with the above-mentioned publica-
tions. Recently, Kang et al. demonstrated downregulation of
key enzymes and regulators of fatty acid oxidation and
increased intracellular lipid deposition in both humans and
the mouse model with tubulointerstitial fibrosis.6 Experiments
using tubular epithelial cells indicated that inhibition of fatty

acid oxidation causes ATP depletion, cell death, intracellular
lipid deposition, and dedifferentiation to pro-fibrotic pheno-
type. In contrast, restoration of fatty acid metabolism by
genetic or pharmacological manipulations protected mice
from tubulointerstitial fibrosis.6 Uptake of long-chain fatty
acids is facilitated by the long-chain fatty acid transporter,
CD36.28 Metabolism of fatty acid requires their transport into
the mitochondria by combining fatty acids to carnitine via
carnitine palmitoyltransferase 1, which is the rate-limiting
enzyme in fatty acid oxidation.29 The β-oxidation of fatty acids
takes place in the mitochondria, and reduced fatty acid
oxidation results in mitochondrial dysfunction and oxidative
phosphorylation defect.6 Normally, fatty acid uptake, oxida-
tion, and synthesis are tightly balanced to avoid intracellular
lipid accumulation. Reduced thiobarbituric acid-reactive
substance may limit oxidative stress by associating with the
assembly of PUFA in membrane lipids and lipoproteins,
making the double bonds less available for attack by free
radicals; inhibiting the pro-oxidant enzyme, phospholipase
A2; and by upregulating antioxidant enzymes.30 Accumulated
evidence indicated that fatty acid metabolism is disturbed in
patients with CKD and contributes to the increased fatty acid
peroxidation and development of oxidative stress.

Figure 4. Box plots of major lipid species, including fatty acyls, glycerolipids, glycerophospholipids, and sterols in patients with CKD and healthy
controls. Black and red boxes represent healthy controls and patients with CKD, respectively. The lines in the boxes represent the median intensity
value for each lipid; the upper and lower boundaries of the box indicate the 75th and 25th percentiles, respectively; the upper and lower whiskers
represent the maximum and minimum values. **P < 0.01, compared with healthy controls.
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Elevated triglyceride level is associated with cardiovascular
and all-cause mortality. The metabolism of glycerolipids including
MG, DG, and TG are disturbed in patients with CKD. Previous
studies have found significant alterations in glycerolipids syn-
thesis and catabolism in patients with renal cell carcinoma and
CKD.18,31 Most of the previous studies have mainly measured
total TG level in patients with CKD. In the present study, we
found elevated levels of 6 TG and decreased level of one TG in
patients with CKD. Reis et al. found that although total LDL
was unaltered, triglyceride level of LDL was significantly
increased in patients with CKD.20 Elevation of TG is com-
monly accompanied by significant reduction of high-density
lipoprotein cholesterols in patients with CKD.32 Serum triglyc-
erides are significantly increased in patients and animals
with CKD. Hypertriglyceridemia in CKD is primarily due to
impaired TG clearance occasioned by down-regulations of
lipoprotein lipase and VLDL receptor in adipose tissues and
skeletal muscles and hepatic lipase and LDL receptor related
protein in the liver.33,34 Five DG were increased and five DG
were decreased in patients with CKD in our study. Teramoto
et al. reported that 3-month ingestion of exogenous DG reduced
the level of abdominal fat and improved serum lipid profile in
free-living hemodialysis patients. Ingestion of DAG significantly
decreased serum VLDL, altered serum MG, and increased high-
density lipoprotein (HDL) levels at three months.35

Glycerophospholipids are the main components of the
cell membranes and play a major role in cell signaling,
membrane anchoring, and substrate transport. Serum levels of

22 glycerophospholipids including PC, PE, LPC, LPE, and PGP
were significantly altered in our patients with CKD. Previous
studies have demonstrated abnormal glycerophospholipids in
patients and animals with CKD.18,36−39 For example, abnormal
PC metabolism was observed in patients with mild to advanced
CKD.40 In addition, Rhee et al. have reported decreased LPC
including LPC(18:1) and LPC(18:2) in advanced patients
with CKD and decreased LPC(14:0), PC(34:4), PC(32:2),
and PC(38:3) in patients with ESRD.41,42 Phospholipases can
catalyze the decomposition of phospholipids to release FFA.
Therefore, activation of phospholipase A2 can lead to the
release of FFA, reduction of PC, and elevation of the LPC
levels. These are consistent with the results of the present study
which revealed significant decrease in PC(20:2/24:1) coupled
with significant increases in LPC(24:1) and FFA levels in our
patients with CKD. In addition, LPC is produced from PC by
lecithin cholesterol acyltransferase.43 Lee et al. demonstrated
that hemodialysis patients with low LPC level have a higher risk
of cardiovascular disease than those with higher LPC level.44

Decrease in PC(20:2/24:1) and increase in LPC(24:1) are
consistent with previously demonstrated deficiency of lecithin
cholesterol acyltransferase and activation of phospholipase A2
in patients with CKD.45

The main limitations of the present study are limited number
of patients which precluded the ability to explore the impact of
gender, age, nutritional status, systemic inflammation, and use
of various drugs on the observed abnormalities of lipid metab-
olites in our patients with CKD.

Figure 5. Validations of biomarker from multivariate statistical analyses. (A) PLS-DA-based ROC curves for the diagnosis power of four plasma
individual lipids for distinguishing CKD from healthy controls. The four lipids have an AUC value of more than 0.85 and high sensitivity and
specificity. They could potentially be considered as predictive lipids for CKD. The (B) 2D PCA and (C) 3D PCA score scatter plot using four lipids
from 60 patients with CKD and 40 healthy controls. The unsupervised PCA score plots showed that four lipids could separate patients with CKD
from the healthy controls. (D) Diagnostic performances of the four lipids in plasma based on the PLS-DA model from 60 patients with CKD and
40 healthy controls. All 60 CKD samples were located in the CKD area (100% sensitivity). Out of the 40 control samples, 38 were correctly grouped
(95% specificity).
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5. CONCLUSIONS
A UPLC-HDMS-based lipidomic approach was used to analyze
serum lipids in advanced patients with CKD. Significantly
increased methyl hexadecanoic acid, LPC(24:1), and 3-oxo-
octadecanoic acid and significantly decreased PC(20:2/24:1)
strongly correlated with eGFR and the creatinine level. These
lipid metabolites were significantly altered in serum samples of
patients with advanced CKD of different etiology. Application
of UPLC-HDMS-based lipidomic technique revealed profound
changes in lipid metabolites in patients with advanced CKD.
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Figure 6. Validations of biomarker by using correlation between plasma four lipid levels and eGFR and creatinine. (A) Box and whisker plots
indicating the levels of methyl hexadecanoic acid, LPC(24:1), 3-oxooctadecanoic acid, and PC(20:2/24:1) in CKD versus healthy controls. The lines
in the boxes represent the median intensity value for each lipid; the upper and lower boundaries of the box indicate the 75th and 25th percentiles,
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(B) Correlation between methyl hexadecanoic acid, LPC(24:1), 3-oxooctadecanoic acid, and PC(20:2/24:1) levels (peak intensity) measured by the
UPLC-MS and eGFR by calculated formula. (C) Correlation between methyl hexadecanoic acid, LPC(24:1), 3-oxooctadecanoic acid, and PC(20:2/
24:1) levels (peak intensity) measured by the UPLC-MS and creatinine (μmol/L) measured by the clinical laboratory. The horizontal axes show the
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