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 ABSTRACT
Subsets of annual and sub-annual tree-ring 
chronologies are used to reconstruct seasonal 
precipitation totals in northern California. The 
specific seasons selected for reconstruction are 
based on the strongest monthly precipitation 
signals recorded in the tree-ring data. Earlywood 
width of gray pine is best correlated with 
Oct-Dec precipitation at the onset of the wet 
season. Latewood width of ponderosa pine is 
correlated with Mar–Apr totals at the end of 
the wet season. These earlywood and latewood 
width chronologies are used to develop 
separate reconstructions of precipitation for 
the “autumn” (Oct–Dec) and “spring” (Mar–Apr) 
seasons. Total ring-width chronologies of blue 
oak are highly correlated with October–April 
precipitation totals and are used to reconstruct 

precipitation for the “wet season.” We then 
computed one additional skillful reconstruction 
by subtracting the reconstructed spring totals 
from the wet season precipitation estimates (i.e., 
“winter” [Oct–Feb]). We compare the winter and 
spring reconstructions because they are well 
calibrated and provide an interesting long-term 
perspective on the interaction of winter–spring 
precipitation amounts near March 1, when 
important reservoir management decisions are 
often made. Consecutive wet winter and very 
wet spring precipitation anomalies increased 
after 1950 in the instrumental and reconstructed 
time-series, often coinciding with the largest 
spring streamflow and flood events recorded 
on the American River at Folsom. Once the sub-
annual tree-ring data can be improved, it may be 
possible to develop discrete reconstructions of 
early-, middle-, and late-season precipitation for 
the past 250 to 500 years, to help define natural 
variability and anthropogenic forcing of seasonal 
precipitation totals in California.

KEY WORDS
Pinus ponderosae, Pinus sabiniana, Quercus 
douglasii, seasonal precipitation reconstructions, 
tree rings, atmospheric rivers, paleoclimatology 
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INTRODUCTION 
The variability of seasonal to sub-seasonal 
precipitation can influence flood risk and water 
supply in California. Approximately 80% to 90% 
of annual precipitation occurs during the wet 
season from October through April (Cayan and 
Roads 1984), but precipitation in autumn, winter, 
and spring can have distinct environmental 
and water-resource effects. The onset of the wet 
season in autumn can greatly reduce wildfire 
hazards (Williams et al. 2019; Goss et al. 2020).  
Sierra Nevada snowpack accumulated in winter 
provides the main source of water for agriculture 
and hydropower in California (Bales et al. 2006). 
Spring precipitation represents the smallest 
seasonal fraction of average wet season totals, but 
major spring storms can augment water supplies 
in some otherwise dry years. The correlation 
between autumn, winter, and spring precipitation 
is low, but the variability of precipitation 
totals in each of these seasons is governed by 
just a handful of large storm events each year 
(Dettinger 2013, 2016; Lamjiri et al. 2018).  These 
heavy storm totals are frequently delivered via 
landfalling atmospheric rivers (ARs) and can have 
a large influence on water supply and flood risk 
across the western US (Dettinger 2013).   

Analyses of instrumental precipitation data in 
California indicate increased variability (Granger 
1979), delayed onset of the wet season, and 
significant drying trends in autumn and spring 
since the mid 20th century (Swain et al. 2018; Goss 
et al. 2020; Luković et al. 2021).  Climate model 
projections of shoulder season precipitation 
suggest that autumn and spring drying will occur 
in the 21st century, while winter is projected to 
become wetter as the result of an increase in 
the frequency and magnitude of extreme storms 
(Neelin 2013; Polade et al. 2017; Swain et al. 2018). 
Wetter winters coupled with drier and warmer 
conditions during spring could affect the timing 
of snowmelt and runoff, which could affect 
reservoir operations and water rights, and might 
be detrimental to riparian ecosystems (Willis et 
al. 2011; Schwartz et al. 2017).  

Reservoir management in California attempts 
to balance flood risk with water supply, and 

is dictated by seasonal rule curves that set the 
maximum amount of water that can be stored in 
a reservoir for each day of the year (Howard 1999; 
Willis et al. 2011). These rule curves are based on 
average seasonal precipitation and runoff, and 
require more empty reservoir space during the 
flood-prone winter season. Once monthly mean 
precipitation begins to decline in spring, reservoir 
operators may capture storm runoff for water 
supply. The rate of reservoir refill during spring 
can be determined in part by the antecedent 
winter conditions, with the highest rate of spring 
refill allowed after a dry winter (Willis et al. 
2011). Reservoir management in California is 
therefore sensitive to precipitation and runoff 
from winter to spring, but the rule curves used 
are based on limited historical precipitation data 
and may not represent the full range of variability 
in winter and spring precipitation. Long-proxy 
reconstructions of seasonal precipitation could 
help define natural variability and the frequency 
of co-occurring seasonal extremes, a potentially 
useful historical perspective for water resource 
managers.  

Several climate-sensitive tree species have been 
used for tree-ring chronology development and 
hydroclimatic reconstruction across western 
North America (e.g., Cook et al. 1999; Meko et 
al. 1980; Meko and Woodhouse 2005; Griffin 
and Anchukaitis 2014; Stahle et al. 2020; Wise 
2020; Woodhouse et al. 2020; Williams et al. 
2021). These reconstructions are largely based 
on chronologies of total ring width (RW) that 
tend to integrate climate across several months 
during and preceding the tree growth season, 
resulting in reconstructions of climate variables 
like the Palmer Drought Severity Index (Cook et 
al. 1999; Meko et al. 1980), annual precipitation 
(Michaelsen et al. 1987), and annual streamflow 
totals (Meko et al. 2001). Subsets of tree-ring 
chronologies with cool (Dec-Apr) and warm 
(May-Jul) season precipitation signals have 
recently been used to develop the gridded North 
American Seasonal Precipitation Atlas (NASPA; 
Stahle et al. 2020), but the NASPA reconstructions 
were not able to isolate the early, middle, or late 
wet-season precipitation totals in California. Wise 
(2020) used the available network of tree-ring 
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chronologies to reconstruct precipitation and 
runoff for separate months and seasons over the 
US West Coast, which is possible because some 
RW chronologies embed a stronger sub-annual 
signal even though they are also correlated with 
precipitation at longer inter-seasonal time-scales 
(i.e., the full wet season or even the water year; 
St. George et al. 2010). RW chronologies from the 
western US have also proven to be useful proxies 
for the number of ARs that make landfall during 
the cool season each year (Steinschneider et al. 
2018; Borkotoky et al. 2021).

Sub-annual tree-ring chronologies of earlywood 
(EW) and latewood (LW) width can be used to 
estimate discrete meteorological and climate 
conditions at daily, monthly, and seasonal time-
scales (Stahle et al. 2009; Griffin et al. 2013; 
Watson and Luckman 2016; Carlón-Allende et al. 
2018; Howard and Stahle 2020; Stahle et al. 2020; 
Ziaco 2020). However, the availability of EW and 
LW width chronologies is still limited, and it is 
unclear if sub-annual ring-width data can be used 
in California to narrow the window of climate 
reconstruction down to seasonal or possibly 
sub-seasonal time-scales to provide insight into 
precipitation variability and extremes.

In this study, we develop sub-annual tree-ring 
chronologies from gray pine (Pinus sabiniana) 
and ponderosa pine (Pinus ponderosae) located in 
northern California. We use monthly response 
analyses to illustrate the autumn (Oct–Dec) 
precipitation signal in select gray pine EW 
chronologies and a spring (Mar–Apr) precipitation 
signal in ponderosa pine adjusted latewood 
width chronologies (LWa, adjusted to remove the 
correlation with EW growth; Meko and Baisan 
2001). We use these specific seasonal precipitation 
signals in the gray pine EW and ponderosa pine 
LWa chronologies to separately reconstruct 
autumn and spring precipitation. We also 
compute a wet season (Oct–Apr) reconstruction 
from the strong wet season precipitation signal 
in four RW chronologies of blue oak (Quercus 
douglasii). We then use the wet season and 
spring reconstructions to calculate precipitation 
estimates for a long “winter” season (Oct–Feb) 
by subtracting the spring precipitation totals 

from the full wet season reconstruction. We 
then investigate the interannual and decadal 
variability in seasonal precipitation, and the 
interaction of winter and spring precipitation 
extremes, using both the instrumental and 
reconstructed time-series.  

METHODS AND DATA 
Study Area and Tree-Ring Chronology Development 
Several new tree-ring chronologies of gray pine 
and ponderosa pine were used in this study along 
with four existing blue oak collections (Figure 1, 
Table 1). Gray pine is a California endemic 
species that often co-occurs with blue oak in the 
foothills of the Coast Ranges and Sierra Nevada 
near the lower forest border, where warm and 
dry conditions favor extreme growth sensitivity 
to precipitation (Powers 1990). The species can 
likely live for 300 years, but many existing gray 
pine stands appear to be much younger, and 
the species has not been previously used for 
dendroclimatology. Ponderosa pine is widespread 
in California and was used in A.E. Douglass’ 
first scientific article on dendroclimatology 
(Douglass 1909). Blue oak chronologies are highly 
correlated with wet season precipitation totals, 
and have been widely used for hydroclimatic 
reconstructions in California (Stahle et al. 2001; 
St. George et al. 2010; Meko et al. 2011; Stahle et 
al. 2013; Belmecheri et al 2016).  

The annual growth rings on all core specimens 
were exactly dated with dendrochronology. 
The width of the EW and LW components of 
the annual ring were measured separately to a 
precision of 0.001 mm and were then summed 
for total ring width. The methods outlined by 
Stahle et al. (2009) were used to delineate the 
earlywood and latewood boundaries in each 
growth ring. The measured ring-width series of 
EW, LW, and RW were detrended using a cubic 
smoothing spline with a 0.50 frequency response 
at a wavelength equal to 70% of each measured 
series (Cook and Peters 1981). We average the 
growth indices into the respective EW, LW, 
and RW index chronology using the robust 
mean-value function (Cook 1985). We then used 
autoregressive modeling (Meko 1981) to remove 

https://doi.org/10.15447/sfews.2023v21iss1art2
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Table 1  The tree-ring collection sites are identified along with the species sampled, location, elevation, and length of the derived chronology. The species 
abbreviations are ponderosa pine (PIPO), gray pine (PISB), and blue oak (QUDG). Earlywood (EW), latewood (LW), and total ring-width (RW) chronologies 
were developed for the conifers, while only RW chronologies were available for blue oak. The number of radii sampled and used in the calculation of the 
EW, LW, and RW chronologies is listed for all species.  

Site name Species Latitude Longitude Elevation (m) Length Sample size 

Bear River Ridge PIPO 38.54 120.35 1710 1680-2017 48

Truckee River PIPO 39.28 120.25 1890 1750-2017 41

Finley Lake PISB 40.27 121.85 854 1771-2018 24

Walker Ridge PISB 39.03 122.44 535 1897-2017 31

Clear Lake QUDG 39.02 122.82 426 1620-2004 102

Bear Valley Buttes QUDG 39.21 122.44 490 1546-2004 42

Mount Diablo QUDG 37.87 121.95 245 1645-2003 84

Putah Creek QUDG 38.67 122.27 180 1534-2004 35

Figure 1  (A) The tree-ring collection sites are mapped 
and the study area in northern California is outlined (38.5–
39.5ºN, 122–120ºW). The tree-ring data include earlywood 
(EW) and latewood (LW) chronologies of gray pine and 
ponderosa pine. Total ring-width (RW) chronologies of 
blue oak were used in the reconstruction of wet season 
(Oct–Apr) precipitation and to derive estimates of winter 
(Oct–Feb) precipitation.  
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the autocorrelation present in each chronology, 
to produce the persistence-free “residual” 
chronologies that were used to correlate with 
the instrumental precipitation data. We used the 
Kalman filter (Welch and Bishop 2006) to compute 
the ponderosa pine data for LWa chronologies, 
which represent LW growth that is not correlated 
with antecedent EW growth (Meko and Baisan 
2001). Previous studies have shown that RW of 
ponderosa pine from California is correlated with 
precipitation late in the wet season (Johnson et 
al. 2017; Finley and Zhang 2019), and this signal 
can be enhanced using just the LW component 
of the annual ring (see Figure 2B). However, 
the LW width chronology shares a significant 
co-variability with EW width and precipitation 
before spring. We hypothesized that regressing 
the LW width chronology on the EW chronology 
would result in a residual time-series with a late-
season precipitation signal not well correlated 
with moisture during the prior months. This 
method is similar to what is applied to EW and 
LW conifer chronologies in the southwestern 
US, where LW regression on the EW chronology 
produces a time-series that can enhance the 
summer precipitation signal (Meko and Baisan 
2001; Stahle et al. 2009; Griffin et al. 2013).

Instrumental Precipitation and Integrated Vapor 
Transport Data
We extracted and averaged gridded instrumental 
precipitation data for a study area in northern 
California (38º–39.5ºN, 122º–120ºW; Figure 1). 
We chose this region because the various blue 
oak, gray pine, and ponderosa pine chronologies 
are most highly correlated with seasonal 
precipitation in this area. We then used these 
regional precipitation data for daily and monthly 
precipitation response analyses, calibration of the 
seasonal tree-ring reconstructions, and analyses 
of seasonal precipitation variability. We acquired 
daily precipitation data from the National Oceanic 
and Atmospheric Administration (NOAA) Climate 
Prediction Center’s (CPC) US Unified Gauge-
Based Analysis of Precipitation data set (Higgins 
et al. 2000, 2007).  The gridded daily data cover 
the continental US at 0.25º latitude by 0.25º 
longitude resolution from 1948 to the present. 
The daily totals at each grid point are calculated 

for the 24-hour period ending at 1200 UTC of the 
current day. Monthly precipitation data from the 
Global Precipitation Climatology Centre (GPCC; 
Schneider et al. 2022) were also used to examine 
the distribution of seasonal precipitation totals 
and the relationship between winter and spring 
precipitation over the full instrumental period 
from 1891 to 2016. Monthly precipitation data 
from the parameter-elevation regression on 
independent slopes model (PRISM) climate group 
(Daly et al. 1994) were used to illustrate the spatial 
correlation patterns between the seasonal tree-
ring reconstructions and the respective seasonal 
precipitation data. Gridded 3-hourly integrated 
vapor transport (IVT) data from MERRA-2 
(Gelaro et al. 2017) were used to examine the 
connections between seasonal AR variability and 
the instrumental and reconstructed seasonal 
precipitation totals for the study area (based 
on 1980 to 2003 for winter, and 1980 to 2017 for 
autumn and spring).  

Calibration and Verification of the Seasonal Precipitation 
Reconstructions 

Seasonal Definitions 
We used the EW chronologies of gray pine to 
reconstruct autumn precipitation (Oct–Dec), the 
full RW chronologies of blue oak to reconstruct 
wet season precipitation (Oct–Apr), and the 
LWa width chronologies of ponderosa pine to 
reconstruct spring precipitation totals (Mar–Apr) 
in the northern California study area. We then 
used the winter and spring reconstructions to 
derive one additional tree-ring-based estimate 
of “winter” precipitation (Oct–Feb). The autumn, 
wet season, and winter reconstructions are not 
independent because of the shared monthly 
totals, but are based on different tree species, and 
are computed to simply demonstrate feasibility 
for the reconstruction of sub-wet-season totals. 
We used these specific seasons because they 
represent the strongest precipitation signal 
detected in the available EW, LWa, and RW 
chronologies. Only the winter (Oct–Feb) and 
spring (Mar–Apr) reconstructions are analyzed in 
detail.

https://doi.org/10.15447/sfews.2023v21iss1art2
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Seasonal Reconstructions
 We used the full time-interval in common to 
the CPC instrumental precipitation and tree-ring 
data to calibrate the autumn, wet season, and 
spring reconstructions. To test the stability of 
the relationships between the reconstructions 
and the instrumental data, we also computed 
split calibration and validation experiments on 
early (1948 to 1982 for autumn and spring; 1949 
to 1976 for the wet season) and late time-periods 
(1983 to 2017 for autumn and spring; 1977 to 2003 
for the wet season). We computed an additional 
independent validation using the GPCC data 
by correlating the reconstructions with the 
respective instrumental seasonal precipitation 
data from 1900 to 1947 (autumn and winter) and 
1900 to 1948 (wet season). The validation statistics 
include the Pearson correlation coefficient, 
reduction of error, and coefficient of efficiency 
(Table 2; Cook and Kairiukstis 1990).  

We computed the reconstruction of autumn 
precipitation using an average of the Finley 
Lake and Walker Ridge gray pine EW width 
chronologies and calibrated on power-
transformed autumn precipitation totals for the 
period 1948 to 2017. We used the Box-Cox power 
transformation method (Box and Cox 1964) to 
reduce the positive skewness of the instrumental 
data. After calibration, we back-transformed the 
reconstructed estimates into the original units of 
winter precipitation. 

We used four blue oak RW chronologies (Table 1) 
to calculate the wet season precipitation 
reconstruction. We used stepwise regression 
using the individual chronologies, which resulted 
in markedly improved calibration statistics 
compared to bivariate or principal component 
regression approaches. We calibrated the 
reconstruction with the wet-season instrumental 
precipitation data over the full common period of 
1949 to 2003 (the available blue oak chronologies 
were not updated to present for this study)

We constructed the spring precipitation totals 
using the average of two ponderosa pine LWa 
chronologies as the single predictor variable in a 
bivariate regression model (i.e., Bear River Ridge 

and Truckee River; Tables 1 and 2). We calibrated 
the LWa chronology on log-transformed spring 
precipitation data from 1948 to 2017. We then 
back-transformed the spring estimates to the 
original units of precipitation by taking the 
exponent of the reconstructed values.  

We computed the winter precipitation 
reconstruction (Oct–Feb) by subtracting the spring 
reconstruction (Mar–Apr) from the wet-season 
reconstruction. We then re-scaled the derived 
winter estimates to the instrumental winter 
precipitation data. We used correlation analysis 
to document the agreement between the winter 
reconstruction and the instrumental totals for 
the common period of 1949 to 2003 and for an 
independent verification period of 1900 to 1948. For 
all reconstructions, we restored the instrumental 
variance lost in regression, and used the 
instrumental data to extend the records to 2022.

Daily Correlation Analysis 
If the tree-ring reconstructions are to be used to 
compare the interaction of seasonal extremes, 
it is important to determine if the tree-ring 
estimates have discrete seasonal signals.  Daily 
correlation analyses were used to demonstrate 
the separate seasonal precipitation signals 
embedded in the tree-ring reconstructions (e.g., 
Jevšenak 2019; Howard and Stahle 2020). The daily 
precipitation data for the study area were first 
summed for three intervals based on the length 
of the seasonal precipitation variable (i.e., 60 days 
spring, 90 days for autumn, 150 days for winter, 
and 210 days for the wet season) advancing 
one day at a time from the prior October 1 to 
the current September 30. The correlation 
coefficients for the 60-, 90-, 150-, and 210-day 
sums are plotted for the last day of each period, 
such that the correlation value on October 1 for 
a 60-day sum (represents the period from August 
2 to October 1). This produces 365 annual time-
series for each year and seasonal sum that could 
then be correlated with the tree-ring chronologies 
or reconstructions to determine the optimal 
season of precipitation response. We then used 
the calculated correlation coefficients for each 
interval and day of the year to plot daily response 
profiles. We also correlated instrumental seasonal 
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precipitation totals with the daily precipitation 
data to compare how well the response profiles 
of the seasonal reconstructions matched the 
response profiles of the instrumental data. The 
daily correlation analyses were based on 1948 to 
2017 for autumn and spring, and on 1949 to 2003 
for the wet season and winter estimates.

RESULTS 
Monthly Precipitation Response of the EW, LW, and 
Adjusted LW Chronologies
To illustrate the autumn and spring precipitation 
signals present in these sub-annual proxies, 
we correlated the gray pine EW and ponderosa 
pine LWa width chronologies with monthly 
precipitation totals from the northern California 
study area for all 12 months of the year. The 
gray pine EW width chronology—based on 

the average of the Finley Lake and Walker 
Ridge chronologies—is most highly correlated 
with precipitation in autumn and early winter 
(Figure 2A). The regional gray pine LW width 
chronology is significantly correlated with 
precipitation during all months of the wet season, 
peaking in March and April (Figure 2A). Adjusted 
gray pine LW width chronology has no detectable 
seasonal precipitation signal.  

The ponderosa pine EW width chronology does 
not have a strong precipitation signal during the 
wet season (Figure 2B). The ponderosa pine LWa 
width chronology is significantly correlated with 
spring precipitation totals (both March and April), 
and the monthly correlations with precipitation 
during the preceding autumn and winter are 
mostly not significant (Figure 2B). Therefore, we 

Table 2  Calibration and verification statistics are listed for the seasonal precipitation reconstructions. The autumn (Oct–Dec), wet season (Oct–Apr), and 
spring (Mar–Apr) precipitation reconstructions were calculated using the full calibration period in common with the instrumental data, but split period 
calibration and verification statistics are also listed. Each reconstruction was also correlated with independent instrumental precipitation data (using GPCC) 
from 1900 to 1947 for the autumn and spring reconstructions and 1900 to 1948 for the wet season and winter reconstructions. The R 2adj is the explained 
variance during the calibration period adjusted for the loss of degrees of freedom, RE is the reduction of error and CE the coefficient of efficiency statistic 
both computed for the verification interval, and r is Pearson correlation coefficient. Note that the calibration of the wet season reconstruction begins in 
1949 because autumn precipitation totals from 1948 are summed with Jan-Apr precipitation totals in 1949. The transfer functions used to calculate the 
reconstructions are included below each variable (pt = power transformed). X1t to X4t for the wet season reconstruction are the RW chronology values in 
year t for Mt. Diablo, Bear Valley Buttes, Putah Creek, and Clear Lake, respectively.  

Variable Calibration Verification R2adj   RE CE r

1.  Autumn (Oct–Dec) 1948-1982 1983-2017 0.49 0.33 0.33 0.60

ptŶt = 7.212 + 10.159X 1983-2017 1948-1982 0.34 0.48 0.48 0.71

 1948-2017 — 0.43 — — — 

 — 1900-1947 — — — 0.54

2.  Wet season (Oct–Apr) 1949-1976 1977-2003 0.85 0.68 0.68 0.88

Ŷt = 420.2 + 0.825X1t + 0.614X2t + – 0.507X3t + - 0.349X4t 1977-2003 1949-1976 0.80 0.67 0.67 0.84

 1949-2003 — 0.79 — — — 

 — 1900-1948 — — — 0.76

3.  Spring (Mar–Apr) 1948-1982 1983-2017 0.53 0.54 0.53 0.78

logŶt = 5.352 + 0.735X 1983-2017 1948-1982 0.60 0.41 0.40 0.73

 1948-2017 — 0.56 — — — 

— 1900-1947 — — — 0.60

4.  Winter (Oct–Feb) 1949-2003 — — — — 0.82

— 1900-1948 — — — 0.70

    Midwinter (Jan–Feb) 1949-2003 — — — — 0.57

 — 1900-1948 — — — 0.43

https://doi.org/10.15447/sfews.2023v21iss1art2
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used the LWa width chronology to reconstruct 
spring precipitation (Mar–Apr).  

Seasonal Precipitation Reconstructions
The calibration and verification statistics indicate 
the sub-annual and annual tree-ring width data 
can be used to provide preliminary estimates 
of autumn, winter, and spring precipitation 
variability over northern California. Only 
two gray pine EW width chronologies are 
currently available, but they explain 43% of 
the interannual variability in the transformed 
autumn precipitation totals (Oct–Dec) during 
the 1948 to 2017 calibration period (r = 0.66; 
p < 0.0001; Figure 3A, Table 2). The relationship 
between reconstructed and instrumental autumn 
precipitation is weaker when based on the 1983 
to 2017 verification period, but the RE and CE 
statistics both indicate that the reconstruction 
provides some skill when compared with 
independent autumn precipitation data (Table 2). 
The autumn reconstruction only extends back to 
1897 but is sufficient to demonstrate potential for 
tree-ring reconstruction of precipitation during 
the early wet season in California.  The Walker 
Ridge gray pine chronology dates from 1897 to 
2017, but the Finley Lake chronology dates from 
1771 to 2018 (Table 1), indicating that longer 

chronologies for this interesting species should be 
possible.  	

Full wet season precipitation totals (Oct–Apr) were 
reconstructed from four blue oak chronologies 
of RW. The reconstruction explains 79% of 
the variability in instrumental wet-season 
precipitation (r = 0.89, p <  0.0001). Experiments 
with split calibration/verification periods suggest 
that the relationship between blue oak growth 
and wet- season precipitation has been stable 
during the instrumental record from 1900 to 2003 
(Table 2, Figure 3B).  

We reconstructed spring precipitation totals 
(Mar–Apr) from the regional ponderosa pine 
LWa width chronology. The reconstruction 
explains 56% of the interannual variability of 
the log-transformed spring precipitation totals 
during the full calibration period (r = 0.75, p 
< 0.0001; Table 2). Split period calibration and 
verification tests were performed that indicate 
adequate calibration and verification of the spring 
reconstruction (Table 2). The back-transformed 
spring reconstruction correlates with the 
instrumental observations for spring from 1948 
to 2017 at r = 0.73 (p < 0.0001; Figure 3C, Table 2). 
The spring reconstruction also correlates with 
the instrumental data from 1900 to 1947 (r = 0.61; 

Figure 2  (A) The gray pine chronologies of earlywood (EW; blue) and latewood width (LW; red) are correlated with monthly precipitation totals for the 
region within the black box (Figure 1) from 1948–2017 (coefficients from prior September to August concurrent with tree growth are plotted). Note that the 
EW chronology is best correlated with precipitation during “autumn” (Oct–Dec). (B) Same as (A) for the ponderosa pine chronologies of EW and adjusted 
latewood width (LWa). Note the strong positive correlation between adjusted latewood width and “spring” precipitation (Mar–Apr).
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p < 0.0001). The spring estimates are based on 
only two chronologies with relatively low sample 
sizes (Table 1), but the calibration and verification 
statistics are promising, and may be improved 
upon once additional LW width chronologies can 
be developed in California. 

The reconstructions of wet season and spring 
precipitation make it possible to derive a 
more narrowly focused estimate of “winter” 
season precipitation (i.e., Oct–Feb). The winter 
reconstruction is computed by subtracting 
reconstructed spring precipitation totals (Mar–
Apr) from the full wet season reconstruction. The 
derived winter reconstruction correlates with the 
instrumental winter precipitation totals at r = 0.82 

from 1949 to 2003 (p < 0.0001) and at r = 0.72 
(p < 0.0001) from 1900 to 1948 (Figure 3B, Table 2). 

We correlated the autumn, winter, and spring 
reconstructions with gridded instrumental 
precipitation in California for a spatial 
perspective on the seasonal moisture signal 
in these tree-ring estimates (Figures 4A−4C; 
note the overlap of months in autumn and 
winter). The spatial correlations for the autumn 
reconstruction are weaker and are spread across 
most of northern California (Figure 4A). The 
highest correlations are observed in and near the 
study area for the winter (Figure 4B) and spring 
reconstructions (Figure 4C). 

Figure 3  Observed and tree-ring reconstructed precipitation 
totals are plotted for the (A)) autumn (Oct–Dec), (B) winter (Oct–
Feb), and (C) spring (Mar–Apr) seasons during the instrumental 
era, 1948–2022. Note that the r-values shown for autumn (A) and 
spring (C) were computed following the back transformation of 
the reconstructed estimates.  
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The instrumental and reconstructed seasonal 
precipitation series were also correlated with 
the IVT (Gelaro et al. 2017; Figure 5) to illustrate 
the connection between ARs and seasonal 
totals. The instrumental data are correlated 
with seasonalized IVT over a broad area of the 
southeast Pacific Ocean and extending into 
western North America in all three seasons, 
consistent with the transport of tropical moisture 
in ARs (Figures 5A−5C). The reconstructed 
seasonal precipitation totals exhibit the same 
spatial patterns of correlation with IVT over 
the Pacific and western North America, but the 
correlations are lower, especially for autumn 
(Figures 5D−5F).  

The spatial correlations with IVT are at or above 
r = 0.80 for the instrumental and reconstructed 
winter and spring precipitation totals (Figure 5), 
indicating that ARs can dominate the interannual 
variability of seasonal precipitation in central 
California. These results also provide a useful 
test for the seasonal reconstructions because 

they exhibit AR-like patterns of correlation with 
vapor transport like the instrumental seasonal 
totals. The time-series of reconstructed seasonal 
precipitation may therefore provide useful upper 
and lower limits on the long-term history of 
landfalling ARs in the study area.  

Daily Correlation Analyses of the Seasonal  
Precipitation Reconstructions
Correlation analysis with daily precipitation 
data can more precisely specify the climate 
signal present in the seasonal precipitation 
reconstructions (e.g., Howard and Stahle 2020). 
The seasonal reconstructions are correlated with 
instrumental daily precipitation summed for 
n-consecutive days moving through the water 
year at 1-day time intervals in Figure 6. The daily 
correlations for the reconstruction of “autumn” 
precipitation are highest with 90-day precipitation 
summed from autumn, but weaker precipitation 
correlations are also computed in the following 
spring and summer (Figure 6A). The instrumental 
autumn precipitation totals share some of this 

Figure 4  The correlation of the tree-ring reco nstructed seasonal precipitation totals for the northern California study area with gridded seasonal totals 
statewide [(A) autumn (Oct–Dec), (B) winter (Oct–Feb), (C) spring (Mar–Apr) for the common period 1948–2017]



11

MARCH  2023

https://doi.org/10.15447/sfews.2023v21iss1art2

weak correlation in the subsequent summer 
(Figure 6A).  

The full wet season reconstruction has 
an integrated precipitation response that 
faithfully reproduces the response profile of 
the instrumental wet season precipitation data 
(blue and black lines in Figure 6B, respectively). 
However, when the spring signal is removed 
by subtracting the spring reconstruction from 
the wet season estimates, the derived winter 
reconstruction is best correlated with 150-day 
precipitation from October to March (maximum 
r = 0.84 from October 4 to March 2; red line in 
Figure 6B). Note the rapid decline in correlation 
after early March, indicating the winter estimates 
are largely independent of precipitation totals 
for the next 2 months. An experimental Jan–Feb 
(“midwinter”) reconstruction is also computed 
by subtracting autumn and spring from the wet 
season reconstruction. The resulting time-series 

is correlated with midwinter precipitation at 
r = 0.57 (p < 0.0001) from 1949 to 2003 and 0.43 
from 1900 to 1948 (Table 1). These correlations 
are marginal, but it may eventually be possible 
to enhance this midwinter precipitation estimate 
based on blue oak RW chronologies and improved 
reconstructions of shoulder-season precipitation 
totals.   

The daily correlation profiles for instrumental 
and reconstructed spring precipitation are similar 
(red and black lines in Figure 6C). The highest 
correlation for the spring reconstruction is with 
60-day precipitation totaled from February 22 
to April 23 for 1948 to 2017 (r = 0.79 [p < 0.0001]; 
red line in Figure 6C). The ponderosa pine LW 
chronology (no adjustments) also positively 
and significantly correlated with 60-day total 
precipitation in spring, but the level of correlation 
is much lower compared to the reconstruction 
based on the LWa data (blue line in Figure 6C), 

Figure 5   Gridded integrated vapor transport (IVT) data from MERRA-2 (Gelaro et al., 2017) summed for autumn (Oct–Dec; A, B), winter (Oct–Feb; C, D) and 
spring (Mar–Apr; E, F) were correlated with the respective instrumental and reconstructed seasonal precipitation totals for the study area. The correlations 
are based on 1980–2003 for winter, and 1980–2017 for autumn and spring.    
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Figure 6  (A) The autumn reconstruction (Oct–Dec, 
blue curve) was correlated with daily precipitation 
totals summed for all possible 90-day intervals 
advancing one day at a time through the water year. 
For comparison, the instrumental daily precipitation 
data summed for 90 days from Oct 3 to Dec 31 were 
averaged for the study area and then also correlated 
with all 365 possible 90-day instrumental totals 
advancing in 1-day intervals through the water year 
(i.e., instrumental vs instrumental, black curve). (B) 
Same as (A) but using the wet season reconstruction 
(Oct–Apr) from blue oak. The wet season 
reconstruction was correlated with precipitation 
totaled for 210 days (blue curve), the derived winter 
(Oct–Feb) precipitation estimates were correlated 
with precipitation totals for 150 days (red curve) for 
the period 1949-2003, which is in common between 
the blue oak and instrumental precipitation data. (C) 
Same as (A) for the spring reconstruction (Mar–Apr, 
red curve). The ponderosa pine LW chronology (with 
no adjustment) was also correlated with 60-day 
precipitation totals (blue line). The vertical dashed 
lines represent the day when the highest correlation 
is reached between each reconstruction and 
seasonal precipitation variable, and the horizontal 
dashed lines represent the thresholds for significant 
correlation (p < 0.05).
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highlighting the value of signal enhancement in 
these sub-annual ring width data. 

Analysis of Instrumental and Reconstructed  
Seasonal Precipitation
These results indicate the potential to use sub-
annual chronologies of EW and LW width to 
estimate shoulder-season precipitation over the 
past 270 years, in addition to the reconstructions 
of wet-season or water-year totals already possible 
with RW chronologies. The instrumental record 
of seasonal precipitation is plotted for the study 

area from 1891 to 2022 using the “seasons” most 
strongly associated with the available tree ring 
data (Oct–Dec, Oct–Feb, and Mar–Apr; Figure 7; 
note that the CPC observations are appended 
to these GPCC seasonal time-series for 2017 to 
2022). The frequency of high precipitation totals 
has varied for all three seasons (Figure 7), but 
no significant linear trends are detected in the 
mean or variance of the instrumental seasonal 
precipitation totals over the full period of 1891 to 
2022. (We evaluated variance trend by computing 
the residuals above or below the median for each 

Figure 7  Instrumental precipitation totals are plotted for the three seasons recorded by the tree-ring data from California, including (A) autumn (Oct–
Dec), (B) winter (Oct–Feb), and (C) spring (Mar–Apr). The precipitation data from 1891–2016 are from the GPCC product and the CPC data for 2017–2022 are 
appended for the northern California study area. The median is plotted for each season. (C) Years when instrumental spring precipitation was very wet 
(≥ 175% of median or greater) following a wet winter (i.e. ≥ 125% of median or greater) are indicated with blue circles, and years when both seasons were 
less than or equal to 75% of their respective medians are indicated with red circles. The dashed lines in (B) and (C) represent the 125 and 175% of median 
values for winter and spring, respectively. 
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season, and testing the significance of the slope 
of a regression line fit to the absolute values of 
the residuals.) If the investigation of the spring 
precipitation trend were restricted to the period 
from 1910 to 2022, the increase in variance would 
be significant (p < 0.01; Figure 7C). 

The decadal variability of hydroclimate in 
California has been documented (Florsheim 
and Dettinger 2007; Ault and St. George 2010; St. 
George and Ault 2011; Dettinger and Cayan 2014), 
and there appears to be variance modulation of 
the seasonal totals on decadal time-scales (Liu et 
al. 2018; Figures 7 and 8). Low variance in spring 
(Mar–Apr) precipitation was observed during the 
relatively dry decades of the early 20th century 
(Figure 7C), and before 1940 in the autumn totals 
(Oct–Dec; Figure 7A), but there is no strong 
evidence for a drying trend in the study area for 
these particular shoulder seasons as detected 
elsewhere in California (e.g., Swain et al. 2018; 
Goss et al. 2020; Luković et al. 2021).  

The tree-ring reconstructions for autumn (Oct–
Dec), winter (Oct–Feb), and spring precipitation 
(Mar–Apr) are plotted in Figure 8. Autumn 
precipitation in the study area was enhanced 
during the mid 20th century in both the 
instrumental and reconstructed series (Figures 7A 
and 8A). Strong decadal to multi-decadal 
variability is evident in the winter reconstruction 
(Figure 8B) and is also apparent in the 
instrumental data during the relatively dry 1920 
to 1930s and wet 1960s to 1970s (Figure 7B). Major 
winter wet episodes are reconstructed for the 
1820s to 1830s and the 1860s to 1870s (Figure 8B), 
including 1862 and 1868, which were among the 
five wettest years in the entire reconstruction 
and were among the wettest years in the weather 
history of California (Kelly 1989; Stahle et al. 
2013).  

Reconstructed spring precipitation was subject 
to episodes of relatively frequent and infrequent 
wet extremes in the pre-instrumental period 
(e.g., 1801 to 1850 vs. 1851 to 1900 for estimates 
≥ 175% of median; Figure 8C). Episodes of wet 
extremes are also evident in the instrumental 
observations of spring precipitation (Figure 7C). 

Spring precipitation only represents some 24% of 
the median wet-season totals in the instrumental 
record (22% in the reconstructions), but 
anomalously low or high precipitation in spring 
can certainly translate into significant effects on 
stream and water supply in California.  

Winter and Spring Precipitation Anomalies 
The relevance of spring precipitation anomalies 
to flood risk and water supply in northern 
California can be illustrated with accumulated 
regional precipitation and stream discharge in 
the American River at Folsom. (The study area is 
largely co-located with the drainage basin of the 
America River, and these instrumental wet-season 
precipitation and discharge data are correlated 
at r = 0.94.)  Daily precipitation totals in the study 
area are cumulated from October 1 to July 15 for 
just those years when spring precipitation (Mar–
Apr) was in the upper 80th or lower 20th percentile 
(15 years each) and are plotted along with the 
accumulated mean of all 74 years from 1949 to 
2022 (Figure 9A). Accumulated precipitation in wet 
springs averaged 1,267 mm on April 30 compared 
with the average of 984 mm for all years (1949 to 
2022) and with 706 mm for the 15 anomalously dry 
springs (Figure 9A). These represent percentage 
differences from the 74-year average precipitation 
on April 30 of 29% above average for the wet 
springs and 28% below average for the dry 
springs.  

Cumulative monthly mean discharge averaged 
2.5 million acre-feet (af) on April 30 during 
the wet springs, compared with the 74-year 
average of 1.85 million af (1949 to 2022) and with 
1.2 million af for the 15 anomalously dry springs 
(both 35% above or below the 74-year average; 
Figure 9B; similar differences were observed 
at the end of the snowmelt season). These 
differences in precipitation and discharge are 
primarily the result of the anomalously wet or 
dry spring conditions, but antecedent anomalies 
in winter also contributed, especially for the 
precipitation data (Figures 9A and 9B). Cumulative 
precipitation and discharge for the remaining 
44 years that did not record wet or dry spring 
precipitation totals are plotted for comparison in 
Figures 9C and 9D. Note that spring precipitation 
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was in the 80th percentile for three of the four 
wettest accumulated wet-season totals (Oct–Apr; 
Figure 9A), and spring was also very wet in 2017 
(i.e., 75th percentile)–the wettest year in the study 
area from 1949 to 2022 (Figure 9C).

Cumulative precipitation is well separated for 
most individual years during these wet or dry 
springs (Figure 9A). The spring precipitation 
anomalies continued pre-existing moisture 
regimes established during the antecedent 
winter months, particularly during wet years 

(Figure 9A). This tendency for wet springs to 
follow wet winters (defined here and below as 
≥ 175% of median for spring and ≥ 125% for winter) 
is significant in a contingency table analysis of 
the instrumental precipitation data from 1892 to 
2022 (i.e., we observed 11 wet springs following 
wet winters, compared to our expectation of only 
seven cases, p < 0.05). Wet springs have a lower-
than-expected occurrence following a wet winter 
in the reconstructions from 1750 to 1891(p < 0.05), 
but only 3 years were in the wet spring category 
(i.e., ≥ 175%) and only 6 wet springs were 

Figure 8  (A) The autumn (Oct–Dec) precipitation reconstruction is plotted from 1897–2021. The (B) winter (Oct–Feb) and (C) spring (Mar–Apr) precipitation 
reconstructions are plotted from 1750–2022. Instrumental observations have been appended after 2017 (A, C) and 2003 (B). (C) Years when instrumental 
spring precipitation was very wet (≥ 175% of median) following a wet winter (≥ 125% of median) are indicated with blue circles, and years when both winter 
and spring precipitation were ≤ 75% of median are indicated with red circles (computed for the interval in common to both reconstructions, 1750–2003). 
The reconstructions are fit with 10-year smoothing splines to emphasize decadal variability (blue curves; Cook and Peters 1981). The dashed lines in (B) and 
(C) represent the 125 and 175% of median values for winter and Mar–spring, respectively. 
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expected. There were also interesting reversals 
in the precipitation regime from winter to spring 
(e.g., 1997 vs. 1991; Figure 9A). The “Miracle 
March” of 1991 was a major reversal when a 
very dry winter was followed by significant 
precipitation during spring that brought the 
cumulative precipitation totals into the near-
normal range by April 30 (Figure 9A).  

The average increase in precipitation and 
discharge from the end of winter (March 1) to 
the end of spring (defined here as April 30) was 
naturally also affected by anomalous spring 
precipitation amounts. On average, cumulative 
precipitation normally increases 33% from March 

1 to April 30 in the study area (739 to 984 mm, 
Figure 9A), but for the 15 wettest springs it 
increased 59% (796 to 1,267 mm), or 26% above 
the average increase. In the 15 driest springs, 
precipitation increased from March 1 to April 
30 by only 15% (613 to 06 mm), or 18% below 
average. Average accumulated discharge typically 
increases by 85% from March 1 to April 30 (1.0 to 
1.85 million af), but the increase was 112% during 
the wet springs (1.18 to 2.5 million af) or 27% 
above average (reflecting again both wetter winter 
and especially wetter spring conditions).  In dry 
spring conditions, the increase in discharge was 
only 27% of average (0.76 to 1.2 million af, a 58% 
increase, 27% below average). In these analyses, 

Figure 9  (A) Daily precipitation totals in the northern California study area are accumulated from Oct 1 to Jul 15 for spring precipitation anomalies in 
the upper and lower 20th percentiles of all springs (wet in blue and dry in red, 15 years each), along with the cumulative daily average precipitation for 
all 74 years (black; 1949–2022). The spring season (Mar 1–Apr 30) is indicated by the vertical lines, along with the cumulative average precipitation for 
Oct–Feb and Oct–Apr. The cumulative averages on Apr 30 are also plotted for the wet and dry spring cases and a few single year extremes are labeled. (B) 
Same as (A), but monthly mean streamflow in the American River at Folsom is accumulated for each month from Oct-Jun for the same years when spring 
precipitation was in the upper or lower 20th percentiles. The cumulative monthly mean discharge is plotted in black. (C, D) Same as (A, B) for the years 
from 1949–2022 that did not register an anomalously wet or dry spring (means computed in C and D for just these 44 years). The monthly streamflow data 
were acquired from the California Department of Water Resources.
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anomalously wet (or dry) spring precipitation 
totals occur in only 1 out of every 5 years, but they 
have long represented targets of opportunity for 
water-resource management.  

The tree-ring reconstructions of seasonal 
precipitation totals reproduce the changes in wet 
and dry springs recorded by the instrumental 
observations. During the anomalously wet springs 
(80th percentile), precipitation increased from 
March 1 to April 30 approximately 20% to 30% 
above the average increase from the end of winter 
(Oct–Feb) to the end of spring (Mar–Apr) in both 
the instrumental and reconstructed data (using 
common intervals of 1900 to 2003 and 1949 to 
2003).  However, during the relatively wet interval 
in reconstructed spring precipitation from 1801 
to 1850 (Figure 8C), the increase from the end of 
winter to the end of spring was 82% for the wet 
spring anomalies (≥ 80th percentile; 10 cases), 
or 49% above the average increase. During the 
comparatively dry interval from 1851 to 1900, the 
reconstructed spring increase was also above 
average (52 vs. 33%), but only by 19%. These 
comparisons using the tree-ring reconstructions 
illustrate natural multi-decadal variations in 
March and April’s contributions to the wet season 
total before the modern record. Skillful tree-
ring reconstructions of seasonal precipitation 
totals for winter and separately for spring can 
therefore provide a useful pre-instrumental 
perspective relevant to both natural variability 
and anthropogenic climate change at this critical 
seasonal juncture in the water year. 

Inspecting the transition from winter to spring in 
the instrumental and reconstructed precipitation 
data, the frequency of a wet spring following a wet 
winter appears to have increased since the mid 
20th century (Figures 7 and 8). The years when a 
wet spring followed a wet winter are highlighted 
on the spring instrumental (1891 to 2022) and 
reconstructed precipitation data (1750 to 2022) 
in Figures 7C and 8C. For an initial assessment, 
wet-on-wet precipitation anomalies are defined 
simply as years when the winter total was  ≥ 125% 
of median and the subsequent spring total was 
≥ 175% of median, corresponding to a wet season 

precipitation total of approximately 1,234 mm (or 
135% of the wet-season median). 

There were 44 wet winters in the instrumental 
data from 1892 to 2022 (i.e., 34% of all 131 years 
of recorded winter precipitation was ≥ 125% of 
median). In those 44 wet winters, the subsequent 
spring was very wet in 11 of the same years 
(≥ 175% of median; 8.4% of all 131 years), but 
the frequency of these wet-on-wet anomalies 
does not appear to have been stationary through 
time. Before and after 1956, the likelihood 
changed from 4.6% to 12.1% (3 of 65 vs. 8 of 66 
years). When evaluated on March 1 after winter 
precipitation was already known to have equaled 
or exceeded 125% of median, the probability for a 
very wet spring went from 15% to 33% before and 
after 1956 in the instrumental observations (3 of 
20 vs. 8 of 24 years; Figure 7C). Similar changes 
are evident in the tree-ring reconstructions of 
winter and spring precipitation before and after 
1956 (Figure 8C). These changes in winter and 
spring wetness were not simply the result of the 
increased amplitude of seasonal precipitation 
totals during the mid- to late-20th century. 
Reconstructed winter and spring precipitation 
extremes have varied on multi-decadal time-
scales since 1750 (Figure 8B and 8C), and in the 
instrumental observations since 1892 (Figures 7B 
and 7C). Instead, the co-occurrence of wet winters 
with very wet spring conditions appears to have 
increased after the mid-1950s. Note that the 
increased frequency of wet-on-wet conditions is 
also observed when the tree-ring chronologies 
are calibrated with the instrumental seasonal 
precipitation totals in both the early- and late-20th 
century. 

The frequency of low winter and low spring 
precipitation, when both seasons were ≤ 75% of 
median, has also been subject to multi-decadal 
variability (Figures 7C and 8C). However, dry-
on-dry events account for only 8% and 10% of 
all years in the instrumental and reconstructed 
data, respectively. The reconstructed dry-on-dry 
episodes appear to have clustered during the mid 
19th and early 20th centuries during extended 
winter drought episodes (comparing Figure 8B 
and 8C).
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Above-average winter and spring precipitation 
in the study area is associated with augmented 
streamflow and elevated flood risk in the 
American River, whether based on the 
instrumental (Figure 10A) or tree-ring-
reconstructed seasonal precipitation totals 
(Figure 10C). Monthly streamflow is considerably 
enhanced when a wet spring follows a wet 
winter, especially from March to June for both 
the instrumental and reconstructed wet-on-wet 
years (Figure 10A and 10C). The highest monthly 
streamflow typically occurs in May as a result 
of snowmelt from the Sierra Nevada in the 
American River basin, but, during years when 
very wet springs follow wet winters, the monthly 
streamflow surge tends to begin in March 
(Figure 10A and 10C).  

Streamflow data for years when the total wet 
season precipitation anomaly was ≥ 150% 

of median (1,384 mm) are also plotted for 
comparison with the averages during the wet-
on-wet winter-spring conditions (Figure 10B and 
10D). Monthly streamflow is above normal for 
all months in these wet years, peaking in May 
(Figure 10B), and these results are similar if a 
higher precipitation threshold is used (e.g., ≥ 200% 
of median, not shown). However, streamflow 
averages for the wet-on-wet winter-spring years 
are even higher compared to just the wet season 
extremes, especially during March and April 
(Figure 10).  

Spring streamflow (here defined as Mar–May) for 
the American River at Folsom is plotted from 1901 
to 2022 to illustrate the connection between wet-
on-wet winter and spring precipitation extremes 
and elevated Mar-May runoff (Figure 11). Wet-
on-wet winter and spring precipitation extremes 
produced some of the highest spring stream 

Figure 10  (A) Mean monthly streamflow for each month of the water year is calculated using the 10 wet-on-wet years identified using the instrumental 
precipitation data for the common period 1901–2022 (black bars). The long-term monthly means are also plotted for comparison (gray bars). (B) Mean 
monthly streamflow for the 12 years from 1901–2022 when wet season (Oct–Apr) total precipitation was ≥ 150% of median (black bars) is compared with 
the long-term monthly means (gray bars). (C) Same as (A) but using the nine wet-on-wet years identified with the reconstructed precipitation data from 
1901–2003. (D) Same as (B), but for the 12 years when reconstructed wet season precipitation was ≥ 150% of median.  
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levels for the American River at Folsom since 1901 
(Figure 11). The years with wet winter and very 
wet spring precipitation totals in the instrumental 
and reconstructed series occurred during six 
of the ten highest spring streamflow averages 
recorded on the American River. Reconstructed 
winter and spring precipitation were both above 
median in 3 of the 4 remaining years. These 
results provide additional credibility for the 
seasonal reconstructions even though the sample 
size is low. 

DISCUSSION AND CONCLUSIONS 
These results demonstrate that annual and 
sub-annual ring width chronologies of gray 
pine, ponderosa pine, and blue oak can 
vary proportionally with discrete seasonal 
precipitation totals in California, and may 
therefore provide insight into seasonal climate 
variability and change. Gray pine has not to 
our knowledge been used for dendroclimatic 
reconstructions, but the fall precipitation signal 
of gray pine EW width could have important 
applications to seasonal precipitation analysis in 
California. The literature concerning gray pine 
phenology is limited, but Launchbaugh et al. 
(1956) noted that growth for this lower-elevation 
species can begin in autumn with the first rains 

of the wet season and continue into the following 
spring and summer. Powers (1990) also noted that 
gray pine photosynthesis can take place during 
the cool season. Some of the EW component of the 
annual ring in gray pine may therefore be formed 
concurrently with autumn precipitation in the 
year before the spring-summer growing season, 
when the annual rings of most trees in California 
are formed.

Winter and spring precipitation totals are not 
significantly correlated in the instrumental 
or reconstructed data, but the occasional 
co-occurrence of winter and spring anomalies 
can be very consequential in terms of flood risk 
and water supply. Some elevated streamflow 
events associated with wet-on-wet winter and 
spring conditions resulted in severe flooding, 
notably in 1907, 1958, 1982, 1983, and 1995. The 
spring flooding for these years can be traced 
back to intense storms late in the wet season 
that delivered precipitation to already saturated 
landscapes and swollen streams (USGS 1958). A 
very wet spring following an already wet winter 
occurred just 11 times in the instrumental 
observations from 1892 to 2022, but most of these 
co-occurring wet anomalies were observed during 
the late 20th century in both the instrumental and 
reconstructed time-series. A dry winter followed 

Figure 11  Spring streamflow is plotted for the American River at Folsom from 1901–2022 (Spring is March through May average streamflow). Instrumental 
(blue symbols) and reconstructed (red symbols) years of wet winter and very wet spring precipitation totals are noted to emphasize the connection 
between wet-on-wet years and elevated spring streamflow. The dashed line corresponds to 803,000 cfs, or approximately the 90th percentile of March 
though May streamflow.
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by a dry spring can significantly reduce water 
supply and these co-occurring seasonal droughts 
appear to have clustered during multi-decadal 
episodes of reconstructed winter dryness during 
the mid-19th and early-20th century.  

The precipitation and flooding extremes of 1862 
are famous in the weather and runoff history 
of California (Kelly 1989). Previous tree-ring 
reconstructions of 1862 based on RW chronologies 
are well above average, but the reconstructed 
value for 1862 was eclipsed by estimates for 
1868 and several other very wet years in both 
northern and southern California (e.g., Stahle 
et al. 2013). Documentary accounts indicate that 
the heaviest precipitation in 1862 fell in January 
and February, and the spring totals were only 
average to below average over parts of California 
(Cary Mock, 2019 personal communication with 
DS, unreferenced, see “Notes”). By subtracting 
the newly reconstructed spring amount for 1862 
from the wet season total, the tree-ring estimated 
precipitation for just “winter” (Oct–Feb) in 1861-
1862 is near record, only exceeded by 1941 and 
1825 in the reconstruction, and by 2017 in the 
instrumental portion of the reconstruction 
(after 2003; Figure 8B). The discrete seasonal 
response of sub-annual ring width chronologies 
may therefore lead to improved reconstruction 
of extreme precipitation amounts in California 
history.  

These results demonstrate the feasibility 
of seasonal and storm-level precipitation 
reconstructions in California using a combination 
of annual and sub-annual tree-ring data. 
The reconstructions provide an otherwise 
unavailable centennial perspective on the 
seasonal precipitation variability relevant to 
reservoir operations in early spring, when 
management strategies often shift from flood 
control to water-resource capture. Because heavy 
storms associated with landfalling ARs dictate 
so much of the variability in seasonal to full-
wet-season precipitation totals in California, it 
may be possible to use selected tree-ring data 
to reconstruct storm-delivered precipitation on 
a seasonal to annual basis. Improved seasonal 
reconstructions could also help place the last 

half-century of shoulder-season precipitation 
variability—and the co-occurrence of winter 
and spring precipitation anomalies—into a 
longer context before the era of increasing 
anthropogenic influence on California climate 
and water supply.  
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