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ML4Chem: A Machine Learning Package for Chemistry and Materials Science.

Muammar El Khatib∗ and Wibe A de Jong

Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

(Dated: March 31, 2020)

ML4Chem is an open-source machine learning library for chemistry and materials science. It

provides an extendable platform to develop and deploy machine learning models and pipelines and

is targeted to the non-expert and expert users. ML4Chem follows user-experience design and offers

the needed tools to go from data preparation to inference. Here we introduce its atomistic module

for the implementation, deployment, and reproducibility of atom-centered models. This module is

composed of six core building blocks: data, featurization, models, model optimization, inference,

and visualization. We present their functionality and easiness of use with demonstrations utilizing

neural networks and kernel ridge regression algorithms.

I. INTRODUCTION

In the last decade, machine learning (ML) has undergone fast development due to large amounts of available data

and advancements in computational hardware e.g. faster and cheaper central processing units (CPU), graphics process

units (GPU), and more recently the introduction of tensor processing units (TPU). Algorithmic improvements on how

to compute the gradient in weight space of feedforward neural networks with respect to a loss function[1] reduced the

computational time of training deep neural networks significantly. As a result companies like Google, and Facebook,

introduced the most useful deep learning platforms available right now: TensorFlow[2], and Pytorch[3]. These frame-

works positively impacted and advanced ML research because they helped with democratizing and simplified access

to ML technologies to a larger audience.

In the field of physical chemistry and materials sciences, ML models are being standardized and applied to solve

tasks such as the acceleration of atomistic simulations[4–8], prediction of the electronic Hamiltonian with generative

models[9, 10], extraction of continuous latent representations for the generation of molecules[11], and even the predic-

tion of the scent of small organic molecules[12]. It also is becoming the norm to release software solutions as support to

validate results of publications that apply ML models, and alleviate the “reproducibility crisis in artificial intelligence

and machine learning”[13, 14]. Nevertheless, this obliquely fragments the software ecosystem because each software

implementation a) requires specific data structures and b) would likely experience a lack of continuous support. There

already are packages that democratize ML in chemistry. For example, DeepChem[15] has played a critical role in

providing users a helpful platform of ML algorithms and featurizers for drug discovery, quantum chemistry, material

sciences, and biology. More recently ChemML has been introduced as a machine learning and informatics program

suite for the analysis, mining, and modeling of chemical and materials data[16]. What differentiates ML4Chem is that

it focuses on easing the implementation of new functionality, extraction of intermediate quantities, interfacing with
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external programs, and exportation of any of its modules’ outputs. Also, ML4Chem is in its infancy bringing up the

possibility to shape its future directions based on current users’ needs and ML paradigms.

Here we introduce the atomistic module where ML algorithms learn underlying relationships between molecules

and properties treating atoms as central objects. They exploit the principle of locality in Physics: a global quantity

is defined as a sum that runs over many localized contributions. These localized contributions usually account for

interactions of an atom and its nearest-neighbor atoms (many-body interactions). Atomistic models are very useful

and have been successfully applied for the acceleration of molecular dynamics simulations[17–19], identification of

phase transitions in materials[20], determination of energy and atomic forces with high accuracy[21, 22], the search

of saddle-points[23] and the prediction of atomic charges[24, 25].

This publication is organized as follows: in section II, we will discuss the design and architecture of ML4Chem’s

atomistic module. Each of its core blocks is introduced in Section III and we will demonstrate the code’s capabilities

through a series of demonstration examples in Section IV. Finally, conclusions and perspectives are drawn.

II. ATOMISTIC MODULE: DESIGN AND ARCHITECTURE

ML4Chem and its modules are written in Python in an object-oriented programming paradigm and are built on

top of popular open-source projects to avoid duplication of efforts. In this regard, all deep learning computations are

implemented with Pytorch[3]. Mathematical and linear algebra operations are executed by Numpy[26] or Scipy[27, 28]

that are widely used and recognized for this purpose. Parallelism is achieved with a flexible library for parallel

computing called Dask[29]. Dask enables computational scaling-up from a laptop to High-Performance Computing

(HPC) clusters effortlessly and offers a web dashboard to real-time monitoring. This is particularly valuable because

it provides a good estimation to users about the status of calculations, and helps at profiling computations. Good

documentation is another important aspect, as the lack of it can harm usability. ML4Chem’s source code is documented

using Numpy Python docstrings and rendered in HTML and PDF format. Also, we provide diverse information ranging

from installation, theory, usage of modules, and examples.

ML4Chem’s modules are developed following user-experience (UX) design practices to deliver usability, accessibility,

and desirability. For example, in ML4Chem the names of modules, classes, and functions tend to be idiomatic and

easy to remember semantically. Getting the latent space from an autoencoder is performed by calling autoencoder.

get_latent_space(X), or the computation of atomistic features is done with a .calculate() class method that is provided

in all featurizers under the atomistic.features module e.g. features.calculate(X, purpose="inference"). All modules are

designed to have the same structure, enabling users to become familiar and gain intuition on their usage quickly. The

library can be used in interactive Python environments such as iPython, Jupyter or JupyterLab notebooks. Or if

desired, as scripts that are invoked by the Python interpreter.

Figure 1 shows a schematic representation of the machine learning workflow that drives the design philosophy used

to develop the atomistic module in ML4Chem:

1. Atoms positions are mapped into atomistic feature vectors with the atomistic.features module and chemical

symbols are used as labels.

2. ML models are instantiated utilizing atomistic feature vectors as input, and depending on the nature of the task



3

(supervised or unsupervised learning), targets might or might not be known.

3. Model’s parameters are trained either by minimizing/maximizing a loss function or solving systems of equa-

tions. In the former case, ML4Chem provides loss and optim modules with sets of predefined loss functions and

optimizers to train supervised and unsupervised atomistic models.

4. The resulting atomistic model outputs and predictions are expected to be scalar or vector quantities.

FIG. 1: Design approach of the atomistic module of ML4Chem.

As shown in Figure 2, the architecture of the atomistic module is composed of 6 building blocks. They correspond

to the methods and tools required to deploy atom-centered simulations from input featurization to inference and

visualization, according to our design philosophy. Modules inside the code blocks need to comply with being derived

classes from base classes using Python mixins. This guarantees new classes are reusing the code base and inheriting

already defined structures implicitly from the base classes to operate seamlessly with other ML4Chem components. This

practice is encouraged by providing a base.py file within each module level that contains required base classes, and is

enforced in the continuous integration (CI) system.

In the following sections, each of these blocks is discussed with particular attention on what can be achieved

with them, their implementation, and code snippets on their usage. When relevant, we will discuss the theory and

mathematics behind them as well.

III. CORE MODULES

A. Data

ML is focused on finding underlying patterns and relationships based on data examples. The format of data, a

central part of ML, varies depending on the sources, and the ML algorithm adopted for solving a particular task.

ML4Chem provides a Data class that creates an object with a data structure that facilitates interoperability with any

of its available atomistic modules.

Our atomistic ML algorithms require molecules in the form of Atoms objects as implemented in the Atomic Simulation

Environment (ASE)[30]. One of the reasons behind choosing ASE is its stability and that it supports more than 50

file formats in its ase.io.read module e.g. XYZ, NWChem, GPAW, and Gaussian. For instance, an XYZ file can
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FIG. 2: Core modules of the atomistic module of ML4Chem.

be parsed and converted to an Atoms object in the following way: molecule = ase.io.read("file.xyz"). Atoms objects

hold molecular information such as Cartesian coordinates, atom types, chemical symbols, molecular charge, cell type,

energy, and atomic forces. Molecules in ASE format can be stored to disk as a list of molecules (Atoms) using ASE’s

Trajectory module. Besides the formats supported by the ase.io.read module, we also can parse the Chemical JSON

(CJSON) format[31] and the ANI-1 data set[32] using the data.parser module. Support of input formats such as those

available in pymatgen[33] and MolSSI’s QCSchema are planned for future releases.

The Data class uses a list of molecules, or in other words a list Atoms objects, to generate a unique sha1 hash to label

each molecule and store their respective pairs input/targets. Targets refer to the expected output of ML models and

in atomistic simulations they may correspond to total energy, atomic forces, dipole moments, etc. Duplicated data

points are automatically removed during the hashing procedure to avoid poor performance and numerical instability.

In Listing 1, the Data class is instantiated by passing an ASE trajectory file with name dataset.traj containing

some molecules for the purpose of "training" an atomistic ML algorithm. After hashing the molecules present in the

trajectory file, pairs of input/targets examples are yielded by invoking the .get_data() class method and assigned to

the training_set and targets variables.

Finally, once the data is loaded in memory and arranged by the Data class, it can be mapped into features by the

atomistic.features module of ML4Chem. The content of this object, an ordered dictionary, can be easily exported as

a pandas dataframe using the .to_pandas() class method and saved or serialized for subsequent use.
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1 from ase.io import Trajectory

2 from ml4chem.data.handler import Data

3

4 molecules = Trajectory("dataset.traj")

5 purpose = "training"

6

7 data_handler = Data(molecules , purpose=purpose)

8 training_set , targets = data_handler.get_data(purpose=purpose)

9 df = data_handler.to_pandas ()

Listing 1: Example of Data class usage in ML4Chem.

B. Featurization

ML features are defined as a set of measurable unique characteristics or properties of an observable. They are

fundamental to any ML algorithm because they represent what models “see”. Feature engineering is the process of

applying domain knowledge to generate sets of numerical features that make ML algorithms work and learn meaningful

representations from data. In physics constrained domains, like atomistic ML models, feature extraction is also elusive

because features require to fulfill a series of properties that are commonly expected from physical systems such as

rotational and translational invariance (equivariance). Featurization is a challenging time-consuming process and the

feature engineering cycle encompasses their creation, selection according to importance, and validation for the task

of interest.

Features can be classified in i) human-engineered features where assumptions about data are made by humans

to assign properties to observables or ii) machine-engineered features where the ML algorithms discover meaningful

representation during the training procedure. The atomistic.features module of ML4Chem supports the former case

with Gaussian type features, and the latter with a LatentFeatures class (introduced in the following subsections).

To avoid duplication of efforts, atomistic features such as Coulomb matrix[34], smooth overlap of atomic positions

(SOAP)[35], and many-body tensor representation (MBTR)[36] are supported through DScribe which is a software

package for ML that provides popular feature transformations (“descriptors”) for atomistic materials simulations.

This accelerates the application of ML for atomistic property prediction by providing a user-friendly, off-the-shelf

descriptor implementations[37]. Our own implementation of the Coulomb matrix feature vectors is available in the

atomistic.features module of ML4Chem, and serves as an example of how easily our package can be extended.

1. Gaussian Features

In 2007, Behler and Parrinello[7] introduced Gaussian feature vectors, also referred to as “symmetry functions” (SF),

for the representation of high-dimensional potential energy surfaces with artificial neural networks. These features

overcome limitations related to the image-centered models and are built for each atom in a molecule or extended

system. They fingerprint the relevant chemical environment of atoms in molecules, and their computation only

requires chemical symbols and atomic positions.

To delimit the effective range of interactions within the domain of a central atom, a cutoff function (fc) is introduced:
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fc(r) =

0.5(1 + cos(π r
Rc

)), if r ≤ Rc,

0, if r ≥ Rc.
(1)

Where Rc is the cutoff radius (in unit length), and r is the inter-atomic distance between atoms i and j. The cutoff

function, with Cosine shape as shown in Eq. 1, vanishes for inter-atomic separations larger than Rc and takes finite

values below the cutoff radius. These cutoff functions aim to avoid abrupt changes in the magnitudes of the features

near the boundary by smoothly damping them.

There are two sets of interactions to consider when building Gaussian features: i) the radial (two-body term) and

ii) angular (three-body terms) SFs. The radial SFs account for all possible interactions between a central atom i and

its nearest neighbors atoms j. It is defined by Eq. 2:

G2
i =

Natom∑
j=1

e−η(Rij−Rs)
2/R2

cfc(Rij), (2)

where Rij is the Euclidean distance between central atom i and neighbor atom j, Rs defines the center of the

Gaussian, and η is related to its width. Each pairwise contribution to the feature in the sum is normalized by the

square of the cutoff radius R2
c as proposed in Ref. [38]. In practice, one builds a high-dimensional feature vector by

choosing different η values.

In addition to the radial SFs (two-body term), it is possible to include triplet many-body interactions within the

cutoff radius Rc using the following equation:

G3
i = 21−ζ

∑
j,k 6=i

(1 + λcosθijk)ζe−η(Rij
2+Rik

2+Rjk
2)/R2

cfc(Rij)fc(Rik)fc(Rjk). (3)

This part of the feature vector is built from considering the Cosine between all possible θijk angles of a central

atom i and a pair of neighbors j, and k. There exists a variant of G3
i that includes three-body interactions of triplets

forming 180◦ inside the cutoff sphere but having an inter-atomic separation larger than Rc. These SFs account for

long-range interactions as described by Behler in Ref. [39]:

G4
i = 21−ζ

∑
j,k 6=i

(1 + λcosθijk)ζe−η(Rij
2+Rik

2)/R2
cfc(Rij)fc(Rik). (4)

In ML4Chem, Gaussian features can be built with the atomistic.features module as shown in Listing 2. The

Gaussian() class is instantiated with the desired cutoff radius (units are Å) to define the neighbor atoms, the type of

angular symmetry functions (either G3
i or G4

i ), and we normalized dividing them by R2
c . It also is possible to pass

the svm keyword argument to calculate features for SVM algorithms. Note that we need to pass the data_handler and

training_set objects created by the Data class (see Listing 1). It is important to preprocess, scale and normalize features.

In this way, models learn meaningful and noiseless underlying representations. ML4Chem uses scikit-learn[40] for the

preprocessing of atomistic features. This can be activated by passing the preprocessor keyword argument. Currently,

the supported preprocessors in ML4Chem for atomistic features are: MinMaxScaler, StandardScaler, and Normalizer.

Finally, the .calculate() method calculates features.
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1 from ml4chem.atomistic.features import Gaussian

2

3 features = Gaussian(

4 cutoff =6.5,

5 normalized=True ,

6 preprocessor="MaxMinScaler",

7 save_preprocessor="features.scaler",

8 angular_type="G3",

9 )

10

11 X = features.calculate(

12 training_set , purpose="training", data=data_handler , svm=False

13 )

Listing 2: Computing Gaussian features with the atomistic.features module of ML4Chem.

2. Latent Features

In deep learning, latent features are non-directly observed variables inferred by causality[41]. These features fall

under the machine-engineered classification and are determined by the ML algorithm itself during training with-

out human intervention. A clear example would correspond to the informational bottleneck inferred when training

autoencoders (AE, see Section III C 2). This informational bottleneck encodes hidden information by making a di-

mensionality reduction that can reconstruct the input space (directly observed variables). In physics constrained

ML models, latent spaces might correspond to chemical physics aspects of atoms in molecules depending on how

the model’s parameters are penalized and optimized. Their advantage over human-engineered features is that they

facilitate the flexibility of the models, and when extracted with posterior inference they generalize well. Neverthe-

less, latent features tend to be difficult to interpret and posterior inference relies on Bayesian variational methods

that are challenging to train[42]. The atomistic.features module in ML4Chem provides a class to ease latent feature

extraction to train any of the available atomistic ML algorithms. It uses AE algorithms, like the ones described in

Sections III C 2 and III C 3, and convert raw features into latent variables by forward-propagating them through the

encoder part of the AE architecture. Listing 3 shows an example of the LatentFeatures featurization module where

two keyword arguments are passed to instantiate this class:

• A tuple called args contains the name of the type of raw features and a dictionary with their respective parameters

to be computed and subsequently converted into latent variables with a trained AE.

• We also assign to a variable encoder a dictionary with keys "model", and "params" containing the paths on disk to

load the model and its parameters.

After instantiation, latent variables are computed with the .calculate() class method as it was done with the Gaussian

class, and are returned in the right structure to be used as input to train other ML algorithms. Note that they can

also be converted to a Pandas data frame.
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1 from ml4chem.atomistic.features import LatentFeatures

2

3 ae_path = "my_autoencoder/"

4

5 # Arguments to build raw features

6 normalized = True

7 preprocessor = ("MinMaxScaler", {"feature_range": (-1, 1)})

8 args = (

9 "Gaussian",

10 {

11 "preprocessor": preprocessor ,

12 "cutoff": 6.5,

13 "normalized": normalized ,

14 "save_preprocessor": "iso.scaler",

15 "overwrite": False ,

16 },

17 )

18 # Dictionary to load trained autoencoder

19 encoder = {"model": ae_path + "vae.ml4c",

20 "params": ae_path + "vae.params"}

21

22 features = LatentFeatures(encoder=encoder , features=args)

23 latent = features.calculate(

24 inputs ,

25 purpose="training",

26 data=data_handler ,

27 svm=False

28 )

29 df = features.to_pandas ()

Listing 3: Extraction of latent features using the atomistic.features module of ML4Chem.

C. Models

This section describes atomistic ML regression algorithms in ML4Chem under the atomistic.models module. At this

point, it is important to differentiate ML algorithms from ML models. ML algorithms refer to all procedures and steps

carried out to solve a determined ML task while models are well-defined results of algorithms. Another important

difference is that ML models are fed inputs to infer or predict some output. Atomistic ML algorithms exploit the

physical phenomenon of “locality” where atoms are fundamental entities and whose ML features can be extracted by

measuring interactions between each atom and its nearest-neighbor atoms. Predictions P are therefore calculated as

the sum of many individual contributions as shown in Eq. 5:

P =

n∑
i=1

pi(Fi(Ri)), (5)
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where a local contribution pi is a functional of a feature mapping function Fi that takes as arguments atom positions

Ri, and chemical symbols. There are two possible flavors of these algorithms: i) a sub regression model for each

chemical symbol in the data set exists or ii) a unique regression model is used for all chemical element types.

To implement new deep learning atomistic algorithms in ML4Chem, developers have to derive their classes by

inheriting the structure from the DeepLearningModel base class shipped in the base.py file and shown in Listing 4:

1 from abc import ABC , abstractmethod

2 import torch

3

4

5 class DeepLearningModel(ABC , torch.nn.Module):

6 @abstractmethod

7 def name(cls):

8 """ Return name of the class """

9 return cls.NAME

10

11 @abstractmethod

12 def __init__(self , ** kwargs):

13 """ Arguments needed to instantiate the model """

14 pass

15

16 @abstractmethod

17 def prepare_model(self , ** kwargs):

18 """ Prepare model for training or inference """

19 pass

20

21 @abstractmethod

22 def forward(self , X):

23 """ Forward propagation pass """

24 pass

Listing 4: Abstract base class for the implementation of new atomistic deep learning models under atomistic.models

module of ML4Chem.

Deep learning classes require a name() method that returns the name of the model, list of keyword arguments

to instantiate the model using the reserved __init__() constructor, a prepare_model() method where parameters are

initialized and the algorithm is prepared for the purposes of training or inference. Finally, a forward() method is

responsible to perform a forward pass and return predictions. Support vector machine algorithms, require all these

methods except for the forward() function. The fulfillment of this structure enables inter-operability within ML4Chem.

1. Supervised Learning

Supervised learning refers to the ML task of determining a complex function that maps inputs into outputs from

labeled pairs of input/target examples. Its application assumes there exists a good understanding of the structure

and existent classes of the data. It is worth noting that the interpretation of these models is usually easier than the
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ones obtained from unsupervised learning ML tasks.

In atomistic ML algorithms, the inputs correspond to attributes of molecules such as atom positions, atom types,

total charge, band-gap, etc. All these can be directly used as features, or mapped applying domain knowledge rules.

To train the models, targets can be any scalar or vector quantity associated with a molecule like total energy, dipole

moment, or atomic forces. Supervised algorithms tend to require large amounts of data, and featurization tends to be

biased because it is human-engineered. Thus, models are usually prone to perform poorly beyond training set regimes.

Also, the data sets have to be designed with enough diversity to capture meaningful underlying structures from input

data. Active learning protocols[43, 44] are known to help in assuring this diversity. After the training procedure,

and assessment of the predictive power of models by cross-validation[45] or other model validation techniques, their

parameters can be stored to perform inference in unknown data.

In the following sections, we discuss the type of neural network architectures and support vector machine algorithms

supported in the atomistic.models module of ML4Chem.

a. Neural Networks

Neural Networks (NN) are algorithms inspired by how the human brain works. Their building blocks are constituted

by hidden layers with interconnected neurons. NN can approximate any function with arbitrary accuracy and their

outputs can be represented by the following equation:

y = WX + b, (6)

where X are the inputs, W are learnable parameters, b are the biases and y are outputs. Eq. 6 is nothing but a

linear function and without any extra modification, it can only fit data having a linear response. In the context of

deep learning, the product WX is a nested function[46] composed of l hidden layers that returns either a vector or a

scalar:

y = Wx + b = f4(f3(f2(f1(x)))). (7)

From the equation above, l = 4 means the model has four layers that output a vector. The nested function fl(z) is

defined as:

fl(z) = al(Wlz + bl), (8)

where we have introduced an activation function denoted by al. The effect of the activation function on the

outputs z of the neurons is to add non-linear response making the NN suitable to approximate more complex non

linear functions. Some of the most common activation functions are tanh(z), sigmoid(z), and relu(z):

tanh(z) =
(ez − e−z)
(ez + e−z)

(9)

σ(z) =
1

1 + e−z
(10)



11

relu(z) =

0 for z ≤ 0

z for z ≥ 0
(11)

When forward-propagating information through NN, the type of activation function applied to the last layer de-

termines whether the task is regression (linear or non-linear activation function), or classification (logistic activation

function)[1]. When more than two hidden layers are stacked between the input and output layers, NN are called deep

neural networks.

In Figure 3 we show a neural network with one input layer, two hidden layers, and an output layer. In this

multi-layer perceptron, we assume all outputs of a layer are connected to the inputs of succeeding layers.

FIG. 3: Schematic representation of a neural network.

Our atomistic neural network implementation follows the structure described by Behler and Parrinello[7] where

each set of chemical elements in the data set has its own NN algorithm. For instance, if the data set contains C,

H, N, and O atoms, then there will be four different NN. Hidden layers are fully connected and the same activation

function is applied to each of them. Different activation functions to each hidden layer and application of convolutions

are features planned for future releases. However, various NN with different activation functions can be merged

and trained simultaneously with the ModelMerger module described in Section III C 3. NN algorithms are trained

by forward-propagating the atomistic feature vectors of molecules through their respective NN. The outputs of the

models are atomic contributions. If targets are global quantities, such as the total energy, then the local atomic energy

contributions of a molecule can be summed up and used to evaluate the loss function against corresponding targets.

In this way, when backward-propagating the models, the optimization process will account for the global quantity.

The usage of NN in the atomistic.models module is illustrated in Listing 5. A NeuralNetwork class with two hidden layers

of 10 nodes each is instantiated, and a ReLU activation function is applied to all hidden layers except for the output
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layer. The model is subsequently prepared for training with atomistic feature vectors holding 4 dimensions per atom.

Note that we also feed the data_handler object created with the Data class.

1 from ml4chem.atomistic.models import NeuralNetwork

2

3 # Parameters

4 n = 10 # Hidden layers

5 activation = "relu" # Activation function

6 input_dimension = 4 # Input Dimension

7

8 # Model instantiation and preparation

9 nn = NeuralNetwork(hiddenlayers =(n, n), activation=activation)

10 nn.prepare_model(

11 input_dimension ,

12 data=data_handler ,

13 purpose="training"

14 )

Listing 5: Usage example script of the atomistic neural network class in ML4Chem.

b. Support Vector Machines

A Support Vector Machine (SVM) is a discriminative classifier that for some given labeled examples, it outputs an

optimal hyperplane which categorizes new examples. For atomistic ML models, Kernel Ridge Regression (KRR) is

a very useful algorithm based on linear ridge regression that aims to minimize a squared error loss function with a

l2-norm regularization term:

argmin
β∈RD

N∑
i=1

(βxi − yi)2 + λ||β||22, (12)

where β are regression coefficients, xi is the ith model input, yi is its corresponding ith target, and λ ≥ 0 is a

hyperparameter representing the penalty during the minimization of the loss function. Although the loss function in

Eq. 12 is only suitable for linear regression, it can be applied to non-linear problems using the kernel trick (KT)[47].

The KT allows model inputs (atom features in this framework) to be mapped into other feature spaces through the use

of kernel functions (KF). The importance of KF lies in that they are computed directly in raw input space (atomistic

feature vectors are not explicitly modified). KF are non-negative real-valued functions between two vectors k(x,y).

According to Mercer’s theorem, matrices built from KFs are squared definite-positive covariant kernel matrices[48].

Thus, they provide some numerical advantages because they can be factorized and generally provide well-defined

solutions. The KRR algorithm of the atomistic module of ML4Chem supports radial basis kernel functions (RBF),

squared exponential kernel, linear, and Laplacian kernels in both their isotropic and anisotropic[49] variants as seen

on Eqs. 13 and 14 respectively:

k(x,y)isorbf = exp

(
−||x− y||22

2σ2

)
, (13)
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k(x,y)anisorbf = exp

(
−

D∑
i=1

(xi − yi)
2σ2

i

)
, (14)

where x and y are input and reference atom feature vectors respectively, σ is the Gaussian width, and D is the

number of dimensions of the feature vectors. These kernels are bivariate functions that compute the similarity based

on distances between two vectors in a normalized vector space. The output of these KF is within the interval [0, 1].

Note that anisotropic variants of kernels allow the assignment of specific variances for each dimension of the feature

vectors without the need to modifying them explicitly.

Our implementation is inspired by Ref. [50] and uses the atomistic feature vectors to build the kernel matrix shown in

Eqs. 15. Kernel matrices are positive definite which make their Cholesky decomposition to provide a unique solution

to the regression coefficients. This is a particular advantage of these models since their solution is deterministic.

By deterministic we mean a model that for a given input always reproduces the same regression coefficients, and

consequently the same output. That is not the case in models such as neural networks that are randomly initialized

leading to different local minima that are valid solutions.


kE11 kE12 kE13 . . . kE1N

kE21 kE22 kE23 . . . kE2N

. . . . . . . . . . . . . . . . . . . . . . . .

kEN1 kEN2 kEN3 . . . kENN




β1

β2
...

βN

 =


E1

E2

...

EN

 (15)

Solving the system of equations in Eq. 15 requires atomic quantities that might not be available in quantum

mechanics such as atomic energies. In those cases, one has to rely on atomic decomposition Ansatz as described by

Bartók[35, 51, 52]. Instead of training using a loss function, the regression coefficients β in Eq. 15 are determined by

forward and backward substitution after matrix factorization using the Cholesky decomposition method.

After training, a prediction is carried out by

f(x) =

n∑
i=1

βik(xi,yj). (16)

The atomistic module of ML4Chem can perform kernel ridge regression as shown in Listing 6. The KernelRidge class

is instantiated with the kernel function to be used, the isotropic variance sigma and penalization values. Then, the

model is prepared by passing the feature and reference features to build the covariance matrix. We also support

Gaussian process regression in which case the listing has to be modified to import the GaussianProcess class instead.

When doing so, the predictions will also return a tuple with the associated predictive uncertainty.
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1 from ml4chem.atomistic.models import KernelRidge

2

3 # Parameters

4 sigma = 1.0 # Sigma kernel value

5 kernel = "rbf" # Kernel type

6 lamda = 1e-5 # Penalization

7

8 # Model instantiation and preparation

9 krr = KernelRidge(sigma=sigma , kernel=kernel , lamda=lamda)

10 krr.prepare_model(

11 feature_space ,

12 reference_features ,

13 data=data_handler

14 )

Listing 6: Usage example script of the atomistic Kernel ridge regression class in ML4Chem.

2. Unsupervised Learning

Probably the best example of an unsupervised learning algorithm corresponds to autoencoders (AE). AE are a type

of artificial neural network architecture composed by an encoder and a decoder that can learn data representations

without human intervention. As shown in Figure 4, an AE forward propagates the input through the encoder

architecture to reach an informational bottleneck where latent features, denoted with hd, are extracted. The bottleneck

layer is usually of lower dimensionality compared to the input. Afterward, these latent features are used by the

decoder to reconstruct the inputs. This reconstruction task might seem uninteresting but depending on the type of

AE architecture, and what is being reconstructed, the model can learn low-dimensional representations of the input

space, denoise data, or even how to generate new examples.

An autoencoder with fully connected hidden layers tends to only “memorize” how to reconstruct the input space

or denoise data. Their power can be enhanced by penalizing the latent space with a loss function[53], attachment of

external task[11], or just by forcing sparse activations[54, 55].

Our implementation of autoencoders supports two architectures that can be set with the one_for_all boolean keyword

argument. If set to true, a single autoencoder is used for all types of atoms in the training data, otherwise, each set

of atom type will have its autoencoder as in the Behler-Parrinelo scheme. In Listing 7, an AutoEncoder() class in the

atomistic.models module of ML4Chem is instantiated with an encoder/decoder architecture where input’s dimensions

are lowered from 40 to 4 dimensions. In this case, the hyperbolic tangent activation function is applied to all layers

with the activation keyword argument, and when the purpose is not set then training is assumed. Currently, only the

same activation function for all layers is supported but this functionality can be extended in future releases. Note

that the .prepare_model() class method sets the dimensionality of the output to be the same as the input.

In 2013 Kingma and Welling [56] proposed a modification to autoencoder architectures employing a variational Bayes

method that infers a posterior probability. Instead of encoding a latent vector, as seen in Figure 5, the variational

autoencoder (VAE) encodes a non-differentiable latent normal distribution with unit variance. To make the model

trainable, a latent vector is randomly sampled from the distribution and used by the decoder to reconstruct the input
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FIG. 4: Architecture of an Autoencoder.

1 from ml4chem.atomistic.models import AutoEncoder

2

3

4 hiddenlayers = {"encoder": (20, 10, 4), "decoder": (4, 10, 20)}

5 activation = "tanh"

6 purpose = "training"

7 input_dimension = 40

8

9 ae = AutoEncoder(

10 hiddenlayers=hiddenlayers ,

11 activation=activation ,

12 one_for_all=False

13 )

14 ae.prepare_model(input_dimension , input_dimension , data=data_handler)

Listing 7: Training example script of the atomistic autoencoeder class in ML4Chem.

space. This is known as the reparameterization trick and allows the calculation of the gradient of the loss function

with respect to the parameters of this architecture[56]. VAEs are known to produce blurry reconstructions[57, 58]

of the inputs, but more meaningful data representations, unlike vanilla AEs. That is because the VAEs are forced

to minimize reconstruction errors from feature vectors sampled from the latent distribution. VAEs are classified as

generative models because they learn smooth conditional distributions of the input space X for given evidence and are
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even able to generate new examples. VAEs can be invoked in ML4Chem by importing VAE() instead of the AutoEncoder()

class in Listing 7.

In our VAE implementation, we also support the one_for_all keyword argument, and provide three variants when

passing the variant string keyword argument:

1. ”multivariate”: the decoder outputs a distribution with mean and unit variance, and the model is trained by

minimizing the negative of the log-likelihood plus the Kullback–Leibler divergence[59]. This is useful when

outputs are continuous variables. Expected feature range [−∞,∞].

2. ”bernoulli”: the sigmoid activation function is applied to the decoder’s outputs and models are also minimized

with the negative of the log-likelihood plus the Kullback–Leibler divergence[59]. Features must be in a range

[0, 1].

3. ”dcgan”: hyperbolic tangent activation function is applied to the decoder’s outputs, and the model is trained

by minimizing the negative of the log-likelihood plus the Kullback–Leibler divergence[59]. Useful for feature

ranges [−1, 1].

FIG. 5: Variational Autoencoder architecture.

3. Semi-Supervised and Hybrid Learning

In previous sections, we have discussed the supervised and unsupervised learning algorithms. Supervised learning

requires large amounts of data to be labeled in input/target pairs which usually requires a very costly process carried
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out by an ML engineer or a data scientist. On the other hand, unsupervised learning does not require labeled data but

its applicability is very limited and dependent on the problem that is tried to be solved. To overcome these limitations,

semi-supervised learning tasks consist of building algorithms that can work with both labeled and unlabeled data.

Mixing both tasks is challenging as several loss functions are used to then backward propagate the ensemble model.

The atomistic.models module allows access to semi-supervised learning with the ModelMerger() class. In Listing 8,

we use the neural network and autoencoder models already instantiated in Listings 5 and 7 and add them to a list

called models. We import the required loss functions from the models.loss module and assigned them to a list named

losses. Similarly, the targets for each model are added to a list with name targets, and for the inputs, note that the

neural network model takes as input the latent space from the autoencoder.

During training, there are two important options that can be passed to the ModelMerger class:

• A boolean "independent_loss" keyword argument to set whether or not the loss functions are merged. If set to

true, models are aware of each other.

• A "loss_weights" keyword argument with a list to set how much the loss of model(i) contributes to the total loss

function.

More about training procedures is elaborated in Section III D.

1 from ml4chem.atomistic.models.loss import MSELoss , AtomicMSELoss

2

3 models = [ae, nn]

4 losses = [MSELoss , AtomicMSELoss]

5

6 # AE input/output dimensions are 20/4.

7 # NN input/output dimensions are 4/1.

8 inputs = [X, ae.get_latent_space]

9

10 # AE targets are X.

11 # NN targets are vector of scalars y.

12 targets = [X, y]

13

14 merged = ModelMerger(models)

15 merged.train(

16 inputs=inputs ,

17 targets=targets ,

18 data=data_handler ,

19 lossfxn=losses

20 )

Listing 8: Example of a hybrid model in ML4Chem combining an autoencoder with a neural network.
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D. Model Optimization

Deep learning is a challenging optimization problem that employs the gradient descent algorithm. Partial derivatives

of the loss function with respect to the model’s parameter space are required to update ML model’s parameters in the

direction of steepest descent as defined by the negative of the gradient. This computation experiences the vanishing

or exploding gradient problems. In the former case, the partial derivatives of the loss function with respect to the

parameters of the model become so small that the optimizers cannot adjust weights to minimize or maximize the

loss function. In the latter case, partial derivatives are so large that optimizers oscillate around a minimum or

maximum in the loss function space and convergence is never reached. These problems remained elusive for decades

but were resolved by gradient clipping[60], regularization[46], and usage of activation functions that only saturate

in one direction e.g. the ReLU activation function[61]. The atomistic module of ML4Chem supports most of the

optimizers available in Pytorch such as ADAM[62], stochastic gradient descend[63], and Adagrad[64].

FIG. 6: Mini-batch data parallel scheme.

We train models exploiting the data parallelism paradigm as illustrated in Figure 6. In this scheme, data is

partitioned in mini-batches that are set with the batch_size keyword argument. Mini-batches with the input data and

targets are scattered through workers in a local or remote distributed cluster. The ML algorithm also is replicated on

each of these workers, and parallel forward propagation is carried out. After the forward pass, we proceed with the

parallel evaluation of the loss function for each mini-batch. In this step, the Pytorch automatic differentiation package

autograd computes the gradient of the loss functions with respect to the weights of the model for each mini-batch and

performs parallel backward-propagation passes. Finally, the gradients are reduced in CPU-1 and we call a step in

the optimizer to update weights according to this gradient. This process is repeated until the number of epochs is
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exhausted or some convergence criterion is reached. The parallelism scheme described above can also be visualized

with the Dask dashboard as shown in Figure 7.

Each algorithm in the atomistic.models module provides a train class to optimize its parameters. Each model has

its particularities but, in general, the train class requires at least input, outputs, batch size, optimizer, and loss

function (if needed). The train class is responsible for taking all this information and carry out all necessary steps to

train a model including calling steps in the optimizer. The optimizers are set with the atomistic.models.optim module

that wraps Pytorch optimizer objects from a tuple composed by the name of the optimizer, and a dictionary with

its required parameters e.g.: optimizer = ("adam", {"lr": float, "weight_decay"=float}). When ML models are trained,

their parameters can be stored to disk and subsequently, be used for prediction.

FIG. 7: Dask dashboard tool tracking computations in real time for the case

where ML4Chem is optimizing a neural network over 16 processes.

E. Inference and Visualization

Inference is the step in an ML pipeline where a trained ML model is used to infer/predict over unseen samples.

This procedure involves a similar forward pass as the carried out during training for the prediction of targets.

Probably the biggest difference with a model in training mode is that during inference no backward-propagation is

carried out. Therefore, the inference is a very fast computation that requires matrix multiplication and summation.

In ML4Chem, atomistic models can be saved and loaded as seen in Listing 9.

We use the .save() method of the Atomistic class to save a neural network and gaussian features passing as arguments

their objects. The label argument is used to save them to disk with name "nn". A trajectory file is loaded in memory

that contains molecules stored as Atoms() ASE objects. Then, we assign the model to the calc variable with the load()

function and the following arguments: i) path to optimized parameters stored in a file named nn.ml4c, ii) path to the

nn.params file that contains parameters in JSON format to recreate the model and features, and iii) the preprocessor

to scale the features from nn.scaler.
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1 from ml4chem.atomistic import Atomistic

2 from ase.io import Trajectory

3

4 # Save a model

5 Atomistic.save(nn, features=gaussian , path="", label="nn")

6

7 # Load a model

8 molecules = Trajectory("test.traj")

9 calc = Atomistic.load(model="nn.ml4c", params="nn.params", preprocessor="nn.scaler")

10

11 for molecule in molecules:

12 energy = calc.get_potential_energy(molecule)

Listing 9: Example of save, and load trained neural network model in ML4Chem.

(a) Parity plot. (b) Loss function progress.

(c) 2D latent space (seaborn).
(d) 3D latent space (plotly).

FIG. 8: Visualization tools offered in ML4Chem.
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Another important part of ML pipelines has to do with visualization. We provide a visualization module built

on top of matplotlib[65], seaborn and plotly[66]. In Figure 8 we show a parity plot between ML4Chem predictions

and true values, the progress of the loss function in real-time, a 2D visualization of atomistic latent space obtained

using a VAE, and its 3D interactive visualization with plotly. All these plots are offered as standalone functions.

We also provide a command-line tool called ml4chem that allows quick access to these visualizations. For example,

the latent space visualization shown in Figure 8c can be plotted from a stored features file using the command line

ml4chem --plot tsne --file latent_space.db.

IV. DEMONSTRATIONS OF THE ML4CHEM FRAMEWORK

In this section, we present some demonstrations of running ML pipelines with ML4Chem. An atomistic neural

network is trained with the ANI-1 data set, and a kernel ridge regression algorithm is trained with the QM7 data set.

A. Data Sets

The ANI-1 data set[32] is publicly available at https://github.com/isayev/ANI1_dataset. It is provided in

HDF5 format, and can be used with the atomistic module of ML4Chem when converted to ASE and passed to the

Data class. In Listing 10, we show how to load ANI-1 files to memory with pyanitools and assign them to a ani_data

variable. Next, this list is passed as an argument to the ML4Chem’s ani_to_ase() parser function that converts HDF5

ANI-1 data sets to ASE trajectory files. After the conversion is done, the trajectory file is saved to disk as ani.traj.

1 import ase

2 import pyanitools as pya

3 from ml4chem.data.parser import ani_to_ase

4 from ml4chem.data.utils import split_data

5

6 # Load ANI -1 hdf5 files to a list

7 files = ["ani_gdb_s01.h5", "ani_gdb_s02.h5","ani_gdb_s03.h5"]

8 ani_data = [pya.anidataloader(f) for f in files]

9

10 # Pass list of hdf5 files to ML4Chem ani_to_ase () parser function.

11 ani_dataset = ani_to_ase(

12 ani_data ,

13 data_keys =["energies"],

14 trajfile="ani.traj"

15 )

16

17 # Load trajectory file and split data in 80% training and 20% test set

18 traj = ase.io.Trajectory("ani.traj")

19 split_data(traj , test_set =20, randomize=True)

Listing 10: Conversion of ANI-1 data set to the atomic simulation environment format (ASE).

https://github.com/isayev/ANI1_dataset
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The QM7[67, 68] is available at http://quantum-machine.org/datasets as a Matlab file. According to the

website, “The data set is composed of three multidimensional arrays X (7165 x 23 x 23), T (7165) and P (5 x 1433)

representing the inputs (Coulomb matrices), the labels (atomization energies) and the splits for cross-validation,

respectively. The data set also contains two additional multidimensional arrays Z (7165) and R (7165 x 3) representing

the atomic charge and the Cartesian coordinate of each atom in the molecules”. Its conversion into an ASE trajectory

file to be used in atomistic module of ML4Chem is trivial as illustrated in Listing 11.

1 import scipy.io as sio

2 import ase

3 from ml4chem.data.utils import split_data

4

5

6 traj = ase.io.Trajectory("qm7.traj", mode="w")

7 dataset = sio.loadmat("qm7.mat")

8

9 # Cartesian coordinates

10 cartesian = dataset["R"]

11

12 # Atomic charge (Z), atomization energy (T)

13 Z = dataset["Z"]

14 T = dataset["T"]

15

16 for i, molecule in enumerate(Z):

17 numbers , positions = [], []

18 for j, z in enumerate(molecule):

19 if z != 0:

20 numbers.append(z)

21 pos = tuple(cartesian[i][j])

22 pos = [c * ase.units.Bohr for c in pos]

23 positions.append(pos)

24 atoms = ase.Atoms(numbers=numbers , positions=positions)

25

26 traj.write(atoms , energy=float(T[0][i]))

27

28 # Load trajectory file and split data in 80% training and 20% test set

29 traj = ase.io.Trajectory("qm7.traj")

30 split_data(traj)

Listing 11: Conversion of QM7 data set to the atomic simulation environment format (ASE).

Each data set was randomized and split in 80% as training set and 20% as test set using the split_data() function.

B. Neural Network with Gaussian Features

In this demonstration we trained an atomistic machine learning potential using the NeuralNetwork class with Gaussian

type features and the ANI-1 data set. For this example, we will use the high-level Potentials class.

http://quantum-machine.org/datasets
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1 from ase.io import read

2 from ml4chem.utils import logger

3 from ml4chem.atomistic.features import Gaussian

4 from ml4chem.atomistic.models import NeuralNetwork

5 from ml4chem.atomistic import Potentials

6 from dask.distributed import Client , LocalCluster

7

8

9 def run():

10 # Use 500 molecules for a total of 3606 feature vectors

11 n_molecules , batch_size = 500, 30

12 logger("nn.log")

13

14 training = read("../ training_images.traj", index="0:{}:1".format(n_molecules))

15

16 # Instatiate the Potentials class

17 calc = Potentials(

18 features=Gaussian(

19 batch_size=batch_size , cutoff =6.5, normalized=True , save_preprocessor="model.scaler"

20 ),

21 model=NeuralNetwork(

22 hiddenlayers =(10, 10), activation="tanh"

23 ),

24 label="nn_training",

25 )

26

27 # Optimizer options and convergence criterion

28 convergence = {"energy": 5e-2}

29 lr = 1.0e-2

30 weight_decay = 1e-5

31 optimizer = ("adam", {"lr": lr, "weight_decay": weight_decay })

32

33 # Train the algorithm

34 calc.train(

35 training_set=training , convergence=convergence , optimizer=optimizer , batch_size=batch_size

36 )

37

38

39 if __name__ == "__main__":

40 cluster = LocalCluster(n_workers =16, threads_per_worker =1)

41 client = Client(cluster)

42 run()

Listing 12: Training a neural network algorithm in ML4Chem using the Potentials class.

In Listing 12 the Potentials class can be instantiated with any of the atomistic.features and atomistic.models objects

of ML4Chem, and automates all of the necessary steps to train an atomistic ML potential.

The architecture of the NN is of two hidden layers of 10 nodes each, a hyperbolic tangent activation function,
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and the ADAM optimizer. The convergence criterion is set to be a root-mean-squared error of 0.05 Hartree. The

optimization converged at about 5000 epochs.

In Figure 9 we show a parity plot with results obtained by predicting over 1000 unknown molecules of the test set.

The NN model can do predictions with high accuracy, achieving a MAE 0.04 Hartree.

FIG. 9: Parity plot of neural network atomistic model predictions over 1000

molecules in the ANI-1 data set. Units are in Hartree.

It is worth noting that data points in the ANI-1 dataset are obtained through normal model sampling (NMS)

around the equilibrium geometry. Therefore, Gaussian features of atoms are very close to each other in the feature

space. To prove this hypothesis we carried out a principal component analysis (PCA) dimensionality reduction of the

Gaussian features of the training and test sets. In Figure 10, we can see how the training and test data points are

close in the lower PCA dimensional space making it easy for the model to correctly predict them.

C. Kernel Ridge Regression with Coulomb Matrix Features

In this demonstration, we train a kernel ridge regression (KRR) model for the task of predicting atomization energies

with the QM7 data set. Instead of the Potentials class, we will use a modular approach to show the flexibility of

ML4Chem. We proceed, as shown in Section III A, to the instantiation of the Data() class with the qmt7.traj trajectory
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FIG. 10: Dimensionality reduction with principal component analysis (PCA)

of Gaussian features of training and test sets.

file for the purpose of "training". The training set and targets are obtained with the .get_data() class method to

interoperate with ML4Chem (see Listing 13).

We use the rows of the Coulomb matrix features [69] as atomistic features vectors. The training set is featurized

by instantiating the CoulombMatrix class implemented using the DScribe package and calling the .calculate() method.

In the next step, the KernelRidge class is instantiated with keyword arguments to set training data, batch size, kernel

function (radial basis function, or RBF), and a sigma value. The model is prepared with features and reference space.

In the last step, we call the .train() method to fit the KRR algorithm passing as arguments the training set, targets,

and Data objects and the model’s parameters are saved to disk.

Now, we can proceed to load this model and predict unknown data points (see Listing 14). The results are shown

in a parity plot in Figure 11 with the root-mean-squared (RMSE) and mean squared (MAE) error metrics. This

model showed an MAE of 14.2 kcal/mol, compared to 9.9 kcal/mol when using the same RBF kernel on the Coulomb

matrix sorted eigenspectrum in Ref. [34]. This significant difference is expected because, for this demonstration, we

determined sigma to be the average of the euclidean distance of the Coulomb matrix atomic feature vectors. This is

not an exhaustive way of determining this hyperparameter, and in practice, one has to rely on k-fold cross-validation

to find the best value that fits the data of interest. Also, the number of training set data points in our demonstration

is smaller than the used in Ref [34].
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1 from ml4chem.data.handler import Data

2 from ase.io import read

3 from ml4chem.utils import logger

4 from ml4chem.atomistic.features import CoulombMatrix

5 from ml4chem.atomistic.models import KernelRidge

6 from ml4chem.atomistic import Atomistic

7 from dask.distributed import Client , LocalCluster

8

9

10 def run():

11 # Use 500 molecules for a total of 7727 feature vectors

12 n_molecules , batch_size = 500, 10

13

14 # Start a logger object to write to file

15 logger("experiments.log")

16

17 # Read training data

18 training = read("training_images.traj", index="0:{}:1".format(n_molecules))

19

20 # Prepare Data object

21 data = Data(training , purpose="training")

22 training , targets = data.get_data(purpose="training")

23

24 # Featurization using Coulomb Matrix

25 n_atoms_max = max(data.atoms_per_image)

26 cm = CoulombMatrix(n_atoms_max=n_atoms_max , batch_size=batch_size)

27 features , reference_space = cm.calculate(training , data=data , svm=True , purpose="training")

28

29 # Instatiate model , prepare and train. sigma is set to average Euclidean

30 # distance of feature vectors

31 krr = KernelRidge(

32 trainingimages="training_images.traj", batch_size=batch_size , kernel="rbf",

33 sigma =26.808046418478668

34 )

35

36 krr.prepare_model(features , reference_space , data=data , purpose="training")

37 krr.train(training , targets , data=data)

38

39 # Save model to disk

40 Atomistic.save(krr , features=cm, path="krr/", label="publication")

41

42

43 if __name__ == "__main__":

44 cluster = LocalCluster(n_workers =15, threads_per_worker =1)

45 client = Client(cluster)

46 run()

Listing 13: Training a kernel ridge regression algorithm in ML4Chem.
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1 from ase.io import read

2 from ml4chem.utils import logger

3 from ml4chem.atomistic import Atomistic

4 from dask.distributed import Client , LocalCluster

5 from ml4chem.data.visualization import parity

6 import pandas as pd

7

8

9 def run():

10 # Use 1000 molecules from the test set

11 n_molecules = 1000

12

13 # Start a logger object to write to file

14 logger("inference.log")

15

16 # Read test data

17 calc = Atomistic.load(model="krr/publication.ml4c", params="krr/publication.params")

18

19 # Set the reference space

20 calc.reference_space = "features.db"

21

22 # Compute energies

23 energies = []

24 trues = []

25

26 for index , atoms in enumerate(test):

27 energy = calc.get_potential_energy(atoms)

28 true = atoms.get_potential_energy ()

29 print(true , energy)

30 trues.append(true)

31 energies.append(energy)

32

33 df = pd.DataFrame(

34 {"ML4Chem Energies": energies , "True Values": trues}

35 )

36 df.to_pickle("inference_results.pkl")

37

38 parity(

39 energies , trues , scores=True , filename="parity_inference.png"

40 )

41

42

43 if __name__ == "__main__":

44 cluster = LocalCluster(n_workers =15, threads_per_worker =1)

45 client = Client(cluster)

46 run()

Listing 14: Inference using trained kernel ridge regression ML4Chem parameters.
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FIG. 11: Parity plot of kernel ridge regression predictions over 1000 molecules

in the QM7 data set. Units are in kcal/mol.

V. CONCLUSIONS

We presented the atomistic module of ML4Chem, an open-source software package aiming to ease the deployment

and implementation of ML models in chemistry and materials science. Its structure is designed with strict modularity

and defined in such a way that each of its parts can be used as standalone programs. ML4Chem provides all needed

methods and tools for an ML discovery pipeline – that is to go from raw data to inference and visualization. We

showed with code snippets and demonstration cases what can be achieved with the core atomistic modules, and the

intended intuitiveness derived from the use of UX design rules. These attributes make ML4Chem a potential platform

for the implementation of new models, targeted to both non-experts and expert users.

For future development directions, we plan to extend the support of other input data formats of the atomistic

module beyond the atomic simulation environment (ASE); introduce a geometric module in ML4Chem to work with

geometric deep learning; addition of convolutional neural networks for both the atomistic and geometric modules;

transfer learning; and implementation of active learning protocols.
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