
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Efficient Abstraction and Refinement for Word-level Model Checking

Permalink
https://escholarship.org/uc/item/6jz4z4dn

Author
Ho, Yen-Sheng

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6jz4z4dn
https://escholarship.org
http://www.cdlib.org/

Efficient Abstraction and Refinement for Word-level Model Checking

By

Yen-Sheng Ho

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering – Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Robert K. Brayton, Chair
Professor Sanjit A. Seshia
Professor Alper Atamtürk

Fall 2017

Efficient Abstraction and Refinement for Word-level Model Checking

Copyright 2017

by

Yen-Sheng Ho

1

Abstract

Efficient Abstraction and Refinement for Word-level Model Checking

by

Yen-Sheng Ho

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Robert K. Brayton, Chair

Model Checking (MC) on a word-level circuit has important applications in the IC design
industry, where MC is used to prove that a word-level circuit always satisfies a set of given
properties. MC is challenging at the word level, when complex arithmetic operators like
multipliers are involved. Abstraction and refinement are commonly used to address chal-
lenging MC problems. If an abstraction is proved, so is the original problem. Otherwise,
spurious counterexamples are analyzed to refine abstractions. Although many abstraction
refinement algorithms for word-level MC have been developed, few take full advantage of
state-of-the-art bit-level MC algorithms, like Property Directed Reachability (PDR), which
is considered the most efficient method for deriving unbounded proofs. Therefore, this thesis
presents several techniques that enable efficient word-level MC by performing abstraction
refinement at the word-level while verifying abstractions at the bit-level.

To compute good abstractions and refinements at the word-level, novel refinement strate-
gies were proposed to take advantage of both structural and proof-based analysis. The pro-
posed strategies are shown to achieve a good balance between the sizes of the abstractions
and the number of refinement iterations needed for convergence.

To achieve efficient integration of abstraction refinement and bit-level MC algorithms, a
bit-level algorithm, PDRA, was created, that minimally modifies the original PDR algorithm
to perform on-the-fly abstraction refinement. Inspired by this, a word-level algorithm, PDR-
WLA, was developed that efficiently integrates bit-level PDR implementations with word-
level abstraction refinement. An important feature is the re-use of reachability information
learned in previous refinement iterations.

Motivated by real industrial benchmarks characterized by having many related arith-
metic operators, a word-level MC algorithm, UFAR, was proposed that uses uninterpreted
functions (UF) constraints as a method of refinement. A UF constraint, between a pair of
word-level operators, requires that if their inputs are equal then their outputs are equal.
To enhance the applicability of UF constraints, a procedure for normalizing operators was
devised. This allows UF constraints to be applied to a pair of same-type operators with

2

different operator sizes and signedness. UFAR explicitly encodes UF constraints into word-
level circuits. This allows any bit-level or word-level MC algorithm to be used, including
both PDRA and PDR-WLA.

All these developments were implemented in a publically available model checking system,
ABC. Experiments were done which show that UFAR successfully solves most cases in a large
set of challenging benchmarks provided by an industrial collaborator.

i

To My Family.

ii

Contents

List of Figures v

List of Tables vii

Acknowledgments ix

1 Introduction 1
1.1 Word-level Circuits . 2

1.1.1 Registers . 2
1.1.2 Word-level Circuits as Directed Acyclic Graphs 3
1.1.3 Bit-blasting . 3
1.1.4 Word-level Circuits as Finite State Machines 5

1.2 The Model Checking Problem . 5
1.3 Algorithms for Model Checking Problems . 6
1.4 Counterexample-guided Abstraction Refinement 7
1.5 Challenges and Motivations . 8
1.6 Contributions . 9
1.7 Organization . 10

2 Refinement Strategies for Word-level Abstraction 11
2.1 Introduction . 11
2.2 Preliminaries . 12

2.2.1 Word-level Localization Abstraction 12
2.2.2 Counterexamples . 13
2.2.3 Word-level CEGAR . 15
2.2.4 The Refinement Problem . 16
2.2.5 Ternary Simulation and X-value Counterexamples (XCEX) 17
2.2.6 Assumption Interfaces in SAT Solvers 18

2.3 Simulation-based Refinement (SBR) . 19
2.4 Proof-based Refinement (PBR) . 23

2.4.1 Variants of Proof-based Refinement 27
2.5 Maximum Fan-out Free Cone (MFFC) Refinement 28

Contents iii

2.6 Comparison of Refinement Strategies . 28
2.7 Related Work . 29
2.8 Experimental Results . 30
2.9 Conclusion . 33

3 Enhancing PDR with Localization Abstraction 35
3.1 Introduction . 35
3.2 Background . 36
3.3 Property Directed Reachability (PDR) . 36

3.3.1 The PDR Trace . 38
3.3.2 Overview of PDR . 38

3.4 The Algorithm: PDRA . 41
3.5 Comparison with Previous Work . 45
3.6 Experimental Results . 46
3.7 Conclusion . 47

4 Property Directed Reachability with Word-Level Abstraction 50
4.1 Introduction . 50
4.2 Preliminaries . 52

4.2.1 The UMC problem . 52
4.2.2 Property Directed Reachability . 53
4.2.3 Word-level Abstraction . 54
4.2.4 Simple CEGAR (S-CEGAR) . 54

4.3 PDR with Word-Level Abstraction . 56
4.3.1 The Algorithm . 56
4.3.2 Analysis of PDR-WLA . 58

4.4 Refinement . 59
4.5 Related Work . 59

4.5.1 Word-level Abstraction and Model Checking 59
4.5.2 PDR with Abstraction . 60

4.6 Experimental Results . 61
4.7 Conclusion . 64

5 Uninterpreted Function Abstraction and Refinement 65
5.1 Introduction . 65
5.2 Bit-Vectors and UF Constraints . 67

5.2.1 The MC Problem . 67
5.2.2 Word-level Signals (Bit-Vectors) . 68
5.2.3 Basics of Word-level Operators . 69
5.2.4 Functions of Word-level Operators 70
5.2.5 Generic Operators . 70
5.2.6 Uninterpreted Function (UF) Constraints 75

Contents iv

5.3 UFAR . 76
5.3.1 The Algorithm . 76
5.3.2 Exposing Generic Operators . 78
5.3.3 Creating Abstractions . 79
5.3.4 Model Checking Using Concurrency 81
5.3.5 Refining UF Pairs . 84
5.3.6 Refining Black Operators . 85
5.3.7 Analysis of UFAR . 88

5.4 Improvement Techniques . 88
5.4.1 Minimizing Counterexamples . 88
5.4.2 Performing Random Simulation . 89

5.5 The UFAR Framework . 91
5.5.1 Bit-blasting WLC with Verilog Semantics 91
5.5.2 Creating Abstractions WLCa . 92

5.6 Related Work . 92
5.7 Experimental Results . 94
5.8 Conclusion . 101

6 Conclusions 102
6.1 Summary . 102
6.2 Future Work . 103

Bibliography 105

v

List of Figures

1.1 An example showing a word-level circuit with loops at flip-flops modeled as a
directed acyclic graph (DAG). 3

1.2 An example showing a word-level circuit described in Verilog and its visualization
as a DAG. 4

1.3 A bit-level circuit bit-blasted from the word-level circuit in Figure 1.2. Symbol
∧ denotes a logic AND gate; dash arrows represent inverters. 4

1.4 The state transition graph of the circuit in Figure 1.2. 5

2.1 A combinational circuit illustrating word-level abstraction. out ≡ 0, UNSAT,
since 2× x ≡ x+ x, which forces out to be constant 0. 14

2.2 An example of refining the circuit in Figure 2.1b with ∆B = {n4, n5, n8}, a
subset of the set of the current abstraction signals B = {n4, n5, n6, n7, n8, n9}.
The refined circuit is created from the original circuit using the updated set
B \∆B = {n6, n7, n9}, corresponding to PPIs = {c, d, f}. 17

2.3 An example showing a CEX can be minimized or generalized into an X-value
CEX (XCEX). Symbol ∧ denotes logic AND; dashed arrows represent logic NOT. 18

2.4 An example of refining the circuit in Figure 2.1b with ∆B = {n8, n9} (PPIs
{e, f}). 21

2.5 A word-level abstraction example similar to the one in Figure 2.1; the node n10

is changed to an OR gate. out ≡ 0, UNSAT, since 2 × x ≡ x + x, which forces
out to be constant 0. 22

2.6 An example of refining the circuit in Figure 2.5b with ∆B = {n8} (PPI e). . . . 22
2.7 A combinational circuit illustrating word-level abstraction. out ≡ 0, UNSAT,

since 2× x ≡ x+ x, which forces out to be constant 0. 24
2.8 An example of unrolling a circuit in PBR. ITE operators (multiplexers) are

introduced to select the concrete signals (white circles) and the abstracted ones
(black circles). If all concrete signals are chosen, then the unrolling becomes the
same as the k-unrolling of the original circuit, where the property holds under
the spurious CEX. 25

List of Figures vi

2.9 Example for proof-based refinement, where x and y are original PIs, a-d are
pseudo PIs, s1-s4 are sel PIs. This is created from the current abstraction shown in
Figure 2.7b. If the assignments of x and y in cex are plugged in, and assumptions
are made that s1-s4 are all 1, then out is constant-0 (UNSAT). 26

3.1 A simple finite state machine (FSM). 40
3.2 Overview of the PDRA algorithm. 42

4.1 A combinational circuit illustrating word-level abstraction. out ≡ 0, UNSAT,
since 2× x ≡ x+ x, which forces out to be constant 0. 55

4.2 Comparison of PDR-WLA (%pdra) and S-CEGAR (%abs). This shows the effec-
tiveness of re-using PDR traces. Note that PDR-WLA and S-CEGAR would be
the same if no PDR traces can be re-used. Therefore, only 29 cases with non-zero
re-used PDR traces are shown. 62

5.1 Three multipliers with different functions. 69
5.2 An example showing how generic operators are modeled and exposed. 74
5.3 An example showing how a UF constraint (signal c) is encoded as an invariant

constraint in a circuit. Signal out is the original output where out = 1 means
the property is violated. Signal out′ is the new output with the UF constraint
encoded. Dashed arrows denote negations. 80

5.4 A combinational circuit illustrating word-level UF abstraction. 82
5.5 An example showing UF constraints are useful when applied to real multipliers. 83
5.6 An auxiliary circuit created in the proposed proof-based procedure for refining

black operators. The original and the current abstraction circuits are shown in
Figure 5.4. 87

5.7 The flow of the UFAR framework . 91
5.8 Comparison of five UFAR variants. The result of super_prove is not shown here

because it only solves 2087 instances, well below the bottom scale of 2330. . . . 96

vii

List of Tables

2.1 Detailed experimental results for the first 45 out of the 89 word-level test-cases
that can be solved by at least one of the six refinement strategies (the last 44 are
shown in the next table). |S| and |B| are sizes of the set of the initial targeted
signals (S) and the set of signals to be abstracted away for each iteration (B) in
Algorithm 2.2. 31

2.2 Detailed experimental results for the last 44 out of 89 word-level test-cases that
can be solved by at least one of the six refinement strategies. |S| and |B| are sizes
of the set of the initial targeted signals (S) and the set of signals to be abstracted
away for each iteration (B) in Algorithm 2.2. 32

2.3 Summary of Table 2.1 and Table 2.2 in terms of the number of test cases solved. 33

3.1 Comparing different flavors of PDR in terms of the number of solved cases and
runtime on 77 industrial examples (implementations with abstraction, pdr -t, treb
-abs, and pdr -nct, are compared against the baselines, pdr, treb, and pdr -nc). 46

3.2 Comparing different flavors of PDR in terms of the frame count and the invariant
size on 41 industrial examples (implementations with abstraction, pdr -t, treb
-abs, and pdr -nct, are compared against the baselines, pdr, treb, and pdr -nc). 48

4.1 Detailed experimental results for 20 unsatisfiable word-level test-cases. #HardSig-
nals is the number of hard signals (Definition 4.7). |S| and |B| are sizes of the set
of the initial targeted signals (S) and the set of signals to be abstracted away for
each iteration (B) in Algorithm 4.3. #ReusedClauses is the number of clauses in
PDR traces re-used by PDR-WLA. The number is 0 if all refinements occur at
k = 0. The details of SBR, MFFC, PBR, and PBR-B can be found in Chapter 2. 63

5.1 The standard integer functions (SIF) for Verilog operators. 71
5.2 Detailed experimental results for the first 50 out of the 100 word-level UNSAT

test-cases that can be solved by at least one of the six verification settings (the
last 50 are shown in the next table). The #Mults/#ANDs/#FFs means the
number of multipliers/bit-level AND nodes/bit-level flip flops. The numbers of
UF constraints and white boxes used in the last iteration are also presented.
Blanks in CPU Time represent time-outs (1 hour). 98

LIST OF TABLES viii

5.3 Detailed experimental results for the last 50 out of the 100 word-level UN-
SAT test-cases that can be solved by at least one of the six verification set-
tings. The #Mults/#ANDs/#FFs means the number of multipliers/bit-level
AND nodes/bit-level flip flops. The numbers of UF constraints and white boxes
used in the last iteration are also presented. Blanks in CPU Time represent
time-outs (1 hour). 99

5.4 Detailed experimental results for the 100 word-level UNSAT test-cases that can be
solved by at least one of the six verification settings. The numbers of iterations
of applying new UF constraints and iterations of applying new white boxes in
UFAR are presented. 100

5.5 The numbers of solved instances using different settings. 67 instances remain
unsolved. 101

ix

Acknowledgments

I would like to express my deepest gratitude to my advisor, Professor Robert K. Brayton,
for his endless patience of guiding me through my PhD years. Bob was always there and
available. My favorite moments are those one-on-one meetings with Bob at his place. There
were depressing times, but I gained energy and hope from Bob every time we met. Bob
listened and understood my problems, giving his invaluable advice and warm encouragement.
I always feel strongly supported by Bob. Without his support and guidance, I would not
have accomplished this dissertation.

I would like to thank Dr. Alan Mishchenko for many stimulating discussions and critical
feedback on my research. I was fortunate to have him as my unofficial co-advisor. I also
learned a lot from his experience in developing ABC. Alan’s enthusiasm for research and
programming always inspired me to become a better researcher and programmer.

I would like to thank Professor Sanjit A. Seshia and Professor Alper Atamtürk for their
constructive feedback on this dissertation. I would also like to thank Professor Edward A.
Lee for serving on my qualifying examination committee. I would like to give special thanks
to Professor Seshia for his guidance and mentoring during my first semester at Berkeley. I
am grateful to Shirley Salanio for her help and support in graduate matters.

I would like to thank Pankaj Chauhan and Pritam Roy for mentoring me during my
internships at Calypto. They had good influences in this thesis. I would also like to thank
the whole SLEC team for making my internships at Calypto enjoyable and fulfilling.

I would like to thank Dr. Niklas Eén, Sayak Ray, Baruch Sterin, Jiang Long, and Yu-Yun
Dai for many fruitful conversations and all the wonderful times we spent together in Bob’s
group. I am also thankful to Niklas for his mentoring in my early PhD years.

I would like to thank Wei Yang Tan, Antonio Iannopollo, Hokeun Kim, Tianshi Wang,
Garvit Juniwal, Nishant Totla, Chung-Wei Lin, Pierluigi Nuzzo, Wenchao Li, Shromona
Ghosh, and Baihong Jin for the intriguing conversations and all the fun times in the DOP
center.

Acknowledgments x

I would like to thank Semiconductor Research Corporation, National Science Foundation,
National Security Agency, Altera, Atrenta, Cadence, Calypto, IBM, Intel, Mentor Graphics,
Microsemi, Synopsys, and Verific for their financial supports and sponsorship.

Finally, I would like to thank my parents, my sister, and my brother for their uncondi-
tional love and strong support through all the years.

1

Chapter 1

Introduction

The development of integrated circuit (IC) design has been one of the main driving forces
in technology. Bugs or errors in an IC can cause serious problems to a company or even
human lives. Therefore, it is important to verify a circuit, checking if it is designed correctly
according to its specifications. This process is called verification.

Verification can be either simulation-based or formal -based. In simulation-based tech-
niques, an input vector is simulated on a circuit and the output results are checked against
the specification. If the results are not consistent, then a bug is found. Otherwise, the circuit
works properly under this input vector. However, as the complexity of an IC grows, it is
impossible to simulate every possible input vector. If a simulation-based verification cannot
cover all possible situations, then it cannot be concluded that a circuit is free of bugs. On the
other hand, formal-based techniques automatically consider all possible inputs with the use
of symbolic inputs and mathematical models of a circuit. This methodology is also known
as model checking (MC), where a circuit is checked if a property holds under all possible
situations. While MC is more powerful than simulation, it is less scalable on complicated
designs. Improving the scalability of MC has been an active research area ever since its
inception.

In the following sections, we introduce background material that is useful for understand-
ing the problems, challenges, motivations, and contributions of this dissertation. Section 1.1
describes word-level circuits, which are the typical level of descriptions used for IC designs.
These descriptions are the inputs to word-level model checking problems. Model checking
word-level problems is the major focus of this thesis. The problem of model checking and
state-of-the-art algorithms are presented in Section 1.2 and Section 1.3. Abstraction and
refinement are discussed in Section 1.4. Challenges in word-level MC and motivations of
this dissertation are given in Section 1.5. This chapter is then concluded in Section 1.6 by
outlining the main contributions. The organization of this thesis in given Section 1.7.

1.1. WORD-LEVEL CIRCUITS 2

1.1 Word-level Circuits

Practical circuits are usually specified at the word level, where bits are grouped as words
or bit-vectors. A word-level circuit can be modeled at the Register-Transfer Level (RTL) in
a hardware description language like Verilog.

Definition 1.1. A word-level signal, or bit-vector, of sizem is a finite function whose domain
is {x|x ∈ N, 0 ≤ x < m} and the co-domain is {0, 1}. A word-level signal b with size m
is denoted as bm. For example, a word-level signal b3 can have b3(0) = 1, b3(1) = 0, and
b3(2) = 1.

A word-level circuit is composed of two main parts, registers and combinational logic.
Registers synchronize the behaviors of a circuit according to clocks. Registers are the only
elements in a circuit that have memory, storing logic values computed in the previous clock
cycle. The combinational logic in a circuit determines the output values at the current cycle
as well as new register values for the next clock cycle.

1.1.1 Registers

A word-level circuit is assumed to have a single clock and a single type of register: a D
flip-flop. If a circuit has multiple clocks or different types of registers, it can be normalized to
a single clock through a technique called phase abstraction [BK05]. With this normalization,
a circuit has a single universal clock that ticks periodically, generating cycles. All registers are
initialized with some given values, and are updated to new values at each clock cycle based
on their inputs. In particular, every register is a D flip-flop that contains three components:

1. The initial state. This is the initial value for the register, which can be either a constant
or a non-deterministic value.

2. The current state. This is the output of this register, which is the value available at
the current cycle. It is also called the flop output (FO).

3. The next state. This is the input of this register, which is a function of the inputs
and the current states in this circuit. The register will be updated to this value at the
beginning of the next cycle. It is also called the flop input (FI).

For the rest of this thesis, we will use the terms flip-flops or simply flops to refer to registers
in a circuit.

1.1. WORD-LEVEL CIRCUITS 3

(a) A word-level circuit with feedback
loops (cycles) at flip-flops (FF).

(b) The DAG transformed from the
cyclic circuit in (a) with FFs modeled as
flop outputs (FO) and flop inputs (FI).

Figure 1.1: An example showing a word-level circuit with loops at flip-flops modeled as a
directed acyclic graph (DAG).

1.1.2 Word-level Circuits as Directed Acyclic Graphs

A word-level circuit often contains feedback loops broken by flip-flops (FF), because next
states are usually functions of current states. Given the simplified register model described
in Section 1.1.1, a word-level circuit can be modeled as a directed acyclic graph (DAG) by
breaking the feedback loops at the flip-flops, illustrated in Figure 1.1. At each clock cycle,
the values of flop inputs (FI), or next states, and primary outputs (PO) are functions of
flop outputs (FO), or current states, and primary inputs (PI). Internal nodes in a circuit
are word-level operators such as such as {+,−, ∗, /,%,�,�,≪,≫} as well as the usual
bit-level operators such as {¬,∧,∨}. A word-level operator takes input signals (operands)
and produces a result in its output signal according to its functionality.

Example 1.1. Figure 1.2 shows an example of a word-level circuit described in Verilog and
its visualization as a DAG. The nodes shown in Figure 1.2b are PIs = {a}, POs = {out},
FOs = {ff}, FIs = {ff_in}, constants {0, 1}, and word-level operators {�,+, []}.

1.1.3 Bit-blasting

A word-level circuit can be bit-blasted into an equivalent bit-level circuit consisting of
only logic gates such as {¬,∧,∨}. The process is called bit-blasting.

Example 1.2. Figure 1.3 shows a bit-level circuit bit-blasted from the word-level circuit
shown in Figure 1.2. The bit-level circuit is an And-Invertor Graph (AIG) with AND gates
(∧) and invertors (dashed arrows).

1.1. WORD-LEVEL CIRCUITS 4

module main (a, clk, out);
input a;
input clk;
output out;

wire [2:0] ff_in;
reg [2:0] ff;
initial ff = 3’b000;

assign ff_in = ff + (a << 1);
always @(posedge clk) begin

ff <= ff_in;
end

assign out = ff[0];

endmodule

(a) The Verilog snippet of a word-level
circuit.

a ff

<<

1

+[]

out

0

ff_in

(b) The DAG visualization of
the circuit described in (a).

Figure 1.2: An example showing a word-level circuit described in Verilog and its visualization
as a DAG.

aff[0] ff[1] ff[2]

out

Λ

ff_in[0] ff_in[1] ff_in[2]

Λ

Λ Λ

Λ Λ

Figure 1.3: A bit-level circuit bit-blasted from the word-level circuit in Figure 1.2. Symbol
∧ denotes a logic AND gate; dash arrows represent inverters.

1.2. THE MODEL CHECKING PROBLEM 5

000

010 100

110 011

101

001

111

a

¬a

¬a

¬a

¬a

a

a

a

a

aa

a

¬a¬a

¬a ¬a

Figure 1.4: The state transition graph of the circuit in Figure 1.2.

1.1.4 Word-level Circuits as Finite State Machines

In a word-level circuit, the state space is finite because there are a finite number of finite-
sized flip-flops. Moreover, under the simplified register model, the behavior of a circuit at
each cycle is well defined by its combinational logic. Therefore, a word-level circuit can be
modeled also as a finite state machine (FSM).

Definition 1.2. An FSM is a tuple M = (I, O, S, Init, T) where I is the set of PIs, O
is the set of POs, S is the set of FFs, Init is the set of initial states, and T is the set of
(deterministic) transition relations where T ⊆ I × S × S. If (i, s, s′) ∈ T , there exists a
transition from s to s′ under input i.

Example 1.3. The word-level circuit shown in Figure 1.2 can be modeled as an FSM. Its
state transition graph is shown in Figure 1.4. The shaded states are the ones that make the
PO out = 1.

1.2 The Model Checking Problem

The inputs to the model checking (MC) problem are an FSM, M , and a property spec-
ified in Linear Temporal Logic (LTL) [Pnu77]. The LTL property is assumed to be trans-
formed into a safety property, p, through a technique for example proposed by Claessen et
al. [CES13]. In terms of LTL, the MC problem is to check if the following formula holds.

M |= Gp.

If the above formula is true, then the model M satisfies the property p globally.

An MC algorithm should either report a counterexample (CEX) that falsifies the property
or produce an inductive invariant proving that the property always holds.

1.3. ALGORITHMS FOR MODEL CHECKING PROBLEMS 6

Definition 1.3. A counterexample (CEX) is a trace consisting of a sequence of PI assign-
ments driving the design from an initial state into a state falsifying the property.

Definition 1.4. An inductive invariant (Inv) proving a property P is a set of states that
a) contains the initial states (Init), b) does not contain states falsifying the property, and
c) contains all states 1-step reachable from the states contained in this invariant. Formally,
it is a predicate function satisfying the properties below.

1. Init(s) =⇒ Inv(s)

2. Inv(s) ∧ T (i, s, s′) =⇒ Inv(s′)

3. Inv(s) =⇒ P (s)

Example 1.4. For the circuit shown in Figure 1.2, if we let the PO represent the violation
of the property, then the problem has a unique inductive invariant, Inv = ¬ff[0], which
proves the property. The invariant contains all four non-shaded states in Figure 1.4.

1.3 Algorithms for Model Checking Problems

Fundamental algorithms for model checking have been developed over the past few
decades. Symbolic model checking with binary decision diagrams (BDD) was the first sym-
bolic technique for MC problems [Bry92, BCM+92]. Later, Boolean satisfiability (SAT)
solvers achieved major breakthroughs with conflict-driven clause learning [SS96] and two-
literal watching [MMZ+01]. The first SAT-based model checking algorithm was bounded
model checking (BMC) proposed by Biere et al. [BCCZ99]. k-induction was proposed to
enhance BMC with unbounded proofs [SSS00]. Interpolation-based model checking was the
first algorithm that explicitly computes over-approximations of reachable states to prove a
property [McM03]. IC3 was proposed in 2011 [Bra11], later improved as Property Directed
Reachability (PDR) [EMB11], has been considered the best performing algorithm in proving
properties. In this dissertation, we focus on three algorithms that work best for word-level
model checking: BMC, k-induction, and PDR.

Given an FSM M = (I, O, S, Init, T) and a property p, BMC and k-induction both
require unrolling of a circuit up to a certain depth k and then checking the satisfiability of
the propositional formulas below.

Init(s0) ∧
k−1∧
t=0

T (it, st, st+1) ∧
k∨

t=0

¬p(st) (1.1)

1.4. COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT 7

k∧
t=0

T (it, st, st+1) ∧
k∧

t=0

p(st) ∧ ¬p(sk+1) ∧
∧

0≤i<j≤k+1

si 6= sj (1.2)

BMC checks Formula (1.1): if it is satisfiable (SAT), then BMC finds a CEX that falsifies
the property within k cycles. Otherwise, the formula is unsatisfiable (UNSAT), meaning
there is no CEX within k cycles. BMC then either terminates with this bounded proof, or
increases the depth k for the next check. k-induction checks an additional formula (1.2): if
it is UNSAT, then it is proved that there exists no trace with the first k states satisfying
the property and the k + 1-th state falsifying the property. If Formula (1.1) is also UNSAT,
the property holds globally. Formula (1.1) and (1.2) can be viewed as the base case and
inductive step in mathematical induction, respectively.

In contrast, PDR does not require unrolling of a circuit. Instead of checking a large
and difficult formula like (1.1) or (1.2), PDR incrementally learns reachability information
in a circuit using many small formulas like (1.3). More details of PDR will be presented in
Chapter 3.

Rj(s) ∧ ¬c(s) ∧ T (i, s, s′) ∧ c(s′) (1.3)

1.4 Counterexample-guided Abstraction Refinement
(CEGAR)

In practice, directly solving a MC problem may not scale well due to the high complexity
of the problem. Abstraction is often used to simplify the original problem. The idea is to
create a new abstraction circuit such that if it can be proved that there is no CEX for the
abstraction, then there is no CEX for the original circuit also. On the other hand, if a CEX
is found in the abstraction, the CEX can be either real or spurious (Definition 1.5).

Definition 1.5. Given an original circuit M and an abstraction circuit A of M , a CEX of
A is real if it can falsify the property on M . Otherwise, it is spurious.

A spurious CEX does not tell whether the property is proved or falsified in the original
circuit. However, it provides information on how to refine the current abstraction to make
the property more provable. An ideal refined abstraction is still an abstraction of the original
model, but refutes the existence of the previous spurious CEX. The process of creating a
new abstraction to block a spurious CEX is called refinement.

Counterexample-guided abstraction refinement (CEGAR) is a framework that combines
the ideas of abstraction and refinement for MC problems [CGJ+00]. An overview of CEGAR
is shown in Algorithm 1.1. CEGAR starts by creating an initial abstraction from the original

1.5. CHALLENGES AND MOTIVATIONS 8

Algorithm 1.1 Counterexample-guided Abstraction Refinement (CEGAR)
Input: M . M : the input circuit
Output: status ∈ { SAT, UNSAT }
1: A ← CreateAbstraction(M)
2: while true do
3: cex ← ModelChecking(A)
4: if cex 6= ∅ then
5: if IsRealCEX(M , cex) then
6: return SAT
7: else
8: A ← Refine(M , A, cex)
9: else . No CEX exists in M .

10: return UNSAT

circuit M (line 1). Next, an abstraction-refinement loop is entered (line 2) where each
iteration begins by verifying the current abstraction with model checking (line 3). If an MC
solver concludes that there is no CEX for the problem, then an inductive invariant (line 9)
has been found. The property is proved, and CEGAR returns UNSAT (line 10). Otherwise,
a CEX to the abstraction, cex, exists (line 4) and is then checked against the original circuit
M to see if it is real (line 5). If yes, the property is falsified and CEGAR returns SAT (line 6);
otherwise cex is analyzed to refine the current abstraction (line 8). A new abstraction is
then created and a new iteration begins.

1.5 Challenges and Motivations

Many CEGAR-based algorithms for word-level MC have been proposed [AS04, JKSC05,
BKO+07, ALS08, BBSO10, BBS11, LS14]. However, none take full advantage of recent devel-
opments at the bit level, whereas PDR has been improved constantly [HBS13, IG15, GR16].
For example, some word-level techniques rely on BMC and k -induction with satisfiability
modulo theories (SMT) solvers [AS04, BKO+07, ALS08, BSST09, BBSO10, BBS11]. As
discussed in Section 1.3, BMC and k -induction require unrolling of a circuit to a certain
depth k. This becomes inefficient if deep unrolling is required to derive a unbounded proof.
On the other hand, PDR does not require unrolling and has been shown to be more efficient
in deriving unbounded proofs [Bra11]. In VCEGAR [JKSC05], abstractions are verified with
BDD-based algorithms, which do not scale to large problems due to possible memory ex-
plosion. Lee and Sakallah developed a CEGAR-based algorithm based on their SMT-based
PDR [LS14]. However this was not shown to be competitive with bit-level PDR algorithms.

Another way of solving word-level MC problems is to bit-blast a circuit and to solve

1.6. CONTRIBUTIONS 9

the resulting bit-level circuit with state-of-the-art bit-level model checkers like ABC [BM10].
However, direct bit-blasting loses word-level information, such as word boundaries and op-
erator semantics that can be useful in solving a problem.

To address those challenges, this dissertation proposes a new CEGAR-based paradigm:
performing abstraction refinement at the word level while proving bit-blasted abstractions
with state-of-the-art bit-level MC algorithms. This paradigm offers two main benefits:

1. It takes full advantage of recent developments in bit-level MC algorithms. In particular,
all the recent improvements in bit-level PDR algorithms as well as the winners in the
Hardware Model Checking Competition [BvDH17] can be integrated directly under
this paradigm.

2. It takes advantage of word-level information by performing abstraction and refinement
at the word level. This greatly improves the approach of direct bit-blasting without
sophisticated use of word-level information.

1.6 Contributions

In this dissertation, we propose several techniques that enable efficient abstraction and
refinement for word-level MC problems. We focus on the proposed CEGAR-based paradigm
of computing abstraction and refinement at the word-level and verifying abstractions at the
bit-level.

The success of a CEGAR-based algorithm mainly relies on a) the quality of abstractions
created in each iteration, and b) the number of iterations for the CEGAR flow to terminate.
The key challenge is to have a good refinement procedure given a spurious CEX. Therefore
we propose new word-level refinement strategies that take advantage of both structural and
proof-based analysis [HCR+16, HMB17]. The proposed strategies achieve a good balance
between the sizes of abstractions and the number of iterations, leading to an efficient CEGAR
flow compared to previous methods.

With good refinement strategies, the next challenge is to integrate MC algorithms into the
CEGAR flow in an efficient way. For example, a straightforward integration of PDR and CE-
GAR is to use a fresh PDR engine to verify the current abstraction (line 3 in Algorithm 1.1),
which is inefficient because reachability information learned in the current iteration would
be lost in the next iteration. Therefore we first propose a bit-level algorithm, PDRA, which
enhances PDR with an embedded localization abstraction [HMBE17]. In PDRA, we show
that CEGAR can be built into the PDR algorithm with only slight modifications. The result
is a PDR engine which is minimally modified to perform on-the-fly abstraction, where reach-

1.7. ORGANIZATION 10

ability information is preserved across iterations. Inspired by this, we propose PDR-WLA,
a word-level algorithm that efficiently integrates bit-level PDR with word-level abstraction
and refinement [HMB17]. PDR-WLA re-uses reachability information learned in previous
iterations explicitly to achieve an efficient integration.

The next challenge was a special class of word-level MC benchmarks, which was provided
to us by industry. The benchmarks are characterized by containing hundreds of multipliers
and adders where some of those operators may be related. For example, a pair of multipliers
may have identical inputs only at certain clock cycles. Moreover, the related multipliers
may have different sizes and signedness due to heavy synthesis and optimations done at
the Verilog level. Given the above characteristics, simple localization abstraction does not
work because localization cannot capture these relationships between multipliers. There-
fore we propose UFAR, a word-level CEGAR-based framework, which takes advantage of
the theory of uninterpreted functions (UF), by using UF constraints as a method of refine-
ment [HCR+16]. A UF constraint, between a pair of multipliers, states that if their inputs
are equal then their outputs must be equal. This is shown to be effective for a pair of related
multipliers. However, a UF constraint is not necessarily valid between two multipliers with
different sizes and/or signedness, even if they are related, because the two multipliers may
implement different functions. Therefore in UFAR, we propose a way to normalize mul-
tipliers so that a UF constraint is applicable to any pair of multipliers in a design. The
UFAR framework integrates all the proposed techniques presented in this thesis, leading to
significant improvements in solving such challenging sets of industrial benchmarks.

1.7 Organization

This dissertation starts with new proposed refinement strategies in Chapter 2. The algo-
rithm of PDRA, which enhances bit-level PDR with localization abstraction, is presented in
Chapter 3. The algorithm of PDR-WLA, which efficiently integrates word-level abstraction
with bit-level PDR, is discussed in Chapter 4. The framework of UFAR, which features using
uninterpreted function constraints as a way of refinement, is presented in Chapter 5. This
dissertation is concluded in Chapter 6.

11

Chapter 2

Refinement Strategies for Word-level
Abstraction

This chapter presents novel refinement strategies that take advantage of both structural
and proof-based analysis in order to compute good abstraction refinement at the word-level.

2.1 Introduction

Localization abstraction [WJK+01] has been shown effective in simplifying the original
problem for model checkers. Given a word-level circuit and a set of target signals (e.g.,
outputs of arithmetic operators), an abstraction is created by replacing the target signals
with free (unconstrained) variables called pseudo PIs (PPIs).

While the abstraction scheme is straightforward, it is challenging to make it efficient in
the CEGAR flow, shown in Algorithm 1.1. There are two main factors to be considered: a)
the quality of the current abstraction in each iteration and b) the number of iterations taken
for CEGAR to conclude the result. If we get an abstraction that is unnecessarily complex
(one that is very close to the original circuit), then the model checker could get stuck at
proving this instance (line 3 in Algorithm 1.1). Therefore, abstractions should be refined
gradually so that complexities are built up over several iterations. However, the refinement
should not be too incremental, meaning there should be only slight differences between
the refinement and the current abstraction, otherwise it could lead to an unnecessarily large
number of iterations for CEGAR to terminate. Thus, it is important to have good refinement
strategies that strike a good balance between the two trade-offs (refinement too much vs.
too little), leading to an efficient CEGAR-based algorithm.

2.2. PRELIMINARIES 12

In this chapter, two novel refinement strategies are proposed that are able to solve more
of the difficult cases than previous approaches, when evaluated on a set of 195 industrial
Verilog benchmarks. The first strategy is called Proof-based Refinement (PBR). We propose
a way to encode assumption variables into a circuit so that PBR can take advantage of
assumption interfaces, which are available in modern SAT solvers. This provides a good and
efficient way of estimating the minimum UNSAT subset (MUS) of assumptions. The second
strategy is called the Maximum Fan-out Free Cone (MFFC) refinement. The idea is that
using a simple structural analysis of a circuit (MFFC), unnecessary iterations can be avoided
by refining additional relevant signals, which improves performances.

This chapter starts with background material in Section 2.2. An important previous
approach, Simulation-based Refinement (SBR), is presented in Section 2.3. Our first pro-
posed strategy, PBR, is given in Section 2.4. The refinement strategy of MFFC is presented
in Section 2.5. Comparison of different refinement strategies is discussed with examples in
Section 2.6. Related work is given in Section 2.7. Experimental results are discussed in
Section 2.8. Conclusions are presented in Section 2.9.

2.2 Preliminaries

2.2.1 Word-level Localization Abstraction

In localization abstraction [WJK+01], given a word-level circuit and a set of target signals
(e.g., outputs of arithmetic operators), an abstraction is created by replacing the target
signals with free variables called pseudo PIs (PPIs). Localization is not necessarily restricted
to flip flops; any signal can be abstracted, similar to GLA [MEB+13]. In this thesis, RPIs
are used to denote the real PIs in the original circuit and PPIs are used for newly created
PIs in localization abstraction.

Algorithm 2.1 presents the procedure of creating a localization abstraction (WA) from the
original circuit (WM) and identifies a set of signals to be abstracted (B). The procedure uses
a signal map (U) that maps a signal in the original circuit (WM) to a signal in the abstraction
(WA) (line 3). The procedure iterates through all the signals in WM in a topological order
(from [PIs, FOs] to [POs, FIs]) (line 4). For each signal v, if v is in the abstraction set (B),
then a new PI is created in the new abstraction (WA), and the created PI is mapped to v
(line 6). Otherwise, a copy of v is created inWA, and the copy is mapped to v (line 8). Then
the inputs of U [v] in WA are properly attached by iterating the inputs of v in WM and using
the signal map U (line 10). For example, if a signal v has inputs x and y in the original
circuit (WM), then the inputs of its counterpart U [v] in the abstraction (WA) need to be
attached to the counterparts of x and y, which are U [x] and U [y]. Finally, the procedure

2.2. PRELIMINARIES 13

returns the newly created abstraction WA.

Algorithm 2.1 Word-level Localization Abstraction
1: procedure CreateAbstraction(WM , B)
2: WA ← ∅
3: U ← ∅
4: for v in TopologicalSort(WM) do
5: if v ∈ B then
6: U [v] ← CreatePI(WA)
7: else
8: U [v] ← CopySignal(WA, v)
9: for x in GetInputs(v) do

10: AttachInput(U [v], U [x])
11: return WA

Example 2.1. Consider the circuits in Figure 2.1. The PO, out, in Figure 2.1a is constant-0,
since both 2×x ≡ x+x and 2×y ≡ y+y are true. Figure 2.1b is the result of abstracting the
original circuit with the set of abstraction signals B = {n4, n5, n6, n7, n8, n9}. The 6 signals
are replaced with 6 PPIs {a, b, c, d, e, f}. There are 8 PIs in the abstraction, including RPIs
= {x, y} and PPIs = {a, b, c, d, e, f}. Note that while the example is combinational for
illustration purposes, the abstraction scheme applies generally to circuits with FFs.

2.2.2 Counterexamples

A counterexample (CEX) of length k is a sequence of concrete assignments of PIs (includ-
ing RPIs and PPIs) that drive the input model from its initial states into a state falsifying
the property. An example of a CEX trace is shown in (2.1), where sj denotes the value of
the j-th state and ij denotes the PI assignment at the j-th cycle.

s0
i0−→ s1

i1−→ s2
i2−→ . . .

ik−1−−→ sk (2.1)

A CEX cex can thus be described using PI values.

cex = (i0, i1, . . . , ik−1) (2.2)

The assignment function of a CEX can then be defined below.

Definition 2.1. Given a CEX cex = (i0, i1, . . . , ik−1), the assignment function β maps PIs
(i) and a time stamp (t) to a concrete assignment. Formally,

β(i, t) = it. (2.3)

2.2. PRELIMINARIES 14

*+

x

* +

y

!= !=

&

out

2
n1 n2n3

n4 n5 n6 n7

n8 n9

n10

n11

(a) The original circuit with four arithmetic
operators {n4, n5, n6, n7}, where x and y are
primary inputs, 2 is a constant, != is the
complement of a comparator, & is a bit-wise
AND, and out is the negation of the property.

x y

&

out

a b c d

e f

(b) An abstraction created from the
original circuit in (a) and the abstrac-
tion set B = {n4, n5, n6, n7, n8, n9}.
The 6 signals in B are replaced
with 6 pseudo primary inputs (PPI),
{a, b, c, d, e, f}.

Figure 2.1: A combinational circuit illustrating word-level abstraction. out ≡ 0, UNSAT,
since 2× x ≡ x+ x, which forces out to be constant 0.

2.2. PRELIMINARIES 15

Given a property p and an FSM M , an assignment function β of a length-k CEX to the
pair (M, p) would make the formula (2.4) satisfiable (SAT), meaning that there exists a trace
from s0 to sk under PI assignments i0 to ik−1 such that some state st falsifies the property.

Init(s0) ∧
k−1∧
t=0

T (it, st, st+1) ∧
k∨

t=0

¬p(st) ∧
k−1∧
t=0

(it = β(i, t)) (2.4)

Given a property p and two FSMs, M and A, where A is an abstraction of M , a spurious
CEX and its assignment function β satisfy the following properties.

1. The formula below is SAT, meaning that the CEX falsifies the property in the abstrac-
tion A.

InitA(s0) ∧
k−1∧
t=0

TA(it, st, st+1) ∧
k∨

t=0

¬p(st) ∧
k−1∧
t=0

(it = β(i, t)) (2.5)

2. The formula below is UNSAT, meaning that the CEX cannot falsify the property in
the original model M . Note that the domain of β includes both RPIs and PPIs, so the
PIs in M (RPIs) are correctly mapped to their corresponding concrete values in the
CEX.

InitM(s0) ∧
k−1∧
t=0

TM(it, st, st+1) ∧
k∨

t=0

¬p(st) ∧
k−1∧
t=0

(it = β(i, t)) (2.6)

2.2.3 Word-level CEGAR

Algorithm 2.2 shows a word-level extension to Algorithm 1.1 (CEGAR). The algorithm
starts by abstracting all signals in the set S (e.g., outputs of all specified arithmetic opera-
tors). Next, an abstraction-refinement loop is entered where each iteration begins by creating
a word-level abstraction based on the current set B, the set of signals to be abstracted away.
Procedure CreateAbstraction is presented in Algorithm 2.1. The abstraction is then
bit-blasted and solved by a bit-level MC solver (e.g., PDR). If the solver returns UNSAT, the
property is proved. Otherwise a CEX to the abstraction, cex, exists and is then simulated
on the original circuit (WM) to check if it is real. If yes, the property is falsified and cex is
returned; otherwise cex is analyzed to derive a set of signals (∆B) that, if un-abstracted,
can block cex. A new abstraction, with the set ∆B un-abstracted, is then created and a new
iteration begins.

2.2. PRELIMINARIES 16

Algorithm 2.2 Word-level CEGAR
Input: WM . WM : the word-level input circuit
Input: S . S: the initial set of targeted signals
Output: status ∈ { SAT, UNSAT }
1: Iterations ← 1
2: B ← S . B: the set of abstracted signals
3: while true do
4: WA ← CreateAbstraction(WM , B)
5: GA ← BitBlast(WA)
6: cex ← ModelChecking(GA)
7: if cex 6= ∅ then
8: if IsRealCEX(WM , cex) then
9: return SAT

10: else
11: ∆B ← Refine(WM , GA, B, cex)
12: B ← B\∆B
13: Iterations ← Iterations+ 1

14: else
15: return UNSAT

2.2.4 The Refinement Problem

Given a spurious CEX, cex, the goal of refinement is to identify a subset of signals ∆B
in the current set of abstraction signals B, such that if ∆B is removed from B, then cex is
blocked in the next iteration. We say that ∆B is un-abstracted. This procedure corresponds
to lines 11 and 12 in Algorithm 2.2.

A spurious CEX with assignment function β is said to be blocked in the refined abstraction
N if the formula below is UNSAT, meaning that the same CEX cannot falsify the property
in N . In practice, the formula can be checked without SAT solving by simulating the CEX
in N and checking that the output ¬p is constant-0 for the first k cycles.

InitN(s0) ∧
k−1∧
t=0

TN(it, st, st+1) ∧
k∨

t=0

¬p(st) ∧
k−1∧
t=0

(it = β(i, t)) (2.7)

Example 2.2. Consider the abstraction circuit shown in Figure 2.1b. Suppose the spurious
CEX to this abstraction is found with PI assignments

(x, y, a, b, c, d, e, f) = (0, 0, 0, 0, 0, 0, 1, 1).

Suppose after some CEX analysis, a refined abstraction is created with PPIs = {a, b, e} being
un-abstracted, as shown in Figure 2.2. The spurious CEX is blocked in the refined circuit

2.2. PRELIMINARIES 17

*+

x y

!=

&

out

2

c d

f

Figure 2.2: An example of refining the circuit in Figure 2.1b with ∆B = {n4, n5, n8}, a subset
of the set of the current abstraction signals B = {n4, n5, n6, n7, n8, n9}. The refined circuit is
created from the original circuit using the updated set B \∆B = {n6, n7, n9}, corresponding
to PPIs = {c, d, f}.

because if we simulate the PI assignments below in the refined abstraction, the PO (out)
value would be constant-0.

(x, y, c, d, f) = (0, 0, 0, 0, 1)

2.2.5 Ternary Simulation and X-value Counterexamples (XCEX)

A CEX can be minimized or generalized in the sense that some PIs can be assigned X
values (unknown logic values), but the resulting X-value CEX (XCEX) can still falsify the
property using ternary simulation.

In ternary simulation, Boolean logic with binary values {0, 1} is extended to ternary logic
with three values {0, 1, X}. The semantics of basic logic gates like AND (∧) and NOT (¬)
are given below.

A ∧B A
0 1 X

B
0 0 0 0
1 0 1 X
X 0 X X

A ¬A
0 1
1 0
X X

2.2. PRELIMINARIES 18

Λ

out

a b c d

Λ Λ

0

1

0

0 1

1 1 1

(a) The original CEX with concrete-value PI
assignments (a, b, c, d) = (0, 1, 1, 1). The val-
ues of each gate derived using simulation are
shown.

Λ

out

a b c d

Λ Λ

0

1

0

0 X

X X X

(b) An XCEX derived from the CEX in (a).
PI assignments now contain X values with
(a, b, c, d) = (0, X,X,X). The values of
each gate derived using ternary simulation
are shown. The XCEX still falsifies the prop-
erty (making out = 1).

Figure 2.3: An example showing a CEX can be minimized or generalized into an X-value
CEX (XCEX). Symbol ∧ denotes logic AND; dashed arrows represent logic NOT.

An XCEX is a generalized representation of a CEX because it represents a set of CEXes
that can falsify the property. In later discussions, one of the refinement strategies is based
on the idea of blocking a XCEX instead of a CEX, avoiding unnecessary CEGAR iterations.

Example 2.3. Figure 2.3 shows an example of how a CEX can be minimized into an XCEX.
The original CEX has concrete values for the PIs (a, b, c, d) = (0, 1, 1, 1). Three of the PIs
{b, c, d} can be assgined X values and the resulting XCEX (a, b, c, d) = (0, X,X,X) still
falsifies the property using ternary simulation. The XCEX now represents a set of 8 CEXes,
including the original CEX:

{(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 0, 0), (0, 1, 0, 1), (0, 1, 1, 0), (0, 1, 1, 1)}.

2.2.6 Assumption Interfaces in SAT Solvers

Modern SAT solvers have assumption interfaces pioneered by Eén and Sörensson [ES03a,
ES03b]. The interface is available through the following method.

SolveSAT(assumptions) (2.8)

2.3. SIMULATION-BASED REFINEMENT (SBR) 19

The assumptions are a set of unit clauses added to a SAT solver, which can be denoted as
assumptions = a0 ∧ a1 ∧ . . .∧ an−1. The method (2.8) returns SAT if the SAT solver finds a
satisfying assignment to the original problem under the given assumptions. Otherwise, the
problem is UNSAT if the assumptions are given. The SAT solver would also return a subset
of the assumptions {a0, a1, . . . , an−1} that is sufficient to make the problem UNSAT. This
capability of SAT solvers has been shown useful and effective in MC algorithms like abstrac-
tion and PDR [EMA10, EMB11], since it provides a cheap and efficient way of estimating
the minimum UNSAT subset (MUS) of the given assumptions.

Example 2.4. Consider the SAT instance below.

P = (a ∨ c) ∧ (¬b ∨ c) ∧ (¬a ∨ b ∨ c) (2.9)

If we call SolveSAT(a ∧ ¬b ∧ ¬c), the SAT solver would return UNSAT since

a ∧ ¬b ∧ ¬c ∧ P (2.10)

is UNSAT. A possible subset of assumptions {a,¬b,¬c} that is sufficient for the UNSAT
result is {¬c}, since

¬c ∧ P (2.11)

is UNSAT. This means that we only need to assume ¬c to make Query (2.9) UNSAT.

2.3 Simulation-based Refinement (SBR)

A simple refinement strategy is to simulate the given sprious CEX cex on the original
circuit (WM) and compare the PPI values (in cex) with their counterparts in WM . If the
values of a signal s do not match, then s is a refinement candidate, i.e. a candidate for
un-abstraction. If all such candidates are un-abstracted, the property must hold; thus cex is
blocked. However, this approach often results in too many candidates being un-abstracted,
and thus is not a good strategy.

Example 2.5. Consider the circuits shown in Figure 2.1. Suppose a spurious CEX to the
abstraction (Fig. 2.1b) is given below.

(x, y, a, b, c, d, e, f) = (0, 0, 1, 2, 1, 2, 1, 1).

(Recall that 2 here is the constant 2). If the CEX is simulated on the original circuit
(Fig. 2.1a), then the values of the counterparts of PPIs are

(n4, n5, n6, n7, n8, n9) = (0, 0, 0, 0, 0, 0).

2.3. SIMULATION-BASED REFINEMENT (SBR) 20

In this case, all the values of PPIs do not match with their counterparts, so all PPIs are
refinement candidates. Un-abstracting all PPIs {a, b, c, d, e, f} results in a refinement that
can block the CEX, but it refines more PPIs than necessary. As we shall see later, an optimal
refinement is to un-abstract PPIs {a, b, e}.

A more advanced way is to use a X-value CEX, discussed in Section 2.2.5 where some
PIs are assigned to X (unknown logic value), while the XCEX still falsifies the property
using ternary simulation.

An XCEX can be derived from a CEX in two ways:

1. For each PI value in the CEX, replace it with X, and then use ternary simulation to
check if the resulting XCEX still falsifies the property. If so, then keep X for that PI.
Otherwise, keep its original concrete value.

2. A more efficient way is to use Priority-based Refinement proposed by Mishchenko et
al. [MEB+13]. The procedure traverses a circuit twice. The first traversal is from PIs
to POs, assigning a priority for each node in a topological order. The second traversal
goes from POs to PIs in a reverse topological order. Nodes traversed are based on their
priorities and CEX values. Finally, a justifying subset (JS) of PPIs is returned. PPIs
in the JS are the only PPIs that need to keep their concrete values. Other PPIs can
be assigned X.

The concrete-value PPIs are also called care-set PPIs, since if their values are restricted
to ones given in the CEX while other PPIs are assigned X, the property would still fail
using ternary simulation. This provides a set of good candidates for refinement. If all PPIs
in the care set are un-abstracted, then cex is very likely to be blocked. The refinement
strategy of using Priority-based Refinement to identify a care set of PPIs to un-abstract, is
called Simulation-based Refinement (SBR), because the resulting XCEX needs to falsify the
property using ternary simulation.

SBR has the benefit of refining a more focused subset of PPIs than the one used in
Example 2.5.

Example 2.6. Consider the same CEX and circuits shown in Example 2.5. The XCEX
returned by Priority-based Refinement is

(x, y, a, b, c, d, e, f) = (X,X,X,X,X,X, 1, 1).

Therefore, the PPIs to un-abstract using SBR would be the care-set PPIs, {e, f}, instead of
all PPIs as described in Example 2.5.

However, there are limitations in SBR. It is possible that each care-set PPI is fed by a
tree, without overlaps with the trees of other care-set PPIs. Then, even if all the care-set

2.3. SIMULATION-BASED REFINEMENT (SBR) 21

x y

!= !=

&

out

a b c d

Figure 2.4: An example of refining the circuit in Figure 2.1b with ∆B = {n8, n9} (PPIs
{e, f}).

PPIs are un-abstracted, this will not provide enough constraints, and therefore the CEX is
not blocked.

Example 2.7. Continuing Example 2.6, the refined circuit is shown in Figure 2.4. PPIs e
and f are fed by trees that do not overlap. Their immediate inputs (a, b) and (c, d) are still
PPIs, so the outputs of the refined e and f are still unconstrained. The CEX in Example 2.5
is not blocked in this refined circuit.

(x, y, a, b, c, d) = (0, 0, 1, 2, 1, 2)

Example 2.8. Consider the circuits shown in Figure 2.5. Suppose a spurious CEX to the
abstraction (Fig. 2.5b) is given below.

(x, y, a, b, c, d, e, f) = (0, 0, 1, 2, 1, 2, 1, 1).

A minimized XCEX can be

(x, y, a, b, c, d, e, f) = (X,X,X,X,X,X, 1, X).

The only care-set signal is PPI e = 1, since it is sufficient to make out = 1 using ternary
simulation. In this case, SBR un-abstracts PPI e and the refined abstraction is shown in
Figure 2.6. Unfortunately, the same CEX is not blocked in this refinement, since the same
PI assignments still falsify the property (f = 1 makes out = 1).

(x, y, a, b, c, d, f) = (0, 0, 1, 2, 1, 2, 1).

This shows another limitation of SBR.

2.3. SIMULATION-BASED REFINEMENT (SBR) 22

*+

x

* +

y

!= !=

|

out

2
n1 n2n3

n4 n5 n6 n7

n8 n9

n10

n11

(a) The original circuit with four arithmetic
operators {n4, n5, n6, n7}, where x and y are
PIs, 2 is a constant, != is the complement of
a comparator, | is a bit-wise OR, and out is
the negation of the property.

x y

|

out

a b c d

e f

(b) An abstraction created from the
original circuit in (a) and the abstrac-
tion set B = {n4, n5, n6, n7, n8, n9}.
The 6 signals in B are replaced
with 6 pseudo primary inputs (PPI),
{a, b, c, d, e, f}.

Figure 2.5: A word-level abstraction example similar to the one in Figure 2.1; the node n10

is changed to an OR gate. out ≡ 0, UNSAT, since 2 × x ≡ x + x, which forces out to be
constant 0.

x y

|

out

a b c d

f!=

Figure 2.6: An example of refining the circuit in Figure 2.5b with ∆B = {n8} (PPI e).

2.4. PROOF-BASED REFINEMENT (PBR) 23

2.4 Proof-based Refinement (PBR)

To address the limitations of SBR, a more effective refinement strategy, called Proof-
based Refinement (PBR), is proposed. The main idea is that if a CEX cex is spurious and
the original circuit (M) is simulated with cex, the property holds in all time frames. This
implies that the BMC Formula (2.12) below is UNSAT, where it is the PI i at time t, st is
the state variable at time t, k is the depth of cex, β(·) denotes the assignment function of
cex (Definition 2.1), and out is the output signal (out = 1 means the property fails).

InitM(s0) ∧
k−1∧
t=0

TM(it, st, st+1) ∧
k∨

t=0

out(st)

∧
k∧

t=0

(it = β(i, t))

(2.12)

Next, multiplexers are introduced to select between the concrete version and the abstracted
version of a signal. If assumptions are made such that all concrete versions are selected
initially, then the resulting BMC formula is still UNSAT and a modern SAT solver, such as
MiniSat [ES03a], returns a final conflict clause. This contains a subset of the assumptions
sufficient for UNSAT (Section 2.2.6). This is an efficient variation of finding an unsat core,
and the subset returned is a candidate for ∆B.

The procedure operates in four steps:

1. Starting with the original circuit (WM), for each signal s in B, introduce two new PIs,
sel and ppi, where sel is a Boolean signal and ppi is a bit-vector signal consistent1
with the signal s. Replace s with s′ = ITE(sel, s, ppi) where ITE is the if-then-else
operator. Depending on the value of sel, either the concrete signal (s) or the abstracted
one (ppi) becomes the new signal s′.

2. Denote the circuit created in Step 1 as N and unroll it with the values of cex plugged
in, and keep sel and ppi as the remaining PIs. The cex values plugged in are initial
states and PIs at each time frame.

3. Solve the BMC query (2.13) below, which is guaranteed to be UNSAT. Note that β(·)
is the assignment function of cex, rpit is the real PIs (RPI) at time t, Xt is the set of
sel inputs at time t, and xtn is the sel input for the n-th replaced signal at time t. By
propagating xtn = 1 for all t and n, Query (2.13) is reduced to (2.12) by construction
(sel = 1 means that the concrete version is chosen).

1Signals are consistent if they have the same widths and signedness.

2.4. PROOF-BASED REFINEMENT (PBR) 24

*+

x

* +

y

!= !=

&

out

2

(a) The original circuit with four arithmetic op-
erators, where x and y are primary inputs, 2 is
a constant, ! = is the complement of a com-
parator, & is a bit-wise AND, and out is the
negation of the property.

x y

!= !=

&

out

a b c d

(b) An abstraction derived from the original by
replacing the 4 arithmetic operators with 4 new
primary inputs, a, b, c, and d.

Figure 2.7: A combinational circuit illustrating word-level abstraction. out ≡ 0, UNSAT,
since 2× x ≡ x+ x, which forces out to be constant 0.

InitN(s0) ∧
k−1∧
t=0

TN(it, st, st+1) ∧
k∨

t=0

out(st)

∧
k∧

t=0

(rpit = β(rpi, t)) ∧
k∧

t=0

|Xt|∧
n=1

xtn

(2.13)

4. Derive a subset ∆X of X using the assumption interface of a modern SAT solver, and
determine ∆B from ∆X. In our implementation, there is only one free variable xn
associated with the replaced signal, i.e. xn ≡ x0n ≡ x1n ≡ . . . ≡ xkn for 1 ≤ n ≤ |B|.
This way, we have |B| assumptions (instead of (k + 1)|B|) and the returned ∆X is
exactly our candidate for ∆B.

Example 2.9. Consider the circuits in Figure 2.7. Suppose a CEX to the abstraction

2.4. PROOF-BASED REFINEMENT (PBR) 25

(concrete values)
Initial states

PI@0 PI@1

…

PI@k-1
(concrete values)

p@0 p@1 p@k-1

…

x1
x2

(symbolic values, assumptions)

Figure 2.8: An example of unrolling a circuit in PBR. ITE operators (multiplexers) are in-
troduced to select the concrete signals (white circles) and the abstracted ones (black circles).
If all concrete signals are chosen, then the unrolling becomes the same as the k-unrolling of
the original circuit, where the property holds under the spurious CEX.

(Fig. 2.7b) is obtained, where the assignments of PIs and PPIs are

(x, y, a, b, c, d) = (0, 0, 0, 1, 0, 1).

Circuit (N), derived by introducing ITEs for each PPI, is shown in Figure 2.9. If all sel
PIs {s1, s2, s3, s4} are 1, then the circuit is reduced to the original. Next, PI values (x = 0,
y = 0) are plugged in, and PPIs {a, b, c, d} are left unconstrained. The SAT solver is called
to determine if out can be 1. The result must be UNSAT with the assumptions of the sel
PIs being all 1. In this case, the subset returned would be either {s1, s2} or {s3, s4}, which
is the minimum set needed. This example demonstrates that PBR can pinpoint a precise
set for refinement while a simulation-based approach only gives a rough approximation.

Example 2.10. Consider the unrolled circuit shown in Figure 2.8. The concrete values
(constants) used in the unrolling are the initial states and PI assignments from the given
CEX. The symbolic values, or non-constant PIs, are the sel and ppi PIs introduced with ITE
operators (multiplexers). In this example, there are two signals in the current abstraction
(|B| = 2). Therefore, two assumptions {x1, x2} can be made such that both original signals
(white circles) are selected and the resulting query (2.13) is UNSAT. The SAT solver then
reports a subset of {x1, x2} that is sufficient to block the CEX in the next iteration.

2.4. PROOF-BASED REFINEMENT (PBR) 26

*+

x

+

y

!= !=

&

out

2

*

1 0

a b c d

s1

1 0 1 0 1 0

s2 s3 s4

Figure 2.9: Example for proof-based refinement, where x and y are original PIs, a-d are
pseudo PIs, s1-s4 are sel PIs. This is created from the current abstraction shown in Fig-
ure 2.7b. If the assignments of x and y in cex are plugged in, and assumptions are made
that s1-s4 are all 1, then out is constant-0 (UNSAT).

2.4. PROOF-BASED REFINEMENT (PBR) 27

2.4.1 Variants of Proof-based Refinement

Two additional proof-based refinement strategies, PBR-A and PBR-B, are presented
compared with SBR (Sec. 2.3) and PBR (Sec. 2.4).

Given a spurious CEX, cex, there are at least two more ways to formulate an UNSAT
query that can be used for proof-based refinements. β(·) is the assignment function of cex.

PBR-A. This considers Formula (2.14) below. The idea is that if the values in cex are
plugged into the abstraction TA, then out must be 1 at some time frame t. Therefore, the
formula asserting that out is 0 for all time frames, with cex plugged in, must be UNSAT.
One can then compute the subset of PPIs sufficient for UNSAT, deriving a refinement. Note
that PBR-A does not use the information of the original circuit and can be considered as a
proof-based version of SBR.

InitA(s0) ∧
k−1∧
t=0

TA(it, st, st+1) ∧
k∧

t=0

¬out(st)

∧
k∧

t=0

(it = β(i, t))

(2.14)

PBR-B. This uses Formula (2.15) below. Let rpit and ppit be the original PIs and the
PPIs at time t, respectively. Similar to PBR (Formula 2.13), it takes the original circuit into
account by introducing MUXes selecting between PPIs and the original signals, creating a
circuit N . The only difference with PBR is that PBR-B also plugs in the assignments of the
PPIs in cex into the formula. Otherwise it proceeds like PBR using the assumption interface
to derive a candidate for ∆B.

InitN(s0) ∧
k−1∧
t=0

TN(it, st, st+1) ∧
k∨

t=0

out(st)

∧
k∧

t=0

(rpit = β(rpi, t) ∧ ppit = β(ppi, t)) ∧
k∧

t=0

|Xt|∧
n=1

xtn

(2.15)

2.5. MAXIMUM FAN-OUT FREE CONE (MFFC) REFINEMENT 28

2.5 Maximum Fan-out Free Cone (MFFC) Refinement

We observed that in many cases, the signals in the fanin cones of those candidate signals
would appear in the next iteration of refinement, implying that an additional structural
analysis can improve the speed of convergence further.

The main idea is to use the maximum fanout free cones (MFFC) of those candidate
signals. The MFFC of a signal s is a subset of its fanin cone, where each path from a signal
in the MFFC to the POs passes through s, i.e. the MFFC of a signal contains all the logic
used exclusively by the signal. If a signal is abstracted, its MFFC would be abstracted.
However, if a signal is un-abstracted, its MFFC is better un-abstracted also; otherwise,
additional iterations may be needed.

In our experience, un-abstracting all candidate signals as well as all those in their MFFCs
often converges faster, i.e. reaching a final abstracion after fewer iterations. We note that
this MFFC strategy is complementary to any of the refinement strategies like SBR and PBR.
SBR and PBR find a set of candidate signals first, and then MFFCs of those signals can be
added to the refinement set ∆B.

Example 2.11. Consider the original circuit shown in Figure 2.1a and a given spurious
CEX:

(x, y, a, b, c, d, e, f) = (0, 0, 1, 2, 1, 2, 1, 1).

Using SBR, the care-set PPIs returned are {e, f} as shown in Example 2.6. However, as
discussed in Example 2.7, the CEX is not blocked in the refined circuit shown in Figure 2.4.
This problem can be addressed by using MFFC refinement. In this example, PPIs {a, b}
and {c, d} are in the MFFCs of PPI e and PPI f , respectively. Therefore, instead of refining
PPIs {e, f}, we can refine the PPIs in their MFFCs also. The resulting PPIs to un-abstract
are then {a, b, c, d, e, f}. The refined circuit is thus the original circuit and does block the
CEX. In this case, MFFC saves one unnecessary iteration in CEGAR.

2.6 Comparison of Refinement Strategies

While SBR is good enough in many applications [MEB+13, FYH16], frequently it does
not find a minimal set to un-abstract.

Example 2.12. Consider the original circuit and its abstraction in Figure 2.7. Suppose a
CEX to the abstraction is found (Fig. 2.7b), where the assignments of PIs and PPIs are

(x, y, a, b, c, d) = (0, 0, 0, 1, 0, 1).

2.7. RELATED WORK 29

For this example, the care set C returned by counterexample minimization would be all
PPIs, C = {a, b, c, d}. If any PPI is assigned an X, the PO would become X as well; thus
all PPIs must be in the care set. However, it is clear that the set is not minimum because
only {a, b} or {c, d} needs to be un-abstracted to block the CEX. In fact, if we un-abstract
{a, b} (or {c, d}), the property can be proved with the refined abstraction.

The four refinement strategies (SBR, PBR, PBR-A, PBR-B) are compared using the two
examples below.

Example 2.13. Consider the circuits in Figure 2.7. Suppose a CEX is obtained with the
assignments of PIs and PPIs as

(x, y, a, b, c, d) = (0, 0, 0, 1, 0, 1).

SBR and PBR-A would refine all PPIs {a, b, c, d}. PBR-B and PBR would refine only either
{a, b} or {c, d} to obtain a final abstraction. This shows that PBR can get a smaller final
abstraction by refining fewer PPIs compared to using SBR and PBR-A.

Example 2.14. Consider slightly different circuits from those in Figure 2.7: the AND gates
(&) are now replaced by OR gates (|) in both the original circuit and its abstraction. Suppose
a CEX is obtained with the assignments of PIs and PPIs as

(x, y, a, b, c, d) = (0, 0, 0, 1, 0, 0).

SBR, PBR-A, and PBR-B all would refine {a, b}, which is not a final abstraction, requiring
another iteration. PBR would refine all PPIs {a, b, c, d}, which is a final abstraction. This
shows that PBR is able to converge with less iterations than the other three. The insight
is that PBR refutes all spurious CEXes under the same assignments of original PIs in cex,
while the others only refute CEXes with the same values of both PIs and PPIs.

2.7 Related Work

In Gate-Level Abstraction (GLA), Mishchenko et al. proposed Priority-based abstraction
refinement [MEB+13], which works very well in their bit-level CEGAR algorithm. Our
formulated Simulation-based Refinement (SBR) in Section 2.3 demonstrates that their bit-
level procedure can be nicely extended to work at the word level. SBR analyzes the given
spurious CEX in the abstraction without using information from the original circuit. As a
result, SBR finds very different sets of refinement candidates from PBR, which is discussed
in Section 2.6.

In ATLAS and CAL, the authors proposed ways of refinement in their word-level Term-
level Abstraction [BBSO10, BBS11], which features uninterpreted function (UF) abstrac-
tion. The idea is to synthesize control signals such that if a control signal is True, then a

2.8. EXPERIMENTAL RESULTS 30

fully-interpreted function is used; otherwise, an uninterpreted function (UF) is used. The
refinement strategies discussed in this chapter are simple localization abstraction, where ab-
straction is used to replace signals with PPIs while refinement is used to replace PPIs with
their original signals. We propose an approach to UF abstraction refinement in Chapter 5.

The closest work to ours is REVEAL [ALS06], a word-level CEGAR-based solver where
several proposed refinement strategies are used.

1. Their first strategy is localization, where a cone-of-influence (COI) analysis is used
to remove irrelevant assignments in a CEX. This is handled automatically in SBR
discussed in this chapter, since assignments not in the COI of the property would be
assigned X values.

2. Their second strategy is generalization. In their formulation, a generalized CEX must
fail the property in the current abstraction. This again is very similar to SBR in
the sense that the generalization does not consider any information from the original
circuit; it only tries to enlarge a CEX in the current abstraction, which has inherent
limitations, as discussed in Section 2.6.

3. Their third strategy is Minimal Unsatisfiable Subset (MUS) extraction. The idea is
similar to PBR-A with Query (2.14). Since the query is UNSAT, an MUS of constraints
can be extracted as another generalized CEX.

4. In their last strategy, they combine the original model and the generalized CEX derived
from the previous three strategies to construct an UNSAT query similar to Query (2.15)
in PBR-B. Since the query is UNSAT, an MUS of the constraints of the original model
can be extracted. Those constraints from the original model are then refined in the
next abstraction.

On the other hand, this chapter presents MFFC refinement, which is entirely new. The PBR
formulation proposed in Section 2.4 takes advantage of smart circuit transformations and
assumption interfaces in SAT solvers, which is also new. The assumption interfaces provide
good estimates of MUS with only little overhead [ES03a].

2.8 Experimental Results

Experiments were done to evaluate the refinement strategies discussed in this chapter. We
implemented Algorithm 2.2 in the public verification tool, ABC [BM10]. Our tool can parse
word-level Verilog and transform the resulting design into a bit-level circuit by bit-blasting.

The benchmarks used for evaluation were a set of 195 industrial Verilog RTL designs.

2.8. EXPERIMENTAL RESULTS 31

Table 2.1: Detailed experimental results for the first 45 out of the 89 word-level test-cases
that can be solved by at least one of the six refinement strategies (the last 44 are shown in
the next table). |S| and |B| are sizes of the set of the initial targeted signals (S) and the set
of signals to be abstracted away for each iteration (B) in Algorithm 2.2.

SBR
(S1)

PBRB
(S2)

PBR
(S3)

SBR-
MFFC
(S4)

PBRB-
MFFC
(S5)

PBR-
MFFC
(S6)

S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6

1 101 7.27 7.68 8.43 7.17 8.05 9.22 2 2 2 2 2 2 66 83 86 48 82 86

2 101 10.89 51.39 13.04 10.35 44.56 12.78 2 3 2 2 3 2 68 76 80 51 75 79

3 101 1.32 1.36 1.39 1.32 1.3 1.36 2 2 2 2 2 2 68 99 91 54 99 91

4 101 1.26 1.28 1.46 1.28 1.4 1.51 2 2 2 2 2 2 67 95 91 53 95 91

5 100 105.55 227.46 86.75 418.88 215.82 5 45 24 3 43 22 30 39 29 26 27 21

6 101 2023.24 2284.77 2223.96 2165.26 2280.97 2056.82 14 4 3 3 3 3 0 0 0 0 0 0

7 102 3496.41 3541.65 3444.83 3440.69 3495.45 18 4 3 7 3 3 18 18 18 18 18 18

8 101 2393.77 2480.27 2217.38 2450.32 2497.89 2428.66 14 4 4 2 2 2 0 0 0 0 0 0

9 101 1929.49 1859.44 1845.07 1673.05 1801.61 1905 15 5 3 2 3 2 0 0 0 0 0 0

10 101 1974.66 2054.12 2103.06 1922.37 1865.55 1811.23 11 3 2 2 2 2 18 18 18 18 18 18

11 100 153.6 129.69 139.08 159.19 130.97 137.44 2 3 3 2 3 3 88 98 97 88 98 97

12 100 3457.89 2612.71 3481.93 2678.15 4 9 5 4 8 5 79 83 75 79 86 75

13 100 1788.64 978.63 1797.17 982.13 5 11 5 5 11 5 78 86 79 78 86 79

14 100 650.29 343.78 265.14 659.66 355.25 279.36 2 5 3 2 5 3 87 93 94 87 93 94

15 100 2842.95 2810.39 4 7 5 4 7 5 82 82 78 82 82 78

16 100 717.44 612.59 375.79 700.35 617.71 368.44 2 4 3 2 4 3 87 92 90 87 92 90

17 100 3295.02 2341.31 3287.12 2373.59 4 8 5 4 8 5 78 84 78 78 84 78

18 100 2678.2 2597.72 2725.71 2580.75 5 5 7 5 5 7 78 87 78 78 87 78

19 100 1171.53 2628.9 1521.6 1104.93 3008.29 1510.93 4 12 6 4 12 6 78 83 78 78 83 78

20 100 2785.81 2848.13 4 7 5 4 7 5 80 84 79 80 84 79

21 100 2999.94 2171.42 3035.92 2259.94 5 8 5 5 7 5 79 87 78 79 88 78

22 100 354.39 356.33 261.62 354.87 363.59 262.72 2 3 3 2 3 3 90 98 97 90 98 97

23 100 2329.17 2319.51 4 6 5 4 6 5 79 89 78 79 89 78

24 100 1928.19 3253.66 1663.75 1272.04 3514.02 2530.2 4 13 6 4 13 6 78 83 78 78 83 78

25 100 2210.4 2214.2 5 8 6 5 8 6 77 88 78 75 88 78

26 101 277.15 8.85 6 20 10 4 16 8 26 26 25 11 19 30

27 101 281.96 10.83 7 22 10 4 17 8 16 26 25 11 19 30

28 101 342.93 13.4 7 20 10 4 16 8 16 28 28 11 21 30

29 101 159.03 12.91 7 22 11 4 16 8 23 27 27 15 21 30

30 101 398.53 10.27 6 20 10 4 17 8 28 25 25 11 19 30

31 101 369.41 13.65 7 20 10 4 18 9 17 26 25 11 19 30

32 100 132.37 171.24 134.94 124.51 137.14 180.88 12 19 9 3 9 9 57 70 54 56 51 36

33 107 2808.62 3552.65 8 17 13 6 17 13 63 73 41 45 53 36

34 102 3151.35 906.52 9 17 8 6 14 9 63 64 64 35 48 41

35 102 2250.69 1338.1 782.35 1522.3 992.8 759.08 13 20 14 8 19 15 32 69 69 19 52 54

36 130 1028.51 1244.23 1333.5 1938.27 1234.09 1291.82 7 39 25 3 36 24 68 75 51 57 53 51

37 130 736.04 705.99 841.08 1083.67 818.27 812.73 7 42 23 3 30 23 70 61 71 71 59 71

38 82 631.87 15 6 3 3 3 2 0 0 0 12 0 0

39 82 397.73 15 7 4 3 3 2 0 0 0 12 0 0

40 58 172.2 482.55 422.09 203.36 171.93 178.38 14 22 5 3 5 2 12 10 13 13 0 13

41 58 156.1 369.84 322.78 173.97 168.64 136.12 17 17 6 3 4 2 13 12 12 0 0 0

42 61 487.89 500.58 439.97 147.94 220.88 142.59 15 22 5 3 4 2 13 11 14 13 0 13

43 64 407.25 310.82 283.87 119.19 121.55 106.63 18 18 6 3 4 2 15 17 17 0 0 0

44 72 340.63 336.1 294.28 312.5 295.37 327.78 15 19 7 6 12 5 34 33 31 30 28 32

45 108 602.13 3 5 8 3 5 6 70 100 95 38 100 98

|B| in the last iterationIterationsCPU Time (seconds)

|S|ID

2.8. EXPERIMENTAL RESULTS 32

Table 2.2: Detailed experimental results for the last 44 out of 89 word-level test-cases that
can be solved by at least one of the six refinement strategies. |S| and |B| are sizes of the
set of the initial targeted signals (S) and the set of signals to be abstracted away for each
iteration (B) in Algorithm 2.2.

SBR
(S1)

PBRB
(S2)

PBR
(S3)

SBR-
MFFC
(S4)

PBRB-
MFFC
(S5)

PBR-
MFFC
(S6)

S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6

46 107 1341.35 3 6 5 3 5 5 65 102 100 29 98 97

47 72 77.84 81.63 100.14 123.25 118.77 107.21 21 33 13 12 15 9 19 21 16 18 18 15

48 72 100.21 89.08 95.8 93.24 136.8 69.02 19 27 12 12 15 8 14 17 14 17 17 13

49 72 83.26 157.86 75.05 124.16 101.62 104.38 19 30 8 9 13 9 14 17 14 16 16 13

50 72 83.36 89.43 124.3 81.39 97.02 71.44 19 33 12 11 14 10 17 19 16 18 15 19

51 43 102.5 80.64 79.62 33.15 32.98 32.03 18 18 6 3 4 2 0 0 0 0 0 0

52 57 1339.87 2933.42 1538.02 1103.25 1120.24 1156.2 12 25 4 3 4 2 12 10 13 13 0 13

53 43 106.13 87.98 82.72 33.84 37.1 37.63 18 18 6 3 4 2 0 0 0 0 0 0

54 58 1032.16 3128.21 3373.36 1022.92 1127.69 1121.2 12 25 5 3 4 2 12 10 13 13 13 13

55 123 2053.23 2886.73 425.61 425.4 10 48 32 5 45 33 26 45 36 22 37 29

56 109 883.17 1617.54 1207.3 141.44 462.93 520.23 10 37 27 5 32 28 25 52 49 21 45 36

57 110 567.06 1596.7 1419.74 240.54 305.12 2628.35 9 38 30 5 33 28 26 52 39 21 46 30

58 112 613.87 1262.28 2557.01 188.9 755.17 249.38 9 38 26 5 34 23 27 53 40 21 45 44

59 129 1439.7 1295.29 655.41 1377.74 9 55 31 4 43 31 33 44 36 28 38 38

60 118 2160.43 1848.54 1484.31 602.48 3232.79 9 36 23 5 33 23 28 50 43 17 42 32

61 111 842.97 1307.2 1627.09 122.79 507.26 865.06 9 37 28 4 32 28 27 55 39 22 48 30

62 103 2125.66 629.68 1157.13 1255.68 6 23 16 3 18 12 69 76 76 76 77 77

63 100 3215.1 699.37 2887.95 3057.55 14 40 34 3 34 33 29 10 12 13 21 4

64 108 362.94 266.24 342.67 345.52 307.01 374.27 14 45 25 7 28 17 0 3 0 0 3 0

65 94 55.97 73.65 43.75 41.53 58.2 53.43 13 25 9 5 11 6 25 33 28 15 25 13

66 106 1276.9 3246.63 3207.94 3504.72 5 18 10 5 17 9 63 67 71 43 47 50

67 140 1525.91 1741.04 1679.15 1708.12 1596.07 1885.51 2 4 5 2 4 5 92 98 92 78 98 78

68 100 228.75 228.39 215.45 233.06 227.47 218.5 1 1 1 1 1 1 100 100 100 100 100 100

69 140 1545.84 1601.52 1748.93 1763.27 1617.1 1920.46 2 4 5 2 4 5 92 98 92 78 98 78

70 100 220.95 223.3 233.52 251.58 239.88 236.43 1 1 1 1 1 1 100 100 100 100 100 100

71 104 128.75 291.43 162.47 39.12 247.9 159.88 11 23 13 4 19 15 51 50 59 57 59 38

72 140 1410.71 1553.44 1532.42 1600.27 1612.86 1687.66 2 4 5 2 4 5 92 98 92 78 98 78

73 100 221.16 210.56 220.15 246.97 248.86 252.64 1 1 1 1 1 1 100 100 100 100 100 100

74 105 228.36 512.63 307.79 70.4 217.74 203.87 12 27 17 4 14 12 53 49 47 49 51 37

75 100 163.2 177.38 183.87 229.68 160.88 87.24 6 19 10 4 11 8 57 74 68 56 72 72

76 140 1487.07 1668.42 1541.78 1609.97 1689.67 1842.31 2 4 5 2 4 5 92 98 92 78 98 78

77 100 64.41 118.3 48.64 51.37 115.19 47.4 5 10 4 3 5 4 77 86 81 75 86 81

78 100 299.21 349.83 340.55 442.9 453.5 313.88 9 15 11 4 11 9 64 68 60 49 69 62

79 101 80.39 199.21 178.62 36.98 147.7 162.67 5 11 10 3 8 9 80 86 82 70 86 74

80 105 37.52 155.76 76.7 25.28 79.3 82.02 4 13 8 3 8 7 89 88 87 77 92 78

81 100 248.21 228.73 245.43 254.9 201.2 254.17 1 1 1 1 1 1 100 100 100 100 100 100

82 140 1496.98 1755.59 1656.71 1754.7 1734.71 1726.49 2 4 5 2 4 5 92 98 92 78 98 78

83 113 57.26 186.61 122.53 28.93 111.34 114.2 6 18 10 3 11 10 68 84 78 75 90 51

84 100 146.29 187.66 144.14 124.05 279.21 112.22 4 7 3 2 3 3 84 87 86 72 90 78

85 101 54.62 110.39 139.6 42.06 86.14 103.02 4 10 10 3 8 9 82 87 81 72 88 75

86 100 238.95 227.19 231.08 227.94 225.7 224.31 1 1 1 1 1 1 100 100 100 100 100 100

87 100 219.98 212.96 213.5 213.89 214.92 214.34 1 1 1 1 1 1 100 100 100 100 100 100

88 140 1341.78 1514.02 1655.51 1599.15 1580 1894.38 2 4 5 2 4 5 92 98 92 78 98 78

89 100 160.54 197.15 148.7 211.29 252.71 150.99 7 18 9 5 11 9 68 74 76 54 77 76

ID |S|

CPU Time (seconds) Iterations |B| in the last iteration

2.9. CONCLUSION 33

Table 2.3: Summary of Table 2.1 and Table 2.2 in terms of the number of test cases solved.

SBR PBRB PBR SBR-MFFC PBRB-MFFC PBR-MFFC
72 63 76 76 75 83

Large arithmetic operators and multiplexers were the signals targeted for possible abstraction
(set S). A workstation with Intel Xeon E5504 CPUs clocked at 2.0 GHz with 24 GB of RAM
was used. A time-out of 3600 seconds was used on all experiments.

Table 2.1 and Table 2.2 show the 89 (of the 195 designs), which can be solved by at least
one of the six settings: 1) SBR, 2) PBR-B, 3) PBR, and 1)-3) with MFFC. All were proved
UNSAT. The tables give an idea of details such as CPU time, expected ranges of iterations
needed, and the sizes of B (signals to be abstracted way) in the final abstractions. All test
cases are UNSAT.

The results show that there is no one refinement strategy that is always better than the
others in terms of CPU time. However, the proposed PBR-MFFC (S6) performs the best in
terms of the number of cases solved within the 3600-sec timeout, which is given in Table 2.3.

Other observations from Table 2.1 and Table 2.2 are given below.

1. SBR (S1) vs. PBR (S3). PBR uses more iterations and derives smaller final
abstractions (large |B|) in most cases, implying that PBR leads to more fine-grained
and focused refinements in most cases.

2. PBR-B (S2) vs. PBR (S3). In most cases, PBR uses less iterations to find a final
abstraction, while PBR-B takes more iterations, which can be avoided by a proper
analysis (see Example 2.14). PBR-B can derive a small final abstraction (large |B|),
but large numbers of iterations can cause poor performance. Note: comparison with
PBR-A was not done due to its similarity to SBR.

3. Without MFFC (S1, S2, S3) vs. with MFFC (S4, S5, S6). MFFC can be crucial
in preventing unnecessary refinement iterations, which is illustrated in Example 2.11.
This is critical in cases like ID 26 - 31, where PBR-MFFC easily proves the property
with less iterations than PBR does.

2.9 Conclusion

This chapter describes several refinement strategies. SBR generalizes a CEX into an
XCEX that represents a set of CEXes needs to be blocked. One weakness of SBR is that the

2.9. CONCLUSION 34

CEX (or XCEX) is not guaranteed to be blocked in the refined circuit, since SBR does not use
any information from the original circuit. PBR was developed to address the challenges in
SBR. The idea is to encode assumptions into a circuit with ITE operators (or multiplexers).
PBR takes advantage of both the information in the original circuit and the assumption
interfaces in SAT solvers, which result in an efficient procedure with the guarantee that the
current CEX would be blocked after refinement. Moreover, MFFC refinement was developed
to exploit the circuit structure that can save unnecessary iterations in CEGAR. The strategies
discussed in this chapter were implemented in the public model checker ABC and evaluated
on a set of industrial benchmarks. The experimental results show that PBR with MFFC
solved the most cases compared with other settings.

35

Chapter 3

Enhancing PDR with Localization
Abstraction

With good refinement strategies presented in Chapter 2, our next challenge is to integrate
MC algorithms into the CEGAR flow in an efficient way. This chapter presents an extensive
summary of the PDR algorithm and goes on to present a version with abstraction, called
PDRA. This is a bit-level MC algorithm that is minimally modified from the original PDR
to perform on-the-fly abstraction and refinement. A word-level version of this, called PDR-
WLA, is presented in Chapter 4, which will be a significant part of UFAR, a word level
model checker, presented in Chapter 5.

3.1 Introduction

Property Directed Reachability (PDR) is an elegant and powerful engine pioneered
in 2010 by Aaron Bradley under the name of IC3 [Bra11] and improved by ongoing re-
search [EMB11, BIMM12, HBS13, IG15, GR16]. The engine continues to receive attention
because of its ability to solve hard model checking problems, both satisfiable and unsatisfi-
able. The inductive invariants computed as a by-product of solving unclassifiable verification
instances with PDR, are useful as certificates of correctness of unsatisfiability and as a means
for design analysis. For example, the support of an invariant indicates what parts of the
design are needed to prove the property.

Localization abstraction [WJK+01, EMA10, MEB+13] is a method aimed at reducing
the complexity of a verification instance by removing some logic. The remaining part of
the instance is called an abstraction. An abstraction typically contains the property output

3.2. BACKGROUND 36

of the original instance along with logic nodes and flip-flops deemed necessary to prove the
property. The connections to the removed logic are called pseudo primary inputs (PPIs) and
are treated as free variables, which increases the behavior, i.e. the abstractions had more
satisfying assignments. As a result, if the abstraction is proved UNSAT, the verification
problem is solved. If a counterexample (CEX) is discovered, abstraction refinement is used
to add new logic to rule out the cex, before a new proof is attempted. A taxonomy of
abstraction methods can be found in [MEB+12].

The contribution of this chapter is integrating PDR with an adaptive localization abstrac-
tion. As a result, the PDR engine is minimally modified to perform on-the-fly abstraction
while solving a verification instance. The modified PDR engine is capable of solving more
problem instances than the original PDR engine. Moreover, inductive invariants computed
by the modified PDR are on average about 20% smaller than those computed by the orig-
inal PDR. A smaller invariant is more representative of the verification problem and more
suitable for design analysis. Moreover, the PDR engine is complementary to other PDR
improvements like [HBS13] and can be easily integrated.

The chapter is organized as follows. Section 3.2 contains relevant background. Section 3.3
contains an overview of the original PDR algorithm. Section 3.4 describes modifications,
to the original algorithm, needed to integrate it with abstraction. Section 3.5 compares the
approach presented in this paper with previous work. Section 3.6 shows experimental results.
Section 3.7 concludes the chapter.

3.2 Background

It is assumed that the verification problem is presented to a model-checking engine as
a sequential logic circuit with an all-0 initial state having a single property output. If the
property holds, the output of the logic circuit evaluates to 0 for any state reachable from
the initial state. If the property fails, the engine returns a CEX, which is a sequence of
inputs taking the design from the initial state into a state where the output evaluates to 1.
If the initial state is not constant-0, the sequential circuit can be equivalently transformed to
ensure that the initial state is 0. Similarly, if there are more outputs than one, the problem
can be transformed by ORing individual outputs together.

3.3 Property Directed Reachability (PDR)

In this section, we review the basics of the algorithm of Property Directed Reachability
(PDR), which is presented in Algorithm 3.1.

3.3. PROPERTY DIRECTED REACHABILITY (PDR) 37

Algorithm 3.1 PDR
Input: G . G: the input circuit
Output: result ∈ { SAT, UNSAT }
1: Ω ← {Init} . Ω: the PDR trace
2: k ← 0 . k: the PDR depth
3: while true do
4: c ← GetBadCube(G, k)
5: if c = ∅ then
6: k ← k + 1
7: Ω ← Ω ∪ {>} . Open a new frame
8: invariant, Ω ← PropagateBlockedCubes(G, Ω)
9: if invariant 6= ∅ then

10: return UNSAT
11: else
12: Ω, cex ← RecBlockCube(G, Ω, c, k)
13: if cex 6= ∅ then
14: return SAT
15:
16: procedure RecBlockCube(G, Ω, c, k)
17: Q ← ∅ . the priority queue of proof obligations
18: AddPOB(Q, c, k)
19: while Q 6= ∅ do
20: s ← PopMin(Q)
21: if Frame(s)= 0 then
22: return GetCEX()
23: result, z ← CheckCube(s)
24: if result = UNSAT then
25: z ← Generalize(z)
26: AddBlockedCube(Ω, z)
27: else . result is SAT
28: AddPOB(Q, z)
29: AddPOB(Q, s)
30: return ∅

3.3. PROPERTY DIRECTED REACHABILITY (PDR) 38

3.3.1 The PDR Trace

PDR performs an incremental computation creating sets of CNF clauses. Each set is
associated with a timeframe, which over-approximates the states that are reachable in that
timeframe. Such a list of sets of clauses is called a PDR trace: Ω = (R0, R1, . . . , RN). Every
Rj is a set of clauses that over-approximates the set of states reachable from the initial states
within j steps. The clauses in a PDR trace are called reachability clauses. Each Rj is also
called the j-th frame in the trace.

Definition 3.1. Given an FSM, M = (I, O, S, Init, T), and a property P , a PDR trace is a
sequence of predicate functions, Ω = (R0, R1, . . . , RN), such that

1. R0(s) = Init(s)

2. Rj(s) =⇒ Rj+1(s) for 0 ≤ j < N .

3. Rj(s) ∧ T (i, s, s′) =⇒ Rj+1(s
′) for 0 ≤ j < N .

4. Rj(s) =⇒ P (s) for 0 ≤ j < N .

We note that RN(s) does not necessarily imply P (s), i.e. RN(s) can contain bad states.
This is consistent with the presentation in [EMB11] but different than the original one in
IC3 [Bra11].

3.3.2 Overview of PDR

Algorithm 3.1 shows a high-level view of the PDR algorithm in [EMB11]. The PDR trace
(Ω) is initialized to contain a single element, the initial states. Before the main while loop
starts (line 3), a new frame is opened (line 1 and 7) and bad states (states that violate the
property) of this timeframe are enumerated (line 4). A bad state, m, is derived by checking
the following SAT query:

Rk(s) ∧ ¬P (s) (3.1)

For each bad state, PDR checks whether it overlaps with the initial states, and if so,
the verification problem is satisfiable (SAT) and PDR terminates. If this bad state does not
overlap with the initial states, ternary simulation is performed to expand a state minterm
(m) into a state cube (c), such that all the states belonging to this cube (including the
original minterm) make the property fail.

3.3. PROPERTY DIRECTED REACHABILITY (PDR) 39

The obtained expanded cube composed of bad states (c), together with the frame it is
derived from (k), is called a proof obligation (POB). This is because, to prove the property,
we need to show that none of the states contained in this cube c are reachable from the
initial states. A sufficient condition to check if POB (c, k) is reachable from the initial states
is if the SAT query below is UNSAT.

Rk−1(s) ∧ ¬c(s) ∧ T (i, s, s′) ∧ c(s′) (3.2)

If the query is UNSAT, then there is no Rk−1-state that can reach a state in cube c within
a one-step state transition. This proves that all states in cube c are not reachable within
k steps from the initial states. Therefore PDR can strengthen the trace Ω by blocking this
cube:

Rj ← Rj ∧ ¬c, 1 ≤ j ≤ k. (3.3)

On the other hand, if Query (3.2) is SAT, then an Rk−1-cube d is extracted from the SAT
solver and generalized by ternary simulation. Cube d at frame k−1 must be shown unreach-
able to prove the property. Therefore a new POB (d, k − 1) is generated. The POBs are
ordered in each timeframe by the time they are generated, which can be implemented with
a priority queue (Q).

In procedure RecBlockCube of Algorithm 3.1, PDR retrieves POBs from the queue,
one at a time, and checks if they can be blocked. Given a POB (c, t), this means checking
the SAT query below.

Rt−1(s) ∧ ¬c(s) ∧ T (i, s, s′) ∧ c(s′) (3.4)

If the query is SAT, the POB is not blocked. There is a previous state, from which at least
one state in the POB can be reached. This state is checked for being an initial state and, if
not, a new POB is generated and queued.

On the other hand, if query (3.4) is UNSAT, this POB is blocked: all the previous states
that reach the POB are ruled out by the reachable-state over-approximation computed so
far. Cube c is then generalized into a clause, which is added to the reachable state over-
approximation under construction.

Finally, when PDR has finished blocking all bad states in a given timeframe, and the
queue of proof-obligations is empty, PDR attempts to move the clauses forward, that is, to
prove that the clauses holding in a given timeframe, also hold in the next timeframe. If, in
any timeframe, all the computed clauses are moved, these clauses form a property-directed
inductive invariant.

A property-directed inductive invariant (Inv) is a Boolean function defined over the flip-
flop output variables, which is characterized as follows: (a) it contains the initial state; (b)

3.3. PROPERTY DIRECTED REACHABILITY (PDR) 40

000

111 110

001 010

101

011

100

(a) The state transition graph of the FSM. The
colored state is the bad state (c ∧ ¬b ∧ ¬a).

𝑎

out

Λ

Λ

𝑏

𝑎 𝑏

𝑐

𝑐

(b) An and-inverter graph (AIG) of the FSM.
The property fails if out = 1.

Figure 3.1: A simple finite state machine (FSM).

it does not contain bad states; and (c) for each state contained in the invariant, the next
states reachable from it are contained in the invariant. Formally, it satisfies the properties
below.

(a) Init(s) =⇒ Inv(s)

(b) Inv(s) ∧ T (i, s, s′) =⇒ Inv(s′)

(c) Inv(s) =⇒ P (s)

When such an inductive invariant is found, the property is proved because there does not
exist a sequence of reachable states, originating in an initial state, leading to a bad state.

Example 3.1. Consider the finite state machine (FSM) shown in Figure 3.1. The state
variables are {a, b, c}. The initial state is ¬c ∧ ¬b ∧ ¬a and the bad state is c ∧ ¬b ∧ ¬a.
PDR starts with k = 0 and R0 = Init(s) = ¬c ∧ ¬b ∧ ¬a. There is no bad state at frame 0,
so k increases to 1 and a new frame R1 = 1 is added to Ω. Then PDR gets a bad state in
R1: (c ∧ ¬b ∧ ¬a) (or 100) , and checks if the bad state is reachable from R0 (Query 3.4):

¬c ∧ ¬b ∧ ¬a ∧ (¬c ∨ b ∨ a) ∧ T (a, b, c, a′, b′, c′) ∧ c′ ∧ ¬b′ ∧ ¬a′

The result is UNSAT because state 000 cannot reach 100, as shown in Figure 3.1a. The
minterm can be generalized into the cube (c∧¬a), meaning that state 000 cannot reach both
100 and 110. R1 is then strengthened by this cube and updated as R1 = ¬(c∧¬a) = ¬c∨a.
After the strengthening, there are no more bad states in R1, so k increases to 2 and a new
frame R2 = 1 is added. PDR again gets a bad state in R2: (c ∧ ¬b ∧ ¬a), and checks if the

3.4. THE ALGORITHM: PDRA 41

bad state is reachable from R1 (Query 3.4):

(¬c ∨ a) ∧ (¬c ∨ b ∨ a) ∧ T (a, b, c, a′, b′, c′) ∧ c′ ∧ ¬b′ ∧ ¬a′

The result is SAT and a predecessor in R1 is returned: (¬c∧ b∧ a). A POB, (¬c∧ b∧ a, 1),
is generated and PDR handles this POB by checking if (¬c ∧ b ∧ a, 1) is reachable from R0:

¬c ∧ ¬b ∧ ¬a ∧ (c ∨ ¬b ∨ ¬a) ∧ T (a, b, c, a′, b′, c′) ∧ ¬c′ ∧ b′ ∧ a′

The result is UNSAT because state 000 cannot reach 011. The minterm is then generalized
into the cube (¬c∧ a) because state 000 cannot reach both 011 and 001. PDR then tries to
push this cube from R1 to R2 by checking

(¬c ∨ a) ∧ (c ∨ ¬a) ∧ T (a, b, c, a′, b′, c′) ∧ ¬c′ ∧ a′

The result is UNSAT because the four states {111, 000, 101, 010} cannot reach any of the
{011, 001}. Therefore both R1 and R2 are strengthened by this cube and updated as R1 =
(¬c ∨ a) ∧ (c ∨ ¬a) and R2 = c ∨ ¬a. PDR then tries to push the other cube (c ∧ ¬a) from
R1 to R2 by checking

(¬c ∨ a) ∧ (c ∨ ¬a) ∧ T (a, b, c, a′, b′, c′) ∧ c′ ∧ ¬a′

The result is also UNSAT because the four states in R1 {111, 000, 101, 010} cannot reach
any of the {100, 110}. As a result, R2 is strengthened by this cube and updated as R2 =
(¬c ∨ a) ∧ (c ∨ ¬a). PDR then finds out that R1 ≡ R2 and concludes that the problem is
UNSAT with a property-directed inductive invariant R1 = R2 = (¬c ∨ a) ∧ (c ∨ ¬a).

3.4 The Algorithm: PDRA

The performance of PDR is hampered when it takes a long time to converge on an
inductive invariant. There can be several reasons for this:

1. the reachable state space may be irregular making it hard to separate reachable states
from bad states by using a two-level representation such as a set of clauses;

2. it may be possible to express the inductive invariant in the two-level form but PDR
fails to find it because the state space exploration is unfocused.

It may be hard to mitigate the first limitation of PDR without developing a brand-
new engine, which computes an over-approximation in a non-clausal form. In this chapter,
we address the second limitation by making state-space exploration more focused. To this
end, localization abstraction is added to the PDR engine, making the set of flop variables

3.4. THE ALGORITHM: PDRA 42

Figure 1. Overview of the PDR/IC3 algorithm.

The PDR engine retrieves POBs from the queue, one at a

time, and checks if they can be blocked. A POB is blocked
if all the previous states that reach the POB are ruled out by
the reachable-state over-approximation computed so far. If
the POB is not blocked, then there is a previous state, from
which at least one state in the POB can be reached. This
state is checked for being an initial state and, if not, a new
POB is generated and queued.

If, on the other hand, the POB is blocked, it is generalized
into a clause, which is added to the reachable state over-
approximation under construction. When PDR has finished
blocking all bad states in a given timeframe, and the queue
of proof-obligations is empty, PDR attempts to move the
clauses forward, that is, to prove that the clauses holding in
a given timeframe, also hold in the next timeframe. If, in
any timeframe, all the computed clauses are moved, these
clauses form a property-directed inductive invariant.

The invariant is a Boolean function defined over the flip-
flop output variables, which is characterized as follows:
(a) it contains the initial state; (b) it does not contain bad
states; and (c) for each state contained in the invariant, the
next states reachable from it are contained in the invariant.
When such an inductive invariant is found, the property is
proved because there does not exist a sequence of reachable
states, originating in an initial state, leading to a bad state.

4. Proposed algorithm
The performance of PDR is hampered when it takes a

long time to converge on an inductive invariant. There can
be several reasons for this: (1) the reachable state space
may be irregular making it hard to separate reachable states
from bad states by using a two-level representation such as
a set of clauses; (2) it may be possible to express the
inductive invariant in the two-level form but PDR fails to
find it because the state space exploration is unfocused.

It may be hard to mitigate the first limitation of PDR
without developing a brand-new engine, which computes
an over-approximation in a non-clausal form. In this paper,
we address the second limitation by making state-space
exploration more focused. To this end, localization
abstraction is added to the PDR engine, making the set of
flop variables participating in the clauses grow in a more
predicable manner, compared to the original engine. As a
result, the state-space exploration becomes more focused
and more likely to converge to an inductive invariant. The
modified engine is PDR with Abstraction (PDRA).

The modifications needed to go from PDR to PDRA are
shown in the block diagram in Figure 1 as boxes inside the
dashed rectangle. The changes comprise counter-example
(CEX) analysis and CEX-based abstraction refinement,
affecting the PDR engine components as described below.

PDRA maintains an additional data-structure called flop
map, remembering what flip-flops are used in the
abstraction. A flip-flop is used in the abstraction if there is
a clause containing a literal of the corresponding flop
variable in any timeframe. Otherwise, a flop is not used.
The flop map is empty at the beginning. It is incrementally
updated by the abstraction refinement while enumerating
bad states. The set of flops included in the flop map does
not grow monotonically from frame to frame because the
clauses containing certain flop variables may be subsumed
later by stronger clauses, not containing these variables. As
a result, some flop variables present in the flop map at an
earlier time frame may disappear in the later time frames.

PDRA uses the flop map during ternary simulation. In
PDR, ternary simulation converts a bad-state minterm into
a bad-state cube while removing as many flop variables as
possible in a given order. If a flop variable cannot be
removed, it is added to the POB and may later appear in the
generalized clause when the POB is blocked. As a result,
even if a flop variable is not used in any of the clauses so
far, the original PDR adds it whenever needed. In contrast,
PDRA treats flops not used in the abstraction as pseudo-
primary inputs (PPIs). This allows the derived clauses to
continue depending only on the flops used in the
abstraction at the risk of running into a spurious CEX.

This is why, when a CEX is detected by PDRA, a
dedicated CEX analysis is performed, as described in [16]
(Section 3.3 “Priority based abstraction refinement”). The
analysis results in a set of PPIs needed for making the CEX
fail the property output. These PPIs correspond to flops
absent in the current abstraction. The next-state functions
of these flops are added to the abstraction to rule out the
given spurious CEX. Other spurious CEXes may be
generated and ruled out in a similar manner.

At some point (when enough next-state logic functions
have been added to the current abstraction) PDRA finishes

Found
inductive
invariant?

Overlap
with init.

state?

Is CEX
real?

Find bad
state

Open new
timeframe

CEX
analysis

Abstraction
refinement

Queue
of proof

obligations

Is proof
obligation
blocked?

Ternary
simulation

Push
clauses

Inductive
generalization

continue

reset

updated
flop
map

return
UNSAT

yes

no

return
SAT

no

no

no

yes

yes

Start
PDR

Minimized
CEX

LOCALIZATION
ABSTRACTION

yes

Figure 3.2: Overview of the PDRA algorithm.

3.4. THE ALGORITHM: PDRA 43

Algorithm 3.2 PDR with Abstraction (PDRA)
Input: G . G: the input circuit
Output: result ∈ { SAT, UNSAT }
1: Iterations ← 1
2: Ω ← {Init} . Ω: the PDR trace
3: k ← 0 . k: the PDR depth
4: V ← CreateFlopMap() . V : the flop map
5: while true do
6: c ← GetBadCubeAbs(G, k, V)
7: if c = ∅ then
8: CleanFlopMap(V)
9: k ← k + 1

10: Ω ← Ω ∪ {>} . Open a new frame
11: invariant, Ω ← PropagateBlockedCubes(G, Ω)
12: if invariant 6= ∅ then
13: return UNSAT
14: else
15: Ω, cex ← RecBlockCubeAbs(G, Ω, c, k, V)
16: if cex 6= ∅ then
17: V ′ ← AnalyzeCEX(G, V , cex)
18: if V = V ′ then
19: return SAT
20: else
21: V ← V ′

22: Iterations ← Iterations+ 1

23:
24: procedure RecBlockCubeAbs(G, Ω, c, k, V)
25: Q ← ∅ . the priority queue of proof obligations
26: AddPOB(Q, c, k)
27: while Q 6= ∅ do
28: s ← PopMin(Q)
29: if Frame(s)= 0 then
30: return GetCEX()
31: result, z ← CheckCubeAbs(s, V)
32: if result = UNSAT then
33: z ← Generalize(z)
34: AddBlockedCube(Ω, z)
35: else . result is SAT
36: AddPOB(Q, z)
37: AddPOB(Q, s)
38: return ∅

3.4. THE ALGORITHM: PDRA 44

participating in the clauses grow in a more predicable manner, compared to the original
engine. As a result, the state-space exploration becomes more focused and more likely to
converge to an inductive invariant. The modified engine is called PDR with Abstraction
(PDRA).

The modifications needed to go from PDR to PDRA are shown, in the block diagram
in Figure 3.2, as boxes inside the dashed rectangle. The changes comprise counter-example
(CEX) analysis and CEX-based abstraction refinement, affecting the PDR engine compo-
nents as described below. PDRA is also presented in Algorithm 3.2.

PDRA maintains an additional data-structure called flop map (V), remembering what
subset of flip-flops are used in the abstraction. A flip-flop is used in the abstraction if
there is a clause containing a literal of the corresponding flop variable in any timeframe.
Otherwise, a flop is not used. The flop map is empty at the beginning (line 4). It is
incrementally updated by the abstraction refinement when enumerating bad states. The set
of flops included in the flop map does not grow monotonically from frame to frame because
the clauses containing certain flop variables may be subsumed later by stronger clauses, not
containing these variables. As a result, some flop variables present in the flop map at an
earlier timeframe may disappear in the later timeframes.

PDRA uses the flop map during ternary simulation. In particular, ternary simulation
is used when PDR finds a bad cube at the current frame (Query 3.2) or a predecessor of a
POB (Query 3.4). Procedures GetBadCubeAbs (line 6) and CheckCubeAbs (line 31)
take the flop map as an input, so they can perform ternary simulation accordingly. In PDR,
ternary simulation converts a bad-state minterm into a bad-state cube while removing as
many flop variables as possible in a given order. If a flop variable cannot be removed, it is
added to the POB and may later appear in the generalized clause when the POB is blocked.
As a result, even if a flop variable is not used in any of the clauses so far, the original PDR
adds it whenever needed. In contrast, PDRA treats flops not used in the abstraction as
pseudo-primary inputs (PPIs). This allows the derived clauses to continue depending only
on the flops used in the abstraction at the risk of running into a spurious CEX.

This is why, when a CEX is detected by PDRA (line 16), a dedicated CEX analysis
is performed (line 17), as described in Section 2.3 [MEB+13] (Section 3.3 “Priority based
abstraction refinement”). The analysis results in a set of PPIs needed for making the CEX
fail the property output. If the set of PPIs is empty, then the CEX is real and PDRA returns
SAT because no PPI can be added to block the CEX (line 19). Otherwise, the computed
PPIs correspond to flops absent in the current abstraction. The next-state functions of these
flops are added to the abstraction to rule out the given spurious CEX (line 21). Other
spurious CEXes may be generated and ruled out in a similar manner.

At some point (when enough next-state logic functions have been added to the current
abstraction) PDRA finishes the current timeframe without spurious CEXes (line 7). Then an

3.5. COMPARISON WITH PREVIOUS WORK 45

additional cleanup step is done where PDRA checks if the flops added by refinement appear
in the generated clauses (line 8). Frequently, some flops do not appear in these clauses and
can be removed from the flop map before PDRA opens the next timeframe. The CEX-based
refinement is the same as the refinement step in GLA [MEB+13], while the cleanup step is
analogous to the proof-based cleanup in GLA.

In summary, PDRA maintains a data structure called flop map to remember what flops
are used in the abstraction. The flop map is empty at the beginning and grows from one
frame to another. When a new timeframe is opened, PDRA tries to maintain the set of used
flops unchanged compared to the previous timeframe. To this end, additional flops required
by ternary simulation are treated as PPIs. Once a spurious CEX is found, refinement is
performed, the queue of POBs is emptied, and the enumeration of bad states continues, as
shown by the block contained within the dotted line in Figure 3.2. If a real CEX or an
inductive invariant is discovered, PDRA terminates.

The modifications described in this section can be implemented on top of an available
PDR engine, such as the one in ABC [BM10]. The implementation requires adding approx-
imately 80 lines of C language code, not counting the CEX analysis code, which is reused
from [MEB+13].

3.5 Comparison with Previous Work

The proposed method comes close to some previous work [BIMM12, VGS12, LS14,
FYH16]. In particular, [BIMM12] integrates PDR and localization abstraction at a high
level, by making these two engines exchange information. Flop variables participating in
bounded PDR runs are scored and used to guide the abstraction. This is different from
our approach, which essentially consists of building a minimalistic localization abstraction
engine within the PDR engine.

The first fully integrated approach combining PDR with localization abstraction was
presented in [VGS12]. However, the abstraction used there is “variable timeframe”, as defined
in [MEB+12], that is, in each timeframe, the abstraction states what flop outputs should
be used to express clauses in the given timeframe. Our method is based on a simpler “fixed
timeframe” abstraction used in [MEB+13].

The work of [LS14] combines PDR with abstraction by targeting datapath flip-flops to be
abstracted. In contrast, our approach does not have information to distinguish control logic
and datapath. PDRA tries to abstract any flops not used in a precise over-approximation of
the reachable state space. Our approaches to datapath abstraction will be presented in the
next chapter.

3.6. EXPERIMENTAL RESULTS 46

Table 3.1: Comparing different flavors of PDR in terms of the number of solved cases and
runtime on 77 industrial examples (implementations with abstraction, pdr -t, treb -abs, and
pdr -nct, are compared against the baselines, pdr, treb, and pdr -nc).

9. REFERENCES
[1] J. Baumgartner, A. Ivrii, A. Matsliah, and H. Mony. “IC3-guided

abstraction”. Proc. FMCAD’12, pp. 182–185.
http://www.cs.utexas.edu/~hunt/fmcad/FMCAD12/029.pdf

[2] Berkeley Logic Synthesis and Verification Group. ABC: A System
for Sequential Synthesis and Verification. http://www-
cad.eecs.berkeley.edu/~alanmi/abc

[3] A. R. Bradley, “k-step relative inductive generalization,” CU
Boulder, Tech. Rep., Mar. 2010, http://arxiv.org/abs/1003.3649.

[4] A. R. Bradley, “SAT-based model checking without unrolling”.
Proc. VMCAI’11. http://ecee.colorado.edu/~bradleya/
ic3/ic3_bradley.pdf

[5] A. R. Bradley, “Understanding IC3”, Proc. SAT’12.
http://theory.stanford.edu/~arbrad/papers/Understanding_IC3.pdf

[6] N. Een, A. Mishchenko, and N. Amla, "A single-instance
incremental SAT formulation of proof- and counterexample-based
abstraction", Proc. FMCAD'10, pp. 181-188.

[7] N. Een, A. Mishchenko and R. Brayton, "Efficient implementation
of property-directed reachability", Proc. FMCAD'11. https://people.
eecs.berkeley.edu/~alanmi/publications/2011/fmcad11_pdr.pdf

[8] K. Fan, M.-J. Yang, and C.-Y. Huang, “Automatic abstraction
refinement of TR for PDR”. Proc. ASP-DAC’16, pp. 121-126.

[9] A. Griggio and M. Roveri, “Comparing different variants of the IC3
algorithm for hardware model checking”, IEEE TCAD’16,Vol.35(6).

[10] Hardware Model Checking Competition. http://fmv.jku.at/hwmcc14/
[11] Z. Hassan, A. R. Bradley, and F. Somenzi. “Better generalization in

IC3”. Proc. FMCAD’13, pp.157-164.http://www.cs.utexas.edu/users
/hunt/FMCAD/FMCAD13/papers/85-Better-Generalization-IC3.pdf

[12] Y.-S. Ho, P. Chauhan, P. Roy, A. Mishchenko, and R. Brayton,
"Efficient uninterpreted function abstraction and refinement for
word-level model checking", Proc. FMCAD'16.

[13] A. Ivrii and A. Gurfinkel, “Pushing to the top”, Proc. FMCAD’15,
http://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD15/papers/pa
per39.pdf

[14] S. Lee and K. A. Sakallah, “Unbounded scalable verification based
on approximate property-directed reachability and datapath
abstraction”. Proc. CAV’14, pp. 849–865.

[15] A. Mishchenko, N. Een, R. Brayton, J. Baumgartner, H. Mony, and
P. Nalla, "Variable time-frame abstraction", Proc. IWLS'12, pp. 41-
47. https://people.eecs.berkeley.edu/~alanmi/publications/2012/
iwls12_vta.pdf

[16] A. Mishchenko, N. Een, R. Brayton, J. Baumgartner, H. Mony, and
P. Nalla, "GLA: Gate-level abstraction revisited", Proc. DATE'13,
pp. 1399-1404. https://people.eecs.berkeley.edu/~alanmi/
publications/2013/date13_gla.pdf

[17] N. Een. ABC-ZZ. https://bitbucket.org/niklaseen/abc-zz
[18] M. Suda, “Triggered clause pushing for IC3”, 2013,

https://arxiv.org/pdf/1307.4966.pdf
[19] Y. Vizel, O. Grumberg, and S. Shoham. “Lazy abstraction and SAT-

based reachability in hardware model checking”. Proc. FMCAD’12,
pp. 173–181. https://pdfs.semanticscholar.org/3195/
c92c3c821f7f11949c9e99163dacf73bd267.pdf

[20] D. Wang, P.-H. Ho, J. Long, J. H. Kukula, Y. Zhu, H.-K. Tony Ma,
R. F. Damiano, “Formal property verification by abstraction refine-
ment with formal, simulation and hybrid engines”. Proc. DAC’01.

Table 1: Comparing different flavors of PDR in terms of the number of solved cases and runtime on 77 industrial examples
(implementations with abstraction, pdr -t, treb -abs, and pdr -nct, are compared against the baselines, pdr, treb, and pdr -nc).

Test AND FF pdr pdr -t treb treb-abs pdr -nc pdr -nct

Ex01 509 142 33.26

Ex02 509 142 57.80 626.73

Ex03 2602 330 23.47 18.77 31.33 43.94 16.88 39.60

Ex04 2602 330 26.64 24.26 38.75 54.07 26.59 46.50

Ex05 1135 242 317.04

Ex06 2602 330 29.25 21.49 15.62 45.30 26.42 42.70

Ex07 2602 330 30.08 22.17 22.51 51.75 23.65 50.42

Ex08 1135 242 42.86

Ex09 19886 782 47.05 148.37 56.14

Ex10 19387 771 38.58 13.71 18.70 24.76 15.10 15.88

Ex11 15555 607 103.44 546.90

Ex12 15555 607 101.85 544.19

Ex13 21772 782 308.74 544.75 143.55 138.14 183.21

Ex14 21302 771 116.40 14.56 26.12 30.49 20.93 23.12

Ex15 15555 607 105.72 549.58

Ex16 21772 782 304.82 556.40 147.49 155.16 182.67

Ex17 5777 726 728.77 141.88 82.70

Ex18 479 89 0.59 5.31 0.15 6.09 1.01 1.21

Ex19 20068 3785 9.18 54.57 38.59 81.98 7.22 20.27

Ex20 20066 3785 19.53 10.46 28.02 21.71 10.50 6.94

Ex21 20047 3785 11.05 38.42 12.46

Ex22 20098 3795 658.28 840.66 311.08

Ex23 9985 2654 640.58 169.56

Ex24 2122 353 10.85 13.31 20.51 22.63 16.99 18.71

Ex25 5043 869 11.53 15.54 28.69 38.89 24.76 40.91

Ex26 7408 965 41.18 560.69 80.60 885.90 26.54

Ex27 18347 1207 142.47 154.26 243.24 515.71 155.65 167.72

Ex28 1755 384 18.66 74.78 46.32 16.12 16.54

Ex29 1746 383 3.72 16.97 23.31

Ex30 11945 781 14.63 13.42 24.01 26.05 16.51 17.69

Ex31 4452 731 50.33 29.82 167.96 34.09

Ex32 1979 368 89.62 79.61 40.55 63.09 38.84 97.01

Ex33 1917 360 58.79 66.04 38.47 56.96 36.20 56.58

Ex34 1840 348 54.29 51.00 64.73 40.53 30.73 55.92

Ex35 1762 335 20.74 29.36 39.28 46.66 24.54 22.53

Ex36 1697 327 17.53 32.17 28.92 29.61 44.57 18.20

Ex37 2675 178 380.46 284.26

Ex38 2360 178 600.22 279.76 289.69 321.80 275.02

Ex39 1973 146 70.55 61.12 51.19 110.57 123.74 148.24

Table continues on the right hand side

Test AND FF pdr pdr -t treb treb-abs pdr -nc pdr -nct

Ex40 36851 2434 348.63 316.15

Ex41 36851 2434 92.10

Ex42 9895 2249 37.53 14.25 4.56 37.73 8.38

Ex43 9897 2249 6.37 322.77 382.68

Ex44 36851 2434 353.64 314.82

Ex45 9460 1564 28.40 8.14 70.10 52.34 32.46 16.31

Ex46 531 131 2.55 4.34 4.57 6.00 4.93 6.61

Ex47 920 231 9.38 8.63 15.79 20.06 12.21 8.90

Ex48 952 249 24.80 34.62 120.18 36.98 19.84 22.09

Ex49 2052 413 52.44 36.15 74.71

Ex50 1072 253 24.83 38.27 67.43 43.76 21.77 21.98

Ex51 952 249 28.73 22.72 98.06 27.39 14.10 24.99

Ex52 930 241 9.1 17.62 27.44 19.70 18.48 11.84

Ex53 890 229 27.71 19.70 31.32 22.88 15.51 16.64

Ex54 920 231 9.91 8.79 15.63 20.19 11.94 8.85

Ex55 934 239 11.12 18.47 20.36 17.36 15.97 15.90

Ex56 952 249 35.61 27.54 33.61 27.27 19.31 17.22

Ex57 1948 397 297.88 44.77 72.25

Ex58 872 221 16.83 13.34 39.24 13.47 12.24 12.58

Ex59 966 237 30.29 18.57 33.86 45.23 27.67 18.70

Ex60 952 249 21.55 20.16 90.53 25.97 20.96 17.26

Ex61 1050 183 0.46 1.98 4.48 19.74 0.77 0.40

Ex62 1533 252 26.02 32.38 7.28 6.47

Ex63 3632 521 103.22 166.92 180.20 358.97 308.01 287.2

Ex64 1600 309 5.00 1.62 10.92 3.53 4.61 1.74

Ex65 1189 227 80.72 104.11 55.66 84.38 20.07 27.4

Ex66 9422 1324 108.60 165.03 116.82 267.66 148.11 158.88

Ex67 6199 972 873.41 461.90 271.85 200.09

Ex68 1233 171 480.73 798.93

Ex69 16745 3113 284.45 308.88 281.91 406.61

Ex70 16700 3107 101.77 422.50 117.75 157.22

Ex71 16701 3107 502.31 104.58 45.32 70.61

Ex72 16701 3107 221.54 135.05 140.39 22.70 149.08

Ex73 12049 2389 151.12 239.02 20.85 244.87

Ex74 541 76 4.73 13.93 1.04 51.50 7.44 17.04

Ex75 528 76 10.05 8.69 1.13 48.31 7.17 13.51

Ex76 1228 208 688.81 257.81 419.00

Ex77 1177 195 2.75 1.69 84.52 2.12 8.64 1.76

Solved 47 58 51 71 64 67

Time, % 1.000 1.047 1.400 1.812 0.973 1.038

Another integration of PDR with localization abstraction is described in [FYH16]. It
uses gate-level abstraction while our approach is flop-level. The difference between the two
is discussed in [MEB+13]. It is also important to note that our implementation is simpler.
Given a clear understanding, our abstraction can be developed on top of a working PDR
engine in a matter of hours.

3.6 Experimental Results

PDRA is part of two public verification tools: ABC [BM10] (command pdr -t) and ABC-
ZZ [Een] (command treb -abs). The baseline of pdr and treb is reviewed in Section 3.3 and

3.7. CONCLUSION 47

originally described in [EMB11].

PDRA has been tested on HWMCC 2014 benchmarks [BH14] with inconclusive results
because most of the testcases require preprocessing for PDR to be effective. Moreover, often
a test case is solved by one flavor of PDR and not by others, making it hard to compare,
except by the sheer number of cases solved.

Table 3.1 lists the runtimes, in seconds, taken by different PDR flavors to solve 77 un-
satisfiable industrial verification instances of unknown origin. Empty entries indicate that
the instance is not solved on a Linux workstation in 900 seconds. Table 3.1 shows several
versions of PDR along with their corresponding abstracting versions (pdr, pdr -t), (treb,
treb -abs), and (pdr -nc, pdr -nct). The last, pdr -nc, is a version of IC3 with improved
generalization [HBS13]. As claimed, all three versions were modified fairly easily using the
ideas outlined in this chapter.

The last row of Table 3.1 shows that the PDRs with abstraction solve more test cases
than the PDRs without abstraction. The final row shows geometric averages of runtime for
41 out of the 77 test cases solved by all six flavors of PDR. The runtime overhead for PDRA
is negligible, except for treb -abs, which takes 20% more time compared to its baseline, treb.

Table 3.2 compares different flavors of PDR on the 41 commonly solved test cases in terms
of the the number of timeframes needed to converge to an invariant (Column “Frames”), and
its clause count (Column “Size”) and flop count (Column “Supp”). Table 3.2 demonstrates
that when PDRA is used, the number of timeframes increases by about 10% on average,
while the number of clauses and flops is reduced by 15-20% on average.

3.7 Conclusion

The chapter describes a practical variation of the known model checking algorithm
PDR/IC3. The idea is to add localization abstraction to the baseline algorithm to reduce the
set of flop output variables used in the over-approximation. The modified engine performs
better in terms of the number of cases solved with a slightly increased runtime. Furthermore,
it reduces the size of the inductive invariants, making them more suitable for design analysis
and debugging.

Future work will include

• Using structural reverse engineering to detect control flops and target abstraction to
include the remaining flops that likely belong to a datapath.

3.7. CONCLUSION 48

Table 3.2: Comparing different flavors of PDR in terms of the frame count and the invariant
size on 41 industrial examples (implementations with abstraction, pdr -t, treb -abs, and pdr
-nct, are compared against the baselines, pdr, treb, and pdr -nc).

Table 2: Comparing different flavors of PDR in terms of the frame count and the invariant size on 41 industrial examples
(implementations with abstraction, pdr -t, treb -abs, and pdr -nct, are compared against the baselines, pdr, treb, and pdr -nc).

 pdr pdr -t treb treb -abs pdr -nc pdr -nct

Test AND FF Frame Size Supp Frame Size Supp Frame Size Supp Frame Size Supp Frame Size Supp Frame Size Supp

Ex03 2602 330 9 4222 228 15 3929 178 11 3906 196 12 3914 179 9 3998 208 9 4099 178
Ex04 2602 330 15 4108 228 16 4069 186 11 3926 203 14 4047 193 15 4112 226 16 4097 206
Ex06 2602 330 11 4197 209 14 4073 178 15 3858 184 10 3879 193 11 4127 206 16 4096 186
Ex07 2602 330 12 4285 256 13 4110 178 10 3845 194 14 3945 198 15 4151 236 18 4120 196
Ex10 19387 771 4 3104 379 3 2626 99 3 2577 103 3 2562 96 4 2824 177 3 2627 99
Ex14 21302 771 4 3504 442 4 2636 99 3 2587 108 3 2563 96 4 2798 135 3 2640 99
Ex18 479 89 14 74 65 20 306 61 11 53 48 25 140 58 15 139 66 17 110 46
Ex19 20068 3785 33 661 256 62 1194 227 35 359 192 65 276 161 30 356 267 57 348 215
Ex20 20066 3785 60 1285 382 107 523 42 59 486 98 63 212 43 74 693 121 75 228 40
Ex24 2122 353 11 2134 242 13 1932 191 7 2014 237 9 1782 167 10 2104 230 12 1972 166
Ex25 5043 869 4 4123 60 7 4139 68 4 4136 58 8 4130 67 4 4132 59 7 4182 110
Ex27 18347 1207 17 2403 1077 17 2457 1077 17 2217 1077 17 1378 1078 17 2410 1077 17 2432 1077
Ex30 11945 781 8 634 247 9 603 210 8 582 240 8 563 187 9 601 243 9 602 222
Ex32 1979 368 24 3398 339 50 2466 340 19 1981 339 26 1594 339 22 1942 338 44 2447 340
Ex33 1917 360 21 3174 333 29 2732 331 21 2184 331 24 1553 328 21 1955 336 22 2389 333
Ex34 1840 348 44 1930 320 36 2462 317 26 2103 315 20 1744 315 36 1375 320 40 1919 320
Ex35 1762 335 22 1619 310 30 1737 305 42 1409 307 24 1519 302 22 1700 305 20 1571 305
Ex36 1697 327 22 1271 298 26 1635 298 18 1257 292 20 1456 296 25 1984 299 28 1105 298
Ex39 1973 146 8 4534 137 8 4096 126 8 3746 132 8 3859 127 9 3898 137 8 4045 135
Ex45 9460 1564 59 1022 246 58 659 208 67 909 209 62 743 208 80 1121 265 58 865 207
Ex46 531 131 8 1056 120 9 1168 121 8 1057 119 9 950 116 8 1186 119 9 1085 118
Ex47 920 231 14 1637 174 14 1464 169 14 1664 186 20 1595 167 17 1237 179 19 1179 169
Ex48 952 249 15 2364 233 20 3074 235 15 4933 235 14 2975 228 17 1833 233 19 2090 237
Ex50 1072 253 19 2208 236 17 2949 230 16 2532 232 16 2510 229 15 1835 239 18 1785 237
Ex51 952 249 16 2853 234 21 2485 231 15 3900 234 13 1781 229 21 1418 235 19 2427 237
Ex52 930 241 15 1596 192 21 1972 193 16 3516 216 15 2037 196 16 1749 206 17 1222 191
Ex53 890 229 20 2831 212 16 2459 212 15 2452 207 20 1455 205 17 1812 214 16 1759 208
Ex54 920 231 14 1637 174 14 1464 169 14 1664 186 20 1595 167 17 1237 179 19 1179 169
Ex55 934 239 18 1597 186 15 2294 192 17 2781 206 18 1336 183 23 1846 195 17 1953 182
Ex56 952 249 21 3015 233 21 2369 228 21 2907 234 16 1853 231 21 1446 235 17 2154 229
Ex58 872 221 15 2326 195 19 1789 170 16 2702 198 15 1402 152 21 1428 193 17 1341 175
Ex59 966 237 19 2489 220 17 2580 217 15 2521 219 18 2665 219 20 1975 223 18 1968 219
Ex60 952 249 15 2653 233 17 2629 233 17 4232 232 19 1752 227 17 2285 234 17 1859 224
Ex61 1050 183 8 124 84 10 109 67 13 123 81 14 362 82 11 101 76 10 84 53
Ex63 3632 521 95 1441 513 116 1460 512 122 1222 509 115 1241 510 177 1741 514 152 1670 513
Ex64 1600 309 81 303 138 15 321 136 81 353 138 12 244 130 65 306 140 19 302 139
Ex65 1189 227 9 2831 216 10 2974 217 10 2602 216 9 1801 217 9 1422 216 9 1626 216
Ex66 9422 1324 18 1440 1323 25 1455 1323 16 1405 1323 18 1414 1324 19 1400 1323 22 1394 1323
Ex74 541 76 43 23 15 179 10 17 39 70 18 416 12 18 54 63 21 160 67 24
Ex75 528 76 53 17 15 109 19 17 39 83 19 369 12 17 61 65 21 142 67 22
Ex77 1177 195 21 482 139 16 304 66 28 4088 138 13 258 64 28 926 178 15 313 68

Geo 1.000 1.000 1.000 1.161 0.976 0.829 0.968 1.089 0.886 1.098 0.798 0.816 1.085 0.926 0.948 1.130 0.871 0.843

3.7. CONCLUSION 49

• Exploring different abstraction refinement strategies, which might be better at ruling
out counterexamples.

• Developing an application-specific SAT solver to speed up PDR/IC3 with and without
abstraction.

50

Chapter 4

Property Directed Reachability with
Word-Level Abstraction

PDRA presented in Chapter 3 integrates bit-level PDR with bit-level localization abstrac-
tion. This chapter presents PDR-WLA, a word-level algorithm that efficiently integrates
bit-level PDR with word-level localization abstraction by re-using reachability information
learned in previous refinement iterations.

4.1 Introduction

Unbounded model checking (UMC) on a Register-Transfer-Level (RTL) circuit is hard
but has important applications in the IC design industry:

1. Sequential equivalence checking (SEC). An RTL circuit is sequentially synthe-
sized by retiming, clock-gating, pipelining etc., and UMC is required for proving the
correctness of the synthesis.

2. Property checking. UMC is used to prove that a circuit always satisfies a set of
given properties.

UMC is challenging at the bit level, and even more so at the word level, where complex
arithmetic operators, such as multipliers, adders, and variable shifters, are involved.

IC3 [Bra11] or Property Directed Reachability (PDR) [EMB11] is considered the best algo-
rithm for bit-level UMC. Abstraction has been a key development and is widely used. Differ-
ent methods of abstraction include the following. Word-level abstraction [JKSC05, ALS08,

4.1. INTRODUCTION 51

BBSO10, BBS11, LS14, HCR+16] can be effective by abstracting away heavy arithmetic
logic. Localization abstraction [WJK+01] is a method where gates or signals are replaced by
new unconstrained primary inputs. Counterexample guided abstraction and refinement (CE-
GAR) [CGJ+00] is a framework for iterating abstraction and refinement, where refinement
is based on the analysis of spurious counterexamples.

We propose PDR-WLA, an efficient CEGAR-based word-level localization algorithm inte-
grated with PDR. Given a word-level design, PDR-WLA starts with the extreme abstraction
with all hard signals (e.g., outputs of multipliers, adders, etc.) abstracted (i.e. replaced by
new primary inputs). Next, the resulting word-level abstraction is bit-blasted and given
to a modified PDR algorithm. If a counterexample (CEX) is found, PDR-WLA simulates
it on the original design to check if it is real. If so, PDR-WLA reports it and terminates;
otherwise, the CEX is spurious and is used to refine the current abstraction. Then a new
iteration begins with the refined abstraction.

The main contributions embodied in PDR-WLA are that it

• integrates word-level abstraction with PDR efficiently,

• uses a new refinement strategy that takes advantage of structural and proof-based anal-
ysis of spurious counterexamples, and

• re-uses reachability information (reachability clauses) derived in previous iterations.

PDR-WLA is implemented and available in the public verification tool ABC [BM10]
(command %pdra). It was evaluated on a set of 195 industrial Verilog RTL benchmarks.
PDR-WLA is capable of solving 18 hard problems not solved by PDR. The results also show
that 1) reusing previously derived reachability clauses improves performance significantly
and 2) the new refinement strategy is the most effective compared to several others proposed
and tested.

This chapter starts with background material in Section 4.2. PDR-WLA is presented in
Section 4.3. The proposed refinement strategies are given in Section 4.4. Related work is
discussed in Section 4.5. Experiments are presented in Section 4.6. Conclusion and future
work are discussed in Section 4.7.

4.2. PRELIMINARIES 52

4.2 Preliminaries

4.2.1 The UMC problem

The input is a word-level circuit given in structural Verilog containing bit-vector (BV)
signals, including primary inputs (PIs), primary outputs (POs), flip flops (FFs), and internal
signals. Flip flops have reset values as initial states. Reset values are either constants or free
variables (unknown value X). A design is modeled as a finite state machine (FSM).

Definition 4.1. An FSM is a tuple M = (I, O, S, Init, T) where I is the set of PIs, O
is the set of POs, S is the set of FFs, Init is the set of initial states, and T is the set of
(deterministic) transition relations where T ⊆ I × S × S. If (i, s, s′) ∈ T , there exists a
transition from s to s′ under i.

The input word-level circuit is assumed to contain a single FSM and a single output,
out, representing a property to be checked. If the problem is to prove equivalence between
two designs, it is assumed that a miter circuit, M , has been created by merging all PIs and
merging FFs if their correspondences are known. The miter’s output, out, is a Boolean signal,
which is the OR of the pairwise XORs of the corresponding outputs of the two designs. Thus
out = 1 if the two designs are different. Similarly for property checking, out is the output
of a monitor, and out = 1 if the property fails. In terms of linear temporal logic (LTL), the
UMC problem is formulated as M |= G¬out, i.e. out is never 1 if the property holds.

A UMC solver either reports a counterexample (CEX) that falsifies the property or pro-
duces an inductive invariant proving that the property holds globally.

Definition 4.2. A counterexample (CEX) is a sequence of PI assignments driving the design
from an initial state into a state falsifying the property.

Definition 4.3. An inductive invariant (Inv) proving a property P (s) is a predicate function
satisfying the properties below.

1. Init(s) =⇒ Inv(s)

2. Inv(s) ∧ T (i, s, s′) =⇒ Inv(s′)

3. Inv(s) =⇒ P (s)

4.2. PRELIMINARIES 53

4.2.2 Property Directed Reachability

A detailed review of PDR is presented in Section 3.3 following the ideas in [EMB11].
Algorithm 4.1 outlines a high-level view of PDR. It maintains a list of sets of clauses, called
the PDR trace: Ω = (R0, R1, . . . , RN). Every Rj is a set of clauses that over-approximates
the set of states reachable from the initial states within j steps. These clauses in a PDR
trace are called reachability clauses.

Definition 4.4. Given an FSM, M = (I, O, S, Init, T), and a property P , a PDR trace is a
sequence of predicate functions, Ω = (R0, R1, . . . , RN), such that

1. R0(s) = Init(s)

2. Rj(s) =⇒ Rj+1(s) for 0 ≤ j < N .

3. Rj(s) ∧ T (i, s, s′) =⇒ Rj+1(s
′) for 0 ≤ j < N .

4. Rj(s) =⇒ P (s) for 0 ≤ j < N . 1

Algorithm 4.1 PDR
Input: GM . GM : the bit-level input circuit
Output: status ∈ { SAT, UNSAT }
1: Ω ← {Init} . Ω: the PDR trace
2: k ← 0 . k: the PDR depth
3: while true do
4: Ω, cex ← RecBlockCube(GM , Ω, k)
5: if cex 6= ∅ then
6: return SAT . Found a real CEX
7: k ← k + 1
8: Ω ← Ω ∪ {>} . Open a new frame
9: Ω ← PropagateBlockedCubes(GM , Ω)

10: if Ω contains a fixed point then
11: return UNSAT

PDR starts with the trace Ω with only one element R0 = Init. It then tries to strengthen
the trace by recursively blocking bad cubes (a cube of states that can make the property fail)
(line 4). If a bad cube intersects with the initial states, then a CEX is returned. Otherwise,
the last element Rk of the trace now satisfies the property P . PDR then adds a new element
> (empty set of clauses) to Ω, and tries to propagate clauses (using induction) from R1 to
Rk (line 9). If a fixed point (Rj = Rj+1) is found, the problem is declared UNSAT and

1 RN (s) does not necessarily imply P (s), i.e. RN (s) can contain bad states. Recursive blocking (line 4)
tries to remove bad states from RN (s).

4.2. PRELIMINARIES 54

the inductive invariant (Rj) is returned. Other details of procedures RecBlockCube and
PropagateBlockedCubes can be found in Section 3.3 and [EMB11].

4.2.3 Word-level Abstraction

Localization abstraction [WJK+01] is used in this chapter. Given a word-level circuit and
a set of target signals (e.g., outputs of arithmetic operators), an abstraction is created by
replacing the target signals with free variables called pseudo PIs (PPIs). Localization is not
necessarily restricted to flip flops; any signal can be abstracted, similar to GLA [MEB+13].
More details of word-level localization abstraction are presented in Section 2.2.1.

Example 4.1. Consider the circuits in Figure 4.1. The PO, out, in Figure 4.1a is constant-0,
since both 2×x ≡ x+x and 2×y ≡ y+y are true. Figure 4.1b is the result of abstracting all
4 arithmetic operators by replacing their outputs with PPIs. Note that while the example is
combinational for illustration purposes, the abstraction scheme applies generally to sequential
circuits and UMC problems.

Definition 4.5. Given an original circuit M and an abstraction A of M , a CEX of A is real
if it can falsify the property on M (make out = 1). Otherwise, it is spurious.

4.2.4 Simple CEGAR (S-CEGAR)

Algorithm 4.2 (S-CEGAR) is an example of a simple integration of CEGAR and PDR
at the word level. The algorithm starts by abstracting all signals in the set S (e.g., outputs
of all specified arithmetic operators). Next, an abstraction-refinement loop is entered where
each iteration begins by creating a word-level abstraction based on the current set B, the
set of signals to be abstracted away. The abstraction is then bit-blasted and solved by a
bit-level PDR. If the solver returns UNSAT, the property is proved. Otherwise a CEX to
the abstraction, cex, exists and is then simulated on the original circuit (WM) to check if
it is real. If yes, the property is falsified and cex is returned; otherwise cex is analyzed to
derive a set of signals (∆B) that, if un-abstracted, can block cex. A new abstraction, with
∆B un-abstracted, is then created and a new iteration begins.

In each iteration of S-CEGAR, a new PDR solver is used and reachability clauses are
recomputed from scratch. This is inefficient when the algorithm needs many iterations to
find a final abstraction, i.e. one that proves the property.

4.2. PRELIMINARIES 55

*+

x

* +

y

!= !=

&

out

2

(a) The original circuit with four arithmetic op-
erators, where x and y are primary inputs, 2 is
a constant, ! = is the complement of a com-
parator, & is a bit-wise AND, and out is the
negation of the property.

x y

!= !=

&

out

a b c d

(b) An abstraction derived from the original by
replacing the 4 arithmetic operators with 4 new
primary inputs, a, b, c, and d.

Figure 4.1: A combinational circuit illustrating word-level abstraction. out ≡ 0, UNSAT,
since 2× x ≡ x+ x, which forces out to be constant 0.

4.3. PDR WITH WORD-LEVEL ABSTRACTION 56

Algorithm 4.2 Simple CEGAR (S-CEGAR)
Input: WM . WM : the word-level input circuit
Input: S . S: the initial set of targeted signals
Output: status ∈ { SAT, UNSAT }
1: Iterations ← 1
2: B ← S . B: the set of abstracted signals
3: while true do
4: WA ← CreateAbstraction(WM , B)
5: GA ← BitBlast(WA)
6: cex ← PDR(GA)
7: if cex 6= ∅ then
8: if IsRealCEX(WM , cex) then
9: return SAT

10: else
11: ∆B ← Refine(WM , GA, B, cex)
12: B ← B\∆B
13: Iterations ← Iterations+ 1

14: else
15: return UNSAT

4.3 PDR with Word-Level Abstraction

4.3.1 The Algorithm

PDR-WLA uses an important insight; PDR traces can be re-used between iterations
if abstractions are monotone. The idea is similar to previous work of PDR with abstrac-
tion [VGS12, FYH16], extending it to the word level.

Similar to PDR, PDR-WLA starts with the trace Ω containing only R0 = Init. One
difference is that PDR-WLA works on an abstraction instead of the original circuit. Sim-
ilar to S-CEGAR, it begins by abstracting all targeted signals S, resulting in a word-level
abstraction (WA), which is then bit-blasted into a circuit (GA). As with PDR, PDR-WLA
tries to recursively block bad cubes at depth k with the abstract model GA and the trace Ω.
If a bad cube intersects with the initial states, then a CEX, cex, is returned and checked on
the original circuit (WM). If cex is also a CEX on WM , the property is falsified; otherwise
cex is used to compute a subset (∆B) of B to refine the current abstraction (∆B will be
un-abstracted). Note that a nonempty ∆B exists because cex can always be blocked by un-
abstracting some signals. Set B is updated by removing ∆B. A new abstraction is derived
for the next iteration of recursive blocking. If PDR-WLA successfully blocks bad cubes at
the current depth k, then it increments the depth by one and adds a new element (>) to Ω.

4.3. PDR WITH WORD-LEVEL ABSTRACTION 57

It then tries to propagate the clauses in Ω using induction. If a fixed point is found, then
the property holds; otherwise, blocking bad cubes at the new depth will be tried (line 10).

Note that PDR-WLA can be viewed as a PDR algorithm with on-the-fly word-level
abstraction. The same trace Ω is re-used throughout the computation, even though the
current abstraction is continuously refined. Thus, important reachability information derived
in previous iterations is re-used, resulting in a significant speedup over S-CEGAR.

Algorithm 4.3 PDR with Word-Level Abstraction (PDR-WLA)
Input: WM . WM : the word-level input circuit
Input: S . S: the initial set of targeted signals
Output: status ∈ { SAT, UNSAT }
1: Iterations ← 1
2: Ω ← {Init} . Ω: the PDR trace
3: k ← 0 . k: the PDR depth
4: B ← S . B: the set of abstracted signals
5: WA ← CreateAbstraction(WM , B)
6: . WA: the word-level abstraction
7: GA ← BitBlast(WA)
8: while true do
9: while true do

10: Ω, cex ← RecBlockCube(GA, Ω, k)
11: if cex 6= ∅ then
12: if IsRealCEX(WM , cex) then
13: return SAT
14: else
15: ∆B ← Refine(GA, B, cex)
16: B ← B\∆B . Un-abstract some signals
17: WA ← CreateAbstraction(WM , B)
18: GA ← BitBlast(WA)
19: Iterations ← Iterations+ 1

20: else
21: break
22: k ← k + 1
23: Ω ← Ω ∪ {>} . Open a new frame
24: Ω ← PropagateBlockedCubes(GA, Ω)
25: if Ω contains a fixed point then
26: return UNSAT

4.3. PDR WITH WORD-LEVEL ABSTRACTION 58

4.3.2 Analysis of PDR-WLA

PDR-WLA represents a general framework for word-level abstraction. It is complemen-
tary to other abstraction techniques. The only requirement for soundness is that the derived
sequence of abstractions (line 17) is monotone:

Definition 4.6. Let {Aj} be a sequence of abstractions, let {Tj} be their transition relations,
and let {Initj} be their initial states. {Aj} is monotone if Tj+1(i, s, s

′) =⇒ Tj(i, s, s
′) and

Initj+1(s) =⇒ Initj(s).

Theorem 4.1. Let M and A be FSMs where TM =⇒ TA and InitM =⇒ InitA.
Given a property P , if Ω = (R0, R1, . . . , RN) is a PDR trace of A with P , then Ω′ =
(InitM , R1, . . . , RN) is a PDR trace of M with P .

Proof. Since Ω is a PDR trace of A with P , we have

Rj(s) =⇒ Rj+1(s) for 0 ≤ j < N

Rj(s) ∧ TA(i, s, s′) =⇒ Rj+1(s
′) for 0 ≤ j < N

Rj(s) =⇒ P (s) for 0 ≤ j < N

Note that Ω′ is the same as Ω, except that R0 is replaced by InitM . Since InitM =⇒ R0

and TM =⇒ TA, we have

InitM(s) =⇒ R1(s)

InitM(s) ∧ TM(i, s, s′) =⇒ R1(s
′)

Rj(s) ∧ TM(i, s, s′) =⇒ Rj+1(s
′) for 1 ≤ j < N

InitM(s) =⇒ P (s)

Therefore by Definition 4.4, Ω′ is a PDR trace of M with P .

Theorem 4.2. Algorithm 4.3 is sound and complete.

Proof. Soundness. It is sound to start a new iteration with the previous trace (line 10)
because each iteration makes the current abstraction tighter by removing signals from B.
Note that R0 is the initial states of the original circuit (WM) and is shared by all abstractions.
Similarly any state variable in clauses from a previous abstraction must remain in the next
abstraction because abstractions are monotone. Thus, a trace can be safely copied over
to the next abstraction (Theorem 4.1). Finally, Algorithm 4.3 is sound because it returns
UNSAT only if it finds an inductive invariant proving the property.

Completeness. The algorithm returns SAT only if a CEX is real. Convergence follows
because, in each iteration, the size of B decreases by at least one (otherwise the CEX must
be real). The number of iterations is bounded by |S|.

4.4. REFINEMENT 59

4.4 Refinement

Given a spurious CEX, cex, the goal of refinement is to identify a subset of signals ∆B
in B, such that if ∆B is removed from B, then cex is blocked in the next iteration. We say
that ∆B is un-abstracted.

In Chapter 2, several refinement strategies are presented. Simulation-based Refinement
(SBR) generalizes a CEX into an XCEX (Section 2.2.5) that represents a set of CEXes needs
to be blocked. The remaining concrete-value PPIs in an XCEX are our candidate subset
∆BSBR. However, SBR does not guarantee that the CEX (or XCEX) would be blocked in
the refined circuit, since SBR does not use any information from the original circuit. In
contrast, Proof-based Refinement (PBR) explicitly encodes assumptions into a circuit with
ITE operators (or multiplexers), so it can take advantage of both the information in the
original circuit and the assumption interfaces in SAT solvers, which result in an efficient
procedure with the guarantee that the current CEX would be blocked after refinement. The
returned subset of assumptions are our candidate subset ∆BPBR. Maximum Fan-out Free
Cone (MFFC) refinement exploits the underlying circuit structure that can save unnecessary
iterations. The main idea is that if a signal is un-abstracted, its MFFC is better un-abstracted
also. Therefore we propose the following refinement strategy for PDR-WLA:

1. Compute ∆BPBR, a set of candidate signals, using PBR.

2. Compute ∆BMFFC , the set of signals in the intersections of the MFFCs of ∆BPBR and
B.

3. Derive set ∆B: ∆B = ∆BPBR ∪∆BMFFC .

4.5 Related Work

4.5.1 Word-level Abstraction and Model Checking

Most previous work is bounded in that it requires unrolling a circuit to a certain depth k,
and then they use SMT solvers [JKSC05, ALS08, BBSO10, BBS11, KP]. These methods rely
on Bounded Model Checking (BMC) [BCCZ99] and/or k-induction [SSS00]. This becomes
inefficient when deep unrolling is needed. In practice, BMC- and induction- based approaches
are efficient in finding CEXes, but often incapable of producing an inductive invariant, which
is required for UMC problems. PDR-WLA addresses unbounded problems and does not
require unrolling.

4.5. RELATED WORK 60

Welp and Kuehlmann proposed a generalization of PDR to the theory of quantifier free
formulas over bit-vectors (QF_BV) [WK13, WK14]. Hybrid simulation and mixed types of
atomic reasoning units are used for inductive and CEX generalization. However, they do
not re-use PDR traces nor do they perform word-level abstractions.

The closest work to PDR-WLA is AVERROES [LS14], a word-level algorithm integrating
CEGAR and PDR. It abstracts wide data-paths into uninterpreted predicates, constants,
terms, and functions, and solves the abstraction with an SMT-based PDR (where SMT
solvers are used instead of SAT). The main differences between PDR-WLA and AVERROES
are

• PDR-WLA re-uses PDR traces derived in previous iterations; AVERROES does not.

• PDR-WLA uses PBR and MFFC as the main refinement strategy; AVERROES uses
strategies similar to SBR, PBR-A, and PBR-B.

UFAR [HCR+16] is a word-level algorithm that combines CEGAR and bit-level model
checking. It abstracts arithmetic operators with black boxes as well as uninterpreted function
constraints, and solves the abstraction with a portfolio of tools, including BMC and PDR.
However, UFAR does not reuse PDR traces nor does it perform MFFC refinement.

4.5.2 PDR with Abstraction

Vizel et al. proposed L-IC3 [VGS12], a bit-level IC3 with localization abstraction, where
state variables are the targeted signals and different abstractions are used in different time
frames. Fan et al. showed that gate-level abstraction (GLA) [MEB+13] can be integrated
with PDR [FYH16]. However, both approaches consider only bit-level problems. At the
word-level, abstracting only state variables may result in aggressive refinement where the
entire logic cone of a flip flop would be refined, limiting scalability. On the other hand,
GLA cannot be applied directly to the word level. In particular, it mainly uses SBR without
considering MFFC, which could be ineffective as discussed in Section 2.6.

In contrast, PDR-WLA considers not only flip flops, but any type of signals, resulting
in a finer-grained abstraction and refinement. Also, it uses specific procedures, PBR and
MFFC, to find a final abstraction faster than the bit-level GLA.

4.6. EXPERIMENTAL RESULTS 61

4.6 Experimental Results

Experiments were done to evaluate PDR-WLA using different settings. PDR-WLA is
part of the public verification tool, ABC [BM10] (command %pdra), which can parse word-
level Verilog and transform the resulting design into a bit-level circuit by bit-blasting. For
comparison, S-CEGAR (Section 4.2.4, Algorithm 4.2) was implemented in ABC (command
%abs).

The benchmarks used for evaluating PDR-WLA were a set of 195 industrial Verilog RTL
designs. Large arithmetic operators and multiplexers were the signals targeted for possible
abstraction (set S). A workstation with Intel Xeon E5504 CPUs clocked at 2.0 GHz with
24 GB of RAM was used. A time-out of 3600 seconds was used on all experiments.

First, we compare PDR-WLA to the original PDR [EMB11], in which the input Verilog
circuit is immediately bit-blasted. Given a 1-hour time-out, PDR-WLA solves 22 fewer test-
cases than PDR (89 vs. 111), but PDR-WLA manages to solve 18 hard cases not solved by
PDR. It is our experience that abstraction doen not always work. It is likely that many of
these 22 cases cannot be abstracted well, so trying such is a waste of time. However, The
two methods are nicely complementary; together they can solve 129 out of 195 benchmarks.
Thus PDR-WLA complements PDR and would work well in a portfolio-based word-level
model checker like [HCR+16].

To demonstrate the importance of re-using PDR traces in PDR-WLA, it was compared
with S-CEGAR, which uses a fresh PDR solver in each iteration and does not preserve
the reachability clauses across PDR runs. The results are shown in Figure 4.2, where the
x and y axes represent the solving times of PDR-WLA and S-CEGAR, respectively. In
Figure 4.2a, PDR-WLA outperforms S-CEGAR in all but eight cases. An investigation
revealed that in some problems, after several iterations of refinement, an abstraction can
become combinationally UNSAT, implying that the circuit output can be proved UNSAT
with all FFs un-initialized. In those cases, PDR-WLA would work hard to get a non-trivial
inductive invariant while S-CEGAR proves that the problem is UNSAT after just one SAT
call. To address this problem, PDR-WLA was enhanced to always check if the problem is
combinationally UNSAT when an iteration begins. The results are shown in Figure 4.2b,
where PDR-WLA dominates S-CEGAR in all but one case.

20 out of the 195 designs were chosen for Table 4.1 to give an idea of details such
as expected ranges of iterations needed, clauses in PDR traces re-used, and the sizes of B
(signals to be abstracted way) in the final abstractions. All are UNSAT; each is characterized
by the number of hard signals.

Definition 4.7. A hard signal is the output of

4.6. EXPERIMENTAL RESULTS 62

0

500

1000

1500

2000

2500

3000

3500

0 1000 2000 3000

S
-C

E
G

A
R

 (
T

im
e

 in
 s

ec
.)

PDR-WLA (Time in sec.)

(a) Running with the default settings, PDR-
WLA outperforms S-CEGAR in many cases but
not all of them.

0

500

1000

1500

2000

2500

3000

3500

0 1000 2000 3000

S
-C

E
G

A
R

 (
T

im
e

 in
 s

ec
.)

PDR-WLA with additional SAT check
(Time in sec.)

(b) With appropriate additional SAT checking,
PDR-WLA is able to outperform S-CEGAR in
all but one case.

Figure 4.2: Comparison of PDR-WLA (%pdra) and S-CEGAR (%abs). This shows the
effectiveness of re-using PDR traces. Note that PDR-WLA and S-CEGAR would be the
same if no PDR traces can be re-used. Therefore, only 29 cases with non-zero re-used PDR
traces are shown.

4.6. EXPERIMENTAL RESULTS 63

Table 4.1: Detailed experimental results for 20 unsatisfiable word-level test-cases. #HardSig-
nals is the number of hard signals (Definition 4.7). |S| and |B| are sizes of the set of the
initial targeted signals (S) and the set of signals to be abstracted away for each iteration
(B) in Algorithm 4.3. #ReusedClauses is the number of clauses in PDR traces re-used by
PDR-WLA. The number is 0 if all refinements occur at k = 0. The details of SBR, MFFC,
PBR, and PBR-B can be found in Chapter 2.

pdr
%abs (S1)

SBR
+MFFC

%pdra (S2)
SBR

+MFFC

%pdra (S3)
PBR-B
+MFFC

%pdra (S4)
PBR

%pdra (S5)
PBR

+MFFC
S1 S2 S3 S4 S5 S2 S3 S4 S5 S1 S2 S3 S4 S5

1 1252 100 479.32 170.50 196.46 369.95 145.23 164.67 2 2 3 4 4 11 110 181 181 88 88 98 92 92
2 1437 100 1759.97 3253.29 956.76 931.43 914.51 4 4 11 4 4 7438 8129 1493 1493 79 79 81 81 81
3 1437 100 1201.74 653.70 326.80 308.24 306.83 335.50 2 2 3 3 3 17 100 155 155 87 87 97 94 94
4 1437 100 1800.60 1529.84 1299.36 583.27 597.26 4 5 11 5 5 4981 11061 1732 1732 82 79 82 77 77
5 1437 100 931.73 753.11 401.78 272.46 169.87 170.91 2 2 3 3 3 19 84 114 114 87 87 96 90 90
6 1437 100 2531.39 2799.57 1128.25 672.48 686.62 4 4 11 6 6 3661 6804 2694 2694 78 78 81 78 78
7 1437 100 1383.61 2521.83 862.04 925.89 410.96 415.29 5 4 11 6 6 2080 7241 3317 3317 78 78 85 79 79
8 1252 100 925.41 1213.75 538.48 472.20 225.96 227.98 4 4 11 6 6 2518 10122 3889 3889 78 78 83 79 79
9 1437 100 1984.69 949.32 2573.81 387.51 366.87 4 4 8 5 5 2304 9868 2198 2198 80 79 82 77 77

10 1437 100 850.77 391.41 302.57 766.21 242.32 225.09 2 2 5 5 5 113 625 693 693 90 90 95 94 94
11 1437 100 1151.91 2060.92 896.89 958.62 372.40 349.45 4 4 10 5 5 2456 7017 1776 1776 78 78 80 79 79
12 133 101 13.61 675.78 10.38 4 4 17 17 10 0 2486 0 0 11 11 21 27 30
13 133 101 15.00 624.42 8.99 4 4 16 19 10 0 1713 0 0 15 15 21 26 30
14 94 75 763.06 197.19 295.68 112.98 6 6 8 11 6 135 228 551 139 3 3 2 21 3
15 95 75 1685.29 745.23 259.12 816.54 7 7 8 11 6 147 115 475 151 3 3 1 21 3
16 82 82 545.37 507.48 417.23 3 3 4 12 2 0 0 0 0 12 12 0 0 33
17 72 72 353.69 124.98 128.85 132.70 77.52 113.61 9 9 14 18 9 0 0 0 0 16 16 16 14 17
18 58 58 1684.21 1343.36 1237.67 1270.25 861.53 3 3 4 9 2 0 0 0 0 13 13 13 13 13
19 2150 103 1731.26 731.82 732.24 1544.19 789.06 3 3 18 18 12 0 0 0 0 76 76 77 74 77
20 1132 100 414.30 739.13 2138.99 3045.19 2191.30 1296.62 3 3 35 40 33 481 5510 10307 4520 13 13 17 15 9

#ReusedClauses |B| in the last iteration
#Hard
Signals

ID |S|

CPU Time (seconds) Iterations

1. an adder, subtractor with width of at least 8, or

2. a multiplier, divider, modulus with width of at least 4, or

3. a multiplexer with width of at least 8.

The initial set of targeted signals (S) is chosen from hard signals with an upper bound
of 50 for each of the three categories (e.g., there can be at most 50 adders in S). For each
test-case, we show the runtime of six solvers: a) one PDR, b) one S-CEGAR (%abs), and c)
four PDR-WLA versions (%pdra) with different refinement strategies (Chapter 2).

Observations from Table 4.1 are given below.

1. PDR-WLA vs. PDR. PDR-WLA generally is more efficient when proving hard
problems for which small abstractions can be derived. On the other hand, if a problem
cannot be abstracted well (e.g., case 20), PDR performs better.

2. S-CEGAR vs. PDR-WLA. An important factor in the comparison, is the number
of re-used clauses of all previous PDR traces. If the number is high, a high speedup
in PDR-WLA is usually observed. Case 20 is an exception to this, where the re-use
number is non-trivial but PDR-WLA is still slower. The reason is that the design

4.7. CONCLUSION 64

becomes combinationally UNSAT after 3 iterations. This problem can be fixed by
additional SAT calls as shown in Fig. 4.2. Note that there can be 0 re-used clauses
(e.g., cases 16-19), since all refinements occur at k = 0 and no bad states are blocked
at k = 1. If the trace Ω contains only R0 = Init, no clause can be re-used in the next
iteration.

3. SBR (S2) vs. PBR (S5). PBR uses more iterations and derives smaller final
abstractions (large |B|) in most cases, implying that PBR leads to more fine-grained
and focused refinements.

4. PBR-B (S3) vs. PBR (S5). PBR uses less iterations to find a final abstraction,
while PBR-B takes more iterations, which can be avoided by a proper analysis (see
Example 2.14). PBR-B can derive a small final abstraction, but large numbers of
iterations can cause poor performance. Note: comparison with PBR-A was not done
due to its similarity to SBR.

5. Without MFFC (S4) vs. with MFFC (S5). MFFC can be crucial in preventing
unnecessary refinement iterations. This is critical in cases 12, 13, 16, 18, and 19.

4.7 Conclusion

PDR-WLA efficiently integrates PDR with word-level abstraction. It re-uses PDR traces,
or reachability clauses, derived in previous iterations of refinement. An effective refinement
strategy, PBR with MFFC, was developed which was shown capable of deriving small final
abstractions using fewer iterations. PDR-WLA was implemented in the public verification
system ABC and evaluated on industrial benchmarks. PDR-WLA solves more hard problems
and offers speedups, compared to PDR and S-CEGAR.

Future work.

• Integrate BMC into Algorithm 4.3. The idea is that BMC can help PDR-WLA find
spurious CEXes faster. Early prototypes suggest speedups in some benchmarks.

• Develop a good way to shrink abstractions. A shrinking procedure can be useful as
shown in GLA [MEB+13]. One of the main challenges is that PDR traces cannot be
re-used if abstractions are no longer monotone.

• Enhance the refinement strategies with constraints. For example, uninterpreted func-
tion constraints are known to be effective for SEC problems; partial interpretation
constraints can also be useful. The challenge is to derive and apply constraints effi-
ciently and automatically.

65

Chapter 5

Uninterpreted Function Abstraction and
Refinement

Motivated by industrial benchmarks characterized by many related arithmetic operators,
this chapter presents UFAR, a word-level MC algorithm that uses uninterpreted functions
(UF) constraints as a method of refinement. The explicit application of UF constraints
also enables the UFAR framework to integrate any bit-level or word-level MC algorithm,
including both PDRA in Chapter 3 and PDR-WLA in Chapter 4.

5.1 Introduction

Model checking (MC) on a Register-Transfer-Level (RTL) word-level netlist is a necessary
verification task for applications involving sequential synthesis. In this, an RTL netlist is
synthesized into another through retiming, clock-gating, pipelining etc., and MC is required
for proving the correctness of the result. These problems are challenging if hard arithmetic
operators such as multipliers, adders, and variable shifters are involved, and correspondences
between flip flops are not known.

Previous methods in this domain can be classified as follows. One directly “bit-blasts”
the problem and then solves with bit-level techniques such as IC3/PDR [Bra11, EMB11],
interpolation [McM03], or BDDs [BCM+92]. Another [KP] translates the problem into SMT
formulas (if possible) and then directly employs SMT solvers such as Boolector [BB09],
or Z3 [DMB08]. A third [JKSC05] applies predicate abstraction [GS97]. Term-level ab-
straction [Hun89, BD94, BLS02, LSB02, LB03, AS04, ALS08, BBSO10, BBS11] replaces
arithmetic operators with uninterpreted functions (UF), and then solves with SMT solvers.

5.1. INTRODUCTION 66

However, bit-level techniques are problematic when verifying circuits with heavy arithmetic
logic. Techniques adapted from software verification are often not effective for hardware
equivalence checking. Most SMT-based approaches rely on (incomplete) bounded model
checking (BMC) [BCCZ99] or induction [SSS00] and may not be applicable.

UFAR (Uninterpreted Function Abstraction and Refinement), is a hybrid word- and bit-
level solver, which moderates the above issues. It takes advantage of modern sequential
techniques such as PDR and BMC at the bit-level, while heavy word-level logic is tackled
by abstraction and the use of uninterpreted function (UF) constraints.

Such techniques are not new, even at the word level. Conventional UF abstraction [AS04,
ALS08, BBSO10, BBS11] methods implicitly enforce all possible UF constraints among the
same functions. This becomes inefficient when the number of similar functions is large. Keys
to UFAR’s efficiency are how simulations and minimized counterexamples are used to refine
abstractions, how constraints are added and removed lazily, which pairs of operators are
constrained, and how UF constraints are applied between operators of the same type but
with different bit widths. All this requires efficiently iterating between word-level Verilog
and AIG representations as refinements are done. These techniques enable UFAR to prove
problems containing hundreds of heavy word-level operators.

We prove that UFAR is a sound and complete framework for word-level counterexample
guided abstraction and refinement (CEGAR) [CGJ+00]. It starts with the extreme abstrac-
tion with all “problematic” word-level operators (e.g., multipliers, adders, etc) removed (i.e.
operator outputs are replaced by unconstrained pseudo primary inputs). This is then bit-
blasted and given to a sound and complete bit-level model checker. If a counterexample is
returned, UFAR first simulates it on the original netlist to check if it is real. If so, UFAR ter-
minates and reports it. Otherwise, the spurious counterexample is used to refine the current
abstraction. Refinement is done in this context by 1) adding UF constraints between some
pairs of chosen compatible operators, and 2) restoring one or more of the removed operators.

We experimented on 2492 industrial benchmarks for sequential RTL (word-level) model
checking and show how different refinement methods and heuristics are complementary, each
solving more problems in less time, and leading to a final algorithm which solves all but 67
of the benchmarks within a one hour time limit for each example. To illustrate the results
on a variety of examples with different ranges, we show detailed results on 100 examples
having ranges of 4-475 multipliers, 6442-306429 AIG nodes, and 86-5627 flip-flops.

This chapter first presents background material and formal settings in Section 5.2. The
UFAR algorithm is presented in Section 5.3. Several improvement techniques for the algo-
rithm are given in Section 5.4. Section 5.5 gives some details about the UFAR framework,
including word-level representation and bit-blasting this into an AIG. Related work is dis-
cussed in Section 5.6. Experimental results on an extensive set of industrial problems are
presented in Section 5.7, comparing the effectiveness of the two improvements and the overall

5.2. BIT-VECTORS AND UF CONSTRAINTS 67

UFAR algorithm. Conclusions are discussed in Section 5.8.

5.2 Bit-Vectors and UF Constraints

In the context of Verilog and its bit-vector operators, we need to be precise about applying
UF constraints between pairs of operators. A UF constraint states that for two same-type
functions, if their inputs are equal then their outputs are equal. Unfortunately, this is
not at all straight-forward when bit-vector operators are involved. Incorrect application of
UF constraints can lead to an unsound procedure on the one hand or to a too restrictive
application on the other. In this section, we discuss bit-vector operators, define what it
means to be the same function, state when and how to make UF constraints valid between
two same-type operators, and prove the soundness of the derived methods.

5.2.1 The MC Problem

We assume that the input RTL design is in structural Verilog. In structural Verilog, there
are bit-vector (BV) signals including primary inputs (PIs), primary outputs (POs), flip flops
(FFs), and internal signals. Flip flops have reset values as initial states. A design is modeled
as a finite state machine (FSM).

Definition 5.1. A design in structural Verilog is a tuple M = (I, O, S, S0, T) where I is
the set of inputs, O is the set of outputs, S is the set of state variables, S0 is the set of
initial states, and T is the set of (deterministic) transition relations where T ⊆ I × S × S.
If (i, s, s′) ∈ T , then there exists a transition from s to s′ under i.

The input format to UFAR, M , is assumed to be mitered as a single FSM and with a
single output, out, representing the property to be checked. If the problem is to prove equiv-
alence between two designs, a miter is created by merging all PIs and merging corresponding
mapped FFs (if any). The output out is a Boolean signal, which is the OR of the pairwise
XORs of the corresponding outputs of the two designs. Thus it is 1 if the two designs are
different. Similarly for property checking, the output is a monitor which signals 1 if the
property fails. In terms of linear temporal logic (LTL), the MC problem is formulated as
M |= G¬out, meaning the miter M should never excite the signal out if the property holds.

5.2. BIT-VECTORS AND UF CONSTRAINTS 68

5.2.2 Word-level Signals (Bit-Vectors)

In Verilog, a word-level signal (or bit-vector) is characterized by its bit-width and signed-
ness.

Definition 5.2. A word-level signal in Verilog is denoted as sw where s is the symbol of the
signal and w ∈ Z represents both the bit-width and signedness of the signal. The bit-width
of the signal is |w|. The signal is signed if w < 0; unsigned otherwise. A word-level signal
sw is also a finite function whose domain is {x|x ∈ N, 0 ≤ x < |w|} and the co-domain is
{0, 1}, mapping each bit position to its value.

Example 5.1. Consider the Verilog signal below.

wire signed [3:0] b;

The signal is denoted as b−4 from Definition 5.2.

A word-level signal can be converted into either a natural number or an integer using
two’s complement.

Definition 5.3. Given a word-level signal sw, the word-to-natural-number function, N(·),
maps this signal to a natural number. Let each bit in the signal be si = sw(i), where s0 is
the least significant bit (LSB) and s|w|−1 is the most significant bit (MSB). Function N(·) is
defined as,

N(sw) =

|w|−1∑
i=0

si2
i. (5.1)

Definition 5.4. Given a word-level signal sw, the word-to-integer function, Z(·), maps this
signal to an integer. Let each bit in the signal be si = sw(i). Function Z(·) is defined as,

Z(sw) = −s|w|−12|w|−1 +

|w|−2∑
i=0

si2
i. (5.2)

Example 5.2. Given a word-level signal b−4 = 1101. The natural number value of b−4 is

N(b−4) = 23 + 22 + 0 + 20 = 13.

The integer value of b−4 is given by

Z(b−4) = −23 + 22 + 0 + 20 = −3.

5.2. BIT-VECTORS AND UF CONSTRAINTS 69

* * *

op1 op2 op3

ଵ
ସ

ଶ
ଶ

ଷ
ିସ

ଵ
ଶ

ଵ
ଶ

ଶ
ଶ

ଷ
ିଶ

ଶ
ଶ

ଷ
ିଶ

Figure 5.1: Three multipliers with different functions.

5.2.3 Basics of Word-level Operators

We focus on abstracting problematic word-level operators in a design. The subset of
operators considered are all word-level binary operators, such as {+,−, ∗, /,%,�,�}. In
Verilog, an operator is instantiated by a structural statement which only states the function
type of the operator and the connection between signals. Without loss of generality, we
assume that each statement contains only 1 binary operator. Statements like x = (a+b)*c
can always be rewritten to y = a+b and x = y*c. An operator is modeled as a labeled node
with a single output, up to two inputs, and its label of function type.

Definition 5.5. An operator op is a tuple op = (ok, il1, i
m
2 , t) where ok is the output signal,

il1 and im2 are the input signals, and t is the label of function type.

Example 5.3. Consider the following Verilog snippet describing a multiplier.

1: wire signed [1:0] a;
2: wire signed [1:0] b;
3: wire [2:0] c;
4: assign c = a * b;

The multiplier in line 4 is denoted as op = (c3, a−2, b−2, ∗). Note that the inputs are ordered as
specified in the Verilog statement. Note also that ∗ is a “function-type” and not a function,
since the actual function that would be instantiated would depend on the properties of
the signals to which its inputs and output are connected. The necessity of this important
distinction will be clarified in the next section.

5.2. BIT-VECTORS AND UF CONSTRAINTS 70

5.2.4 Functions of Word-level Operators

In Verilog, the actual function associated with an arithmetic operator is determined by
the bit-widths and signedness of its inputs, output, and function-type. Given an arithmetic
operator op = (ok, il1, i

m
2 , t), the function of op depends on (k, l,m, t). Operators with the

same function type do not necessarily have the same function; a function-type represents a
set of functions.

Example 5.4. Consider the three multipliers shown in Figure 5.1. They all represent differ-
ent functions. Operators op1 and op3 are different since op1 is unsigned multiplication while
op3 is signed multiplication. Operator op2 is different because its output is only 2 bits. The
functions of the three multipliers are given below using the standard integer multiplication
(×).

• op1: It is an unsigned multiplication since both inputs are unsigned. The output bit-
width 4 is large enough to prevent overflow. Therefore the operation is formulated
using the integer multiplication with signals interpreted as natural numbers (function
N).

N(c41) = N(a21)×N(b21). (5.3)

• op2: It is an unsigned multiplication similar to op1, but the output bit-width is only 2,
which requires an additional modulo operator (mod 22).

N(c22) = N(a22)×N(b22) mod 22 (5.4)

• op3: It is a signed multiplication since both inputs are signed. The output bit-width
4 is large enough to prevent overflow. Therefore the operation is formulated using the
integer multiplication with signals interpreted as integers (function Z).

Z(c−43) = Z(a−23)× Z(b−23). (5.5)

5.2.5 Generic Operators

Example 5.4 shows that a multiplication symbol (*) in Verilog can implement many vari-
ants of multiplication functions based on the characteristics of the operator. This makes it
more difficult to apply uninterpreted function (UF) abstractions. However, it can be ob-
served that those multipliers share one thing in common: standard integer multiplication
(×). This observation inspires the idea of generic operators, which are ideal Verilog op-
erators implementing their standard integer functions. For example, a generic multiplier

5.2. BIT-VECTORS AND UF CONSTRAINTS 71

Table 5.1: The standard integer functions (SIF) for Verilog operators.

Verilog Operator Standard Integer Function
(ck, al, bm,+) SIF+(al, bm) = Z(al) + Z(bm)

(ck, al, bm,−) SIF−(al, bm) = Z(al)− Z(bm)

(ck, al, bm, ∗) SIF∗(a
l, bm) = Z(al)× Z(bm)

(ck, al, bm, /) SIF/(a
l, bm) = Z(al) /* Z(bm)

(ck, al, bm,%) SIF%(al, bm) = Z(al)− (Z(al) /* Z(bm))× Z(bm)

(ck, al, bm,�) SIF�(al, bm) = Z(al)× 2N(bm)

(ck, al, bm,�) SIF�(al, bm) = N(al) /* 2N(bm)

* This division function takes an integer x and an integer y 6= 0, and returns the
integer part of x divided by y (truncated integer division). The result for y = 0
is an unknown value (X).

op = (ck, al, bm, ∗), always implements standard integer multiplication without using modulo
operations:

Z(ck) = Z(al)× Z(bm) (5.6)

Definition 5.6 (Standard Integer Function). Given a word-level operator op = (ck, al, bm, t)
where t ∈ {+,−, ∗, /,%,�,�}, the standard integer function (SIF) of op takes input signals
al and bm, evaluates them as integers, and then generates an integer output based on regular
integer operations. SIFs for different function-types are defined in Table 5.1.

Definition 5.7 (Generic Operator). A generic operator is a Verilog operator that imple-
ments its standard integer function (Definition 5.6). Formally, given a Verilog operator
op = (ck, al, bm, t), let its SIF be SIFt. Operator op is a generic operator if

∀a, b, c. Z(ck) = SIFt(a
l, bm). (5.7)

Example 5.5. Consider the three multipliers shown in Figure 5.1. Since their function types
are all t = ∗, we have the multiplication SIF: SIF∗(al, bm) = Z(al)×Z(bm). We can examine
if the three multipliers are generic operators:

• op1: It is not a generic operator, since there exists a counterexample: (c4, a2, b2) =
(1000, 10, 10) such that

Z(c4) = −8 6= Z(a2)× Z(b2) = −2×−2 = 4.

• op2: It is not a generic operator, since there exists a counterexample: (c2, a2, b2) =

5.2. BIT-VECTORS AND UF CONSTRAINTS 72

(00, 10, 10) such that

Z(c2) = 0 6= Z(a2)× Z(b2) = −2×−2 = 4.

• op3: It is a generic operator, since it is a signed multiplication and its output would
not overflow.

∀a, b, c. Z(c−4) = Z(a−2)× Z(b−2).

With generic operators, all same-type generic operators (e.g., multipliers) are considered
to have the same function since they all implement the same SIFs. This is important for
uninterpreted function (UF) abstraction since uninterpreted function constraints are valid
only for same-function classes.

Example 5.6. Given two generic multipliers op1 = (ck11 , a
l1
1 , b

m1
1 , ∗) and op2 = (ck22 , a

l2
2 , b

m2
2 , ∗),

since they implement the same SIF, the following implication holds, which is important in
UF abstraction.(

Z(al11) = Z(al22) ∧ Z(bm1
1) = Z(bm2

2)
)
→
(
Z(ck11) = Z(ck22)

)
.

Non-generic operators can be converted to generic ones by transforming their input and
output signals. Signals used or produced by a generic operator must be converted from
unsigned to signed signals or vice versa. They also need to be converted by truncation, sign
extension, or zero extension. This is modeled by introducing signal converting functions,
which emulate what Verilog does in its assignment operator (=) and concatenation operator
({}).

Definition 5.8 (Signal Converting Function). A signal converting function, denoted as
ck = SC(al, Sign, k), takes an input signal al, a Boolean value Sign, and an output bit-
width and signedness integer k ∈ Z. The signal converting function generates its output ck
in the following ways.

• |k| ≤ |l| (truncation):

ck(i) = al(i) for 0 ≤ i < |k| (5.8)

• |k| > |l| and Sign = 1 (sign extension):{
ck(i) = al(i) for 0 ≤ i < |l|
ck(i) = al(|l| − 1) for |l| ≤ i < |k|

(5.9)

5.2. BIT-VECTORS AND UF CONSTRAINTS 73

• |k| > |l| and Sign = 0 (zero extension):{
ck(i) = al(i) for 0 ≤ i < |l|
ck(i) = 0 for |l| ≤ i < |k|

(5.10)

Example 5.7. Given a signal a4 = 1000, the output of SC(a4, 1,−6) is

c−6 = 111000.

In general, Verilog does not show the implicit signal conversion mechanism it uses to
convert numbers. It is not needed since intermediate conversion results are not referred
to. However, we will need to “expose” this conversion in order to apply UFs widely. Other
benefits of explicitly exposing generic operators include 1) The generic operator agrees with
the arithmetic of not only bit-vectors but integers, and 2) it unifies unsigned and signed
operators. A procedure of “exposing” the generic operator within a non-generic one will be
presented in Section 5.3.2.

Example 5.8. Consider the non-generic multiplier op = (c16, a−16, b16, ∗) shown in Fig-
ure 5.2a. This is an unsigned multiplication with the output truncated. The function of op
is

N(c16) = N(a−16)×N(b16) mod 216

In order to use a generic operator to represent op, we first convert both inputs (a−16, b16)
to signed signals with leading zeros inserted (ag−17, bg−17) using signal converting functions
and observe that

N(a−16) = Z(SC(a−16, 0,−17)) = Z(ag−17)

N(b16) = Z(SC(b16, 0,−17)) = Z(bg−17)

This leads to

N(a−16)×N(b16) = Z(ag−17)× Z(bg−17)

With the converted inputs, a generic multiplier can be created: gop = (cg−34, ag−17, bg−17, ∗)
such that

N(a−16)×N(b16) = Z(ag−17)× Z(bg−17) = Z(cg−34)

Finally, we show that the original output c16 can be converted from cg−34 with another signal
converting function (note that Z(cg−34) = N(cg−34) since the MSB of cg−34 is 0):

N(c16) = N(a−16)×N(b16) mod 216 = Z(cg−34) mod 216 = N(cg−34) mod 216

= N(SC(cg−34, 0, 16))

This example shows that a non-generic multiplier can be represented by a generic multiplier
with proper conversions of input and output signals, as shown in Figure 5.2.

5.2. BIT-VECTORS AND UF CONSTRAINTS 74

**
Generic
operator

𝑎 𝑏

𝑐

𝑎 𝑏

𝑆𝐶(𝑎 , 0,−17) 𝑆𝐶(𝑏 , 0,−17)

𝑐

𝑆𝐶(𝑐𝑔 , 0,16)

𝑎𝑔 𝑏𝑔

𝑐𝑔

(a) The relationship between a non-generic multiplier and its generic version. Signal converting
function SC is given in Definition 5.8.

wire signed [15:0] a;
wire [15:0] b;
wire [15:0] c = a * b;

wire signed [15:0] a;
wire [15:0] b;
wire [15:0] c;
wire signed [16:0] ag = {1’b0, a};
wire signed [16:0] bg = {1’b0, b};
wire signed [33:0] cg = ag * bg;
assign c = cg;

Expose

(b) A piece of Verilog code for exposing the generic operator.

Figure 5.2: An example showing how generic operators are modeled and exposed.

5.2. BIT-VECTORS AND UF CONSTRAINTS 75

5.2.6 Uninterpreted Function (UF) Constraints

In the theory of uninterpreted functions (UF), the congruence axiom states that given
any n-ary function f , the Property (5.11) holds, stating that if the inputs are equal then the
two outputs must be equal.

∀x1, . . . , xn, y1, . . . , yn.
n∧

i=1

xi = yi ⇒ f(x1, . . . , xn) = f(y1, . . . , yn) (5.11)

This is called a UF constraint which is simply a relation implied by any pair of the same
two functions.

For Verilog, we need to be more precise about “same function” and “equal inputs”. By f
and g being the same function we mean that f and g are both generic operators of the same
function-type. By two signals (al, bm) being equal, we will mean that they are equal when
evaluated as integers (Z(al) = Z(bm)). For example, signals a−2 = 10 and b−4 = 1110 are
equal because Z(a−2) = −2 = Z(b−4). Then Property (5.11) holds with these modifications.
Therefore,

a UF constraint is valid between any pair of same function-type generic operators
(even if they have different bit widths).

The notion of two signals being equal when evaluated as integers can be defined using
the comparison operator (==) in Verilog.

Definition 5.9 (Verilog Equality). Two signals, sl1 and sm2 , are said to be equal in Verilog
if the corresponding statement, s1 == s2, is evaluated to 1 in Verilog.

The precise Verilog semantics for comparing two signals is as follows. It does either zero-
or sign-extension for the signal with the smaller bit-width depending on their signedness. If
both signals are signed, then it does sign-extension. Otherwise, zero-extension is applied.
Two signals are equal if they are bit-wise equal after extension. Therefore, given two same-
signed signals sl1 and sm2 , if s1 == s2, then Z(sl1) = Z(sm2).

Definition 5.10. Given two same function-type generic operators, op1 = (ok11 , i
l1
11, i

m1
12 , t) and

op2 = (ok22 , i
l2
21, i

m2
22 , t), the UF constraint, denoted as c, is either Constraint (5.12) or (5.13)

using the Verilog equality.

• If t is asymmetric:

c = (il111==i
l2
21) ∧ (im1

12 ==i
m2
22)⇒ (ok11 ==ok22) (5.12)

5.3. UFAR 76

• If t is symmetric:

c =
(

(il111==i
l2
21) ∧ (im1

12 ==i
m2
22)⇒ (ok11 ==ok22)

)∧
(

(il111==i
m2
22) ∧ (im1

12 ==i
l2
21)⇒ (ok11 ==ok22)

) (5.13)

We only apply UF constraints between generic instances of same function-type operators.
The constraints are created as signals first and then treated as invariant constraints to the
model checking problem (see Section 5.3.3). Thus, abstractions are created by 1) using UF
constraints and 2) replacing their outputs by new primary inputs (the generic operators are
“black-boxed”).

Definition 5.11. A generic instance is said to be black-boxed if its output is replaced by a
fresh primary input consistent with the generic’s output.

Thus the new primary input is signed and has the same width as the instance output
being replaced. Note that a UF constraint may be added even though the two operators
involved are both white-boxed. This can still be effective as it provides a relation between
operators which may not be easy to derive using bit-level operations.

5.3 UFAR

In this section, the abstraction-refinement algorithm, UFAR, for solving word level model
checking problems is described.

5.3.1 The Algorithm

Algorithm 5.1 provides a high level view of UFAR. It takes two inputs; one is a miter M
in word-level structural Verilog and the other is S, the set of problematic operators that we
want to abstract (multipliers in most cases). UFAR will return SAT if a true counterexample
is found; otherwise, it concludes that M |= G¬out and returns UNSAT. We will prove that
UFAR is a sound and complete algorithm in Section 5.3.7.

There are two internal state sets in UFAR. The first is B, the set of black operators that
will be black-boxed in the abstraction. The second is P , the set of operator pairs whose
UF constraints will be added to the abstraction. Initially B = S, thereby black-boxing all
problematic operators, and P = ∅.

5.3. UFAR 77

Algorithm 5.1 UFAR
Input: M . M : the input miter
Input: S . S: the set of problematic operators
Output: status ∈ { SAT, UNSAT }
1: B ← S . B: the set of black-box operators
2: P ← ∅ . P : the set of UF constraints
3: M ← ExposingFunctions(M , S)
4: while true do
5: A ← CreateAbstraction(M , P , B)
6: status, cex ← ModelChecking(A)
7: if status = SAT then
8: if IsRealCEX(M , cex) then
9: return SAT

10: else
11: ∆P ← RefineUFPairs(A, S, cex)
12: if ∆P 6= ∅ then
13: P ← P ∪ ∆P
14: continue
15: else
16: ∆B ← RefineBlack(M , P , B, cex)
17: B ← B\∆B
18: else
19: return UNSAT

5.3. UFAR 78

Algorithm 5.1 begins with the procedure of exposing generic operators (see Section 5.3.2).
It then operates in an abstraction-refinement loop (lines 4–19). Each iteration begins by
creating an abstraction based on the current states of the algorithm, which will be discussed
in Section 5.3.3. The abstraction is then bit-blasted and solved by state-of-the-art bit-level
engines concurrently (see Section 5.3.4). If the solver returns UNSAT, the property is proven
and UFAR terminates (line 19). Otherwise a counterexample to the abstraction (cex) exists.
If cex is also a counterexample to the original miter, then the property is falsified and
UFAR terminates (lines 8–9). Otherwise cex is spurious and UFAR analyzes it to refine the
abstraction (lines 11–17).

Refinement is achieved in two phases. UFAR first tries to find new UF pairs that will
block cex (see Section 5.3.5). If such are found, UFAR adds them to P and starts a new
iteration (lines 12–14). Otherwise, the second phase is started, where cex is analyzed to
determine a set of critical operators (∆B) that can block cex (see Section 5.3.6). For the
next iteration, UFAR will remove operators in ∆B from B (lines 16–17) and hence these will
be white-boxed.

5.3.2 Exposing Generic Operators

In this subsection, we propose a procedure that transforms any adder or multiplier by
exposing their generic versions. Recall from Definition 5.7 that a generic adder or multiplier
(ck, al, bm, t) must implement their SIFs.

Z(ck) = SIFt(a
l, bm) =

{
Z(al) + Z(bm), t = +

Z(al)× Z(bm), t = ∗
(5.14)

We start with sufficient conditions for generic adders and multipliers.

Theorem 5.1. An adder (ck, al, bm,+) is generic if both conditions below are true, meaning
that all input and output signals are signed and that the output bit-width prevents overflow.{

k < 0 ∧ l < 0 ∧m < 0

|k| = max(|l|, |m|) + 1
(5.15)

Theorem 5.2. A multiplier (ck, al, bm, ∗) is generic if both conditions below are true, mean-
ing that all input and output signals are signed and that the output bit-width prevents over-
flow. {

k < 0 ∧ l < 0 ∧m < 0

|k| = |l|+ |m|
(5.16)

5.3. UFAR 79

Proof. According to the Verilog standard [IEE06], if an adder or a multiplier is signed and
the output bit-width is large enough to prevent overflow, then the operator would have the
function given in Equation (5.14), which is the definition of being generic.

To expose the generic version of an operator, we modify the Verilog by inserting signed-
or zero-extended signal converting functions to ensure that it becomes signed and that the
bit-width of its output is large enough. The procedure for each operator op = (ok, il1, i

m
2 , t)

in the problematic set S is summarized below.

1. If one of the inputs is unsigned (l > 0∨m > 0), then create zero-extension-by-1 signed
signal converting functions for both inputs, which is formulated in (5.17). Otherwise,
both inputs are signed and remain unmodified.{

a
−|l|−1
1 = SC(al, 0,−|l| − 1)

a
−|m|−1
2 = SC(bm, 0,−|m| − 1)

(5.17)

2. Create the generic operator op2 = (ok22 , b
l2
1 , b

m2
2 , t), where bl21 and bm2

2 are the new inputs
from the last step, and ok22 is signed and has a large enough bit-width, as defined in
Equations (5.15) and (5.16).

3. Create another signal converting function given in (5.18) that replaces the original
output ok.

ok = SC(ok22 , k < 0, k) (5.18)

Note that after this step, the generic operator op2 is created, and the original operator
op is eliminated.

Example 5.8 and Figure 5.2 show how the procedure works. For the non-generic op-
erator (c16, a−16, b16, ∗), one of the input (b16) is unsigned, so we create signal converting
functions for both inputs and get new inputs ag−17 and bg−17. Next, the generic operator
(cg−34, ag−17, bg−17) is created. Finally, the original output is replaced by SC(cg−34, 0, 16).

5.3.3 Creating Abstractions

An abstraction (A) is created from the original circuit (M), using P and B, the two
current states of Algorithm 5.1. CreateAbstraction operates in two steps:

1. For each pair p = (op1, op2) in P , construct a Boolean signal c as defined in UF
Constraints (5.12) or (5.13). Signal c = 1 implies that a UF constraint is active in

5.3. UFAR 80

𝑐

Λ

𝑜𝑢𝑡

𝑜𝑢𝑡′

(a) A transformation that works for com-
binational circuits. A CEX in this circuit
makes both c = 1 and out = 1, meaning that
the property is violated when the constraint
holds.

𝑐

∨

ff 𝐼𝑛𝑖𝑡 = 0

ff_in

Λ

𝑜𝑢𝑡

𝑜𝑢𝑡′

(b) A transformation that works for sequen-
tial circuits. A CEX in this circuit makes
c = 1, ff = 0, and out = 1, meaning that
the property is violated when the constraint
holds at the current cycle, and the constraint
was not violated in previous cycles.

Figure 5.3: An example showing how a UF constraint (signal c) is encoded as an invariant
constraint in a circuit. Signal out is the original output where out = 1 means the property
is violated. Signal out′ is the new output with the UF constraint encoded. Dashed arrows
denote negations.

M between op1 and op2. Signal c is then treated as an invariant constraint, which is
illustrated in Figure 5.3. In Figure 5.3b, a new flip-flop (ff) is introduced to remember
if the constraint c is violated in previous cycles. If at certain cycle c = 0, then it makes
ff = 1 for all the following cycles. A valid CEX is thus a trace where the property is
violated at the current cycle while the constraint holds for all the cycles so far.

2. For each operator op = (ok, il1, i
m
2 , t) in B, replace its output ok with a fresh primary

input ppik with the same signedness and bit-width (same k), i.e. black-box it.

Example 5.9. The abstraction in Figure 5.4b is created from the original circuit in Fig-
ure 5.4a with the UF pair set P = {(op1, op3)} and the abstraction set B = {op1, op2, op3}.
The outputs of the three multipliers (c−41 , c−42 , c−43) are replaced by the three PPIs (ppi−41 , ppi−42 , ppi−43).
A UF constraint for the multiplier pair (op1, op3) is created using the original multiplier inputs
{a−21 , b−21 , a−23 , b−23 } and the abstracted multiplier outputs {ppi−41 , ppi−43 }, which is formulated

5.3. UFAR 81

below (following Definition 5.10).

UF Constraint =
(
a−21 ==a−23 ∧ b−21 ==b−23 ⇒ ppi−41 ==ppi−43

)
Note that an operator can be in a pair of P but not B. Note also that P and B are

monotone because P can only increase in size (line 13) and B can only become smaller
(line 17) in each iteration.

Example 5.10. The original circuit in Figure 5.5a is similar to the one in Figure 5.4a;
an additional right-side formula is added. The right-side formula is UNSAT because if all
the multiplier inputs {a−21 , b−21 , a−22 , b−22 } are not 0, then the multiplier outputs {c−43 , c−44 }
are not 0 either. Therefore this problem is UNSAT. Moreover, this canbe proved using the
abstraction shown in Figure 5.5b, which is created with P = {(op1, op3), (op2, op3)} and
B = {op1, op2}. Note that op3 is in pairs in P but not in B.

We claim that the model A is an abstraction of M .

Lemma 5.1. Let N denote the model created after Step 1 (adding UF constraints) in Cre-
ateAbstraction. N and M satisfy: (¬out denotes the property)

N |= G¬out⇔M |= G¬out.

Proof. Consider any constraint signal c. We have M |= Gc since the model M satisfies any
valid UF constraint. Thus,

M |= G¬out⇔M |= G¬out ∧Gc
⇔ (M,Gc) |= G¬out⇔ N |= G¬out

Theorem 5.3. The model A created by CreateAbstraction is an abstraction of the
miter M .

Proof. From Lemma 5.1, N generated by Step 1 is equisatisfiable to the miter M . In Step
2, it creates the model A by replacing some internal signals in N with fresh primary inputs,
which is a known procedure for producing an abstraction.

5.3.4 Model Checking Using Concurrency

To verify the current abstraction at the bit level, we could use a single engine like PDR
since it is efficient, sound, and complete. Also, this procedure should be parallelized to

5.3. UFAR 82

* *

0 1

0 1

*

0 1

𝑎 𝑏

𝑐

𝑎 𝑏

𝑐

𝑎 𝑎 𝑏 𝑏

𝑎 𝑏

𝑐

𝑜𝑝 𝑜𝑝

𝑜𝑝

!=

out

𝑠

𝑠 𝑠

(a) The original circuit with three multipliers. In this circuit, out ≡ 0, UNSAT, since if
s1 = 0, then the left side and the right side are both a−21 ∗ b

−2
1 ; otherwise, both sides are

a−22 ∗ b
−2
2 .

0 1

0 1 0 1𝑝𝑝𝑖 𝑝𝑝𝑖

𝑎 𝑎 𝑏 𝑏

𝑎 𝑏

!=

𝑠

𝑠 𝑠

𝑝𝑝𝑖

UF constraint

𝑎 𝑏 𝑎 𝑏

𝑝𝑝𝑖𝑎 𝑏 𝑎 𝑏 𝑝𝑝𝑖

Λ

out

(b) An abstraction created from the original circuit in (a), the UF pair set P =
{(op1, op3)}, and the abstraction set B = {op1, op2, op3}. The three PPIs replace the
original multiplier outputs. A UF constraint is created between the black-boxed op1 and
op3.

Figure 5.4: A combinational circuit illustrating word-level UF abstraction.

5.3. UFAR 83

* *

0 1

0 1

*

0 1

𝑎 𝑏

𝑐

𝑎 𝑏

𝑐

𝑎 𝑎 𝑏 𝑏

𝑎 𝑏

𝑐

𝑜𝑝 𝑜𝑝

𝑜𝑝

!=

𝑠

𝑠 𝑠

out

(𝑎 ≠ 0 ∧ 𝑏 ≠ 0 ∧ 𝑎 ≠ 0 ∧ 𝑏 ≠ 0)
∧ (𝑐 = 0 ∨ 𝑐 = 0)

𝑐

∨

(a) A circuit similar to the one in Figure 5.4a with an additional property.

0 1

0 1

*

0 1

𝑎 𝑏 𝑎 𝑏 𝑎 𝑎 𝑏 𝑏

𝑎 𝑏

𝑐

𝑜𝑝 𝑜𝑝

𝑜𝑝

!=

𝑠

𝑠 𝑠

(𝑎 ≠ 0 ∧ 𝑏 ≠ 0 ∧ 𝑎 ≠ 0 ∧ 𝑏 ≠ 0)
∧ (𝑐 = 0 ∨ 𝑐 = 0)

𝑐

∨UF constraints

(𝑜𝑝 , 𝑜𝑝) (𝑜𝑝 , 𝑜𝑝)

out

Λ

𝑝𝑝𝑖 𝑝𝑝𝑖

(b) An abstraction created from the original circuit in (a), the UF pair set P =
{(op1, op3), (op2, op3)}, and the abstraction set B = {op1, op2}.

Figure 5.5: An example showing UF constraints are useful when applied to real multipliers.

5.3. UFAR 84

take advantage of different engines. Running a BMC engine in parallel with PDR usually
finds counterexamples to the current abstraction more efficiently and thus is very effective
in improving the algorithm. Also, various versions (based on different implementations and
parameters) of PDR and BMC complement each other.

On the other hand, the current abstraction can be verified also at the word level. For
example, our approach, PDR-WLA, presented in Chapter 4 has been shown very effective
in handling a set of industrial benchmarks. The results will be presented in Section 5.7.

5.3.5 Refining UF Pairs

This is the first phase of refinement. Given a (spurious) counterexample cex to the
abstraction, we want to find new UF pairs ∆P among operators in S that can block cex
during the next iteration. RefineUFPairs operates in two steps:

1. Simulate cex on the abstraction A to derive an assignment function α : S × N → Z
that maps every signal in A at each time frame to a concrete value.

2. Identify pairs that violate UF constraints and add them to ∆P . For each time frame
t and every pair of operators (op1, op2) : op1, op2 ∈ S, op1 6= op2, if the values of the
inputs are equal but the outputs are different (Formula 5.19), then add (op1, op2) to
∆P . Note that both input orders are considered for symmetric operators, although for
simplicity this is not shown in Formula 5.19 .(

α(il111, t) = α(il221, t) ∧ α(im1
12 , t) = α(im2

22 , t)
)∧

α(ok11 , t) 6= α(ok22 , t)
(5.19)

Example 5.11. Consider the abstraction circuit shown in Figure 5.4b. Suppose a spurious
CEX is given below.

(s1, a−21 , b−21 , a−22 , b−22 , ppi−41 , ppi−42 , ppi−43) =

(1, 00, 00, 00, 00, 0000, 1111, 0000).

The CEX is simulated on the abstraction to derive the values of inputs and outputs for the
three multipliers.

op1 : (ppi−41 , a−21 , b−21) = (0000, 00, 00)

op2 : (ppi−42 , a−22 , b−22) = (1111, 00, 00)

op3 : (ppi−43 , a−23 , b−23) = (0000, 00, 00)

Observe that there are two pairs satisfying Formula 5.19: (op1, op2) and (op2, op3). Therefore,
both pairs are added to ∆P and the UF pair set is updated as

P = {(op1, op3), (op1, op2), (op2, op3)}.

5.3. UFAR 85

The size of P can only grow monotonically with an upper bound as:

Theorem 5.4. The size of P in Algorithm 5.1 is bounded by |S|(|S| − 1).

Proof. Consider the worst case where the operators in S are all symmetric, then there are(|S|
2

)
pairs of operators with 2 possible permutations of binary inputs. Hence the number of

pairs in the algorithm cannot exceed |S|(|S| − 1).

5.3.6 Refining Black Operators

In the second phase of refinement, the goal is to identify a subset of operators ∆B in B
such that if ∆B is removed from B, cex will be blocked for the next iteration. We call the
procedure of removing elements from B white-boxing and the operators in S \B white boxes.

A straightforward way of identifying ∆B is to simulate cex on the abstraction A and
collect those operators in B that have input-output values inconsistent with their white-box
values. However, this approach has been found often to create overly large ∆B, resulting
in unnecessarily large abstractions in the next round. Hence, a proof-based approach is
used that often obtains a much smaller ∆B. This approach is similar to PBR discussed in
Chapter 2.

The main idea is that if cex is spurious, then the BMC Formula (5.20) is UNSAT. Here
the functions β(i, t) and β(s, t) denote the assignment of input i or state s at time t derived
from cex being simulated on the original miterM , k is the depth of cex, and out is the miter
signal.

IM(β(s, 0)) ∧
k−1∧
t=0

TM(β(i, t), β(s, t), β(s, t+ 1))

∧
k∨

t=0

out(β(i, t), β(s, t))

(5.20)

Next, multiplexers are introduced to select between the concrete version (white-box) and
the abstracted version (black-box) of an operator. If assumptions are made such that all the
concrete ones are selected initially, then the resulting BMC formula would still be UNSAT
and a modern SAT solver like MiniSat [ES03a] will return a subset of the assumptions that
is sufficient for UNSAT. This is a variation of finding an estimate of the minimum UNSAT
subset, as discussed in Section 2.2.6. The returned subset can be further minimized with
extra SAT calls. However, in our experience, such minimization does not lead to overall
improved performances because of the overhead. Therefore, the subset returned by a SAT
solver is our candidate for ∆B.

5.3. UFAR 86

The procedure RefineBlack operates in five steps.

1. For each pair in P , construct a UF constraint signal and treat it as an invariant
constraint on M .

2. For each operator op = (ok, il1, i
m
2 , t) in B, introduce two fresh primary inputs, sel and

ppi, where sel is a Boolean signal and ppik a bit-vector signal which is consistent with
the output ok. Replace ok with ok2 = ITE(sel, ok, ppik) where ITE is the if-then-else
operator. Depending on the value of sel, either the concrete operator (ok) or the
abstracted one (ppik) flows to the new output ok2.

3. Denote the model created in Step 2 by N and unroll it with the values of cex plugged
in, and keep sel and ppi as the remaining primary inputs. The cex values plugged in
are initial states and PIs at each time frame, denoted by γ(s, 0) and γ(i, t) respectively.

4. Solve the BMC query (5.21), which is guaranteed to be UNSAT. Note that γ is the
assignment function of cex, Xt is the set of sel input signals at time t, PPIt is the set
of ppi input signals at time t, and xtn is the sel signal for the n-th operator at time
t. By propagating xtn = 1 for all t and n, the query (5.21) is reduced to (5.20) by
construction (sel = 1 means that the concrete version is chosen).

IN(γ(s, 0)) ∧
k−1∧
t=0

TN(γ(i, t), Xt,PPIt, st, st+1)

∧
k∨

t=0

out(γ(i, t), Xt,PPIt, st)

∧
k∧

t=0

|Xt|∧
n=0

xtn

(5.21)

5. Derive a subset ∆X of X using the assumption interface of a modern SAT solver, and
determine ∆B from ∆X.

Example 5.12. Consider the abstraction circuit shown in Figure 5.4b. Suppose we get a
spurious CEX and try to refine this abstraction by white-boxing some of the three black-
boxed multipliers. To take advantage of the assumption interfaces in modern SAT solvers, an
auxiliary circuit is created using the proposed procedure, as shown in Figure 5.6. The first
step is to formulate UF constraints for the current set P . This step is important because the
number of white boxes needed can be smaller than without using those constraints. Next,
three ITE operators are introduced for each multiplier in the current set B to select between
concrete multipliers (c−4i) and abstracted multipliers (ppi−4i) using select signals (x1i). Then,

5.3. UFAR 87

0 1

0 1 0 1𝑝𝑝𝑖 𝑝𝑝𝑖

𝑎 𝑎 𝑏 𝑏

𝑎 𝑏

!=

𝑠

𝑠 𝑠

𝑝𝑝𝑖

UF constraint

𝑎 𝑏 𝑎 𝑏

𝑑𝑎 𝑏 𝑎 𝑏 𝑑

Λ

out

0 1 0 1

0 1

* *

*

𝑑

𝑑

𝑑

𝑥 𝑥

𝑐 𝑐

𝑥

𝑐

Figure 5.6: An auxiliary circuit created in the proposed proof-based procedure for refining
black operators. The original and the current abstraction circuits are shown in Figure 5.4.

if the concrete values are used in the CEX for the real PIs ({a−21 , b−21 , a−22 , b−22 }) and the SAT
solver is called with out = 1 and with assumptions:

SolveSAT(x1 ∧ x2 ∧ x3),

then it must return UNSAT. This is because by assuming the x1 = x2 = x3 = 1, the circuit is
reduced to the original (Figure 5.4a) with UF constraints added; a spurious CEX will make
out = 0 by definition. The SAT solver will return a subset of the assumptions for {x1, x2, x3}
that is sufficient to make out = 0, which is our candidate to white-box.

Theorem 5.5. The set ∆B found by RefineBlack is not empty (i.e.|∆B| > 0).

Proof. |∆B| = 0 would mean that the formula (5.21) is SAT, which contradicts that cex is
spurious.

5.4. IMPROVEMENT TECHNIQUES 88

5.3.7 Analysis of UFAR

Theorem 5.6. Algorithm 5.1 is sound and complete.

Proof. (sketch) Algorithm 5.1 is sound because it returns UNSAT only if the model A sat-
isfies G¬out, which implies M |= G¬out from Theorem 5.3. As for the completeness, the
algorithm returns SAT only if a counterexample is real (line 8–9). Convergence follows
because for each iteration (line 4–19), the following statements are true.

• Either P becomes strictly bigger (line 12–13) or B becomes strictly smaller (Theorem
5.5).

• |P| is upper bounded by |S|(|S| − 1) (Theorem 5.4) and |B| is lower bounded by 0
(empty set of black boxes).

Therefore the iteration must terminate implying that a definitive answer must have been
found.

5.4 Improvement Techniques

In this section, we introduce two improvement techniques (counterexample minimization,
and random simulation), each of which improves the basic version of UFAR, Algorithm 5.1.

5.4.1 Minimizing Counterexamples

A counterexample can be minimized into an XCEX (Section 2.2.5) using Priority-based
Refinement proposed by Mishchenko et al. [MEB+13]. Some inputs in a counterexample
can be assigned as X (unknown value), but the counterexample still violates the property
after ternary simulation. The XCEX returned by Priority-based Refinement is minimal in
the sense that if a concrete assignment is replaced by X, then the counterexample no longer
makes the property fail. Therefore, we say that the number of concrete assignments is
minimized. More details are presented in Section 2.3.

The main advantage of using minimized counterexamples is that Procedure RefineUF-
Pairs in Algorithm 5.1 can return potentially fewer, but higher-quality pairs of constraints.
This is done by modifying the condition (Formula 5.19) for identifying and adding a UF
constraint, where we check if the inputs are equal and the outputs are different under con-
crete assignments. With minimized counterexamples, Xs might appear on the outputs of

5.4. IMPROVEMENT TECHNIQUES 89

black-box operators (unconstrained pseudo primary inputs). We strengthen the condition
by considering only incompatible outputs with X assignments. Two assignments are said
to be incompatible if they have opposite values at some bit position, and compatible other-
wise. For example, the assignments XX01 and X000 are incompatible while 10XX and 100X
are compatible. With this strengthening, pairs that satisfy Formula 5.19 under concrete as-
signments might violate the new condition since their outputs become compatible after the
minimization. For example, consider two operators with concrete assignments (o, in1, in2),
(0011, 01, 10) and (0101, 01, 10), which satisfies Formula 5.19. After the minimization, if
the assignments become (0XX1, 01, 10) and (XXX1, 01, 10), then the pair will not be added as
UF constraints since it violates the strengthened condition with compatible outputs. Thus,
it is likely that fewer constraints are added. Also, the constraints we drop are lower-quality
in the sense that if they are added, then UFAR will still get similar counterexamples.

Example 5.13. Consider the original circuit (M) shown in Figure 5.4a. Suppose an ab-
straction is created from M with P = ∅ and B = {op1, op2, op3}. Suppose a spurious CEX
is given below.

(s1, a−21 , b−21 , a−22 , b−22 , ppi−41 , ppi−42 , ppi−43) =

(1, 00, 00, 00, 00, 0000, 1000, 1010).

Without using CEX minimization, there are three multiplier pairs with idential inputs but
different outputs: {(op1, op2), (op1, op3), (op2, op3)}. However, since s1 = 1 (op2 is selected
instead of op1), adding pairs (op1, op2) and (op1, op3) does not help block counterexamples
in the next iteration. This issue can be addressed by using a minimized CEX:

(s1, a−21 , b−21 , a−22 , b−22 , ppi−41 , ppi−42 , ppi−43) =

(1, XX, XX, XX, XX, XXXX, XX0X, XX1X).

From the minimized CEX, there is only one pair with compatible inputs and incompatible
outputs, which is (op2, op3). In this example, using minimized counterexamples reduces the
number of refined UF constraints by two. This heuristic is important especially for test cases
with many candidate operators and pairs.

5.4.2 Performing Random Simulation

UFAR in Algorithm 5.1 only finds and applies UF constraints when a counterexample
(CEX) is found. However, the CEX returned by a verification engine may not be unique.
If UFAR were to get a different CEX, then it might find and apply a different set of UF
constraints. This inherent randomness of counterexamples could cause UFAR to take a path
where more white boxes are needed for a proof. Thus, random simulation is applied on
the original miter to find candidates for “good” UF constraints. The idea is that if a UF

5.5. THE UFAR FRAMEWORK 90

constraint is useful for the final proof, then the corresponding pair of operators must be
related in some way. This means that for some execution traces they would have identical
input assignments. A similar idea of using random simulation to identify candidates for UF
abstraction was proposed by Brady et al. [BBSO10].

The procedure of random simulation operates in 2 steps.

1. Determine the parameters: the number of patterns and the number of time frames.
Run random simulation on the original miter.

2. For each time frame and for each pair of same function-type generic operators, count
the number of times identical input patterns occur.

A threshold is then set for determining what are good candidates of UF constraints (a
pair is considered good if its count is above the threshold). A threshold should be chosen
carefully since there is a trade-off between the number and the quality of constraints; a lower
threshold increases the chances of getting higher-quality UF constraints (in the sense that
it is more difficult to find them with counterexamples), but a lower threshold also leads to
a larger number of constraints. In our experience, a threshold of 10% seems to work well in
practice.

Example 5.14. Consider the original circuit shown in Figure 5.4a. If we run random
simulation on the circuit, the resulting input patterns for the pairs of the three multipliers
can be

• (op1, op2): Their inputs are identical for about 0% of the time, since {a−21 , b−21 , a−22 , b−22 }
are four independent PIs.

• (op1, op3): Their inputs are identical for about 50% of the time, since (a−21 , b−21) and
(a−23 , b−23) are identical if s1 = 0.

• (op2, op3): Their inputs are identical for about 50% of the time, since (a−22 , b−22) and
(a−23 , b−23) are identical if s1 = 1.

If the threshold is set to be 10%, then the pairs (op1, op3) and (op2, op3) would be added
to the UF pair set P , and the resulting abstraction can be proved UNSAT. In this example,
we use random simulation to identify good candidates of UF constraints without relying on
counterexamples found in the CEGAR flow.

5.5. THE UFAR FRAMEWORK 91

A Verilog circuit

WLCm

WLCg

WLCa

AIGa

Parse with WLC front end

Expose generic operators

Create the initial abstraction with P and B

Bit-blast with WLC bit-blaster

Create the next abstraction with
refined P and B

Figure 5.7: The flow of the UFAR framework

5.5 The UFAR Framework

UFAR involves an iteration of abstraction and refinement between two types of represen-
tations,

1. AIGs (bit-level circuit), and

2. an internal netlist format called WLC (word-level circuit), a new development in
ABC [BM10] to represent word-level designs.

This capability includes 1) a very fast Verilog based bit-blaster, using Verilog semantics of
the WLC box operators, to translate into an AIG, and 2) a duplication-based method to
create different WLC netlists at the word level. These developments are critical in making
UFAR efficient, to the extent that UFAR run-time is dominated by the SAT solving in the
bit-level model checker.

5.5.1 Bit-blasting WLC with Verilog Semantics

As shown in Figure 5.7, the framework starts with reading in a structural Verilog miter
representing the model checking problem. This is translated into a WLC netlist (WLCm)
using ABC’s structural Verilog parser. Next, the generic operators of all designated “prob-
lematic” operators are exposed (see Section 5.2) by creating a new WLC netlist, denoted as

5.6. RELATED WORK 92

WLCg. More details of creating a new WLC netlist are described in the next subsection. It
is important to note that WLCg needs to be created only once during the entire flow and
represents the fully concretized problem. This is bit-blasted into an AIG, denoted by AIGg
to be used later.

The next step is to create a WLC netlist, WLCa, for the current abstraction using WLCg
and the state sets P and B. WLCa is bit-blasted into an AIG, denoted as AIGa. During
this, Verilog semantics [IEE06] are used to faithfully interpret the box operators of WLC
netlists.

Typically the model checker, applied to AIGa, returns a counterexample which is sim-
ulated on AIGg to see if it is spurious. If so, the counterexample is first minimized, using
AIGg as reference. This is analyzed to decide the state changes to P and B, which will be
used to block this counterexample. These are implemented by creating a new WLCa from
WLCg and the current state sets. Then the next iteration proceeds.

5.5.2 Creating Abstractions WLCa

In the iteration in the previous section, the next abstraction is constructed as a WLC
netlist using inputs P and B and WLCg. This is achieved by constructing one intermediate
netlist (WLCp) and the final netlist (WLCa). To activate the UF constraints in P , WLCp
is created by duplicating WLCg but attaching the UF constraints in P to the appropriate
signals. The boxes listed in B need to be made black, so the outputs of each such box need
to be replaced by new PIs. WLCa is built by duplicating WLCp but with the outputs of the
boxes in B replaced by the new PIs.

5.6 Related Work

In this section, UFAR is compared with other word-level approaches based on term-level
abstraction (TLA) [Hun89, BD94, BLS02, LSB02, LB03, AS04, ALS08, BBSO10, BBS11].
Term-level abstraction employs three abstraction techniques: 1) function abstraction, 2) data
abstraction, and 3) memory abstraction. In this section, we focus on function abstraction,
which features UF abstraction. In term-level abstraction, UF abstraction is performed by
replacing a concrete function with a UF symbol. Same function instances share the same
UF symbol and are constrained by the same functional consistency, meaning identical inputs
implies identical values for the symbol. An abstraction created with term-level abstraction is
then given to a dedicated word-level solver that implements specialized procedures to handle
those UF symbols [Ack54, BGV99]. In contrast, UFAR performs UF abstraction with explicit

5.6. RELATED WORK 93

application of UF constraints guided by counterexamples and random simulation. This is
greatly enhanced by our ability to efficiently create word level netlists like WLCa and bit
blasted versions like AIGa in an iterative loop. The main benefit of using UF constraints
is that abstractions can be verified by any model checker, bounded or unbounded, thereby
taking full advantage of all the recent developments at the bit-level and the word-level.

Other differences between UFAR and TLA-based approaches are given below.

1. UFAR addresses an important challenge when performing UF abstraction: the appli-
cability of UF constraints. As shown in Example 5.4, multipliers can have different
functions, which makes UF inapplicable if the functions are not identical. UFAR tack-
les this problem by exposing generic operators within regular operators, as presented
in Section 5.3.2. UF constraints then become applicable to any pair of same-type op-
erators. In contrast, none of the TLA-based approaches can deal with this problem.
Without generic operators, UF abstractions can be performed only under strict condi-
tions: 1) instantiations of the same module, 2) replicated functional blocks [BBS11], or
3) operators with exactly matched bit-widths and signedness, which limits the capa-
bility of UFs to abstract a circuit. However, TLA-based approaches could be extended
to benefit from UFAR if generic operators are exposed and normalized to the one with
the maximum size.

2. TLA-based approaches all rely on SMT solvers to handle formulas with UF abstrac-
tions, which limits the possibility of integrating them with recent bit-level developments
like IC3/PDR and its improvements. TLA-based approaches rely on Bounded Model
Checking (BMC) [BCCZ99] and/or k-induction [SSS00]. This not only limits its use
but also becomes inefficient when deep unrolling is needed. In practice, BMC- and
induction- based approaches are efficient in finding CEXes, but often incapable of pro-
ducing an inductive invariant, which is required for UMC problems. In contrast, UFAR
explicitly formulates UF constraints when creating an abstraction circuit, which can be
the target for proof by any UMC techniques like IC3/PDR and super_prove [BEM12].
Moreover, a straightforward application of UF constraints can have the problem of ex-
plosion in the number of operator pairs that are constrained. This problem is mitigated
by UFAR with counterexample guided refinement and random simulation.

3. TLA-based approaches use UF symbols instead of UF constraints, which limits their
capability to take full advantage of UF abstractions. For instance, in Example 5.10,
the problem can be proved by UFAR with only two multipliers abstracted. The key is
to apply UF constraints even to a pair of multipliers where one is abstracted and the
other concrete. In contrast in the example, TLA-based approaches cannot abstract any
multiplier using UF symbols, since there always exists a spurious CEX when replacing
any subset of the three multipliers with UF symbols. In particular in the example,
UF constraints must be applied to both pairs (op1, op3) and (op2, op3), and if TLA-

5.7. EXPERIMENTAL RESULTS 94

based approaches replace all three multipliers with the same UF symbol, then spurious
CEXes exist because of the right-hand-side formula demanding certain properties of
multiplication. UFAR can apply UF constraints to any combination of abstracted
and concrete operators: 1) (abstracted, abstracted), 2) (abstracted, concrete), and 3)
(concrete, concrete). Therefore, UFAR offers more flexibility in UF abstractions.

5.7 Experimental Results

In this section, we present experimental results of our implementation of UFAR with
different improvement techniques enabled. We also integrated the the method PDR-WLA
(Chapter 4) into the UFAR framework. The implementation is based on ABC [BM10] using
its latest improvements to Verilog parsing and bit-blasting.

We ran UFAR on a set of 2492 industrial word-level Verilog designs that were synthesized
and optimized by an industrial tool to be cycle-accurate with the original circuit. Multi-
pliers are the main targeted problematic operators for UFAR to abstract. Thus, the initial
abstraction set S contains all the exposed generic multipliers in a circuit. All experiments
were performed on a workstation of Intel Xeon E5504 CPUs clocked at 2.0 GHz with 24 GB
of RAM.

Comparing our results against other publicly available verification tools is difficult. To
our knowledge, no tools exist that can parse such designs directly without requiring a ma-
jor modification. For example, Ebmc [KP] cannot handle parameterized modules or func-
tions/tasks in Verilog; VCEGAR [JKSC05] has a more limited front-end than the one in
Ebmc; UCLID [ucl, BLS02, LS04] does not have a general Verilog front end either. Also,
there is no standard format for sequential word level circuits, as there is for the combinational
case with SMT-LIB [BST10]. Therefore we compared results of running

1. super_prove (SP) [BEM12]: super_prove is a portfolio-based bit-level model checker
that won the last 5 Hardware Model Checking Competitions (HWMCC), the latest
being 2017 [BvDH17]. An input word-level circuit is parsed and bit-blasted into And-
Invertor Graphs (AIGs) by ABC, and then solved by super_prove, and

2. five UFAR versions with different settings.

• ufar-S1 (S1): It is the baseline version implementing Algorithm 5.1.

• ufar-S2 (S2): It features the technique of using minimized counterexamples (Sec-
tion 5.4.1).

• ufar-S3 (S3): It features the technique of using random simulation (Section 5.4.2).

5.7. EXPERIMENTAL RESULTS 95

The parameters for random simulation are set to be (1) 64 random patterns, (2)
100 time frames, (3) 10% threshold.

• ufar-S4 (S4): It features both techniques in ufar-S2 and ufar-S3.

• ufar-S5 (S5): It features both techniques and the PDR-WLA word-level model
checker presented in Chapter 4.

Abstractions in UFAR are verified using various verification engines that were run in
parallel. All settings (S1-S5) bit-blast current abstraction circuits and verify them with
the following four bit-level engines.

(a) Command “bmc3” in ABC. A BMC engine that is very efficient at finding coun-
terexamples.

(b) Command “pdr” in ABC. A PDR engine that is good at proving a UMC problem
with an inductive invariant.

(c) Command “,treb” in ABC-ZZ [Een]. A PDR engine developed by Een et al. in
[EMB11].

(d) Command “,treb -abs” in ABC-ZZ. An implementation of PDR with internal
abstraction developed by Niklas Een. We present a similar algorithm in Chapter 3.

Setting S5 also runs the word-level PDR-WLA engine in parallel with the four bit-level
ones.

We present the results in Figure 5.8, where the horizontal axis represents wall-clock time
and the vertical axis represents the cumulative number of solved instances. A time-out
of 1 hour was enforced for each example. All solved instances are UNSAT. The result of
super_prove is not shown in Figure 5.8 because its number of solved instances is 2087, well
below the bottom scale of 2330. Setting S2 performs worse than the baseline S1, which
shows one weakness of using minimized counterexamples: while this technique can reduce
the number of UF constraints added (Section 5.4.1), it can also miss important constraints,
which leads to more iterations of refinement and results in worse performance. Setting S3
is slightly better than the baseline S1, which demonstrates that random simulation does
find important UF constraints that can be missed by counterexamples, thereby improving
performance. Setting S4 outperforms the three previous settings, which shows that the
combination of random simulation and minimized counterexamples achieves a good balance
of what UF constraints should be added to abstractions. Setting S5 works best with the
additional PDR-WLA solver, which demonstrates that UFAR can easily benefit from any
improvement in UMC algorithms at both bit-level and word-level.

5.7. EXPERIMENTAL RESULTS 96

2330

2340

2350

2360

2370

2380

2390

2400

2410

2420

2430

0 500 1000 1500 2000 2500 3000 3500

N
u

m
b

e
r

o
f

so
lv

e
d

 i
n

st
a

n
c

es

Time in seconds

ufar-S1

ufar-S2

ufar-S3

ufar-S4

ufar-S5

Figure 5.8: Comparison of five UFAR variants. The result of super_prove is not shown
here because it only solves 2087 instances, well below the bottom scale of 2330.

5.7. EXPERIMENTAL RESULTS 97

Table 5.5 shows the numbers of instances finally solved by all versions within the 1-hour
time-out. The five versions of UFAR outperform super_prove, which is often ineffective in
solving problems with many arithmetic operators.

We selected 100 out of 2492 designs to present more detailed results in Table 5.2, Ta-
ble 5.3, and Table 5.4. The selection is somewhat arbitrary but it does represent designs that
are dissimilar and gives an idea of the expected ranges of iterations needed, the number of UF
constraints used, and the number of white-box operators existing in the final abstractions.
We observe the following from the four tables.

1. UFAR proves most cases with a relatively small number of white-box multipliers in
the final abstraction. For example, Designs 78-100 in Table 5.3 contain more than 248
multipliers originally, but no more than 44 white boxes are needed for the final proofs.

2. The number and quality of UF constraints are two important factors correlated with
the runtime performance. If the number is large, then UFAR generally needs more time
to complete, which is why counterexample-based constraint reduction is important. If
the quality of the reduction is good, then UFAR may prove a problem with fewer white
boxes (or none). This supports the use of random simulation to find good constraints.

3. The technique of using minimized counterexamples does reduce the number of final
UF constraints significantly, as shown in Table 5.2 and Table 5.3. While this technique
does not improve the runtime performance of S2 compared with S1, it does improve
the runtime performance of S4 over S3 by preventing the addition of too many UF
constraints, as shown in Designs 79, 81, and 87 in Table 5.3.

4. The technique of using random simulation helps find important UF constraints or re-
lated operator pairs without needing information derived from counterexamples. With
those constraints found by random simulation, the overall number of UF constraints
and white boxes used can drop, resulting in better runtime performance, as shown in
Designs 10, 68, 89 in columns of S1 and S3.

5. As shown in Table 5.4, it takes a nontrivial number of refinements for UFAR to con-
verge, implying that UFAR builds up abstractions gradually. A major challenge is how
to strike a better balance between the number and quality of UF constraints and the
number of white boxes needed.

6. Table 5.5 shows the progress made in UFAR over its development cycle. It is important
to comment that the increment improvements are 320, -7, 11, 6, and 8, additional
problems solved may seem small, but the remaining problems are extremely hard, and
the complexity of model checking dictates that we probably can never solve all of them.

5.7. EXPERIMENTAL RESULTS 98

Table 5.2: Detailed experimental results for the first 50 out of the 100 word-level UNSAT
test-cases that can be solved by at least one of the six verification settings (the last 50 are
shown in the next table). The #Mults/#ANDs/#FFs means the number of multipliers/bit-
level AND nodes/bit-level flip flops. The numbers of UF constraints and white boxes used
in the last iteration are also presented. Blanks in CPU Time represent time-outs (1 hour).

SP ufar-S1 ufar-S2 ufar-S3 ufar-S4 ufar-S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5
1 4 33062 977 2 2449 2484 2424 23 10 8 10 8 0 0 1 1 1 1
2 4 33080 977 1 1163 1130 49 6 0 6 0 6 0 1 0 1 1
3 4 32968 975 2 3069 3012 76 7 6 7 6 0 0 1 0 1 1
4 60 187389 2608 568 505 552 299 293 297 0 0 874 874 874 0 0 0 0 0
5 92 239442 2608 11 5 5 563 526 529 0 0 2052 2052 2052 0 0 0 0 0
6 60 38900 472 2102 1300 63 2084 2084 2084 18 17 23 23 23
7 60 44989 634 2479 3085 2827 2999 2155 34 1420 1420 1420 14 13 18 18 18
8 60 44056 648 3510 1671 64 1546 1546 1546 21 18 21 21 21
9 60 52538 681 1651 1403 1379 1307 1595 34 2692 2725 2725 11 12 9 15 15

10 11 82237 128 2338 1957 3226 3119 24 42 12 38 38 9 9 9 9 9
11 16 148910 179 22 20 21 19 36 0 12 12 12 0 16 0 0 0
12 102 60052 508 87 59 69 106 101 998 84 1320 1313 1313 0 0 0 0 0
13 144 161864 2456 1463 2116 699 645 684 2234 91 352 352 352 0 0 0 0 0
14 20 78142 551 108 8 7 11 11 11 82 14 190 190 190 0 0 0 0 0
15 6 161192 5627 447 484 323 434 463 234 10 2 4 4 4 0 0 0 0 0
16 8 73021 2056 599 609 1351 1016 996 14 11 24 14 14 0 0 0 0 0
17 8 72903 2051 667 661 713 709 669 14 11 11 11 11 0 0 0 0 0
18 14 21156 400 453 417 123 116 120 30 28 25 25 25 10 8 8 8 8
19 14 21159 400 447 446 295 380 379 29 28 29 33 33 10 8 8 8 8
20 16 84465 3899 52 39 33 33 23 96 165 8 8 8 0 0 0 0 0
21 32 141251 3917 215 135 150 161 134 913 167 16 16 16 0 0 0 0 0
22 32 46246 972 3 2184 2331 2176 2269 271 28 240 224 224 9 2 9 7 7
23 40 108487 1003 54 49 59 51 49 326 405 510 344 344 20 22 22 22 22
24 24 69002 685 34 23 35 19 18 140 48 453 126 126 6 6 6 6 6
25 86 213795 2423 206 135 189 954 920 1423 210 2377 502 502 16 16 16 28 28
26 40 73448 688 56 71 42 50 49 626 259 312 248 248 22 22 22 23 23
27 24 69002 685 23 21 58 28 25 233 71 403 98 98 6 6 6 6 6
28 86 213967 2417 372 113 170 145 145 4552 146 777 331 331 40 16 29 16 16
29 40 108493 1003 34 33 39 36 35 340 147 172 106 106 10 10 10 10 10
30 24 69003 685 44 25 19 30 29 417 89 542 126 126 6 6 6 6 6
31 40 108493 1003 46 35 32 41 33 361 233 226 161 239 16 10 16 14 10
32 40 6771 134 118 47 60 63 59 656 273 750 100 100 22 22 16 22 22
33 40 108487 1003 30 50 41 30 43 414 522 192 359 389 22 22 16 19 22
34 40 106576 863 28 23 27 25 20 518 217 90 262 132 10 17 16 10 16
35 43 306429 4408 20 14 14 13 11 274 13 447 447 447 0 0 0 0 0
36 6 11597 99 4 18 0 0 3 3 2 6 6 6 6 6
37 6 11626 99 5 31 0 0 2 2 2 6 6 6 6 6
38 6 11379 99 4 32 0 0 2 2 2 6 6 6 6 6
39 6 11626 99 5 27 1 0 3 2 2 6 6 6 6 6
40 12 17589 243 218 217 246 218 138 5 0 5 0 0 11 7 11 7 7
41 15 16522 204 173 102 105 107 90 1 0 0 0 0 10 10 10 10 10
42 16 74935 3770 362 333 239 232 236 69 183 8 8 8 0 0 0 0 0
43 15 49769 1707 22 14 22 18 72 27 50 57 57 7 8 7 7 7
44 21 65955 1997 57 40 72 67 172 31 59 86 86 7 10 7 9 9
45 5 17951 265 596 55 44 57 53 30 2 7 2 2 2 0 0 0 0 0
46 4 16660 336 554 111 258 87 84 83 10 2 1 1 1 0 0 0 0 0
47 10 15485 204 25 26 26 25 26 0 0 0 0 0 10 10 10 10 10
48 42 56591 705 87 233 107 110 108 219 212 145 145 145 14 12 12 12 12
49 54 47963 383 289 422 389 134 127 542 244 267 262 262 24 22 25 29 29
50 56 54250 419 1889 1479 1479 1391 1096 222 268 268 268 25 32 31 31 31

#FFs#ANDs#MultsID
CPU Time (seconds) Number of UF Constraints Number of White Boxes

5.7. EXPERIMENTAL RESULTS 99

Table 5.3: Detailed experimental results for the last 50 out of the 100 word-level UN-
SAT test-cases that can be solved by at least one of the six verification settings. The
#Mults/#ANDs/#FFs means the number of multipliers/bit-level AND nodes/bit-level flip
flops. The numbers of UF constraints and white boxes used in the last iteration are also
presented. Blanks in CPU Time represent time-outs (1 hour).

SP ufar-S1 ufar-S2 ufar-S3 ufar-S4 ufar-S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5
51 56 52535 371 2027 298 291 265 736 110 268 268 268 30 34 33 33 33
52 63 69913 470 694 2373 2294 2288 888 238 436 436 436 36 22 29 29 29
53 63 58991 461 1623 1002 913 968 856 725 278 375 375 375 17 20 35 35 35
54 56 48639 366 1525 704 673 660 651 162 268 268 268 33 32 30 30 30
55 56 53791 406 1126 332 345 907 802 120 348 348 332 26 32 28 28 34
56 63 52933 479 842 1435 1308 1336 435 149 346 346 346 21 24 17 17 17
57 56 60014 395 912 340 630 663 640 139 284 270 270 24 23 21 16 16
58 63 69913 470 738 2366 2339 1942 888 238 436 436 436 36 22 29 29 29
59 63 65458 436 871 1407 1397 1325 435 149 346 346 346 21 24 17 17 17
60 42 20109 334 225 115 115 99 102 292 89 145 145 145 14 11 9 9 9
61 223 237517 1130 2256 2648 2840 1239 3858 481 2123 1654 1280 41 63 54 49 42
62 63 64414 443 855 1325 1340 1243 435 149 346 346 346 21 24 17 17 17
63 56 59561 417 1486 1954 318 307 302 810 251 268 268 268 31 32 35 35 35
64 49 49557 403 262 74 71 72 72 478 94 204 204 204 11 11 9 9 9
65 56 52757 416 550 352 757 670 703 816 196 268 268 268 32 33 34 34 34
66 63 66328 464 1724 1062 1023 1036 949 725 278 375 375 375 17 20 35 35 35
67 63 69913 470 726 2403 2251 2246 888 238 436 436 436 36 22 29 29 29
68 56 47817 391 728 421 382 395 397 183 268 268 268 30 28 16 16 16
69 15 51293 1360 943 218 1266 622 632 57 5 73 73 73 4 4 3 3 3
70 68 37874 1174 11 3 4 3 375 119 30 30 30 0 34 0 0 0
71 216 35097 521 899 408 408 373 1023 1795 394 394 394 0 0 0 0 0
72 68 34275 663 7 3 3 3 381 110 30 30 30 0 34 0 0 0
73 12 10569 86 844 131 104 81 80 16 16 18 13 13 10 4 4 4 4
74 30 20790 296 901 912 360 110 144 81 33 53 22 16 16 8 6
75 6 6442 196 20 20 33 24 17 1 1 4 3 3 4 4 4 4 4
76 14 14056 316 71 49 130 63 84 49 12 6 7 6 5 5 6 4 6
77 7 62203 373 10 318 10 10 10 10 7 21 21 21 3 3 4 4 4
78 283 181158 3949 3549 35603 23800 26799 21279 27218 0 40 0 0 44
79 248 174145 3491 3832 9 974 977 16038 96 14403 9439 9439 7 8 0 5 5
80 253 177932 3979 144 66 129 130 100 2767 33 115 115 115 0 0 0 0 0
81 248 173543 3466 8 1286 891 15037 65 14644 9701 9397 0 3 0 6 7
82 467 255665 3691 654 383 167 165 129 18142 14326 249 249 249 0 0 0 0 0
83 283 181158 3949 3075 37975 23800 26154 27241 27236 0 40 0 0 44
84 259 181198 4095 35 6 11 9 13 7799 40 124 124 124 0 0 0 0 0
85 253 176313 3979 23 1211 23 23 23 2379 34 115 115 115 0 2 0 0 0
86 467 268906 4041 1330 1224 331 327 200 12461 24982 249 249 249 0 0 0 0 0
87 251 168447 3526 36 6 32 29 7091 28 7578 4946 4946 0 0 0 0 0
88 456 250828 3526 11 3 21 14 22 4527 73 215 215 215 0 0 0 0 0
89 250 190268 3740 5 715 682 658 19044 32 13774 10850 10850 0 1 1 1 1
90 250 191087 3749 58 8 1309 884 830 5834 51 14637 10853 10853 2 2 4 6 6
91 283 180535 3949 267 275 630 303 271 0 0 98 98 98 0 0 0 0 0
92 283 181158 3949 2769 35603 23836 26073 21268 26936 0 0 0 0 44
93 253 199513 3751 883 10 2746 1125 1093 56667 80 22295 11650 11650 4 4 3 9 9
94 255 173230 3508 31 11134 40 23828 33268 33268 0 0 0 0 0
95 454 247975 3526 105 76 123 118 119 906 12 214 214 214 0 0 0 0 0
96 250 190436 3740 704 5 2221 1358 17396 39 17035 31064 30829 2 1 0 2 1
97 249 167395 3508 139 8 354 88 71 13676 11 14296 21647 21647 0 0 0 0 0
98 413 253390 4294 765 125 36 55 49 51 10621 16 157 157 157 0 0 0 0 0
99 475 274840 4204 343 479 203 198 191 8740 19993 268 268 268 0 0 0 0 0

100 259 175172 3526 194 30 17286 58 9590 11685 11685 0 0 0 0 0

ID #Mults #ANDs #FFs
CPU Time (seconds) Number of UF Constraints Number of White Boxes

5.7. EXPERIMENTAL RESULTS 100

Table 5.4: Detailed experimental results for the 100 word-level UNSAT test-cases that can be
solved by at least one of the six verification settings. The numbers of iterations of applying
new UF constraints and iterations of applying new white boxes in UFAR are presented.

(a)

S1 S2 S3 S4 S5 S1 S2 S3 S4 S5
1 1 1 1 1 0 0 1 1 1 1
2 1 0 1 0 1 0 1 0 1 1
3 2 1 2 1 0 0 1 0 1 1
4 0 0 1 1 1 0 0 0 0 0
5 0 0 1 1 1 0 0 0 0 0
6 6 11 2 2 2 3 3 6 6 6
7 5 6 2 2 2 2 2 6 6 6
8 8 12 3 3 3 6 4 8 8 8
9 6 5 2 3 3 3 1 3 3 3

10 2 2 2 2 2 1 1 1 1 1
11 3 0 1 1 1 0 1 0 0 0
12 3 4 2 2 2 0 0 0 0 0
13 6 10 1 1 1 0 0 0 0 0
14 1 1 1 1 1 0 0 0 0 0
15 1 1 1 1 1 0 0 0 0 0
16 1 2 2 2 2 0 0 0 0 0
17 1 2 2 2 2 0 0 0 0 0
18 3 3 2 2 2 1 1 1 1 1
19 3 3 2 3 3 1 1 1 1 1
20 5 2 1 1 1 0 0 0 0 0
21 2 2 1 1 1 0 0 0 0 0
22 5 4 3 2 2 2 1 2 2 2
23 10 4 5 8 8 1 1 1 1 1
24 7 2 5 2 2 1 1 1 1 1
25 4 4 8 4 4 1 1 1 2 2
26 4 10 4 4 4 1 1 1 1 1
27 4 5 19 4 4 1 1 1 1 1
28 3 8 6 5 5 2 1 1 1 1
29 3 3 4 3 3 1 1 1 1 1
30 13 1 2 2 2 1 1 1 1 1
31 4 4 5 7 4 1 1 1 1 1
32 2 4 2 4 4 1 1 1 1 1
33 2 2 5 3 5 1 1 1 1 1
34 4 3 3 3 4 1 1 1 1 1
35 1 1 1 1 1 0 0 0 0 0
36 0 0 2 2 1 1 1 2 1 2
37 0 0 1 1 1 1 1 1 1 1
38 0 0 1 1 1 1 1 1 1 1
39 1 0 2 1 1 1 1 1 1 1
40 1 0 1 0 0 2 1 2 1 1
41 1 0 0 0 0 1 1 1 1 1
42 6 2 1 1 1 0 0 0 0 0
43 2 3 2 3 3 1 1 1 1 1
44 3 2 3 4 4 1 2 1 1 1
45 1 2 1 1 1 0 0 0 0 0
46 1 1 1 1 1 0 0 0 0 0
47 0 0 0 0 0 1 1 1 1 1
48 6 11 1 1 1 3 3 3 3 3
49 8 12 2 1 1 3 4 4 3 3
50 9 14 1 1 1 4 4 4 4 4

ID
#Iterations for UF Constraints #Iterations for White Boxes

(b)

S1 S2 S3 S4 S5 S1 S2 S3 S4 S5
51 9 10 1 1 1 3 3 3 3 3
52 8 6 2 2 2 4 2 4 4 4
53 9 10 4 4 4 3 4 4 4 4
54 9 11 1 1 1 4 4 3 3 3
55 5 13 3 3 2 3 4 4 4 4
56 5 11 1 1 1 4 3 2 2 2
57 10 13 3 2 2 4 4 4 4 4
58 8 6 2 2 2 4 2 4 4 4
59 5 11 1 1 1 4 3 2 2 2
60 7 8 1 1 1 3 3 3 3 3
61 36 32 57 19 14 7 9 9 9 6
62 5 11 1 1 1 4 3 2 2 2
63 7 9 1 1 1 5 4 4 4 4
64 8 6 1 1 1 3 3 3 3 3
65 6 8 1 1 1 4 4 3 3 3
66 9 10 4 4 4 3 4 4 4 4
67 8 6 2 2 2 4 2 4 4 4
68 4 15 1 1 1 3 4 3 3 3
69 1 1 1 1 1 1 1 1 1 1
70 3 4 1 1 1 0 1 0 0 0
71 3 13 1 1 1 0 0 0 0 0
72 3 5 1 1 1 0 1 0 0 0
73 2 4 3 3 3 1 1 1 1 1
74 10 14 12 6 8 1 2 1 1 1
75 1 1 2 2 2 1 1 1 1 1
76 5 3 1 2 1 1 1 1 1 1
77 1 3 1 1 1 1 1 2 2 2
78 36 53 56 62 45 0 1 0 0 1
79 165 6 185 89 89 1 1 0 1 1
80 2 3 1 1 1 0 0 0 0 0
81 114 5 203 111 85 0 1 0 1 1
82 4 5 1 1 1 0 0 0 0 0
83 80 53 45 49 35 0 1 0 0 1
84 3 3 1 1 1 0 0 0 0 0
85 2 2 1 1 1 0 1 0 0 0
86 4 6 1 1 1 0 0 0 0 0
87 2 2 3 3 3 0 0 0 0 0
88 2 2 1 1 1 0 0 0 0 0
89 84 4 56 71 71 0 1 1 1 1
90 10 6 103 104 104 1 1 1 1 1
91 0 0 1 1 1 0 0 0 0 0
92 36 57 44 55 29 0 0 0 0 1
93 14 5 428 88 88 2 2 2 2 2
94 3 6 3 3 3 0 0 0 0 0
95 1 1 1 1 1 0 0 0 0 0
96 48 4 191 78 55 1 1 0 1 1
97 3 3 3 3 3 0 0 0 0 0
98 2 2 1 1 1 0 0 0 0 0
99 5 8 1 1 1 0 0 0 0 0

100 3 6 4 5 5 0 0 0 0 0

ID
#Iterations for UF Constraints #Iterations for White Boxes

5.8. CONCLUSION 101

super_prove ufar-S1 ufar-S2 ufar-S3 ufar-S4 ufar-S5

2087 2407 2400 2411 2417 2425

Table 5.5: The numbers of solved instances using different settings. 67 instances remain
unsolved.

5.8 Conclusion

UFAR is an algorithm that abstracts all problematic operators as black boxes up front
(black-boxing them), and refines them by applying UF constraints and/or converting them
back into their original concrete representations (white-boxing them). The main benefit of
explicitly applying UF constraints is that abstractions can be verified by any unbounded
model checking solver, not limited to SMT-based model checkers as in the cases of most
previous work. This enables UFAR to take full advantage of all the recent research devel-
opments at the bit-level and the word level, especially PDR and its improvements, PDRA
and PDR-WLC. To maximize the applicability of UF constraints, in the first part of this
chapter, formal definitions of generic operators were given and a procedure to expose generic
operators within regular ones was proposed. This allowed UF constraints to be applied be-
tween all same-type generic operators. To improve the quality of UF constraints applied,
two improvement techniques for UFAR were presented: counterexample minimization and
random simulation. UFAR was implemented and integrated with state-of-the-art bit-level
and word-level solvers. UFAR’s scalability was demonstrated on a large set of industrial
problems.

102

Chapter 6

Conclusions

6.1 Summary

To enable efficient abstraction and refinement for word-level MC problems, this thesis
proposed, implemented, and experimented on a CEGAR-based paradigm of computing ab-
straction and refinement at the word-level and verifying abstractions at the bit-level.

To compute good abstraction and refinement at the word-level, refinement strategies
PBR and MFFC were proposed for word-level localization abstraction in Chapter 2. PBR
explicitly encodes assumptions into a circuit with ITE operators, so it can take advantage of
both the information in the original circuit and assumption interfaces in SAT solvers. MFFC
refinement exploits circuit structures that can save unnecessary refinement iterations. The
experimental results showed that PBR with MFFC seemed to strike a good balance between
the quality of current abstractions and the number of refinement iterations, solving the most
cases compared with other settings.

To achieve efficient integration of word-level abstraction refinement and bit-level MC
algorithms, we proposed algorithm PDR-WLA in Chapter 4 which efficiently integrates bit-
level PDR with word-level refinement strategies proposed in Chapter 2. An important idea
of PDR-WLA is to explicitly re-use PDR traces, or reachability clauses, derived in previous
refinement iterations. Experiments demonstrated that PDR-WLA solved a larger number
of hard problems while offering speedups. PDR-WLA was inspired by algorithm PDRA
described in Chapter 3, which efficiently integrates bit-level PDR with bit-level localization
abstraction. PDRA introduces a flop map to remember what flops are used in the abstrac-
tion. With sophisticated use of the map and only slight modifications of the original PDR,
PDRA is able to perform on-the-fly abstraction and refinement while solving an MC prob-
lem. Experimental results showed that PDRA solved more hard test cases compared with

6.2. FUTURE WORK 103

the original PDR.

Motivated by industrial benchmarks characterized by having many related arithmetic
operators, a framework, UFAR, was proposed in Chapter 5 for word-level model checking.
In addition to word-level localization, UF constraints are used to refine related operators by
asserting that equal inputs must lead to equal outputs, UF constraints. To address the prob-
lem that related operators may not have the same functionality, we proposed to use generic
operators that implement standard integer functions. Formal definitions of generic opera-
tors were given and a procedure to expose them within regular operators were proposed to
increase the applicability of UF constraints. To address the problem of potential constraint
explosion, we proposed a counterexample-guided approach and two improvement techniques
using minimized counterexamples and random simulation, applying only important UF con-
straints to abstractions. UFAR explicitly formulates UF constraints in sequential circuits,
which allows any bit-level or word-level MC solver to be integrated into the framework, in-
cluding both PDRA and PDR-WLA. Experimental results showed that UFAR successfully
solved most cases in the given industrial benchmarks.

6.2 Future Work

• Large memories in word-level circuits have been challenging for word-level MC. Mem-
ories are typically described as arrays of word-level registers in HDL. Our abstraction
and refinement approaches proposed in this thesis do not perform memory abstraction
at the word-level. Without proper abstraction of memories, memories are interpreted
as independent registers, where useful high-level information like operations read and
write is lost. Therefore, our approaches can be enhanced significantly in solving
practical benchmarks from industry if they are integrated with a good memory ab-
straction technique. A possible direction is to integrate the technique proposed by
Per Bjesse [Bje08], where original memories are replaced by abstracted ones with ad-
ditional memory constraints explicitly formulated in a circuit. Abstractions created
using this approach can also be solved by any bit-level or word-level MC solver, which
fits perfectly into the paradigm focus of this thesis. Another possible directions is to
learn from SMT-based memory abstraction [Ger11, SSM+12].

• We proposed an efficient integration of bit-level PDR and word-level abstraction refine-
ment in Chapter 4. While PDR has been shown to be very effective in producing un-
bounded proofs, BMC is known to be more efficient in finding counterexamples, which
is important in a CEGAR-based algorithm where many spurious counterexamples are
expected. Therefore, a possible direction is to develop an efficient integration of BMC
and word-level abstraction refinement. An idea is to extend Gate-level Abstraction
(GLA) proposed by Mishchenko et al. [MEB+13] to the word-level. The extension can

6.2. FUTURE WORK 104

use either SAT-based or SMT-based BMC engines. The refinement strategies proposed
in this thesis can be directly applied. The PDR improvements proposed in this thesis
also complement the BMC-based approaches, which only generate bounded proofs.

• Word-level localization and UF constraints were shown to be effective in refining cur-
rent abstractions in this thesis. However, we observed that in certain benchmarks, the
proposed refinement scheme failed to find good abstractions. A possible direction is to
use other types of constraints, such as partial interpretations of arithmetic operators.
For example, properties of a multiplier when given special input values like 1 and 0
can be used to refine an abstracted multiplier. In some cases, only partial interpre-
tations are needed for a final proof without using fully-interpreted operators. One
of the challenges is to automatically identify good constraints and prevent constraint
explosion, which leads to improved overall performances. An idea is to integrate the
work on conditional abstractions proposed by Brady et al. [BBS11], where conditions
are learned automatically for function abstraction.

• SMT-based CEGAR algorithms for word-level MC can benefit from the ideas pro-
posed in this thesis. For example, the idea of re-using reachability information can
enhance other CEGAR-based algorithms with integrated PDR. In particular, AVER-
ROES [LS14] is a word-level CEGAR algorithm with an integrated SMT-based PDR,
which can be enhanced by re-using word-level PDR traces across refinement iterations.
On the other hand, our approaches would benefit from SMT-based algorithms also. For
example, the UFAR framework can be greatly enhanced by using efficient SMT-based
MC solvers to verify current abstractions.

105

Bibliography

[Ack54] Wilhelm Ackermann. Solvable Cases of the Decision Problem. North Holland
Pub. Co., 1954.

[ALS06] Zaher S. Andraus, Mark H. Liffiton, and Karem A. Sakallah. Refinement strate-
gies for verification methods based on datapath abstraction. In Proceedings of
the 2006 Asia and South Pacific Design Automation Conference, ASP-DAC ’06,
2006.

[ALS08] Zaher S. Andraus, Mark H. Liffiton, and Karem A. Sakallah. Reveal: A formal
verification tool for verilog designs. In Proceedings of the 15th International
Conference on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR), 2008.

[AS04] Zaher S. Andraus and Karem A. Sakallah. Automatic abstraction and verifica-
tion of verilog models. In Proceedings of the 41st Annual Design Automation
Conference (DAC), 2004.

[BB09] Robert Brummayer and Armin Biere. Boolector: An efficient smt solver for bit-
vectors and arrays. In Proceedings of the 15th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS), 2009.

[BBS11] Bryan A. Brady, Randal E. Bryant, and Sanjit A. Seshia. Learning conditional
abstractions. In Proceedings of the 11th International Conference on Formal
Methods in Computer-Aided Design (FMCAD), 2011.

[BBSO10] Bryan A. Brady, Randal E. Bryant, Sanjit A. Seshia, and John W. O’Leary.
ATLAS: automatic term-level abstraction of RTL designs. In Proceedings of the
Eighth ACM/IEEE International Conference on Formal Methods and Models for
Codesign (MEMOCODE), 2010.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Sym-
bolic model checking without bdds. In Proceedings of the 5th International
Conference on Tools and Algorithms for Construction and Analysis of Systems
(TACAS), 1999.

[BCM+92] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and
L. J. Hwang. Symbolic model checking: 1020 states and beyond. In Proceedings
of the 5th Annual IEEE Symposium on Logic in Computer Science (LICS), 1992.

[BD94] Jerry R. Burch and David L. Dill. Automatic verification of pipelined micropro-

BIBLIOGRAPHY 106

cessor control. In Proceedings of the 6th International Conference on Computer
Aided Verification (CAV), 1994.

[BEM12] Robert Brayton, Niklas Eén, and Alan Mishchenko. Using speculation for se-
quential equivalence checking. In Proceedings of the 21st International Workshop
on Logic and Synthesis (IWLS), 2012.

[BGV99] Randal E. Bryant, Steven German, and Miroslav N. Velev. Exploiting positive
equality in a logic of equality with uninterpreted functions. In Proceedings of the
11th International Conference on Computer Aided Verification (CAV), 1999.

[BH14] Armin Biere and Keijo Heljanko. Hardware model checking competition, 2014.
http://fmv.jku.at/hwmcc14cav/.

[BIMM12] Jason Baumgartner, Alexander Ivrii, Arie Matsliah, and Hari Mony. Ic3-guided
abstraction. In Proceedings of the 12th Formal Methods in Computer-Aided De-
sign (FMCAD), 2012.

[Bje08] Per Bjesse. Word-level sequential memory abstraction for model checking. In
Proceedings of the 8th Formal Methods in Computer-Aided Design (FMCAD),
2008.

[BK05] Per Bjesse and James Kukula. Automatic generalized phase abstraction for for-
mal verification. In Proceedings of the 2005 IEEE/ACM International conference
on Computer-aided design (ICCAD), 2005.

[BKO+07] Randal E. Bryant, Daniel Kroening, Joël Ouaknine, Sanjit A. Seshia, Ofer Strich-
man, and Bryan Brady. Deciding bit-vector arithmetic with abstraction. In Pro-
ceedings of the 13th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), 2007.

[BLS02] Randal E. Bryant, Shuvendu K. Lahiri, and Sanjit A. Seshia. Modeling and
verifying systems using a logic of counter arithmetic with lambda expressions
and uninterpreted functions. In E. Brinksma and K. G. Larsen, editors, CAV02,
2002.

[BM10] Robert Brayton and Alan Mishchenko. ABC: An academic industrial-strength
verification tool. In Proceedings of the 22Nd International Conference on Com-
puter Aided Verification (CAV), 2010.

[Bra11] Aaron R. Bradley. Sat-based model checking without unrolling. In Proceedings of
the 12th International Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI), 2011.

[Bry92] Randal E. Bryant. Symbolic boolean manipulation with ordered binary-decision
diagrams. ACM Comput. Surv., 24(3):293–318, September 1992.

[BSST09] Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satis-
fiability modulo theories. In Armin Biere, Hans van Maaren, and Toby Walsh,
editors, Handbook of Satisfiability, volume 4, chapter 8. IOS Press, 2009.

[BST10] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard: Ver-
sion 2.0. Technical report, Department of Computer Science, The University of
Iowa, 2010. Available at www.SMT-LIB.org.

[BvDH17] Armin Biere, Tom van Dijk, and Keijo Heljanko. Hardware model checking

BIBLIOGRAPHY 107

competition, 2017. http://fmv.jku.at/hwmcc17/.
[CES13] Koen Claessen, Niklas Een, and Baruch Sterin. A circuit approach to ltl model

checking. In Proceedings of the 13th Formal Methods in Computer-Aided Design
(FMCAD), 2013.

[CGJ+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In Proceedings of the 12th In-
ternational Conference on Computer Aided Verification (CAV), 2000.

[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Pro-
ceedings of the 14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), 2008.

[Een] Niklas Een. Abc-zz. https://bitbucket.org/niklaseen/abc-zz.
[EMA10] Niklas Een, Alan Mishchenko, and Nina Amla. A single-instance incremental sat

formulation of proof- and counterexample-based abstraction. In Proceedings of
the 10th Formal Methods in Computer Aided Design (FMCAD), 2010.

[EMB11] Niklas Eén, Alan Mishchenko, and Robert Brayton. Efficient implementation of
property directed reachability. In Proceedings of the 11th International Confer-
ence on Formal Methods in Computer-Aided Design (FMCAD), 2011.

[ES03a] Niklas Eén and Niklas Sörensson. An extensible sat-solver. In Proceedings of the
6th International Conference on Theory and Applications of Satisfiability Testing
(SAT), 2003.

[ES03b] Niklas Eén and Niklas Sörensson. Temporal induction by incremental sat solv-
ing. Electronic Notes in Theoretical Computer Science, 89(4):543 – 560, 2003.
BMC’2003, First International Workshop on Bounded Model Checking.

[FYH16] Kuan Fan, Ming-Jen Yang, and Chung-Yang Huang. Automatic abstraction
refinement of TR for PDR. In Proceedings of the 21st Asia and South Pacific
Design Automation Conference (ASP-DAC), 2016.

[Ger11] Steven M. German. A theory of abstraction for arrays. In Proceedings of the
11th Formal Methods in Computer-Aided Design (FMCAD), 2011.

[GR16] Alberto Griggio and Marco Roveri. Comparing different variants of the ic3 al-
gorithm for hardware model checking. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), 35(6):1026–1039, 2016.

[GS97] Susanne Graf and Hassen Saïdi. Construction of abstract state graphs with
pvs. In Proceedings of the 9th International Conference on Computer Aided
Verification (CAV), 1997.

[HBS13] Zyad Hassan, Aaron R. Bradley, and Fabio Somenzi. Better generalization in IC3.
In Proceedings of the 13th Formal Methods in Computer-Aided Design (FMCAD),
2013.

[HCR+16] Yen-Sheng Ho, Pankaj Chauhan, Pritam Roy, Alan Mishchenko, and Robert
Brayton. Efficient uninterpreted function abstraction and refinement for word-
level model checking. In Proceedings of the 16th Formal Methods in Computer-
Aided Design (FMCAD), 2016.

[HMB17] Yen-Sheng Ho, Alan Mishchenko, and Robert Brayton. Property directed reach-

BIBLIOGRAPHY 108

ability with word-level abstraction. In Proceedings of the 17th Formal Methods
in Computer-Aided Design (FMCAD), 2017.

[HMBE17] Yen-Sheng Ho, Alan Mishchenko, Robert Brayton, and Niklas Een. Enhancing
PDR/IC3 with localization abstraction. In Proceedings of the 26th International
Workshop on Logic and Synthesis (IWLS), 2017.

[Hun89] Warren A. Hunt. Microprocessor design verification. Journal of Automated Rea-
soning, 5(4):429–460, Dec 1989.

[IEE06] IEEE standard 1364-2005 for verilog hardware description language, 2006.
[IG15] Alexander Ivrii and Arie Gurfinkel. Pushing to the top. In Proceedings of the

15th Formal Methods in Computer-Aided Design (FMCAD), 2015.
[JKSC05] Himanshu Jain, Daniel Kroening, Natasha Sharygina, and Edmund Clarke. Word

level predicate abstraction and refinement for verifying RTL verilog. In Proceed-
ings of the 42nd annual Design Automation Conference (DAC), 2005.

[KP] Daniel Kroening and Mitra Purandare. Ebmc: The enhanced bounded model
checker. www.cprover.org/ebmc.

[LB03] Shuvendu K. Lahiri and Randal E. Bryant. Deductive verification of advanced
out-of-order microprocessors. In Proceedings of the 15th International Conference
on Computer Aided Verification (CAV), 2003.

[LS04] Shuvendu K. Lahiri and Sanjit A. Seshia. The UCLID decision procedure. In
Proceedings of the 16th International Conference on Computer Aided Verification
(CAV), 2004.

[LS14] Suho Lee and Karem A. Sakallah. Unbounded scalable verification based on
approximate property-directed reachability and datapath abstraction. In Pro-
ceedings of the 26th International Conference on Computer Aided Verification
(CAV), 2014.

[LSB02] Shuvendu K. Lahiri, Sanjit A. Seshia, and Randal E. Bryant. Modeling and
verification of out-of-order microprocessors in UCLID. In Proceedings of the 4th
Formal Methods in Computer-Aided Design (FMCAD), 2002.

[McM03] Kenneth L. McMillan. Interpolation and sat-based model checking. In Pro-
ceedings of the 15th International Conference on Computer Aided Verification
(CAV), 2003.

[MEB+12] Alan Mishchenko, Niklas Een, Robert Brayton, Jason Baumgartner, Hari Mony,
and Pradeep Nalla. Variable time-frame abstraction. In Proceedings of the 21st
International Workshop on Logic and Synthesis (IWLS), 2012.

[MEB+13] Alan Mishchenko, Niklas Eén, Robert K. Brayton, Jason Baumgartner, Hari
Mony, and Pradeep Kumar Nalla. GLA: Gate-level abstraction revisited. In
Proceedings of the 16th Design, Automation and Test in Europe (DATE), 2013.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik. Chaff: Engineering an efficient sat solver. In Proceedings of the
38th Annual Design Automation Conference (DAC), 2001.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual
Symposium on Foundations of Computer Science (SFCS), 1977.

BIBLIOGRAPHY 109

[SS96] João P. Marques Silva and Karem A. Sakallah. Grasp —a new search algorithm
for satisfiability. In Proceedings of the 1996 IEEE/ACM International Conference
on Computer-aided Design (ICCAD), 1996.

[SSM+12] Rohit Sinha, Cynthia Sturton, Petros Maniatis, Sanjit A. Seshia, and David
Wagner. Verification with small and short worlds. In Proceedings of the 12th
Formal Methods in Computer-Aided Design (FMCAD), 2012.

[SSS00] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. Checking safety proper-
ties using induction and a sat-solver. In Proceedings of the Third International
Conference on Formal Methods in Computer-Aided Design (FMCAD), 2000.

[ucl] UCLID. uclid.eecs.berkeley.edu.
[VGS12] Yakir Vizel, Orna Grumberg, and Sharon Shoham. Lazy abstraction and sat-

based reachability in hardware model checking. In Proceedings of the 12th Formal
Methods in Computer-Aided Design (FMCAD), 2012.

[WJK+01] Dong Wang, Pei-Hsin Jiang, James Kukula, Yunshan Zhu, Tony Ma, and Robert
Damiano. Formal property verification by abstraction refinement with formal,
simulation and hybrid engines. In Proceedings of the 38th Annual Design Au-
tomation Conference (DAC), 2001.

[WK13] Tobias Welp and Andreas Kuehlmann. QF BV model checking with property
directed reachability. In Proceedings of the 16th Design, Automation and Test in
Europe (DATE), 2013.

[WK14] Tobias Welp and Andreas Kuehlmann. Property directed reachability for qf_bv
with mixed type atomic reasoning units. In Proceedings of the 19th Asia and
South Pacific Design Automation Conference (ASP-DAC), 2014.

	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Word-level Circuits
	Registers
	Word-level Circuits as Directed Acyclic Graphs
	Bit-blasting
	Word-level Circuits as Finite State Machines

	The Model Checking Problem
	Algorithms for Model Checking Problems
	Counterexample-guided Abstraction Refinement
	Challenges and Motivations
	Contributions
	Organization

	Refinement Strategies for Word-level Abstraction
	Introduction
	Preliminaries
	Word-level Localization Abstraction
	Counterexamples
	Word-level CEGAR
	The Refinement Problem
	Ternary Simulation and X-value Counterexamples (XCEX)
	Assumption Interfaces in SAT Solvers

	Simulation-based Refinement (SBR)
	Proof-based Refinement (PBR)
	Variants of Proof-based Refinement

	Maximum Fan-out Free Cone (MFFC) Refinement
	Comparison of Refinement Strategies
	Related Work
	Experimental Results
	Conclusion

	Enhancing PDR with Localization Abstraction
	Introduction
	Background
	Property Directed Reachability (PDR)
	The PDR Trace
	Overview of PDR

	The Algorithm: PDRA
	Comparison with Previous Work
	Experimental Results
	Conclusion

	Property Directed Reachability with Word-Level Abstraction
	Introduction
	Preliminaries
	The UMC problem
	Property Directed Reachability
	Word-level Abstraction
	Simple CEGAR (S-CEGAR)

	PDR with Word-Level Abstraction
	The Algorithm
	Analysis of PDR-WLA

	Refinement
	Related Work
	Word-level Abstraction and Model Checking
	PDR with Abstraction

	Experimental Results
	Conclusion

	Uninterpreted Function Abstraction and Refinement
	Introduction
	Bit-Vectors and UF Constraints
	The MC Problem
	Word-level Signals (Bit-Vectors)
	Basics of Word-level Operators
	Functions of Word-level Operators
	Generic Operators
	Uninterpreted Function (UF) Constraints

	UFAR
	The Algorithm
	Exposing Generic Operators
	Creating Abstractions
	Model Checking Using Concurrency
	Refining UF Pairs
	Refining Black Operators
	Analysis of UFAR

	Improvement Techniques
	Minimizing Counterexamples
	Performing Random Simulation

	The UFAR Framework
	Bit-blasting WLC with Verilog Semantics
	Creating Abstractions WLCa

	Related Work
	Experimental Results
	Conclusion

	Conclusions
	Summary
	Future Work

	Bibliography

