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Striated Regularity of Vorticity in a Bounded Domain
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Dr. James P. Kelliher, Chairperson

The two-dimensional Euler equations describe the velocity of an inviscid incom-

pressible fluid. A classical vortex patch is a solution to the two-dimensional Euler equations

whose initial vorticity is the indicator function of a bounded simply connected open region

in the plane. Properties of the flow maps and vorticity transport in two dimensions ensure

that the vorticity at any time will be the indicator function of the the image of the region,

which remains simply connected and bounded. In 1991, Chemin proved in [Che91] that,

in the whole plane, a vortex patch with an initially Hölder continuous boundary maintains

that boundary regularity for all time. A few years later, Serfati published an alternate

strategy in [Ser94b] that simplifies certain aspects of Chemin’s argument. Here, we prove

that, for 0 < α < 1, C1,α regularity of a vortex patch boundary persists for all time for

fluids in a simply connected bounded domain that itself has a smooth boundary, as long

as the patch is initially not touching the boundary. The proof reproduces a 1998 result

of Depauw ([Dep98]) using simpler methods inspired by Serfati’s approach, which is more

easily adaptable to a bounded domain than the methods of Chemin and Depauw.
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Chapter 1

Introduction

1.1 The Two-Dimensional Euler Equations

The two-dimensional Euler equations describe the motion of an inviscid incom-

pressible fluid in the whole plane. If u(t, x) and p(t, x) represent the fluid velocity and

pressure, respectively, at time t ≥ 0 and position x ∈ R2, then the motion satisfies the

system of equations



∂tu+ u · ∇u+∇p = 0,

div u = 0,

u(0, ·) = u0.

(1.1)

(1.2)

(1.3)

A (classical) vortex patch is a solution (u, p) to this system whose initial vorticity ω0 :=

curlu0 is the indicator function of an open region U in the plane; that is, ω0(x) = 1U (x).

In a slight abuse of terminology, we also refer to the region U as “the initial vortex patch.”
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In terms of the vorticity-stream formulation of the equations (Proposition 2.1 of

[MB02]), the initial value problem in the full plane can be written as



∂tω + u · ∇ω = 0,

ω(0, ·) = ω0 := 1U ,

u(t, ·) = [K ∗ ω] (t, ·).

(1.4)

(1.5)

(1.6)

Here, (1.4) is obtained by taking the curl of the momentum conservation equation (1.1),

(1.5) is the initial condition, and (1.6) expresses that the velocity u(t, x) can be recovered

from the vorticity ω(t, x) via the Biot-Savart law, where K is the Biot-Savart kernel in R2.

The Biot-Savart law will be discussed in detail in Section 2.5.

Associated to the fluid motion is a flow map, which we denote by η(t, x), that

describes the particle trajectories for each fixed value of x. If x represents the position of a

fluid particle at time t = 0, then η(t, x) is the position of that particle after flowing in the

fluid velocity field for time t. The flow map can be defined as the solution to the ordinary

differential equation 
∂tη(t, x) = u(t, η(t, x)),

η(0, x) = x.

(1.7)

Since (1.4) dictates that the vorticity is passively transported and since the flow maps are

continuous (see Chapter 2 for more details), an initially connected vortex patch will remain

a connected vortex patch as time increases. Though the divergence-free condition (1.2)

ensures that the patch will have constant area for all time, some of its geometric properties,

such as the length and curvature of its boundary, may grow rapidly as the patch deforms

over time.
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Vortex patches have been studied going back to the 19th century. The most well-

known example of a non-trivial vortex patch is the Kirchoff ellipse, first described in 1876

in [Kir76]. In this case, the vortex patch is initially a regular ellipse in the plane. As

time increases, the ellipse maintains its shape but rotates at a constant angular velocity

depending on the relative lengths of the axes of the ellipse.

1.2 The Vortex Patch Problem in the Plane

Unique weak solutions to the vortex patch initial value problem described by (1.4)-

(1.6) have been known to exist since Yudovich’s 1963 work [Yud63], since ω0 = 1U is in

L1 ∩ L∞(R2). Weak solutions will be discussed in Section 2.4. A problem of much interest

throughout the 1980s and early 1990s was: if the boundary of the vortex patch is initially

smooth, does it stay smooth for all time?

Not much progress was made in this direction until 1979, when Zabusky, Hughes,

and Roberts derived the contour dynamics equation (CDE) in [ZHR79]. Their idea was

that, since the vortex patch is completely determined by its boundary and because points

on the boundary must remain on the boundary as they flow, the evolution of the patch

could be described by tracking the boundary alone; the CDE parametrizes the boundary

of the vortex patch at time t. Using the notation of Section 8.3 of [MB02], if such a

parametrization is represented by z(t, α) = η(t, z(0, α)), so that a parametrization of the

intial patch boundary is transported by the flow, and if the boundary is at least piecewise
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C1, the motion of the boundary of the patch satisfies the CDE
dz

dt
(t, α) = −ω0

2π

∫ 2π

0
ln
∣∣z(t, α)− z(t, α′)

∣∣ ∂αz(t, α′) dα′,

z(t, α)|t=0 = z0(α).

(1.8)

This reduction in complexity from two dimensions to one dimension allowed com-

puter models and simulations to come into play. In the 1980s, vortex patch dynamics

became an active area of research in computational fluid dynamics with heated competi-

tion to come up with the most efficient and accurate algorithms to model the vortex patch

evolution and provide evidence of either the persistence of the patch boundary’s regularity

or of the formation of singularities on the boundary.

In 1986, Majda conjectured in [Maj86], based on a simplified mathematical model

and the contour dynamics equation, that the boundary of a vortex patch can in fact lose

smoothness in finite time. He and Constantin had shown in [CLM85] that solutions to

a certain scalar equation involving the Hilbert transform could blow up in finite time.

His conjecture was based on analytic similarities he had observed between these solutions

and solutions to the CDE. Majda’s conjecture was supported by the 1989 computational

results of Buttke in [But89], which were obtained using Buttke’s fast adaptive vortex method

developed in [But90]. His calculations showed evidence of the formation of a sharp corner

on the boundaries of two initially identical circular vortex patches separated by half their

common radius in finite time. This result was questioned later in 1989 by Dritschel and

McIntyre in [DM90], where they suggested that Buttke’s results were an artifact of his

method’s use of square-shaped spatial elements to approximate the patches and provided

their own computational evidence that the boundaries actually do stay smooth well past
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the time at which singularities were claimed to emerge. This matter was debated for several

more years before a mathematical proof finally came out.

1.3 The Strategies of Chemin and Bertozzi & Constantin

The question of whether a smooth vortex patch boundary in the whole plane

remains smooth for all time was answered in the affirmative in the early 1990s by Chemin in

[Che91, Che93]. This was also proved independently in [BC93] by Bertozzi and Constantin.

Bertozzi proved in her doctoral dissertation ([Ber91]) that there exist local-in-

time C1,γ (0 < γ < 1) solutions to the CDE, proving that Hölder regularity of vortex

patch boundaries is maintained for some finite time, and gave sufficient conditions for such

a solution to be continued for all time. In [BC93], Bertozzi and Constantin expanded that

work and published a proof of global-in-time existence of C1,γ solutions to the CDE 1. While

their proof also affirmatively answered the vortex patch boundary regularity question, their

strategy was less generalizable than Chemin’s due to their reliance on the CDE. However,

the approaches had a unifying principle behind them: in both cases, the regularity of the

boundary was measured by a passively-transported function (or family of functions) that

possessed higher regularity than the vorticity itself.

We will now briefly describe both approaches. Before discussing Chemin’s strategy,

it can be helpful to first examine what Bertozzi and Constantin did since their framework is

that of a classical vortex patch and so may help build intuition for the more general problem

that Chemin addressed. Bertozzi and Constantin’s strategy was to link the regularity of the

1Bertozzi also showed in [Ber91] how the result for C1,γ boundaries naturally extends to Ck,γ boundaries
for any positive integer k, and, by induction, for C∞ = ∩∞

k=1C
k,γ boundaries.
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vortex patch boundary to several quantities associated with the CDE (1.8) developed by

Zabusky, Hughes, and Roberts in [ZHR79] that parametrized the boundary of the patch at

any time t. They then proved global-in-time bounds on these quantities in terms of the initial

data through standard singular integral estimation techniques combined with a technical

geometric argument that was used to bound the most difficult piece of a certain integral.

By representing the boundary of the vortex patch U0 at time t = 0 by ∂U0 = φ−1
0 (0), where

φ0 is a C1,α (α ∈ (0, 1)) scalar function, the boundary of the vortex patch ∂Ut at any time t

could then be represented by letting φ0 be passively transported by the flow: ∂Ut = φ−1
t (0),

where φt(η(t, x)) := φ0(x) and η is the flow map for the velocity u defined by (1.7).

The quantities estimated were ∥∇u∥L∞ , ∥∇φt∥L∞ , ∥∇φt∥Ċα , and ∥∇φt∥inf. The

measurements being used here are the α-Hölder seminorm

∥f∥Ċα := sup
x ̸=y

f(x)− f(y)

|x− y|α

and the boundary infimum ∥∇φt∥inf defined as the infimum of ∇φt along the boundary ∂Ut

of the vortex patch at time t. They obtained an initial estimate of ∥∇u∥L∞ from the Biot-

Savart Law (Lemma 2.5.1) and then a chain of subsequent estimates was eventually closed

with Grönwall’s Lemma. The fact that these bounds give global regularity of the vortex

patch boundary follows from standard ordinary differential equation theory; the details can

be found, for instance, in Chapter 8 of [MB02].

A fundamental idea behind Bertozzi and Constantin’s approach is that the regu-

larity of the boundary is encapsulated by various measurements of the vector field ∇⊥φt,

where the perpendicular gradient operator is defined as ∇⊥ := (−∂2, ∂1). Because the vor-

tex patch boundary at time t is a level set of φt, the vector field ∇⊥φt is tangential to the
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boundary of the patch so it can be used to describe the manner in which the boundary is

deforming as the fluid flows over time. Once one shows that φt ∈ C1,α, its perpendicular

gradient ∇⊥φt ∈ Cα and so has more smoothness than the vorticity ω, which is only in

L∞. It is this ability to describe the vortex patch boundary using a higher-regularity tool

than the vorticity itself that makes the proof possible.

Chemin proved his more general result (in 2D, but later extended to higher di-

mensions by Danchin in [Dan99]) by showing that certain quantities related to a sufficient

family of vector fields Y remain bounded for all time. Sufficient families will be discussed

in more detail below in (1.9). Chemin proved that if the initial vorticity is integrable and

essentially bounded, and if the product of the sufficient family and the initial vorticity has

its divergence in a negative Hölder space (Cα−1, defined in Section 2.1), then the divergence

of the product remains in Cα−1 for all time. If you apply Chemin’s result to the perpen-

dicular gradient of the scalar functions φt that define the boundary of a vortex patch as in

Bertozzi and Constantin’s approach, then the bounds obtained in [BC93] follow, solving the

classical vortex patch problem. However, Chemin’s result can also be applied to more gen-

eral problems such as patches of non-constant vorticity and even arbitrary level sets of any

initial vorticity. While his proof relies heavily on the powerful machinery of paradifferential

calculus, the essence of his strategy also comes down to proving global-in-time bounds on

quantities mathematically similar to those used by Bertozzi and Constantin.

Roughly speaking, Chemin’s sufficient family Y consists of vector fields with Cα-

regularity in the tangential direction to level sets of the vorticity. The quantities he bounded

were ∥∇u∥L∞ , ∥Y∥Cα , and ∥Y · ∇ω∥Cα (see Section 2.1 for an explanation of the sufficient
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family notation)2. Recall that the norm ∥·∥Cα is defined as the sum of the L∞ norm and the

α-Hölder seminorm. As with Bertozzi and Constantin’s proof, the bounds were obtained

with a series of estimates that were closed with Grönwall’s Lemma. The difference lies in

the tools used to obtain the bounds. Chemin was able to obtain a more general result

because his methods did not rely on the contour dynamics equation.

1.4 Serfati’s Strategy

In 1994, Serfati published another approach in [Ser94b]. Much of his short proof

broadly mirrored the ideas of Chemin’s 1993 paper [Che93], but his approach was markedly

different in how it obtained a key estimate on ∥∇u∥L∞ that was used to close the series

of estimates. This estimate was obtained by making clever use of a linear algebra lemma,

presented in various forms in [Ser92, Ser94a, Ser94b], that bounds the Euclidean norm of a

symmetric matrix in terms of its trace and an arbitrary symmetric matrix. In Section 3.7,

we give the form of the lemma that will be needed as Lemma 3.7.1, which is based on the

more general Lemma 5.1 of [BK15].

The various approaches of Chemin, Bertozzi and Constantin, and Serfati have some

unifying principles underlying them. The core idea of each strategy is to first prove various

transport estimates for the quantities of interest: for Chemin’s approach, the sufficient

family of vector fields Y; for Bertozzi and Constantin’s approach, ∇⊥φ; and for Serfati’s

approach, a single3 vector field Y . The second step is to prove key estimates on ∥∇u(t, ·)∥L∞ .

2Writing Chemin’s assumption as Y · ∇ω ∈ Cα is slightly misleading since we only assume ω ∈ L∞.
Because Chemin also assumed that divY = 0 in [Che91], it can be interpreted as

Y · ∇ω = div (ωY)− ω divY = div (ωY) .
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The third step is to close the chain of estimates with Grönwall’s Lemma (Lemma 2.2.7).

It is in the second step that the approaches diverge and where the primary difficulties lie.

Indeed, Bertozzi and Constantin state in [BC93] that the entire result is “mainly due”

to the properties (their so-called “kinematic reasons”) of ∥∇u(t, ·)∥L∞ . Chemin used the

tools of paradifferential calculus to obtain his bounds while Bertozzi and Constantin used a

geometric argument about the Lebesgue measure of a radial set used in a key integral that

they called the Geometric Lemma in [BC93]; Serfati obtained the necessary bound using

his linear algebra lemma.

Recently, Bae and Kelliher adopted and amplified the results of Chemin in [BK15]

and [BK21] using Serfati’s approach to obtain the critical estimates on ∥∇u∥L∞ . They also

adopted some of Danchin’s ideas from [Dan99] to extend the results to higher dimensions.

The proof presented here is an adaptation of their work to the 2D bounded domain setting.

By domain, we mean a connected open set.

1.5 The Vortex Patch Problem in a Bounded Domain

The Euler equations can be studied in a bounded domain by the addition of the

boundary condition u · n̂ = 0, where n̂ is the outward unit normal vector on the boundary

of the domain. This merely states that no fluid flows in or out of the domain through the

boundary. Yudovich’s seminal work [Yud63] (see also section 8.2 of [MB02]) proved that

there exist unique weak solutions (see Definition 2.4.1) to the vorticity-stream formulation

3Serfati’s use of a single vector field limited his result’s applicability. The vector field was meant to track
the areas along the patch boundary where the vorticity was discontinuous, similar to ∇⊥φ from [BC93],
but if the vorticity was more complicated than a vortex patch, such as “layers” of vorticity, then Serfati’s
result could not be applied while Chemin’s could. In the end, the main result presented here follows Serfati’s
approach but uses Chemin’s sufficient families.
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of the two-dimensional Euler equations in a bounded domain if the domain has a C∞

boundary and the initial data ω0 ∈ L∞. In [GVL13], Gérard-Varet and Lecave showed that

the smoothness assumption on the boundary of the domain could be weakened to C1,1.

However, these existence results do not address the regularity of a vortex patch boundary.

The presence of a domain boundary complicates the vortex patch problem, mostly because

of the fact that the Biot-Savart kernel in a bounded domain has an extra term that, while

well-behaved in the interior of the domain, is singular along its boundary.

Several results have shown that under certain conditions the vorticity can become

irregular in the presence of a boundary. In [KZ14], Kiselev and Zlatos provided an example

of a bounded domain, smooth except at two interior cusps, on which there exist smooth

classical solutions to the two-dimensional Euler equations that blowup in finite time in

the sense that the vorticity loses continuity. In [CJM13], Crosby, Johnson, and Morrison

used numerical techniques to investigate the behavior of vortex patches in the presence

of various types of boundaries and provided evidence that singularities can form if the

domain’s boundary has a corner, such as a square domain. However, using methods similar

to Chemin’s approach, Depauw proved in [Dep98] the persistence of boundary regularity

of a vortex patch in a bounded simply connected domain with C∞ boundary as long the

initial vortex patch is not touching the boundary. We note that Depauw was later able to

obtain local-in-time boundary regularity for vortex patches that are initially tangent to the

boundary of the domain in [Dep99], but not global-in-time regularity.

Our main theorem, Theorem 1.6.1, reproduces Depauw’s regularity result from

[Dep98] using methods more closely mirroring Serfati’s approach, as developed by Bae and
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Kelliher in [BK15, BK21]. Serfati’s approach adapts nicely to the bounded domain problem

since many of the arguments can be adapted by relatively simple calculations bounding

the extra terms arising from the corrector term in the Biot-Savart kernel for a bounded

domain. Though it is not the first proof that solves the bounded domain vortex patch

problem specifically, the approach is useful because it yields a more flexible result that can

be applied to a wider variety of problems, which will be discussed in Chapter 4.

1.6 The Main Result

The result is achieved using Chemin’s idea of a sufficient family of vector fields.

This is a family Y =
(
Y (λ)

)
λ∈Λ of vector fields indexed by Λ that, roughly speaking, are

used to measure the directions in which the vorticity is well-behaved in the sense that the

vorticity is Hölder continuous in directions tangent to Y. The required properties of this

family are that they never simultaneously vanish at any point and that the vector fields

and their divergences are sufficiently smooth. More precisely, for an open set Ω in R2, we

define

IΩ(Y) := inf
x∈Ω

sup
λ∈Λ

∣∣∣Y (λ)
∣∣∣ .

Following the example of [BK15], we call Y a sufficient Cα(Ω) family of vector fields on an

open set Ω when

Y ∈ Cα(Ω), divY ∈ Cα(Ω), and IΩ (Y) > 0. (1.9)

The notation used in the first two conditions is defined in Section 2.1 to mean that Y (λ)

and div Y (λ) are in Cα(Ω) for all λ ∈ Λ. We note that this definition is a modification of

that used by Chemin in [Che91, Che93].
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We would like to have a meaningful way for a sufficient family to evolve from time

0 to an arbitrary time t and remain a sufficient family. To do so, we use the flow maps

η(t, x) defined in (1.7). For any fixed time t, the flow maps ηt := η(t, ·) : Ω → Ω are

diffeomorphisms, so they give rise to unique pushforwards of vector fields by ηt ([Lee13,

Chapter 3]). Let Y0 be a vector field on R2 at time t = 0. We define the pushforward of Y0

to time t to be

Y (t, η(t, x)) := (Y0(x) · ∇) η(t, x). (1.10)

This is simply the Jacobian of the diffeomorphism η(t, ·) multiplied by Y0. By relabeling

x = η−1(t, x̃), we have the following equivalent definition that will be useful:

Y (t, x) :=
(
Y0
(
η−1(t, x)

)
· ∇
)
η
(
t, η−1(t, x)

)
. (1.11)

Part of Chemin’s strategy was to show that, for all time, the pushforward Y(t) of a sufficient

family Y0 at time t = 0 remains a sufficient family, where Y(t) is defined by (2.6) as the

family of pushforwards of members of Y0.

With these definitions, we can now state the main result:

Theorem 1.6.1 (Main Result) Let Ω be a bounded simply connected domain in R2 with

a C∞ boundary. Let Y0 be a sufficient Cα(Ω) family of vector fields on Ω. Suppose that

ω0 = curlu0 ∈ L∞(Ω), dist (suppω0, ∂Ω) > 0, and that Y0 · ∇u0 ∈ Cα(Ω). Then for all

time T > 0, there exists a unique solution to the Euler equations (1.1) through (1.3) with
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Y ·∇u ∈ L∞ (0, T ;Cα(Ω)). Furthermore, the following estimates hold for all time t ∈ [0, T ]:

∥∇u(t, ·)∥L∞(Ω) ≤ CeCt, (1.12)

∥Y(t, ·)∥Cα(Ω) ≤ CeCeCt
, (1.13)

∥divY(t, ·)∥Cα(Ω) ≤ CeCeCt
, (1.14)

∥div (ωY) (t, ·)∥Cα−1(Ω) ≤ CeCeCt
, (1.15)

∥Y · ∇u(t, ·)∥Cα(Ω) ≤ CeCeCt
, (1.16)

∥∇η(t, ·)∥L∞(Ω) ,
∥∥∇η−1(t, ·)

∥∥
L∞(Ω)

≤ CeCeCt
, (1.17)

IΩ (Y) (t) ≥ IΩ (Y0) e
−CeCt

, (1.18)

where the constant C depends only on Ω, α, u0, Y0, and T .

Here, L∞ (0, T ;Cα(Ω)) is the space of functions f : [0, T ] → Cα(Ω) such that the supremum

over t ∈ [0, T ] of ∥f(t)∥Cα(Ω) is finite. We note that the inclusion Y ·∇u ∈ L∞ (0, T ;Cα(Ω))

is implied by the estimate (1.16).

For the majority of the proof, we assume that Ω is the open unit disk B(0, 1).

The fact that the theorem can then be extended to any bounded simply connected domain

with a C∞ boundary follows primarily because the properties of the Biot-Savart kernel are

not changed significantly between the disk and such a domain. The details of this will be

discussed in Section 3.6.

The hypothesis that the initial vorticity ω0 is compactly supported in Ω also ap-

pears in Depauw’s result from [Dep98]. We make this assumption because the Biot-Savart

kernelKΩ for a bounded domain is singular along the boundary. This makes it difficult to ob-

tain an initial estimate on the quantity ∥∇u(t, ·)∥L∞ , which we derive from the Biot-Savart
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law that recovers the velocity field from the vorticity through u(t, x) =
∫
ΩKΩ(x, y)ω(t, y)dy.

The Biot-Savart Laws in both the full plane and in the unit disk are discussed in Section 2.5.

The initial estimate of ∥∇u(t, ·)∥L∞ is given by (2.21) in Section 2.6. If the vorticity is non-

zero on the boundary of the domain, the bound (2.21) could diverge. However, if the initial

vorticity ω0 is supported away from the boundary, then properties of the flow map guaran-

tee that the vorticity ω(t, x) at any time t will also be supported away from the boundary,

allowing an estimate to be obtained.

The rest of this work will now proceed as follows. In Chapter 2, we set out

the notation, conventions, and definitions used in this work, review much of the necessary

background material, and obtain an initial estimate on the gradient of the velocity u through

the Biot-Savart law. In Chapter 3, we present the proof of Theorem 1.6.1. In Chapter 4,

we present some sets of initial data satisfying the hypotheses of Theorem 1.6.1, including

showing how Theorem 1.6.1 proves that classical vortex patches in a simply connected

bounded domain maintain their boundary regularity assuming that the initial vorticity is

zero in a neighborhood of the domain’s boundary. We then discuss some possible avenues of

future work to expand the results presented here to more general situations. The appendix

lists some fundamental results from the theory of ordinary differential equations that are

used throughout this work along with the proof of a lemma from Chapter 3.
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Chapter 2

Preliminaries

2.1 Notation, Conventions, and Definitions

We now fix the notation that will be used throughout. A point x ∈ R2 is repre-

sented by the ordered pair (x1, x2). For a vector u, we write ui to denote the ith component.

For a matrix M , we write M i
j to denote the entry in the ith row and jth column and de-

note the transpose of M by MT . Subscripts will be used to denote partial derivatives with

respect to spatial variables. For example, ∂2f := ∂x2f , and ∂1u
2 represents the derivative

of the second component of the vector u with respect to the first spatial variable x1.

We define ∇u, the Jacobian matrix of u, to be the 2× 2 matrix with entries given

by

(∇u)ij = ∂ju
i.

For a point x = (x1, x2), we write x
⊥ to mean (−x2, x1). We will also use the perpendicular

gradient operator, defined by ∇⊥ = (−∂2, ∂1). For u = (u1, u2), we will use the scalar curl

15



defined by curlu := ∂1u
2−∂2u1. This is simply the third component of the standard vector

curl if we view u as three-dimensional by u = (u1, u2, 0). We follow the common convention

that gradient and divergence operators apply only to the spatial variables (and not the time

variable). We will use x subscripts when we want to explicitly note that the operations are

with respect to the x variable only, such as ∇x and divx.

We will use 1U to denote the indicator function of U , that is, the function that is

identically 1 on U and zero elsewhere. We will use B(x, r) to denote the open disk centered

at x ∈ R2 of radius r > 0. For U ⊆ R2, a measurable integral kernel L : U × U → R, and a

measurable function f : U → R, we define the integral transform

L[f ](x) := p. v.

∫
U
L(x, y)f(y) dy := lim

r→0+

∫
U\B(x,r)

L(x, y)f(y) dy, (2.1)

provided the limit exists.

We will write C(p1, . . . , pn) to denote that a constant depends only on the param-

eters p1, . . . , pn. We follow the convention that such constants can vary from expression to

expression and even between two occurrences within the same expression.

Throughout this document, we fix the Hölder exponent α ∈ (0, 1). We will write

|v| for the Euclidean norm of v =
(
v1, v2

)
defined by |v|2 =

(
v1
)2

+
(
v2
)2
. For a 2 × 2

matrix M , we will use the operator norm

|M | := max
|v|=1

|Mv| .

If X is a function space, we define

∥v∥X := ∥|v|∥X , ∥M∥X := ∥|M |∥X .
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We will now define the various function spaces that we will be using. First, for

any function f ∈ L1 ∩ L∞, we define the norm

∥f∥L1∩L∞ := ∥f∥L1 + ∥f∥L∞ . (2.2)

Note that, by Lebesgue space interpolation, for any p ∈ (1,∞), we have L1∩L∞ ⊆ Lp with

∥f∥Lp ≤ ∥f∥
1
p

L1 ∥f∥
1− 1

p

L∞ .

Definition 2.1.1 (Hölder spaces) Let α ∈ (0, 1) and U ⊆ R2 be open. We have the

following standard ([Eva10, Section 5.1]) Hölder α-seminorm and α-norm, respectively, for

a function f defined on U1:

∥f∥Ċα(U) = sup
x,y∈U, x̸=y

|f(x)− f(y)|
|x− y|α

,

∥f∥Cα(U) = ∥f∥L∞(U) + ∥f∥Ċα(U) .

The Hölder space Cα(U) is the space of all functions f with ∥f∥Cα(U) <∞.

For k ∈ Z+ and a k-times continuously differentiable function f , we define

∥f∥Ck,α(U) =
∑
|β|≤k

∥∥∥Dβf
∥∥∥
L∞(U)

+
∑
|β|=k

∥∥∥Dβf
∥∥∥
Cα(U)

and denote by Ck,α(U) the space of all such functions with ∥f∥Ck,α(U) < ∞. The space

Ck,α(U) is also sometimes written as Ck+α(U).

We define the negative Hölder space Cα−1(U) by

Cα−1(U) = {f + div v : f, v ∈ Cα(U)} (2.3)

and use the norm

∥h∥Cα−1(U) = inf{∥f∥Cα(U) + ∥v∥Cα(U) : h = f + div v; f, v ∈ Cα(U)}, (2.4)

1Note that the functions in Cα(U) and Ck,α(U) are uniformly continuous and so can be uniquely extended
to the closure U .
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noting that the divergence above is interpreted in the distributional sense since a function

v ∈ Cα is not necessarily differentiable.

Note that, by letting f = 0 and h = div v in the above definition of Cα−1, we immediately

get the inequality

∥div v∥Cα−1(U) ≤ ∥v∥Cα(U) . (2.5)

Another useful immediate observation is that, for any weakly differentiable function u ∈

Cα(U), each of its (distributional) partial derivatives satisfy ∂iu ∈ Cα−1.

Definition 2.1.2 (Sobolev spaces) Let k be a non-negative integer, 1 ≤ p ≤ ∞, and

U ⊆ R2 be open. The Sobolev space W k,p(U) is defined as the set of all locally integrable

functions f such that, for each multi-index α with |α| ≤ k, the weak derivative Dαf exists

and is a member of Lp(U). We have the standard ([Eva10, Section 5.2]) Sobolev space

norms

∥f∥Wk,p(U) :=


(∑

|α|≤k

∫
U |Dαf |p dx

)1/p
for 1 ≤ p <∞,

∑
|α|≤k ∥Dαf∥L∞(U) for p = ∞.

For p = 2, we also use the notation Hk(U) :=W k,2(U).

We defined sufficient families of vector fields in (1.9). We will repeat the definition

here for completeness and fix some notation that will be used when working with such

families. Let Y =
(
Y (λ)

)
λ∈Λ be a family of vector fields on Ω indexed by Λ. For any

function f on vector fields (such as div), we define f(Y) to be the family of images under

f of the members of Y:

f(Y) :=
(
f
(
Y (λ)

))
λ∈Λ

.
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For any Banach space X, we define

∥f(Y)∥X := sup
λ∈Λ

∥∥∥f (Y (λ)
)∥∥∥

X
.

When ∥f (Y)∥X <∞, we say that f (Y) ∈ X. We also define

I(Y) := inf
x∈R2

sup
λ∈Λ

∣∣∣Y (λ)
∣∣∣ .

We define the pushforward of Y to be

Y(t, ·) =
(
Y (λ)(t, ·)

)
λ∈Λ

, (2.6)

where Y (λ) (t, η(t, x)) :=
(
Y

(λ)
0 (x) · ∇

)
η(t, x) as in (1.10).

We will use the following standard mollifiers:

Definition 2.1.3 (Mollifiers) Let ρ ∈ C∞
c (R2) with ρ ≥ 0 have ∥ρ∥L1 = 1 and be radially

symmetric. For example, a multiple of ρ(x) = e
− 1

1−|x|2 , extended by zero outside the unit

disk, is suitable. For n ∈ N, define

ρn(x) = n2ρ(nx).

Note that, for all n ∈ N, ρn is supported in B(0, 1/n) and ∥ρn∥L1 = 1.

We take a radially symmetric function a ∈ C∞
c (R2) taking values in [0, 1] with

a = 1 on B(0, 1) and a = 0 on B(0, 2)c. For r > 0, we define the rescaled cutoff function

ar(x) = a(x/r). (2.7)

Note that this gives the useful properties that ar = 1 on B(0, r) and ar = 0 outside of

B(0, 2r).
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We will be using two extension operators taken from [Ste70]. The first one extends

functions from Sobolev spaces on Ω to the corresponding Sobolev space on R2, and the

second one extends functions from Hölder spaces on Ω to the corresponding Hölder space

on R2. Their constructions can be found in Chapter VI of [Ste70] as Theorem 5 and Theorem

3, respectively. See also [Eva10, Section 5.4].

Lemma 2.1.4 (Stein Sobolev space extension) Let Ω be a bounded open set in Rn

with C1 boundary. There exists a bounded linear extension operator E, which we call the

Stein extension operator, so that for any 1 ≤ p ≤ ∞ and any non-negative integer k,

E :W k,p(Ω) −→W k,p(R2) and has the following properties:

1. (Ef)
∣∣
Ω
= f ,

2. ∥Ef∥Wk,p(R2) ≤ C ∥f∥Wk,p(Ω) with the constant C depending only on p, k, and Ω.

We note the remarkable property that the above Stein extension operator itself is inde-

pendent of k and p, depending only on Ω, and simultaneously extends all functions in any

Sobolev space on Ω to R2.

Lemma 2.1.5 (Stein Hölder space extension) Let Ω be a bounded open set in Rn with

C1 boundary. There exists a bounded linear extension operator EH , which we also call the

Stein extension operator, so that for any 0 < α ≤ 1, EH : Cα(Ω) −→ Cα(R2) and has the

following properties:

1. (EHf)
∣∣
Ω
= f ,

2. ∥EHf∥Cα(R2) ≤ C ∥f∥Cα(Ω) with the constant C depending only on α and Ω.
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2.2 Useful Inequalities

We begin with two well-known inequalities on Sobolev spaces. They can be found,

for instance, as Theorem 3 in [Eva10, Section 5.6] and Theorem 1 in [Eva10, Section 5.8],

respectively.

Lemma 2.2.1 (Poincaré Inequality) Let Ω be a bounded open subset of Rn. Suppose

that 1 ≤ p ≤ ∞ and that f ∈W 1,p(Ω) is compactly supported. Then there exists a constant

C, depending only on n, p, and Ω, such that

∥f∥Lp(Ω) ≤ C ∥∇f∥Lp(Ω) .

Lemma 2.2.2 (Poincaré-Wirtinger Inequality) Let Ω be a bounded, connected, open

subset of Rn with C1 boundary. Denote the average value of a function f on Ω by f̄ =

|Ω|−1 ∫
Ω f(y) dy. Suppose that 1 ≤ p ≤ ∞. Then there exists a constant C, depending only

on n, p, and Ω, such that ∥∥f − f̄
∥∥
Lp(Ω)

≤ C ∥∇f∥Lp(Ω)

for each function f ∈W 1,p(Ω). Note that, if f̄ = 0, then we have

∥f∥Lp(Ω) ≤ C ∥∇f∥Lp(Ω) .

In light of the conclusion of Lemma 2.2.2, the following result is useful. We will

apply this to the fluid velocity field in Section 2.7.

Lemma 2.2.3 Let Ω be as in Lemma 2.2.2 and let f ∈ H1(Ω) be a vector field with

div f = 0 and f · n̂ = 0 on ∂Ω. Then
∫
Ω f

i dx = 0 for i = 1, 2. In particular, f̄ = 0.
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Proof. Using integration by parts, we can directly calculate that

∫
Ω
f i dx =

∫
Ω
f · ∇xi dx = −

∫
Ω
(div f)xi dx+

∫
∂Ω

(f · n̂)xi dx = 0,

where the last two integrals are zero by hypothesis. We note that the boundary integral

is well-defined since, for f ∈ H1(U), the trace Tf of f along ∂U is in H1/2(U) ([Leo09,

Section 15.3]). Since the average value of a vector field can be computed component-wise,

the average value of f is zero in Ω.

We next give a useful estimate of the Lipschitz constant of a function in terms of

its gradient.

Lemma 2.2.4 If f is differentiable almost everywhere on a convex domain Ω ⊆ Rn, then

for all x ̸= y ∈ Ω,

|f(x)− f(y)|
|x− y|

≤ ∥∇f∥L∞(Ω) .

Proof. For any x ̸= y, the Fundamental Theorem of Calculus and the Chain Rule give that

f(x)− f(y) =

∫ 1

0

d

ds
f(sx+ (1− s)y) ds

=

∫ 1

0
∇f(sx+ (1− s)y) · (x− y) ds.

Thus, we have that

|f(x)− f(y)| ≤ ∥∇f∥L∞(Ω) |x− y|
∫ 1

0
ds

so that the claim now follows.

Note that Lemma 2.2.4 requires the domain to be convex so that the expression

f(sx + (1 − s)y) used in the proof is well-defined. However, if the domain is bounded, we

can obtain the following analogous result.
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Lemma 2.2.5 If Ω ⊆ Rn is a bounded domain with C1 boundary and f ∈ W 1,∞(Ω), then

for all x ̸= y ∈ Ω,

|f(x)− f(y)|
|x− y|

≤ C(Ω) ∥∇f∥L∞(Ω) .

Proof. Since f ∈W 1,∞(Ω), we can employ the Stein extension operator from Lemma 2.1.4

to extend f to the function Ef defined on R2. Since R2 is convex, we can use Lemma 2.2.4,

the definition of the Sobolev space norm, and the properties of the Stein extension to see

that

|f(x)− f(y)|
|x− y|

=
|Ef(x)− Ef(y)|

|x− y|

≤ ∥∇(Ef)∥L∞(R2)

≤ ∥Ef∥W 1,∞(R2)

≤ C(Ω) ∥f∥W 1,∞(Ω)

= C(Ω)
(
∥f∥L∞(Ω) + ∥∇f∥L∞(Ω)

)
.

Because |f(x)− f(y)| =
∣∣(f − f̄)(x)− (f − f̄)(y)

∣∣, we can apply the above calculation to

the function f − f̄ to find that

|f(x)− f(y)|
|x− y|

=

∣∣(f − f̄)(x)− (f − f̄)(y)
∣∣

|x− y|

≤ C(Ω)
(∥∥f − f̄

∥∥
L∞(Ω)

+
∥∥∇ (f − f̄

)∥∥
L∞(Ω)

)
= C(Ω)

(∥∥f − f̄
∥∥
L∞(Ω)

+ ∥∇f∥L∞(Ω)

)
,

since f̄ is constant. By Lemma 2.2.2,
∥∥f − f̄

∥∥
L∞(Ω)

≤ C ∥∇f∥L∞(Ω) , which completes the

proof.
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We will need the following inequality on Hölder spaces.

Lemma 2.2.6 Let f ∈ Cα(Ω) and g ∈ C1(Ω), where Ω is a bounded domain with C1

boundary. Then we have

∥f ◦ g∥Ċα(Ω) ≤ C(α,Ω) ∥f∥Ċα(Ω) ∥∇g∥
α
L∞(Ω) .

Proof. For x ̸= y ∈ Ω, we have

|(f ◦ g) (x)− (f ◦ g) (y)| =
(
|f(g(x))− f(g(y))|

|g(x)− g(y)|α
)(

|g(x)− g(y)|α

|x− y|α
)
|x− y|α

≤

 sup
X,Y ∈Ω
X ̸=Y

|f(X)− f(Y )|
|X − Y |α

[C(Ω) ∥∇g∥L∞(Ω)

]α
|x− y|α ,

where we used Lemma 2.2.5 to bound the middle factor. This means that, for all x, y ∈ Ω,

|(f ◦ g) (x)− (f ◦ g) (y)|
|x− y|α

≤ C(α,Ω) ∥f∥Ċα(Ω) ∥∇g∥
α
L∞(Ω) ,

which gives the desired inequality.

We note that if Ω is convex, we could apply Lemma 2.2.4 instead of Lemma 2.2.5

in the proof to obtain C = 1.

The following two Grönwall Inequalities will be needed. While the standard

Grönwall Inequality is a well-known classical result, we will be using a general form of

the lemma (more general than the version that appears in [Eva10], for example) and the

Reverse Grönwall Inequality is less well-known, so their proofs are presented here.

Lemma 2.2.7 (Grönwall’s Inequality) Suppose h ≥ 0 is a continuous nondecreasing

function on [0, T ], f ≥ 0 is continuous, and g ≥ 0 is integrable on [0, T ]. If

f(t) ≤ h(t) +

∫ t

0
g(s)f(s) ds
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for all t ∈ [0, T ], then

f(t) ≤ h(t)e
∫ t
0 g(s) ds

for all t ∈ [0, T ].

Proof. Let J(t) :=
∫ t
0 g(s)f(s) ds. Observe that J satisfies the differential equation J ′(t) =

g(t)f(t). Since g ≥ 0 and gf ≥ 0, by hypothesis we have

J ′(t) ≤ g(t)

[
h(t) +

∫ t

0
g(s)f(s) ds

]

which can be rearranged as

J ′(t)− g(t)J(t) ≤ g(t)h(t).

After multiplying both sides by the (positive) integrating factor e−
∫ t
0 g(τ) dτ and recognizing

the left side as the result of the product rule, we see that, for all t ∈ [0, T ],

d

dt

[
J(t)e−

∫ t
0 g(τ) dτ

]
≤ g(t)h(t)e−

∫ t
0 g(τ) dτ .

By integrating both sides of this inequality from 0 to t and noting that J(0) = 0, after some

rearranging we see that

J(t) ≤ e
∫ t
0 g(τ) dτ

∫ t

0
g(s)h(s)e−

∫ s
0 g(τ) dτ ds

=

∫ t

0
g(s)h(s)e

∫ 0
s g(τ) dτe

∫ t
0 g(τ) dτ ds

=

∫ t

0
g(s)h(s)e

∫ t
s g(τ) dτ ds.

So, by hypothesis, we have

f(t) ≤ h(t) + J(t) ≤ h(t) +

∫ t

0
g(s)h(s)e

∫ t
s g(τ) dτ ds.
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Since h is non-decreasing, we can replace h(s) in this last inequality to obtain

f(t) ≤ h(t) + h(t)

∫ t

0
g(s)e

∫ t
s g(τ) dτ ds

= h(t) + h(t)

[
−
∫ t

0

(
d

ds
e−

∫ s
t g(τ) dτ

)
ds

]
= h(t)− h(t)

[
e
∫ t
t g(τ) dτ − e

∫ t
0 g(τ) dτ

]
= h(t)− h(t)

[
1− e

∫ t
0 g(τ) dτ

]
= h(t)e

∫ t
0 g(s) ds,

as desired, where we used the Chain Rule and the Fundamental Theorem of Calculus in the

second and third lines, respectively.

Lemma 2.2.8 (Reverse Grönwall’s Inequality) Suppose f > 0 is a differentiable func-

tion on [0, T ] and g ≥ 0 is integrable on [0, T ]. If

f ′(t) ≥ −g(t)f(t)

for all t ∈ [0, T ], then

f(t) ≥ f(0)e−
∫ t
0 g(s) ds

for all t ∈ [0, T ].

Proof. Note that, by hypothesis,

d

dt
ln f(t) =

f ′(t)

f(t)
≥ −g(t).

By integrating the inequality from 0 to t, for any t ∈ [0, T ], we see that

ln f(t)− ln f(0) = ln
f(t)

f(0)
≥ −

∫ t

0
g(s) ds,
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which can be exponentiated to yield

f(t)

f(0)
≥ e−

∫ t
0 g(s) ds,

from which the desired inequality follows.

2.3 The Two-Dimensional Euler Equations

We now review some of the basic properties related to the Euler equations in two

dimensions, which were given above in (1.1) through (1.3):

∂tu+ u · ∇u+∇p = 0,

div u = 0,

u(0, x) = u0(x).

(2.8)

These equations model the flow of an ideal (incompressible and inviscid) homoge-

neous fluid in R2 and can be derived from the conservation of momentum for a continuum,

as in [Mey82, Section 12]. The unknowns here are u(t, x) and p(t, x) which represent the

velocity and pressure, respectively, of the fluid at time t ≥ 0 and position x ∈ R2. The

second equation describes the incompressibility of the fluid and the third equation gives the

divergence-free initial velocity. In a bounded domain U , we will also consider the boundary

condition that

u · n̂ = 0, (2.9)

where n̂ is the outward unit normal to the boundary ∂U . This ensures that no fluid flows

in or out of the domain through the boundary.
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The vorticity is defined as ω(u) := curlu. Taking the scalar curl of equations

(2.8) yields the vorticity-stream formulation of the two-dimensional incompressible Euler

equations ([MB02, Section 2.1]): 
∂tω + u · ∇ω = 0,

ω(0, x) = ω0(x).

(2.10)

As briefly discussed in Chapter 1 (see (1.7)), associated to the fluid velocity are

particle trajectories η(t, x), also called flow maps, defined by
∂tη(t, x) = u(t, η(t, x)),

η(0, x) = x.

(2.11)

According to classical ODE theory (see the Appendix, Theorem A.1), the system (2.11)

will have a unique solution η for all time if the velocity u is Lipschitz continuous in space,

uniformly in time. When the initial vorticity ω0 ∈ L1 ∩ L∞, the associated velocity field

is not necessarily Lipschitz, but is instead log-Lipschitz ([MB02, Lemma 8.1]) so admits

an Osgood modulus of continuity and so (2.11) has a unique solution (see Theorems A.3

and A.4 and Remark A.5). Specifically, initial vorticities satisfying the assumptions of

Theorem 1.6.1 give rise to unique particle trajectories. The flow maps are continuous in

time and are diffeomorphisms for any fixed time t. The divergence-free property of u

guarantees that the diffeomorphisms are measure-preserving. (For instance, Proposition

1.4 of [MB02] states that the fluid incompressibility, the divergence-free condition, and the

Jacobian determinant of η equaling one are all equivalent.) The regularity of the flow map

in space is the same as that of the velocity field.
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2.4 Weak Solutions and Well-Posedness

The equations (2.10) completely describe the fluid behavior and solving for the vor-

ticity ω(t, x) uniquely determines the velocity field through the Biot-Savart Law, discussed

in detail below in Section 2.5. However, the equations require the vorticity to possess more

regularity than simply being in L∞, which is often too restrictive an assumption to make.

For instance, even a simple vortex patch such as ω0(x) = 1B(0,1) cannot be studied in this

framework. What is needed is an equivalent expression of the vorticity-stream formulation

that allows vorticities that are in the less restrictive natural class L1 ∩L∞. This motivates

the definition of a weak solution, which we present here from [MB02, Section 8.2].

Definition 2.4.1 (Weak Solutions to the 2D Euler Equations) Let Ω ⊆ R2 be a sim-

ply connected bounded domain. Given ω0 ∈ L∞ (Ω), the velocity-vorticity pair (u, ω) is a

weak solution to the vorticity-stream formulation of the two-dimensional Euler equations in

Ω with initial data ω0(x) provided that

(i) ω ∈ L∞ (0, T ;L∞(Ω)),

(ii) u can be recovered from ω via the Biot-Savart Law (Theorem 2.5.2),

(iii) for all φ ∈ C1
(
0, T ;C1

c (Ω)
)
,

∫
Ω
φ(T, x)ω(T, x) dx−

∫
Ω
φ(0, x)ω0(x) dx =

∫ T

0

∫
Ω

Dφ

Dt
ω dx dt. (2.12)

While the initial vorticity for a classical vortex patch is discontinuous at the boundary of the

patch, it is nonetheless integrable and bounded, making weak solutions the natural choice

to which we restrict our attention.
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For smooth initial data, the existence of classical smooth solutions to the two-

dimensional Euler equations for all time was proved by Wolibner in [Wol33]. The existence

and uniqueness of weak solutions in the plane for bounded initial vorticity was proved by

Yudovich in [Yud63].

2.5 The Biot-Savart Law

The Biot-Savart Law is fundamental in the study of the two-dimensional Euler

equations. In this section, we will first derive the Biot-Savart Law for the whole plane R2

and then use it to derive the Biot-Savart Law for the unit disk Ω = B(0, 1).

Our goal is to be able to recover the velocity u(t, x) from the vorticity ω(t, x). What

follows is valid for any fixed time t, so we will suppress the time argument for simplicity.

We start by considering the following Poisson equation in the unknown φ(x) := φ(t, x):
∆φ = ω in Ω,

φ = 0 on ∂Ω.

(2.13)

If φ ∈ H1(Ω) satisfies (2.13), define the vector field v := ∇⊥φ. Since ω ∈ L2(Ω), elliptic

regularity theory ([Eva10, Section 6.3, Theorem 2]) gives that φ ∈ H2(Ω). Then we would

have

div v = ∂1(−∂2φ) + ∂2(∂1φ) = 0

and

curl v = ∂1(∂1φ)− ∂2(−∂2φ) = ∆φ = ω.
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Because φ = 0 on the boundary of Ω, ∇⊥φ = v is tangential to the boundary, so that

v · n̂ = 0 on ∂Ω. Thus, v is a vector field in Ω that has the same divergence, curl, and

normal boundary condition as the velocity field u. We now show that v = u.

Let w := u − v. Then w has zero divergence, zero curl, and w · n̂ = 0 on ∂Ω.

Because w is irrotational and Ω is simply connected, there exists a scalar potential f for w

so that w = ∇f . Since w is divergence-free, div(w) = div(∇f) = ∆f = 0. Because w · n̂ = 0

on ∂Ω, we have ∇f · n̂ = ∂f
∂n̂ = 0. Recall the vector identity div(f∇f) = ∇f · ∇f + f∆f .

Then we can calculate that∫
Ω
|∇f |2 dx =

∫
Ω
∇f · ∇f dx

=

∫
Ω
div(f∇f) dx−

∫
Ω
f∆f dx

=

∫
∂Ω
f
∂f

∂n̂
−
∫
Ω
f∆f dx

= 0,

where we used the divergence theorem. Thus, |∇f |2 = 0, so that w = ∇f = 0 and u = v.

So if we solve the Poisson equation (2.13) for φ, we can write the velocity u as

u(t, x) = ∇⊥φ(t, x). (2.14)

We call φ the stream function for u.

Classical potential theory ([Eva10, Section 2.1], for instance) guarantees the exis-

tence of a unique stream function φ ∈ H2 decaying at infinity and satisfying ∆φ = ω given

by convolution of ω with the Newtonian potential in R2, assuming ω vanishes sufficiently

rapidly at infinity:

φ(t, x) =
1

2π

∫
R2

ln |x− y|ω(t, y) dy, x ∈ R2. (2.15)
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Note that ω ∈ L1∩L∞ is sufficient for this integral to exist. Via (2.14), we can differentiate

(2.15) under the integral to obtain an equation for u in terms of ω. The resulting expression

for the velocity u in terms of its vorticity ω is called the Biot-Savart Law.

In the full plane R2, the Biot-Savart Law states that the velocity u(t, x) of a

divergence-free vector field that vanishes at infinity can be recovered from the vorticity

ω(t, x) = curlu(t, x) through convolution with a kernel function. This lemma can be found,

for instance, as Proposition 2.1 of [MB02].

Lemma 2.5.1 (Biot-Savart Law in R2) Let u(t, x) be the divergence-free velocity asso-

ciated with the vorticity ω(t, x) ∈ L1(R2) ∩ L∞(R2). Then for all time t ≥ 0, we have

u(t, x) = K ∗ ω(t, x) =
∫
R2

K(x− y)ω(t, y) dy,

where K(x) = ∇⊥G(x) and G(x) is the fundamental solution of the Laplacian2 in R2. For

the domain R2, we have

G(x) =
1

2π
ln |x|, K(x) =

1

2π

(
− x2

|x|2
,
x1

|x|2

)
=

1

2π

x⊥

|x|2
. (2.16)

Using the notation of (2.1), we can say that K[ω] is the unique divergence-free

vector field vanishing at infinity whose vorticity is ω.

The function K is called the Biot-Savart kernel (for the plane). We sometimes use the

notation K(x, y) to mean K(x − y), such as when we write K[ω]. It is important to note

that K is locally integrable.

2We are using the convention that the fundamental solution G(x) satisfies ∆G = δ0 in R2, where δ0 is
Dirac’s delta function, and not that G(x) satisfies −∆G = δ0 as some authors (including Evans in [Eva10])
do.
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The Biot-Savart Law yields a convenient expression for the velocity gradient, ob-

tained by applying the gradient to both sides and performing standard calculations to com-

pute the distributional derivative of K. For instance, see either equation (1.3) of [BC93] or

Proposition 2.17 of [MB02]:

∇u(x) = ω(x)

2

0 −1

1 0

+ p. v.

∫
R2

∇xK(x− y)ω(y) dy. (2.17)

We note that this identity is valid for any ω ∈ L1 ∩ L∞. This expression will be used later

to obtain an analogous estimate in the unit disk in the proof of Lemma 2.6.1. The principal

value integral can be thought of as a singular integral operator applied to the vorticity.

We now will derive the the Biot-Savart law for the unit disk Ω, which is the basis

for many of the calculations that will follow. By following an identical line of reasoning

as that given above for the full plane case, we see that the only necessary difference in

the Biot-Savart Law will be that we must now use Green’s function for Ω to correct the

fundamental solution of the Laplacian in R2 in order to solve the Poisson equation (2.13).

So, we begin by recalling ([Str08, Chapter 7, Equation (18)]) that the fundamental solution

for the Laplacian in the unit disk Ω is

GΩ(x, y) =
1

2π

(
ln |y − x| − ln

∣∣|x| |y − x∗|
∣∣) ,

where x∗ := x
|x|2 is inversion across the unit circle. As with the full plane case, the Biot-

Savart kernel in Ω will be

KΩ(x, y) := ∇⊥
xGΩ(x, y).
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Noting that ∇⊥
x applied to the first term of GΩ is exactly the full-plane Biot-Savart kernel

K given in (2.16), we find that

KΩ(x, y) = K(x− y)−∇⊥
x

(
1

2π
ln
∣∣|x| |y − x∗|

∣∣) .
Note that, while Green’s functionsG(x, y) are symmetric,K(x, y) is not necessarily

symmetric since the gradient is with respect to the x variable only. Nevertheless, we would

like an alternate expression for KΩ that inverts the y-argument instead of the x in order to

make it easier to differentiate with respect to x. To obtain this, note that

|x|2 |y − x∗|2 = |x|2
∣∣∣∣y − x

|x|2

∣∣∣∣2
= |x|2

∣∣∣∣∣|y|2 − 2x · y
|x|2

+
|x|2

|x|4

∣∣∣∣∣
=
∣∣∣|x|2 |y|2 − 2x · y + 1

∣∣∣
= |y|2

∣∣∣∣∣|x|2 − 2x · y
|y|2

+
|y|2

|y|4

∣∣∣∣∣
= |y|2

∣∣∣∣x− y

|y|2

∣∣∣∣2
= |y|2 |x− y∗|2 ,

so that ln
∣∣|x| |y − x∗|

∣∣ = ln
∣∣|y| |x− y∗|

∣∣. Thus, we can now calculate the Biot-Savart kernel

and summarize the Biot-Savart Law for the unit disk:

KΩ(x, y) = K(x− y)−∇⊥
x

(
− 1

2π
ln
∣∣|y| |x− y∗|

∣∣)
= K(x− y)−∇⊥

x

(
− 1

2π
ln |y|

)
−∇⊥

x

(
− 1

2π
ln |x− y∗|

)
= K(x− y)− 0−

[
− 1

2π

(
−(x2 − y∗2)

|x− y∗|2
,
(x1 − y∗1)

|x− y∗|2

)]
,

KΩ(x, y) = K(x− y)−K(x− y∗). (2.18)
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Theorem 2.5.2 (Biot-Savart Law in the Unit Disk Ω) Let u(t, x) be the divergence-

free velocity associated with the vorticity ω(t, x) ∈ L∞(Ω). Then for all time t ≥ 0, we

have

u(t, x) = KΩ[ω] =

∫
Ω
KΩ(x, y)ω(t, y) dy,

where KΩ is defined by (2.18).

2.6 Initial Estimate of the Velocity Gradient

We will now use Theorem 2.5.2 to derive a useful expression for the spatial gradient

of the fluid velocity u. We will then use this expression to obtain our initial estimate for

∥∇u(t, ·)∥L∞(Ω) that will be the basis for much of what follows. Because these calculations

are valid for any fixed time t, for simplicity, we will omit the time argument for the remainder

of this section.

Whenever possible, we will use established whole plane results. To this end, we will

frequently find the following extension useful. Since the vorticity ω is compactly supported

in Ω, it naturally extends by zero to the whole plane:

ω̃(y) :=


ω(y) for y ∈ Ω,

0, for y /∈ Ω.

(2.19)

Clearly, ω̃ has the same support and regularity as ω and, for any reasonable norm ∥·∥, ∥ω̃∥

in R2 is the same as ∥ω∥ in Ω.
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Lemma 2.6.1 (Expression for the Velocity Gradient) Let u and ω be as in Theo-

rem 2.5.2. Then for x ∈ Ω,

∇u(x) = ω(x)

2

0 −1

1 0

+ p. v.

∫
R2

∇xK(x− y)ω̃(y) dy −
∫
Ω
∇xK(x− y∗)ω(y) dy

=
ω(x)

2

0 −1

1 0

+ p. v.

∫
Ω
∇xKΩ(x, y)ω(y) dy.

Proof. By the Biot-Savart Law (Theorem 2.5.2), and assuming for now that each term in

KΩ(x, y)ω(y) is integrable, we have that

∇u(x) = ∇x

∫
Ω
KΩ(x, y)ω(y) dy

= ∇x

∫
Ω
K(x− y)ω(y) dy −∇x

∫
Ω
K(x− y∗)ω(y) dy (2.20)

= ∇x

∫
R2

K(x− y)ω̃(y) dy −∇x

∫
Ω
K(x− y∗)ω(y) dy.

Because ω̃ ∈ L1(R2) ∩ L∞(R2), we can apply (2.17) to the first term to obtain

∇u(x) = ω(x)

2

0 −1

1 0

+ p. v.

∫
R2

∇xK(x− y)ω̃(y) dy −∇x

∫
Ω
K(x− y∗)ω(y) dy.

For the last integral, note that the singularity of K(x−y∗) occurs when x−y∗ = 0,

or when y = x∗. Since x∗ is outside of Ω for x ∈ Ω, K(x − y∗)ω(y) is integrable (in y)

on Ω and has a smooth bounded derivative with respect to x. Therefore, we can bring the
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gradient operator inside the integral ([Fol13, Theorem 2.27]) to obtain

∇u(x) = ω(x)

2

0 −1

1 0

+ p. v.

∫
R2

∇xK(x− y)ω̃(y) dy −
∫
Ω
∇xK(x− y∗)ω(y) dy

=
ω(x)

2

0 −1

1 0

+ p. v.

∫
Ω
∇xK(x− y)ω(y) dy −

∫
Ω
∇xK(x− y∗)ω(y) dy

=
ω(x)

2

0 −1

1 0

+ p. v.

∫
Ω
∇xKΩ(x, y)ω(y) dy.

Note that the fact that each of the above integrals exists justifies our splitting of the integral

across the two terms of KΩ(x, y)ω(y) in (2.20).

Applying the triangle inequality to this lemma gives us our initial estimate of the

velocity gradient:

∥∇u(t, ·)∥L∞(Ω) ≤ ∥ω(t, ·)∥L∞(Ω) +

∥∥∥∥p. v. ∫
Ω
∇xKΩ(x, y)ω(t, y) dy

∥∥∥∥
L∞(Ω)

=: V (t). (2.21)

2.7 Flow Map Estimates

We close this chapter by examining a key property of the flow map that ensures

that an initially compactly supported vorticity remains compactly supported in Ω for all

time. The defining property of the flow map given above in (2.11) can be written in integral

form as

η(t, x) = x+

∫ t

0
u (s, η(s, x)) ds.
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By subtracting two such expressions and using the triangle inequality, we have that

|η(t, x)− η(t, y)| ≤ |x− y|+
∫ t

0
|u (s, η(s, x))− u (s, η(s, y))| ds

= |x− y|+
∫ t

0

|u (s, η(s, x))− u (s, η(s, y))|
|η(s, x)− η(s, y)|

|η(s, x)− η(s, y)| ds.

By Lemma 2.2.5, this means

|η(t, x)− η(t, y)| ≤ |x− y|+
∫ t

0
C(Ω) ∥∇u∥L∞(Ω) |η(s, x)− η(s, y)| ds.

If we consider these expressions as functions of t with fixed x and y, Lemma 2.2.7 gives us

the estimate

|η(t, x)− η(t, y)| ≤ |x− y|eC
∫ t
0 ∥∇u(s,·)∥L∞ ds (2.22)

≤ |x− y|eC
∫ t
0 V (s) ds.

We note that if Ω is convex, then we could use Lemma 2.2.4 instead of Lemma 2.2.5 to have

C = 1.

To obtain a lower bound, we have the following:

Lemma 2.7.1 Let x, y ∈ Ω. For all t > 0,

|η(t, x)− η(t, y)| ≥ (4e)1−eCt |x− y|e
Ct

, (2.23)

where C = C(ω0).

Proof. Recall ([MB02, Lemma 8.1]) that u has a log-Lipschitz modulus of continuity µLL

so that

|u(t, x)− u(t, y)| ≤ C1µLL(|x− y|)
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where

C1 ≤ C ∥ω(t, ·)∥L∞(Ω) ≤ C ∥ω0∥L∞(Ω) = C(ω0)

and

µLL(r) =


−r ln r for r ≤ e−1,

e−1 for r ≥ e−1.

Since the diameter of the unit disk is 2, it is helpful to have a single expression for

the modulus of continuity for r ∈ [0, 2]. We define

µ(r) =


−r ln

(
re−1/4

)
for r ≤ 2,

2 ln(2e) for r > 2.

Note that µ is non-decreasing and continuous, and that the constant 4 was chosen since it

is twice the diameter of the disk. Since µ ≥ µLL for all r, u also admits µ as a modulus of

continuity.

Now let L(t) := |η(t, x)− η(t, y)|. If η(t, x) = η(t, y) then there is nothing to prove,

so assume that η(t, x) ̸= η(t, y). Using the modulus of continuity, we can calculate that

L′(t) =
η(t, x)− η(t, y)

|η(t, x)− η(t, y)|
· (∂tη(t, x)− ∂tη(t, y))

≥ − |∂tη(t, x)− ∂tη(t, y)|

= − |u(t, η(t, x))− u(t, η(t, y))|

≥ −C1µ (|η(t, x)− η(t, y)|)

= −C1µ(L(t)).

By Lemma A.6, this gives that ∫ L(0)

L(t)

dr

C1µ(r)
≤ t. (2.24)
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Keeping in mind that L(0) ≤ 2, we consider the integral

∫ L(0)

L(t)

dr

µ(r)
= −

∫ L(0)

L(t)

dr

r ln(re−1/4)

=

∫ L(t)

L(0)

dr

r ln(re−1/4)

=

∫ ln(L(t)e−1/4)

ln(L(0)e−1/4)

ds

s

= ln

∣∣ln(L(t)e−1/4)
∣∣

|ln(L(0)e−1/4)|
.

By (2.24), we can conclude that

ln

∣∣ln(L(t)e−1/4)
∣∣

|ln(L(0)e−1/4)|
≤ C1t.

This can be rearranged as

∣∣ln(L(t)e−1/4)
∣∣ ≤ ∣∣ln(L(0)e−1/4)

∣∣ eC1t.

Since |ln s| =
∣∣ln 1

s

∣∣, we have

ln
1

L(t)e−1/4
≤
(
ln

1

L(0)e−1/4

)
eC1t

which can be exponentiated to give

4e

L(t)
≤
(

4e

L(0)

)eC1t

.

Finally, we can take the reciprocal of both sides to yield

L(t) ≥ (4e)(4e)−eC1t
(L(0))e

C1t

which is equivalent to
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|η(t, x)− η(t, y)| ≥ (4e)1−eC1t |x− y|e
C1t

,

as desired.

The bounds 2.22 and 2.23 give us upper and lower bounds for how far apart two

points can flow after time t. Let x be a point on the boundary of suppω(t, ·) and y ∈ ∂Ω such

that dist(suppω(t, ·), ∂Ω) = |x− y|. Because points on the boundary of Ω must stay on the

boundary for all time and because the vorticity is passively transported by the flow, there

exist x′ ∈ ∂(suppω0) and y
′ ∈ ∂Ω such that x = η(t, x′) and y = η(t, y′). By Lemma 2.7.1,

|x− y| =
∣∣η(t, x′)− η(t, y′)

∣∣
≥ (4e)1−eCt ∣∣x′ − y′

∣∣eCt

≥ (4e)1−eCt
dist(suppω0, ∂Ω)

eCt
> 0, (2.25)

so that the distance from suppω(t, ·) to ∂Ω is bounded below away from zero for all time.

This ensures that ω remains compactly supported for all time.

41



Chapter 3

Striated Regularity in a Bounded

Domain

In this chapter, we will present the proof of Theorem 1.6.1. In [BK15], Theorem

1.5 is the analogue of Theorem 1.6.1 for the whole plane instead of a bounded domain. We

will follow the outline of their proof, using their whole plane results whenever possible. The

proof will proceed in several major steps as follows.

First, in Section 3.1, we present several lemmas from [BK15] that will be used

and discuss how they can be applied to our bounded domain problem. In Section 3.2,

we will deal with the issue of preparing the initial data to obtain approximate smooth

solutions with compactly supported smooth vorticities. In Section 3.3, we will discuss

some necessary transport equations and associated estimates for the sufficient family Y and

various related quantities. In Section 3.4, we will prove a key estimate on the Hölder space

norm of Yn, defined in Section 3.3 as the pushforward of a member of Y under the flow
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maps corresponding to the smoothed initial data. In Section 3.5, we will obtain a bound

on ∥∇u(t, ·)∥L∞(Ω) in terms of only itself (thus, an improvement on the initial estimate

(2.21)) that will allow us to close the sequence of estimates in Section 3.6 with Grönwall’s

Lemmas (Lemmas 2.2.7 and 2.2.8), completing the proof of Theorem 1.6.1. We then close

this chapter with Section 3.7 by looking more closely at Serfati’s linear algebra lemma and

how it is used to obtain the penultimate bound on the velocity gradient from Section 3.5.

For convenience, we will summarize the data given in the hypothesis of Theo-

rem 1.6.1. For now, we take our domain Ω to be the open unit disk B(0, 1), only so that we

can use the explicit Biot-Savart kernel KΩ given by (2.18). In Section 3.6, we will discuss

how to extend the result to an arbitrary open, bounded, and simply connected domain.

We fix a time T > 0, where we have t ∈ [0, T ]. We let Y0 be a Cα(Ω) sufficient family of

vector fields as defined by (1.9). We take an initial vorticity ω0 ∈ L∞(Ω) that is compactly

supported in Ω, with an associated initial velocity u0 = KΩ[ω0] obtained via the Biot-Savart

Law (Theorem 2.5.2). We assume that Y0 · ∇u0 ∈ Cα(Ω) and note that by Theorem 1.3

of [BK15], this assumption is equivalent to div (ω0Y0) ∈ Cα−1(Ω). As in (2.19), for any

compactly supported vorticity ω in Ω, we denote the extension by zero of ω to R2 by ω̃.

Lastly, we introduce the notation CT := C(T ) for a constant that applies specif-

ically to solutions to the Euler equations on [0, T ]. In light of the estimate (2.25), any

constant that depends on the distance from the support of ω(t, x) to the boundary of Ω

may increase as T increases. This is because, while ω remains compactly supported for any

finite time T , the distance from its support to the boundary of Ω could decrease in time, so
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the L∞ norm of K(x − y∗) and its gradient may increase in time. However, the estimates

obtained will be valid on any arbitrary interval [0, T ], yielding global-in-time results.

3.1 Estimates Involving the Biot-Savart Kernel

In Section 2.6, we used the Biot-Savart Law (Theorem 2.5.2) to obtain bound

(2.21), which involves the singular integral kernel ∇K. We will begin by presenting some

basic estimates on kernels of this type that will be used in the proof of Theorem 1.6.1.

One of the most basic properties of the kernel K is that it is homogeneous of

degree −1 (Proposition 2.1 of [MB02]):

|K(x)| ≤ C

|x|
(3.1)

We now give a convenient expression for the difference of two values of the Biot-Savart

kernel:

Lemma 3.1.1 For nonzero x and y in R2, we have

|K(x)−K(y)| = 1

2π

|x− y|
|x| |y|

Proof. If x = (x1, x2), recall that x
⊥ = (−x2, x1). It is clear that

∣∣x⊥∣∣ = |x|. First note

that 2π [K(x)−K(y)] = x⊥

|x|2 −
y⊥

|y|2 . Taking the inner product of this vector with itself gives∣∣∣∣ x⊥|x|2
− y⊥

|y|2

∣∣∣∣2 =
∣∣∣∣∣ |y|2 x⊥ − |x|2 y⊥

|x|2 |y|2

∣∣∣∣∣
2

=
|x|2 |y|4 − 2 |x|2 |y|2 x⊥ · y⊥ + |x|4 |y|2

|x|4 |y|4

= |x|2 |y|2 |y|
2 − 2x⊥ · y⊥ + |x|2

|x|4 |y|4

=

∣∣x⊥ − y⊥
∣∣2

|x|2 |y|2
.
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Since
∣∣x⊥ − y⊥

∣∣ = ∣∣(x− y)⊥
∣∣ = |x− y|, we can take a square root and see that

2π |K(x)−K(y)| =
∣∣∣∣ x⊥|x|2

− y⊥

|y|2

∣∣∣∣ = |x− y|
|x| |y|

,

proving the claim.

The following estimate will be needed:

Proposition 3.1.2 For a compactly supported ω ∈ L∞(Ω) and f ∈ Cα(Ω),

∥∥∥∥p. v. ∫
Ω
∇xKΩ(x, y)ω(y) [f(y)− f(x)] dy

∥∥∥∥
Cα

x (Ω)

≤ CTV (ω) ∥f∥Cα(Ω) ,

where

V (ω) := ∥ω∥L∞(Ω) +

∥∥∥∥p. v.∫
Ω
∇xKΩ(x− y)ω(y) dy

∥∥∥∥
L∞(Ω)

.

Proof. Let f̃ := EHf , where EH is the Stein Hölder extension operator from Lemma 2.1.5,

giving that
∥∥∥f̃∥∥∥

Cα(R2)
≤ C(α) ∥f∥Cα(Ω). Recalling that KΩ(x, y) = K(x− y)−K(x− y∗),

we can use the compact support of ω to break up the Hölder norm as

∥∥∥∥p. v.∫
Ω
∇xKΩ(x, y)ω(y) [f(y)− f(x)] dy

∥∥∥∥
Cα

x (Ω)

≤
∥∥∥∥p. v. ∫

R2

∇xK(x− y)ω̃(y)
[
f̃(y)− f̃(x)

]
dy

∥∥∥∥
Cα

x (R2)

+

∥∥∥∥∫
Ω
∇xK(x− y∗)ω(y) [f(y)− f(x)] dy

∥∥∥∥
Cα

x (Ω)

:= I + J. (3.2)

By Lemmas 3.1, 3.2, and 3.3 of [BK15], I is bounded by

I ≤ CV (ω)
∥∥∥f̃∥∥∥

Cα(R2)
≤ CV (ω) ∥f∥Cα(Ω) . (3.3)
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Let L(x, y) = ∇xK(x− y∗)ω(y). We can further break up J as

∥∥∥∥∫
Ω
∇xK(x− y∗)ω(y) [f(y)− f(x)] dy

∥∥∥∥
Cα

x (Ω)

=

∥∥∥∥∫
Ω
L(x, y) [f(y)− f(x)] dy

∥∥∥∥
Ċα

x (Ω)

+

∥∥∥∥∫
Ω
L(x, y) [f(y)− f(x)] dy

∥∥∥∥
L∞(Ω)

:= J1 + J2. (3.4)

To estimate J2, note that

∣∣∣∣∫
Ω
∇xK(x− y∗)ω(y) [f(y)− f(x)] dy

∣∣∣∣
≤

(
sup

x,y∈supp(ω)
∇xK(x− y∗)

)
∥ω∥L∞(Ω)

∫
Ω

|f(y)− f(x)|
|y − x|α

|y − x|α dy

≤ CT ∥ω∥L∞(Ω) ∥f∥Cα(Ω)

∫
Ω
|y − x|α dy

= C(Ω, α, T ) ∥ω∥L∞(Ω) ∥f∥Cα(Ω) . (3.5)

All that remains is to bound J1. We will first need a bound on
∥∥∫

Ω L(x, y) dy
∥∥
Cα

x (Ω)
.

Let S := supp(ω) and recall that dist (S, ∂Ω) > 0. We have that

∥∥∥∥∫
Ω
L(x, y) dy

∥∥∥∥
Ċα

x (Ω)

= sup
x,x′∈Ω

∣∣∫
Ω∇xK(x− y∗)ω(y) dy −

∫
Ω∇xK(x′ − y∗)ω(y) dy

∣∣
|x− x′|α

= sup
x,x′∈Ω

∣∣∫
S ∇xK(x− y∗)ω(y) dy −

∫
S ∇xK(x′ − y∗)ω(y) dy

∣∣
|x− x′|α

≤ ∥ω∥L∞(Ω) sup
x,x′∈Ω

∫
S

|∇xK(x− y∗)−∇xK(x′ − y∗)|
|x− x′|α

dy

≤ C(Ω) ∥ω∥L∞(Ω) sup
y∈S

∥∇xK(x− y∗)∥Ċα
x (Ω)

≤ CT ∥ω∥L∞(Ω) , (3.6)

where the last inequality follows because ∇xK(x − y∗) is C∞ on the closed set S, so is

α-Hölder continuous on S. We note that the integral is switched to be over S to ensure that

46



the singularity of K(x− y∗) along ∂Ω is avoided. The supremum is then applied under the

integral to give the integrand ∥∇xK(x− y∗)∥Ċα
x (Ω), of which we took the supremum over

y ∈ S to finish the estimate.

We also can calculate that∥∥∥∥∫
Ω
L(x, y) dy

∥∥∥∥
L∞(Ω)

=

∥∥∥∥∫
Ω
∇xK(x− y∗)ω(y) dy

∥∥∥∥
L∞(Ω)

=

∥∥∥∥∫
S
∇xK(x− y∗)ω(y) dy

∥∥∥∥
L∞(Ω)

≤ C(Ω) ∥ω∥L∞(Ω) ∥∇xK(x− y∗)∥L∞(Ω×S)

≤ CT ∥ω∥L∞(Ω) , (3.7)

where the last inequality is due to the boundedness of ∇xK(x − y∗) on S. Putting (3.6)

and (3.7) together yields ∥∥∥∥∫
Ω
L(x, y) dy

∥∥∥∥
Cα

x (Ω)

≤ CT ∥ω∥L∞(Ω) . (3.8)

We now are ready to bound the term J1 from (3.4). Using the definition of the

Hölder norm and adding and subtracting the expression L(x′, y)f(x) in the second term

that arises, we can calculate that

J1 =

∥∥∥∥∫
Ω
L(x, y) [f(y)− f(x)] dy

∥∥∥∥
Ċα

x (Ω)

= sup
x,x′∈Ω

∣∣∣∫Ω L(x, y) [f(y)− f(x)] dy −
∫
Ω L(x

′, y) [f(y)− f(x′)] dy
∣∣∣

|x− x′|α

≤ sup
x,x′∈Ω

∣∣∣∫Ω [L(x, y)− L(x′, y)] f(y) dy
∣∣∣

|x− x′|α
+ sup

x,x′∈Ω

∣∣∣∫Ω [L(x′, y)f(x′)− L(x, y)f(x)] dy
∣∣∣

|x− x′|α

≤
∥∥∥∥∫

Ω
L(x, y) dy

∥∥∥∥
Ċα

x (Ω)

∥f∥L∞(Ω)

+ sup
x,x′∈Ω

∣∣∣∣∫
Ω

[
L(x′, y)f(x′)− L(x′, y)f(x)

|x− x′|α
+
L(x′, y)f(x)− L(x, y)f(x)

|x− x′|α
]
dy

∣∣∣∣
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≤
∥∥∥∥∫

Ω
L(x, y) dy

∥∥∥∥
Ċα

x (Ω)

∥f∥L∞(Ω)

+

∥∥∥∥∫
Ω
L(x, y) dy

∥∥∥∥
L∞(Ω)

∥f∥Ċα(Ω) +

∥∥∥∥∫
Ω
L(x, y) dy

∥∥∥∥
Ċα

x (Ω)

∥f∥L∞(Ω)

= 2

∥∥∥∥∫
Ω
L(x, y) dy

∥∥∥∥
Ċα

x (Ω)

∥f∥L∞(Ω) +

∥∥∥∥∫
Ω
L(x, y) dy

∥∥∥∥
L∞(Ω)

∥f∥Ċα(Ω)

≤ 2

(∥∥∥∥∫
Ω
L(x, y) dy

∥∥∥∥
Ċα

x (Ω)

+

∥∥∥∥∫
Ω
L(x, y) dy

∥∥∥∥
L∞(Ω)

)(
∥f∥Ċα

x (Ω) + ∥f∥L∞(Ω)

)
= 2

∥∥∥∥∫
Ω
L(x, y) dy

∥∥∥∥
Cα

x (Ω)

∥f∥Cα
x (Ω)

≤ CT ∥ω∥L∞(Ω) ∥f∥Cα
x (Ω) , (3.9)

where the last inequality is due to the bound (3.8). Using (3.2), we can now combine

estimates (3.3), (3.5) and (3.9) to complete the proof.

We are now ready to present an expression we will need in the proof along with a

related estimate:

Proposition 3.1.3 Let ω ∈ L1(Ω) ∩ L∞(Ω) be compactly supported and let Y be a vector

field in Cα(R2). Then, for all x ∈ Ω,

p. v.

∫
∇xKΩ(x, y)Y (y)ω(y) dy = −ω(x)

2

0 −1

1 0

Y (x) +

∫
Ω
K(x− y) div (ωY ) (y) dy

−
∫
Ω
∇xK(x− y∗)Y (y)ω(y) dy. (3.10)

Proof. Let Ỹ = EHY . We start, as usual, by using the compact support of ω and expression

(2.18) for KΩ to break up the integral as

p. v.

∫
Ω
∇xKΩ(x, y)Y (y)ω(y) dy

= p. v.

∫
R2

∇xK(x− y)Ỹ (y)ω̃(y) dy −
∫
Ω
∇xK(x− y∗)Y (y)ω(y) dy.
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If we denote the first term of this expression by I, then by Proposition 4.2 of [BK15],

I = − ω̃(x)
2

0 −1

1 0

 Ỹ (x) +

∫
R2

K(x− y) div (ω̃Y ) (y) dy

= −ω(x)
2

0 −1

1 0

Y (x) +

∫
Ω
K(x− y) div (ωY ) (y) dy,

which completes the proof.

Corollary 3.1.4 Let ω ∈ L1(Ω)∩L∞(Ω) be compactly supported and let Y be a vector field

in Cα(R2). Then, for all x ∈ Ω,

Y (x) · ∇u(x) =
∫
Ω
K(x− y) div(ωY )(y) dy −

∫
Ω
∇xK(x− y∗)Y (y)ω(y) dy

+ p. v.

∫
Ω
∇xKΩ(x, y) [Y (x)− Y (y)]ω(y) dy (3.11)

Proof. Let J represent the right-hand side of (3.11). Rearranging the terms of (3.10),

adding p. v.
∫
Ω∇xKΩ(x, y) [Y (x)− Y (y)]ω(y) dy to both sides, and combining the left-hand

side integrals gives that

ω(x)

2

0 −1

1 0

Y (x) + p. v.

∫
Ω
∇xKΩ(x, y)Y (x)ω(y) dy = J.

Using Lemma 2.6.1, we can see that the left-hand side of this is equal to Y (x) · ∇u(x),

proving the statement.
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3.2 Preparing the Initial Data and Approximate Smooth So-

lutions

In this section, we will prepare the initial data with mollification so we can work

with smooth solutions. We will use the standard mollifiers given in Definition 2.1.3.

In general, we cannot use convolution with ω0 since it is not defined outside of Ω.

This issue can be resolved due to the compact support of ω0 in Ω, and is in fact one of the

primary reasons we include this hypothesis in Theorem 1.6.1. Since ω̃0 is defined on R2,

the convolution ρn ∗ ω̃0 is well-defined. Because supp (ω0) ⊆ Ω, there is a δ > 0 satisfying

0 < δ < inf{|x− z| : x ∈ supp (ω0) , z ∈ ∂Ω} (the supremum over all such δ is simply the

distance from the support of ω0 to the boundary of Ω). We choose N large enough so that

1
N < δ

2 . Then, for all n > N and x ∈ Ω, we have that

ρn ∗ ω̃0(x) :=

∫
R2

ρn(x− y)ω̃0(y) dy =

∫
Ω
ρn(x− y)ω0(y) dy.

This integral is well defined because supp (ρn(x− y)ω0(y)) is contained in the closure of the

set {z1+ z2 : z1 ∈ supp (ω0) , |z2| < δ
2}, which is itself compactly supported in Ω. In a slight

abuse of notation, we use the shorthand ρn ∗ ω0 := ρn ∗ ω̃0.

Define ω0,n := ρn ∗ω0. By properties of convolution, for all n > N , ω0,n ∈ C∞
c (Ω),

giving us a sequence of smooth vorticities that converge to ω0 in L1(Ω). For each n > N ,

we can obtain a unique smooth solution ([Wol33]) to the two-dimensional Euler equations

(2.10) with ω0,n as the smooth initial vorticity consisting of a smooth vorticity ωn(t, x) with

ωn(0, x) = ω0,n(x) and a smooth velocity un(t, x) recovered from ωn(t, x) via the Biot-Savart
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Law (Theorem 2.5.2) as

un(t, x) =

∫
Ω
KΩ(x, y)ωn(t, y) dy.

We can obtain flow maps ηn(t, x) given by (2.11) as the solution to the system
∂tηn(t, x) = un(t, η(t, x)),

ηn(0, x) = x.

Proposition 3.2.1 (Properties of ωn and un) For the above sequences ωn and un, we

have the following for all n > N :

1. ωn ∈ C∞
c (Ω) and un ∈ C∞(Ω).

2. For any n,

(a) ∥ω0,n∥L∞(Ω) ≤ ∥ω0∥L∞(Ω),

(b) ∥ω0,n∥L1(Ω) ≤ ∥ω0∥L1(Ω), and

(c) lim
n→∞

∥ω0,n − ω0∥L1(Ω) = 0.

3. ωn and un are uniformly bounded, and

∥un(t, ·)∥L∞(Ω) ≤ C ∥ωn(t, ·)∥L∞(Ω) ≤ C ∥ω0∥L∞(Ω) .

4. There exists a function ω(t, ·) ∈ L1(Ω) ∩ L∞(Ω) such that, for any time,

ωn(t, ·) → ω(t, ·) in L1(Ω).

5. There exists a function u =
∫
ΩKΩ(x, y)ω(y) dy such that, for any time,

un(t, ·) → u(t, ·) uniformly.
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6. The velocity-vorticity pair (u, ω) is a weak solution to the vorticity-stream formulation

of the two-dimensional Euler equations in Ω as defined in Definition 2.4.1.

Proof. Property 1 follows from basic properties of convolution and the above discussion

about the support of ρn ∗ω0. Property 2 is proved in section 8.2 of [MB02] (see Proposition

8.2). While the statements there are for the whole plane R2, they still apply here because

of the compact support in Ω of ω0,n. The analogue of Property 3 in R2 is also proved in

[MB02], but the statement there is no longer directly applicable since our velocities un are

defined via Theorem 2.5.2 with KΩ, not through Lemma 2.5.1 with K as in [MB02].

To prove Property 3, we first note that basic properties of mollifiers and the fact

that vorticity is transported by the flow give that ∥ωn(t, ·)∥L∞(Ω) ≤ ∥ω0∥L∞(Ω). It remains

to show that the velocities un are uniformly bounded. We take the radial cutoff function

a(x) as defined by (2.7). We can use the Biot-Savart Law (Theorem 2.5.2) and the compact

support of ωn to split un into several terms:

un(t, x) =

∫
Ω
KΩ(x, y)ωn(t, y) dy

=

∫
R2

K(x− y)ω̃n(t, y) dy −
∫
Ω
K(x− y∗)ωn(t, y) dy

=

∫
R2

a(x− y)K(x− y)ω̃n(t, y) dy +

∫
R2

(1− a(x− y))K(x− y)ω̃n(t, y) dy

−
∫
Ω
K(x− y∗)ωn(t, y) dy.

Note that the first integral has a compactly supported integrand and that the

second integral has cutoff the singularity of K so that its integrand is bounded. Recall

that K is locally integrable and that (3.1) gave that |K(x)| ≤ C |x|−1. Furthermore, on the

support of ωn, K(x−y∗) is smooth and bounded. Applying these observations and Hölder’s
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inequality yields that

|un(t, x)| ≤ ∥aK∥L1(R2) ∥ωn(t, ·)∥L∞(Ω) + ∥(1− a)K∥L∞(R2) ∥ωn(t, ·)∥L1(Ω)

+

∫
Ω
|K(x− y∗)| |ωn(t, y)| dy

≤ C ∥ωn(t, ·)∥L∞(Ω) + C ∥ωn(t, ·)∥L1(Ω) + CT ∥ωn(t, ·)∥L∞(Ω)

≤ CT ∥ωn(t, ·)∥L1(Ω)∩L∞(Ω) ,

proving Property 3.

Properties 4 to 6 follow exactly as in the proof of Proposition 8.2 of [MB02].

According to Proposition 3.2.1, the sequences of smooth solutions ωn and un con-

verge to weak solutions ω and u that satisfy (2.10) and Theorem 2.5.2. We will use the

smooth solutions ωn and un for the majority of the proof (always assuming n > N) and

pass to the limit as n→ ∞ in Section 3.6.

3.3 Transport Equations and Estimates

In this section, we will obtain some necessary transport equations for the pushfor-

ward of Y0 under the flow maps ηn associated to the smooth solutions ωn and un, as well

as some estimates on the gradients of the flow maps. Let Y0 =
(
Y

(λ)
0

)
λ∈Λ

be a sufficient

Cα(Ω) family of vector fields. Recall that a sufficient family was defined by (1.9) to be one

such that

Y ∈ Cα(Ω), divY ∈ Cα(Ω), and IΩ (Y) > 0,

where

IΩ (Y) := inf
x∈Ω

sup
λ∈Λ

∣∣∣Y (λ)
∣∣∣ .
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Let Y0 ∈ Y0. As in (1.10), we define the pushforward of Y0 under the flow maps

ηn by

Yn (t, ηn (t, x)) = (Y0(x) · ∇) ηn (t, x) . (3.12)

Recall that an equivalent definition (as in (1.11)) is

Yn(t, x) = (Y0 · ∇ηn)
(
t, η−1

n (t, x)
)
. (3.13)

We similarly define the pushforward of Y0 as in (2.6) by

Yn(t, ·) =
(
Y (λ)
n (t, ·)

)
λ∈Λ

.

The equations and estimates in this section apply to any member of Y0, so we now

turn our attention to an arbitrary element Y0 and its pushforward Yn. We will first need

some transport equations.

Proposition 3.3.1 Yn satisifies the following:

∂tYn + un · ∇Yn = Yn · ∇un (3.14)

∂t div Yn + un · ∇ div Yn = 0 (3.15)

∂t div (ωnYn) + un · ∇ div (ωnYn) = 0 (3.16)

div (Yn(t, x)) = div Y0
(
η−1
n (t, x)

)
(3.17)

d

dt
Yn (t, ηn(t, x)) = (Yn · ∇un) (t, ηn(t, x)) (3.18)

(3.19)

54



Proof. Taking the time derivative of the left-hand side of (3.12) gives

∂t (Yn (t, ηn(t, x))) = ∂tYn (t, ηn(t, x)) + ∂jYn (t, ηn(t, x)) ∂tη
j
n(t, x)

= ∂tYn (t, ηn(t, x)) + ∂jYn (t, ηn(t, x))u
j
n (t, ηn(t, x))

= ∂tYn (t, ηn(t, x)) + (un · ∇)Yn (t, η(t, x)) , (3.20)

while the right-hand side time derivative of (3.12) is

d

dt
(Y0(x) · ∇ηn(t, x)) = Y0(x) · ∇ (∂tηn(t, x))

= Y0(x) · ∇ (un(t, ηn(t, x))

= Y0(x) · [∇un(t, ηn(t, x)) · ∇ηn(t, x)]

= (Y0(x) · ∇ηn(t, x)) · ∇un(t, ηn(t, x))

= Yn (t, ηn(t, x)) · ∇un (t, ηn(t, x)) .

Setting the two sides equal to each other proves (3.14).

We now investigate the components of the time derivative of (3.12). Using (3.20),

the ith component is

∂tY
i
n(t, ηn(t, x)) + un(t, ηn(t, x)) · ∇Y i

n(t, ηn(t, x))

= ∂t

[
Y j
0 (x)∂jη

i
n(t, x)

]
= Y j

0 (x)∂j∂tη
i
n(t, x)

= Y j
0 (x)∂j

(
uin (t, ηn(t, x))

)
= Y j

0 (x)∂ku
i
n (t, ηn(t, x)) ∂jη

k
n(t, x).
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By letting x′ = ηn(t, x), so that x = η−1
n (t, x′), we can express this as

∂tY
i(t, x′) + un(t, x

′) · ∇Y i
n(t, x

′) = Y j
0

(
η−1
n (t, x′)

)
∂jη

k
n

(
t, η−1

n (t, x′)
)
∂ku

i
n(t, x

′)

= Y k
n (t, x

′)∂ku
i
n(t, x

′),

where we used (3.13) in the last line. We can now apply ∂x′
i
to both sides and take the sum

over i = 1, 2. This gives a left-hand side of

∂t div Yn + ∂i
(
ujn∂jY

i
n

)
= ∂t div Yn + ∂iu

j
n∂jY

i
n + ujn∂j∂iY

i
n

= ∂t div Yn +∇un · (∇Yn)T + un · ∇ div Yn,

while the right-hand side is

∂i

(
Y k
n ∂ku

i
n

)
= ∂iY

k
n ∂ku

i
n + Y k

n ∂k∂iu
i
n

= ∂iY
k
n ∂ku

i
n

= ∇un · (∇Yn)T ,

where we used the fact that un is divergence-free in the second line. Comparing the left

and right sides proves (3.15). The proof of (3.16) follows the same way as that of (3.15)

and uses the fact that ∂tωn+un ·∇ωn = 0. Since (3.15) is equivalent to the quantity div Yn

being passively transported by the flow, this also immediately proves (3.17). Finally, we

note that, in light of (3.20), we have proved (3.18) since it is simply an alternate way of

expressing (3.14).

Some of our later calculations will involve div (ωnYn). The following regularity

result for this quantity is a modification of Lemma 9.2 from [BK15]. To adapt the result to

our bounded domain, we will need to use an extension of Yn to the plane that will not be

otherwise used, so we present those details in the appendix as Proposition A.7.
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Proposition 3.3.2 We have div (ωnYn) (t, ·) ∈ Cα−1 (Ω) with

∥div (ωnYn) (t, ·)∥Cα−1(Ω) ≤ CeC
∫ t
0 ∥∇un(s,·)∥L∞(Ω) ds.

We next will obtain some estimates on the gradients of the flow map and its inverse.

As in (2.21), we define

Vn(t) = ∥ωn(t, ·)∥L∞(Ω) +

∥∥∥∥p. v.∫
Ω
∇xKΩ(x, y)ωn(t, y) dy

∥∥∥∥
L∞(Ω)

(3.21)

and recall that by the Biot-Savart Law (Theorem 2.5.2), we have ∥∇un(t, ·)∥L∞(Ω) ≤ Vn(t),

as in (2.21).

Lemma 3.3.3 We have the following estimates:

∥∇ηn(t, ·)∥L∞(Ω) ≤ e
∫ t
0 Vn(s) ds

∥∥∇η−1
n (t, ·)

∥∥
L∞(Ω)

≤ e
∫ t
0 Vn(s) ds

Proof. Recall that the defining equation for ηn was given in (2.11):
∂tηn(t, x) = un(t, ηn(t, x)),

ηn(0, x) = x.

(3.22)

Integrating the differential equation in time over [0, t] gives

ηn(t, x) = x+

∫ t

0
un (s, ηn(s, x)) ds.

Applying the gradient in the spatial variables and using the chain rule shows that

∇ηn(t, x) = I +

∫ t

0
∇un (s, ηn(s, x)) · ∇ηn(s, x) ds,

where I is the 2×2 identity matrix. Taking the L∞ norm gives

∥∇ηn(t, ·)∥L∞(Ω) ≤ 1 +

∫ t

0
∥∇un(s, ·)∥L∞(Ω) ∥∇ηn(s, ·)∥L∞(Ω) ds.
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We can now apply Lemma 2.2.7 to obtain

∥∇ηn(t, ·)∥L∞(Ω) ≤ e
∫ t
0 ∥∇un(s)∥L∞(Ω) ds.

By Lemma 2.6.1, this gives us that

∥∇ηn(t, ·)∥L∞(Ω) ≤ e
∫ t
0 Vn(s) ds.

The bound for the inverse flow map ∇η−1
n is more difficult because the flow is not

autonomous. This estimate can be obtained by following the proof of Lemma 8.2 of [MB02]

using ∇η−1
n instead of their X−t

ϵ (x).

3.4 Estimate of Yn

In this section, we will begin putting the previous results together to work towards

obtaining the bounds in Theorem 1.6.1. We start by bounding ∥Yn(t, ·)∥Cα(Ω), defined as

the sum of the L∞ norm and the Ċα norm. We begin with the L∞ norm. Recall that by

Lemma 3.3.1 we have

d

dt
Yn (t, ηn(t, x)) = (Yn · ∇un) (t, ηn(t, x)) .

By taking the inner product with Yn (t, ηn(t, x)) on both sides, we obtain

d

dt
Yn (t, ηn(t, x)) · Yn (t, ηn(t, x)) = (Yn · ∇un) (t, ηn(t, x)) · Yn (t, ηn(t, x)) . (3.23)

Note that

1

2

d

dt
|Yn (t, ηn(t, x))|2 =

1

2

2∑
i=1

d

dt

[
Y i
n (t, ηn(t, x))

]2
= Yn (t, ηn(t, x)) ·

d

dt
Yn (t, ηn(t, x))

= (Yn · ∇un) (t, ηn(t, x)) · Yn (t, ηn(t, x))
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by (3.23). This gives that

∣∣∣∣ ddt |Yn (t, ηn(t, x))|2
∣∣∣∣ ≤ 2 |Yn(t, ηn(t, x))| |∇un(t, ηn(t, x))| |Yn(t, ηn(t, x))|

≤ 2 ∥∇un (t, ηn(t, ·))∥L∞ |Yn (t, ηn(t, x))|2

= 2 ∥∇un(t, ·)∥L∞ |Yn (t, ηn(t, x))|2

≤ 2Vn(t) |Yn (t, ηn(t, x))|2 ,

so that

d

dt
|Yn(t, ηn(t, x))|2 ≤ 2Vn(t) |Yn(t, ηn(t, x))|2 (3.24)

and

d

dt
|Yn(t, ηn(t, x))|2 ≥ −2Vn(t) |Yn(t, ηn(t, x))|2 . (3.25)

We can now integrate (3.24) in time from 0 to t to see that

∫ t

0

d

ds
|Yn(s, ηn(s, x))|2 ds ≤

∫ t

0
2Vn(s) |Yn(s, ηn(s, x))|2 ds.

Applying the Fundamental Theorem of Calculus to the left-hand sides gives that

|Yn(t, ηn(t, x))|2 ≤ |Yn(0, x)|2 +
∫ t

0
2Vn(s) |Yn(s, ηn(s, x))|2 ds.

Applying Lemma 2.2.7 and noting that |Yn(0, x)| = |Y0(x)| shows that

|Yn(t, ηn(t, x))|2 ≤ |Y0(x)|2 e2
∫ t
0 Vn(s) ds,

and applying Lemma 2.2.8 to (3.25) gives

|Yn(t, ηn(t, x))|2 ≥ |Y0(x)|2 e−2
∫ t
0 Vn(s) ds.
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Taking square roots gives that

|Y0(x)| e−
∫ t
0 Vn(s) ds ≤ |Yn(t, ηn(t, x))| ≤ |Y0(x)| e

∫ t
0 Vn(s) ds. (3.26)

From this, we can conclude that

∥Yn(t, ·)∥L∞(Ω) ≤ ∥Y0∥L∞(Ω) e
∫ t
0 Vn(s) ds. (3.27)

We now turn to the quantity ∥Yn(t, ·)∥Ċα(Ω) . We again begin with the transport

equation given by Lemma 3.3.1:

d

dt
Yn (t, ηn(t, x)) = (Yn · ∇un) (t, ηn(t, x)) .

Integrating in time from 0 to t and applying the Fundamental Theorem of Calculus as

above, we see that

Yn(t, ηn(t, x)) = Y0(x) +

∫ t

0
(Yn · ∇un)(s, ηn(s, x)) ds.

By re-expressing x as η−1
n (t, x′), so that ηn(t, x) = x′, we can write this as

Yn(t, x
′) = Y0(η

−1
n (t, x′)) +

∫ t

0
(Yn · ∇un)(s, ηn(s, η−1

n (t, x′))) ds.

Taking the Ċα seminorm in Ω gives that

∥Yn(t, ·)∥Ċα(Ω) ≤
∥∥Y0(η−1

n (t, x′))
∥∥
Ċα(Ω)

+

∫ t

0

∥∥(Yn · ∇un)(s, ηn(s, η−1
n (t, x′)))

∥∥
Ċα(Ω)

ds.

By applying Lemma 2.2.6 to both of the right-hand side seminorms, we obtain the inequality

∥Yn(t, ·)∥Ċα(Ω) ≤ C ∥Y0∥Ċα(Ω)

∥∥∇η−1
n (t, ·)

∥∥α
L∞(Ω)

(3.28)

+ C

∫ t

0
∥(Yn · ∇un)(s, ·)∥Ċα(Ω)

∥∥∇ (ηn(s, η−1
n (t, x′))

)∥∥α
L∞(Ω)

ds.
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We next must estimate each of the factors appearing in (3.28). The first such

estimate is that, by Lemma 3.3.3, we have

∥∥∇η−1
n (t, ·)

∥∥α
L∞(Ω)

≤ eα
∫ t
0 Vn(s) ds. (3.29)

We will now focus on ∥(Yn · ∇un)(s, ·)∥Ċα(Ω), the first factor of the time integral

in (3.28). By Corollary 3.1.4,

(Yn · ∇un)(s, x) =
∫
Ω
K(x− y) div(ωnYn)(s, y) dy −

∫
Ω
∇xK(x− y∗)Yn(y)ωn(s, y) dy

+ p. v.

∫
Ω
∇xKΩ(x, y) [Yn(x)− Yn(y)]ωn(s, y) dy

=: I− II + III. (3.30)

By Proposition 3.1.2,

∥III∥Cα(Ω) ≤ CTVn(s) ∥Y (s, ·)∥Cα(Ω) . (3.31)

Because ωn is essentially bounded and compactly supported in Ω, and because ∇xK(x−y∗)

is smooth and bounded on the support of ωn, we have that

∥II∥Cα(Ω) ≤ CT ∥Y (s, ·)∥Cα(Ω) . (3.32)

To investigate ∥I∥Cα(Ω), we will need to extend Yn to the whole plane. We will

employ the Stein Hölder extension EH from Lemma 2.1.5 to do so. Let Ỹn = EHYn.

Note that the properties of EH give that Ỹn
∣∣
Ω

= Yn, Ỹn ∈ Cα(R2), and
∥∥∥Ỹn∥∥∥

Cα(R2)
≤

C(α,Ω) ∥Yn∥Cα(Ω). Now let U = R2 \ suppωn, the complement of the support of ωn. Recall

that ω̃n is the extension by zero of ωn to R2. Let ϕ ∈ C∞
c (U) be a test function on U . Note

that ∫
U
div
(
ω̃nỸn

)
(x)ϕ(x) dx = −

∫
U
ω̃n(x)Ỹn(x) · ∇ϕ(x) dx = 0
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since ω̃n is compactly supported on R2\U , so that, as a distribution, div
(
ω̃Ỹn

)
is compactly

supported in R2 \ U = suppωn ⊆ Ω ([FJ98, Section 1.4]). This means that

∫
Ω
K(x− y) div(ωnYn)(s, y) dy =

∫
R2

K(x− y) div
(
ω̃nỸn

)
(s, y) dy

=
[
K ∗ div

(
ω̃nỸn

)]
(s, x). (3.33)

By Proposition 4.5 of [BK15], we have

∥∥∥K ∗ div
(
ω̃nỸn

)∥∥∥
Cα(R2)

≤ C

(∥∥∥ω̃nỸn

∥∥∥
L1∩L∞(R2)

+
∥∥∥div (ω̃nỸn

)∥∥∥
Cα−1(R2)

)
. (3.34)

Using (3.33) and (3.34), we can see that

∥I∥Cα(Ω) =

∥∥∥∥∫
Ω
K(x− y) div(ωnYn)(s, y) dy

∥∥∥∥
Cα(Ω)

=
∥∥∥[K ∗ div

(
ω̃nỸn

)]
(s, ·)

∥∥∥
Cα(R2)

≤ C

(∥∥∥(ω̃nỸn

)
(s, ·)

∥∥∥
L1∩L∞(R2)

+
∥∥∥div (ω̃nỸn

)
(s, ·)

∥∥∥
Cα−1(R2)

)
≤ CT ∥(ωnYn) (s, ·)∥L1∩L∞(Ω) + CT ∥div (ωnYn) (s, ·)∥Cα−1(Ω) ,

where the last line is justified because of the compact support in Ω of ω̃n and div
(
ω̃nỸn

)
.

We can now use Property 3 of Proposition 3.2.1, the bound given by (3.27), and Proposi-

tion 3.3.2 to obtain the estimate

∥I∥Cα(Ω) ≤ C(T,Ω) ∥ωn(s, ·)∥L∞(Ω) ∥Yn(s, ·)∥L∞(Ω) + CT ∥div (ωnYn) (s, ·)∥Cα−1(Ω)

≤ C(T,Ω, ω0) ∥Y0∥L∞(Ω) e
∫ s
0 Vn(τ) dτ + CT e

C
∫ s
0 ∥∇un(τ,·)∥L∞(Ω) dτ

≤ C(T,Ω, ω0, Y0)e
∫ s
0 Vn(τ) dτ + CT e

C
∫ s
0 Vn(τ) dτ

≤ CT e
C

∫ s
0 Vn(τ) dτ . (3.35)
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Putting estimates (3.31), (3.32) and (3.35) together with (3.30) gives us the esti-

mate

∥(Yn · ∇un) (s, ·)∥Cα(Ω) ≤ ∥I∥Cα(Ω) + ∥II∥Cα(Ω) + ∥III∥Cα(Ω)

≤ CT e
C

∫ s
0 Vn(τ) dτ + CT ∥Yn(s, ·)∥Cα(Ω)

+ CTVn(s) ∥Yn(s, ·)∥Cα(Ω) . (3.36)

We now turn to the quantity
∥∥∇ (ηn(s, η−1

n (t, x′))
)∥∥α

L∞(Ω)
, which is the second

factor of the time integral in (3.28). We will follow the outline of the proof of Lemma 3.3.3

to bound this factor in a similar way. Note that the defining property of the flow maps

given in (2.11) gives that

∂tηn
(
τ, η−1

n (t, x′)
)
= un

(
τ, ηn

(
τ, η−1

n (t, x′)
))
.

Taking the gradient with respect to the spatial variables and using the chain rule shows

that

∂t∇
(
ηn
(
τ, η−1

n (t, x′)
))

= ∇un
(
τ, ηn

(
τ, η−1

n (t, x′)
))

∇
(
ηn
(
τ, η−1

n (t, x′)
))
.

Integrating both sides in time from s to t and using the Fundamental Theorem of Calculus

gives that

∇
(
ηn
(
τ, η−1

n (t, x′)
)) ∣∣

τ=t
−∇

(
ηn
(
s, η−1

n (t, x′)
))

=

∫ t

s
∇un

(
τ, ηn

(
τ, η−1

n (t, x′)
))

∇
(
ηn
(
τ, η−1

n (t, x′)
))
dτ.

Because ∇
(
ηn
(
τ, η−1

n (t, x′)
)) ∣∣

τ=t
= I2×2 ([MB02, Section 1.3]), this can be rearranged to

yield

∇
(
ηn
(
s, η−1

n (t, x′)
))

= I2×2 −
∫ t

s
∇un

(
τ, ηn

(
τ, η−1

n (t, x′)
))

∇
(
ηn
(
τ, η−1

n (t, x′)
))
dτ.
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Taking the L∞ norm gives that

∥∥∇ (ηn (s, η−1
n (t, x′)

))∥∥
L∞(Ω)

≤ 1 +

∫ t

s
∥∇un(τ, ·)∥L∞(Ω)

∥∥∇ (ηn (s, η−1
n (t, x′)

))∥∥
L∞(Ω)

.

Applying Lemma 2.2.7 results in the estimate

∥∥∇ (ηn (s, η−1
n (t, x′)

))∥∥
L∞(Ω)

≤ e
∫ t
s ∥∇un(τ,·)∥L∞(Ω) dτ ≤ e

∫ t
s Vn(τ) dτ .

Thus, we can bound the factor in (3.28) with

∥∥∇ (ηn (s, η−1
n (t, x′)

))∥∥α
L∞(Ω)

≤ eα
∫ t
s Vn(τ) dτ . (3.37)

We are now ready to begin the task of putting the various estimates obtained so

far together to obtain a bound on ∥Yn(t, ·)∥Cα(Ω). For notational clarity, we will suppress

the domain Ω of the norms and denote quantities such as ∥f(t, ·)∥X as simply ∥f(t)∥X . By

(3.27) and from applying (3.29), (3.36) and (3.37) to (3.28), we have

∥Yn(t)∥Cα = ∥Yn(t)∥L∞ + ∥Yn(t)∥Ċα

≤ ∥Y0∥L∞ e
∫ t
0 Vn(τ) dτ + C ∥Y0∥Ċα e

α
∫ t
0 Vn(τ) dτ

+ CT

∫ t

0

[
eC

∫ s
0 Vn(τ) dτ + ∥Yn(s)∥Cα + Vn(s) ∥Yn(s)∥Cα

]
eα

∫ t
s Vn(τ) dτ ds.

Because α < 1 and Vn > 0, we can omit the α coefficients, combine the first two terms, and

simplify the integrand to see that

∥Yn(t)∥Cα ≤ C ∥Y0∥Cα e
∫ t
0 Vn(τ) dτ + CT

∫ t

0
eC

∫ t
0 Vn(τ) dτ ds

+ CT

∫ t

0
[∥Yn(s)∥Cα + Vn(s) ∥Yn(s)∥Cα ] e

∫ t
s Vn(τ) dτ ds

≤ [C ∥Y0∥Cα + CT t] e
C

∫ t
0 Vn(τ) dτ +

∫ t

0
CT (1 + Vn(s)) ∥Yn(s)∥Cα e

C
∫ t
s Vn(τ) dτ ds.
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Multiplying both sides by e−C
∫ t
0 Vn(τ) dτ gives that

∥Yn(t)∥Cα e
−C

∫ t
0 Vn(τ) dτ ≤ C ∥Y0∥Cα + CT t+

∫ t

0
CT (1 + Vn(s)) ∥Yn(s)∥Cα e

−C
∫ s
0 Vn(τ) dτ ds.

If we let ξn(t) := ∥Yn(t)∥Cα e−C
∫ t
0 Vn(τ) dτ , then we have

ξn(t) ≤ C ∥Y0∥Cα + CT t+

∫ t

0
CT (1 + Vn(s))ξn(s) ds,

so we can apply Lemma 2.2.7 to find that

ξn(t) ≤ [C ∥Y0∥Cα + CT t] e
∫ t
0 CT (1+Vn(s)) ds ≤ CT (1 + t)e

∫ t
0 CT (1+Vn(s)) ds.

Thus, we obtain the estimate

∥Yn(t)∥Cα(Ω) ≤ CT (1 + t)e
∫ t
0 [CT+CTVn(s)] ds. (3.38)

3.5 Improved Estimate of the Velocity Gradient

Recall that Vn(t) was defined by (3.21) as

Vn(t) = ∥ωn(t, ·)∥L∞(Ω) +

∥∥∥∥p. v.∫
Ω
∇xKΩ(x, y)ωn(t, y) dy

∥∥∥∥
L∞(Ω)

(3.39)

and that, as in (2.21), ∥∇un(t)∥L∞(Ω) ≤ Vn(t).

We now need to bound Vn(t) in terms of ∥Yn(t)∥Cα(Ω) so that, with (3.38), we

will have Vn(t) bounded in terms of itself, which will allow us to close the estimates with

Grönwall’s Inequality to obtain the final bound on ∥∇un(t)∥L∞(Ω) that will give us the

estimates in Theorem 1.6.1. This is the climax of the proof, and indeed is where Serfati

made use of his linear algebra lemma and where the various approaches of Serfati, Bertozzi

and Constantin, and Chemin differ most significantly. We will use the approach taken in
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Section 10.3 of [BK15], where the details are carried out for the full plane case, noting

where and how adjustments need to be made to account for the extra term in the Biot-

Savart kernel KΩ in our domain. The fact that the extra term K(x − y∗) is smooth and

bounded on the support of ω(t, y) means that the results will largely carry through without

significant differences.

We start by fixing t ∈ [0, T ] and x ∈ Ω. First, note that (3.39) along with

Property 3 of Proposition 3.2.1 gives that

Vn(t) ≤ C(ω0) +

∥∥∥∥p. v.∫
Ω
∇xKΩ(x, y)ωn(t, y) dy

∥∥∥∥
L∞

.

Using the cutoff function ar defined in (2.7), we can let r ∈ (0, 1) and split the integral term

as

p. v.

∫
Ω
∇xKΩ(x, y)ωn(t, y) dy

= p. v.

∫
Ω
∇(arK)(x− y)ωn(t, y) dy

+ p. v.

∫
Ω
∇ ((1− ar)K) (x− y)ωn(t, y) dy

−
∫
Ω
∇K(x− y∗)ωn(t, y) dy

= p. v.

∫
R2

∇(arK)(x− y)ω̃n(t, y) dy

+ p. v.

∫
R2

∇ ((1− ar)K) (x− y)ω̃n(t, y) dy

−
∫
Ω
∇K(x− y∗)ωn(t, y) dy

=: I + II− III. (3.40)
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Note that, since K(x− y∗) is smooth and bounded on the support of ωn, we have

|III| ≤ C(T,Ω, ω0) (3.41)

by Proposition 3.2.1.

Since ∇(1− ar) = −∇ar, due to the properties of ar described in Section 2.1, we

have that ∇(1− ar) is supported on [r, 2r]. This means that, on the support of ∇(1− ar),

we have |x− y| ≤ 2r. Since K is radially symmetric and and decreasing in |x− y|, and

because ar is smooth, we have

|∇ ((1− ar)K)| ≤ |(1− ar)∇K|+ |∇ar ⊗K|

≤ |∇K|+ C |K|

≤ C

|x− y|2
.

Using Proposition 3.2.1 several times, this gives that

|II| ≤ C

∫
Bc(x,r)

|ω̃n(t, y)|
|x− y|2

dy

= C

∫
B(x,1)\Bc(x,r)

|ω̃n(t, y)|
|x− y|2

dy + C

∫
Bc(x,1)

|ω̃n(t, y)|
|x− y|2

dy

≤ C ∥ω0∥L∞(Ω)

∫ 2π

0

∫ 1

r

1

ρ2
ρ dρdθ + C

∥∥∥∥ 1

|x− ·|2

∥∥∥∥
L∞(Bc(x,1))

∫
Bc(x,1)

|ω̃n(t, y)| dy

≤ 2πC ∥ω0∥L∞(Ω) (− ln r) + C(1) ∥ωn(t, ·)∥L1(Ω)

≤ C (1− ln r) ∥ω0∥(L1∩L∞)(Ω)

so that

|II| ≤ C(1− ln r). (3.42)
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In order to estimate |I|, we first choose Y0 ∈ Y0 such that

∣∣Y0 (η−1
n (t, x)

)∣∣ ≥ IΩ(Y0). (3.43)

Note that, because of (3.26), this means that

|Yn(t, x)| ≥ IΩ(Y0)e
−

∫ t
0 Vn(s) ds. (3.44)

In order to apply full plane results, we will need to extend the vector fields Y0

and Yn to the whole plane in a way that preserves the pushforward identity. As outlined

in Section 2.5, there exist stream functions ψn(t, x) ∈ C∞(Ω) given by (2.15) so that

un = ∇⊥ψn. We now will use the Stein extension operator E for Ω and its properties given

by Lemma 2.1.4. Define ψ∗
n := Eψn. Since ψn ∈ W 2,∞(Ω), we have that ψ∗

n ∈ W 2,∞(R2).

We then define u∗n := ∇⊥ψ∗
n, which gives that u∗n ∈ W 1,∞(R2). By construction, we have

div u∗n = div∇⊥(Eψn) = 0, so that u∗n is divergence-free. Corresponding to the velocities

u∗n, we have flow maps η∗n, obtained by solving (2.11). We note that, even though u∗n and

η∗n are not obtained by applying E to un and ηn, respectively, we still have that u∗n
∣∣
Ω
= un

and η∗n
∣∣
Ω
= ηn. As in the previous section, we apply the Stein Hölder extension EH from

Lemma 2.1.5 to define Ỹ0 := EHY0. Note that Ỹ0 ∈ Cα(R2) and Ỹ0
∣∣
Ω

= Y0. We then

pushforward Ỹ0 according to (1.11) as

Ỹn(t, x) =
(
Ỹ0 · ∇η∗n

) (
t, (η∗n)

−1(t, x)
)

(3.45)

and note that we have Ỹn
∣∣
Ω
= Yn.

Since I = p. v.
∫
R2 ∇(arK)(x − y)ω̃n(t, y) dy is an integral over the whole plane

and since ω̃n ∈ C∞(R2), ω̃n ∈ (L1 ∩ L∞)(R2), and Ỹ0 ∈ Cα(R2), using (3.44), the lengthy

calculations in Section 10.3 of [BK15], including the application of Serfati’s linear algebra
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lemma (see Section 3.7 for a discussion of how the lemma is used), apply directly with ω̃n

used in place of their ωϵ and Ỹ0 used in place of their Y0 to obtain the bound

sup
x∈R2

|I| ≤ C(α)
∥∥∥Ỹ0∥∥∥

L∞(R2)
e8

∫ t
0 Vn(s) ds

(∥∥∥Ỹn∥∥∥
Cα(R2)

∥ω̃0∥L∞(R2) +
∥∥∥div (ω̃nỸn)

)∥∥∥
Cα−1(R2)

)
rα

+ ∥ω̃0∥L∞(R2) (3.46)

≤ C ∥Y0∥L∞(Ω) e
8
∫ t
0 Vn(s) ds

(
∥Yn(t)∥Cα(Ω) ∥ω0∥L∞(Ω) + ∥div (ωnYn) (t)∥Cα−1(Ω)

)
rα

+ ∥ω0∥L∞(Ω) . (3.47)

Using (3.38) and Proposition 3.3.2 and with C = C(ω0, Y0, α,Ω, T ), this gives that

sup
x∈R2

|I| ≤ Ce8
∫ t
0 Vn(s) ds

(
C(1 + t)e

∫ t
0 [C+CVn(s)] ds + CeC

∫ t
0 ∥∇un(s,·)∥L∞(Ω) ds

)
rα + C

≤
[
C(1 + t)e

∫ t
0 [C+CVn(s)] ds + Ce

∫ t
0 CVn(s) ds

]
rα + C.

≤ C(1 + t)e
∫ t
0 [C+CVn(s)] dsrα + C. (3.48)

We can now combine (3.41), (3.42) and (3.48) with (3.40) to find that

Vn(t) ≤ C(1 + t)e
∫ t
0 [C+CVn(s)] dsrα + C + C(1− ln r) + C

≤ C(1 + t)e
∫ t
0 [C+CVn(s)] dsrα + C(1− ln r). (3.49)

3.6 Closing the Estimates and Generalizing the Domain

We now fix a constant C0 satisfying (3.49), so that

Vn(t) ≤ C0(1 + t)eC0

∫ t
0 (1+Vn(s)) dsrα + C0(1− ln r).
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We set r = e−
C0
α

∫ t
0 (1+Vn(s)) ds, so that

rα = e−C0

∫ t
0 (1+Vn(s)) ds

and

1− ln r = 1 + C1

∫ t

0
(1 + Vn(s)) ds,

with C1 =
C0
α . This value of r gives that

Vn(t) ≤ C0(1 + t) + C0

(
1 + C1

∫ t

0
(1 + Vn(s)) ds

)
≤ C(1 + t) + C

∫ t

0
(1 + Vn(s)) ds

≤ C(1 + t) + C

∫ t

0
Vn(s) ds.

Using Lemma 2.2.7 allows us to conclude that

Vn(t) ≤ C(1 + t)e
∫ t
0 C ds

≤ Celn(1+t)eCt

≤ CeCt,

since ln(1 + t) ≤ t. This gives us the estimate

∥∇un(t, ·)∥L∞(Ω) ≤ Vn(t) ≤ CeCt. (3.50)

We can now use (3.50) to close all of the previous estimates we have obtained.

Applying it to (3.38) shows that

∥Yn(t, ·)∥Cα(Ω) ≤ C(1 + t)e
∫ t
0 [C+CeCs] ds

≤ Celn(1+t)+Ct+CeCt

≤ CeCeCt
, (3.51)
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since ln(1 + t) and Ct are both bounded above by eCt for t ≥ 0. Using (3.50) and (3.51)

with (3.36) gives the estimate

∥Yn · ∇un(t, ·)∥Cα(Ω) ≤ Ce
∫ t
0 CeCs ds + CeCeCt

+ CeCteCeCt

≤ CeCeCt
+ CeCt+CeCt

≤ CeCeCt
, (3.52)

where we used the fact that t ≤ eCt. Using (3.50) with Proposition 3.3.2 gives that

∥div (ωnYn) (t, ·)∥Cα−1(Ω) ≤ Ce
∫ t
0 CeCs ds ≤ CeCeCt

. (3.53)

Using (3.50) with Lemma 3.3.3 gives

∥∇ηn(t, ·)∥L∞(Ω) ≤ e
∫ t
0 CeCs ds ≤ CeCeCt

. (3.54)

Using (3.50) with (3.26) gives that

|Yn (t, ηn(t, x))| ≥ |Y0(x)| e−
∫ t
0 CeCs ds ≥ |Y0(x)| e−CeCt

. (3.55)

We can use (3.17) from Lemma 3.3.1 along with Lemma 2.2.6, the fact that Ω is bounded,

Lemma 3.3.3, and (3.50) to see that

∥div Yn(t, ·)∥Cα(Ω) =
∥∥div Y0 (η−1

n (t, ·)
)∥∥

Cα(Ω)

=
∥∥div Y0 (η−1

n (t, ·)
)∥∥

L∞(Ω)
+
∥∥div Y0 (η−1

n (t, ·)
)∥∥

Ċα(Ω)

≤ ∥div Y0∥L∞(Ω)

+ C ∥div Y0∥Ċα(Ω)

[∥∥η−1
n (t, ·)

∥∥
L∞(Ω)

+
∥∥∇η−1

n (t, ·)
∥∥
L∞(Ω)

]α
≤ ∥div Y0∥L∞(Ω) + C ∥div Y0∥Ċα(Ω)

[
C(Ω) + e

∫ t
0 Vn(s) ds

]α
≤ ∥div Y0∥L∞(Ω) + C ∥div Y0∥Ċα(Ω)

[
(C + 1) e

∫ t
0 Vn(s) ds

]α
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≤ ∥div Y0∥L∞(Ω) + C (C + 1)α ∥div Y0∥Ċα(Ω) e
α
∫ t
0 Vn(s) ds

≤ C ∥div Y0∥Cα(Ω) e
α
∫ t
0 CeCs ds

≤ C ∥div Y0∥Cα(Ω) e
Cet . (3.56)

The calculations verifying that these estimates hold in the limit as n → ∞ are

identical to those in Section 10.4 of [BK15] (where they used the mollification parameter ϵ

and let ϵ→ 0 rather than using 1/n and letting n→ ∞), so are not repeated here. We note

that these calculations themselves are adaptations of Chemin’s arguments in [Che91, Che93].

We can take the supremum over all Y0 ∈ Y0 so that (3.50) gives the bound (1.12), (3.51)

gives the bound (1.13), (3.56) gives the bound (1.14), (3.53) gives the bound (1.15), (3.52)

gives the bound (1.16), (3.54) gives the bound (1.17), and (3.55) gives the bound (1.18),

proving Theorem 1.6.1 for Ω = B(0, 1).

Though our proof has been specific to the unit disk Ω = B(0, 1), we note that

we never used any properties specific to the unit disk (e.g., convexity) in our proof. Let

Ω be an arbitrary simply connected bounded domain in the plane. As in Section 2.5, the

Biot-Savart kernel for Ω is

KΩ(x, y) := ∇⊥
xGΩ(x, y),

where GΩ is Green’s function for Ω. As in [Eva10, Section 2.2], we can write this as

GΩ = G− ϕ,

72



where G(x, y) = 1
2π ln |y − x| is the fundamental solution to the Laplacian in R2 and ϕ is a

harmonic solution to the boundary-value problem
∆ϕ = 0 in Ω

ϕ = G on ∂Ω.

(3.57)

Thus, the Biot-Savart kernel for Ω is

KΩ(x, y) = ∇⊥
xGΩ(x, y)

= ∇⊥
xG(x, y)−∇⊥

x ϕ(x, y)

= K(x− y)−∇⊥
x ϕ(x, y)

= K(x− y)−R(x, y), (3.58)

whereK is the Biot-Savart kernel for the plane as in Lemma 2.5.1 and R(x, y) := ∇⊥
x ϕ(x, y).

Following arguments identical to those in Section 2.5, we have the following Biot-Savart Law

for Ω:

Theorem 3.6.1 (Biot-Savart Law in Ω) Let u(t, x) be the divergence-free velocity as-

sociated with the vorticity ω(t, x) ∈ L∞(Ω), let ϕ(x, y) satisfy (3.57), and let KΩ be the

Biot-Savart kernel given by (3.58). Then for all time t ≥ 0, we have

u(t, x) = KΩ[ω] =

∫
Ω
KΩ(x, y)ω(t, y) dy.

We note that if Ω = B(0, 1), then R(x, y) = K(x− y∗), as in Theorem 2.5.2.

Since Ω is simply connected, we could use a Riemann map to obtain an expression

for R(x, y), but we need only that this term has enough regularity to allow the above proof

of Theorem 1.6.1 to carry through. The function ϕ(x, y) is C∞ on Ω × Ω and R(x, y) is
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smooth and bounded for y in the compact support of ω(t, y). Specifically, we have

sup
x∈Ω,y∈suppω(t,·)

R(x, y) ≤ CT ,

sup
x∈Ω,y∈suppω(t,·)

∇xR(x, y) ≤ CT .

Since these were the only properties of K(x − y∗) used above, the proof of Theorem 1.6.1

for the arbitrary domain Ω is complete.

3.7 Serfati’s Lemma

We will close this chapter by examining Serfati’s Lemma in more detail and de-

scribing how it is used to obtain the crucial bound (3.47). The version of the lemma

presented here is proven in [BK15] for B ∈Md×d(R), the space of d-dimensional real square

matrices, for d ≥ 1; we present it with d = 2. The result was further refined as Lemma 5.1

of [BK21], where the authors attribute the lemma to Serfati in [Ser94b, Ser92, Ser94a].

Lemma 3.7.1 (Serfati’s Lemma) For any symmetric matrix B ∈M2×2(R), we have

|B| ≤ P (M1)

|M1|4
|BM1|+ 2 |trB| ,

where M1 is any vector in R2 and P is a polynomial of degree 4.

While we do not reproduce it here, we note that the proof of Lemma 3.7.1 is

essentially a direct calculation applied to a representation of B as a product involving the

matrix M := (M1,M
⊥
1 ), where M⊥

1 := (−M2
1 ,M

1
1 ). Because MMT = (detM)I, B can be

represented as

B =
MMT

detM
B
MMT

detM
=

M

(detM)2
(
MTBM

)
MT .
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The proof is completed by using the symmetry of B to directly estimate
∣∣MTBM

∣∣ in terms

of |BM1| and trB.

In the proof of Theorem 1.6.1, we first obtained a rough estimate on the velocity

gradient with (2.21) and (3.39) as

∥∇un(t)∥L∞ ≤ Vn(t) := ∥ωn(t)∥L∞ +

∥∥∥∥p. v. ∫
Ω
∇xKΩ(x, y)ωn(t, y) dy

∥∥∥∥
L∞

.

In Section 3.5, we wanted to improve this estimate to bound Vn(t) in terms of ∥Yn(t)∥Cα(Ω),

which was itself bounded in terms of Vn in Section 3.4. This allowed us to close all the

estimates with Grönwall’s inequality in Section 3.6 in order to complete the proof of the

main result. To this end, the principle value integral appearing in the expression for Vn

was decomposed into three separate integrals, two of which were relatively straightforward

to estimate. The third integral was the most difficult to handle because it dealt with the

singularity at origin. This is where Lemma 3.7.1 was used.

The quantity to be estimated was

∣∣∣∣p. v. ∫
R2

∇(arK)(x− y)ω̃n(t, y) dy

∣∣∣∣ .
As noted above, because this integral is over the whole plane and because we are using the

extensions ω̃n and Ỹn defined on the whole plane, the calculations in Section 10.3 of [BK15]

apply directly. We will trace through their arguments in order to illustrate how Serfati’s

lemma gave the necessary bound.

To deal with the singularity at x = y, we use the cutoff functions ar given by (2.7)

to construct the following smooth radially symmetric double cutoff functions for r, h > 0
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with 2h < r:

µrh = ar(1− ah). (3.59)

Radially, µrh is identically zero on the intervals [0, h] and [2r,∞), is identically 1 on [2h, r],

and is smooth on [h, 2h] and [r, 2r]. It follows ([GT01, Section 8.3]) that the gradient of µrh

satisfies the following:

|∇µrh| ≤
C

h
≤ C

|x|
for |x| ∈ (h, 2h) (3.60)

|∇µrh| ≤
C

r
≤ C

|x|
for |x| ∈ (r, 2r) (3.61)

∇µrh = 0 elsewhere (3.62)

The quantity to be estimated can now be written ([BK15, Proposition 4.7]) as

∣∣∣∣p. v. ∫
R2

∇(arK)(x− y)ω̃n(t, y) dy

∣∣∣∣ = ∣∣∣∣ limh→0
∇ (µrhK) ∗ ω̃n

∣∣∣∣ .
Now let F(x) = 1

2π ln |x| be the fundamental solution to the Laplacian in R2.

Recall that K = ∇⊥F . Since, up to absolute value, it only reorders the components, we

can replace K with ∇F to see that the quantity to be estimated can be written as

∣∣∣∣p. v. ∫
R2

∇(arK)(x− y)ω̃n(t, y) dy

∣∣∣∣ = ∣∣∣∣ limh→0
∇ [µrh∇F ] ∗ ω̃n

∣∣∣∣ = lim
h→0

|B| ,

where

B = B(t, x) := ∇ [µrh∇F ] ∗ ω̃n =

∂1 [µrh∂1F ] ∗ ω̃n ∂2 [µrh∂1F ] ∗ ω̃n

∂1 [µrh∂2F ] ∗ ω̃n ∂2 [µrh∂2F ] ∗ ω̃n

 .

Because ∇∇F is not uniformly integrable as h → 0, we cannot directly estimate |B|.

However, we can apply Lemma 3.7.1 using M1 = Ỹn(t, x), defined on the whole plane by
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(3.45), to obtain the bound

|B| ≤ C
P (Ỹn)∣∣∣Ỹn∣∣∣4

∣∣∣BỸn∣∣∣+ 2 |trB| . (3.63)

Since the trace of B does not depend on Ỹn, it can be estimated directly by writing

it as

trB = ∂1 [µrh∂1F ] ∗ ω̃n + ∂2 [µrh∂2F ] ∗ ω̃n

= [∂1µrh∂1F + ∂2µrh∂2F ] ∗ ω̃n + [µrh∆F ] ∗ ω̃n

= [∂1µrh∂1F + ∂2µrh∂2F ] ∗ ω̃n + [µrhδ0] ∗ ω̃n,

where δ0 is Dirac’s delta function and ∆F = δ0 by definition. Since µrh(0) = 0, we have

[µrhδ0] ∗ ω̃n = 0 so that

trB = [∂1µrh∂1F + ∂2µrh∂2F ] ∗ ω̃n.

Switching to polar coordinates and using properties (3.60) through (3.62), Property 3 of

Proposition 3.2.1, and (3.1), we can now estimate the components of trB for j = 1, 2 as

|[∂jµrh∂jF ] ∗ ω̃n| =
∣∣∣∣∫

R2

[∂jµrh∂jF ] (x− y)ω̃n(t, y) dy

∣∣∣∣
≤ C ∥ω̃n(t)∥L∞

[(∫ 2h

h
+

∫ 2r

r

)
|(∂jµrh) (ρ)| |(∂jF) (ρ)| ρdρ

]
≤ C ∥ω̃0∥L∞

[
1

h

∫ 2h

h
|(∂jF) (ρ)| ρdρ+ 1

r

∫ 2r

r
|(∂jF) (ρ)| ρdρ

]
≤ C ∥ω̃0∥L∞

[
1

h

∫ 2h

h

1

ρ
ρdρ+

1

r

∫ 2r

r

1

ρ
ρdρ

]
≤ C ∥ω̃0∥L∞

uniformly over h < r
2 . This gives that

lim
h→0

|trB| ≤ C ∥ω̃0∥L∞ . (3.64)
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It remains to estimate
∣∣∣BỸn∣∣∣. This matrix is given by

BỸn =

R1

R2

 =

(∂1 [µrh∂1F ] ∗ ω̃n) Ỹ
1
n (∂2 [µrh∂1F ] ∗ ω̃n) Ỹ

2
n

(∂1 [µrh∂2F ] ∗ ω̃n) Ỹ
1
n (∂2 [µrh∂2F ] ∗ ω̃n) Ỹ

2
n

 .

We can add and subtract a quantity and rearrange the terms to further decompose each

row Rj as

Rj = (∂1 [µrh∂jF ] ∗ ω̃n) Ỹ
1
n + (∂2 [µrh∂jF ] ∗ ω̃n) Ỹ

2
n

− ∂1 [µrh∂jF ] ∗
(
ω̃nỸ

1
n

)
− ∂2 [µrh∂jF ] ∗

(
ω̃nỸ

2
n

)
+ ∂1 [µrh∂jF ] ∗

(
ω̃nỸ

1
n

)
+ ∂2 [µrh∂jF ] ∗

(
ω̃nỸ

2
n

)
= pj + qj , (3.65)

where

pj := (∂1 [µrh∂jF ] ∗ ω̃n) Ỹ
1
n + (∂2 [µrh∂jF ] ∗ ω̃n) Ỹ

2
n

− ∂1 [µrh∂jF ] ∗
(
ω̃nỸ

1
n

)
− ∂2 [µrh∂jF ] ∗

(
ω̃nỸ

2
n

)
=
∑
k=1,2

[
(∂k [µrh∂jF ] ∗ ω̃n) Ỹ

k
n − ∂k [µrh∂jF ] ∗

(
ω̃nỸ

k
n

)]
and

qj := ∂1 [µrh∂jF ] ∗
(
ω̃nỸ

1
n

)
+ ∂2 [µrh∂jF ] ∗

(
ω̃nỸ

2
n

)
.

Thus, in order to estimate
∣∣∣BỸn∣∣∣, it is sufficient to estimate |pj | and |qj |.

Recall that an immediate consequence of Definition 2.1.1 is that, for any f ∈ Cα,

we have

|f(x)− f(y)| ≤ ∥f∥Cα |x− y|α . (3.66)
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Using (3.66), the support of µrh, and polar coordinates, we can estimate

|pj | =

∣∣∣∣∣∣
∑
k=1,2

∫
R2

(∂k [µrh∂jF ]) (x− y)ω̃n(t, y)
[
Ỹ k
n (t, x)− Ỹ k

n (t, y)
]
dy

∣∣∣∣∣∣
≤ 2

∫
R2

|(∇ [µrh∇F ]) (x− y)| |ω̃n(t, y)|
∣∣∣Ỹ k

n (t, x)− Ỹ k
n (t, y)

∣∣∣ dy
≤ C

∥∥∥Ỹn(t)∥∥∥
Cα

∥ω̃n(t)∥L∞

∫ 2r

h
|(∇ [µrh∇F ]) (ρ)| ρα ρdρ.

Since ∇ [µrh∇F ] = µrh∇∇F +∇µrh∇F , we have that

|∇ [µrh∇F ] (ρ)| ≤ C

ρ2
. (3.67)

This gives

|pj | ≤ C
∥∥∥Ỹn(t)∥∥∥

Cα
∥ω̃0∥L∞

∫ 2r

h

1

ρ2
ρα ρdρ

= C(α)
∥∥∥Ỹn(t)∥∥∥

Cα
∥ω̃0∥L∞ [rα − hα]

so that

∑
j=1,2

∣∣∣∣ limh→0
pj

∣∣∣∣ ≤ C
∥∥∥Ỹn(t)∥∥∥

Cα
∥ω̃0∥L∞ rα. (3.68)

We now turn to |qj |, our last remaining term to estimate. First, we can use

properties of convolution to write

qj = ∂1 [µrh∂jF ] ∗
(
ω̃nỸ

1
n

)
+ ∂2 [µrh∂jF ] ∗

(
ω̃nỸ

2
n

)
= (µrh∂jF) ∗ ∂1

(
ω̃nỸ

1
n

)
+ (µrh∂jF) ∗ ∂2

(
ω̃nỸ

2
n

)
= (µrh∂jF) ∗ div

(
ω̃nỸn

)
,

giving that

∑
j=1,2

|qj | ≤ C

∣∣∣∣ limh→0

∫
R2

(µrh∇F) (x− y) div
(
ω̃nỸn

)
(y) dy

∣∣∣∣ .
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By Proposition 3.3.2, div
(
ω̃nỸn

)
∈ Cα−1 so we can write it as div

(
ω̃nỸn

)
= f0 + div f1,

where f0, f1 ∈ Cα. A direct consequence of Definition 2.1.1 is that

∥f0∥Cα , ∥f1∥Cα ≤ C
∥∥∥div (ω̃nỸn

)∥∥∥
Cα−1

. (3.69)

This allows us to decompose the quantity to be estimated as

∑
j=1,2

|qj | ≤ C

∣∣∣∣∫
R2

(µrh∇F) (x− y)f0(y) dy

∣∣∣∣+ C

∣∣∣∣∫
R2

(µrh∇F) (x− y) (div f1) (y) dy

∣∣∣∣
:= I + II. (3.70)

A basic property of ∇F is that its mean value over any circle is zero, so that∫
R2 (µrh∇F) (x− y)f0(x) dy = 0. This allows us to estimate I as

|I| = C

∣∣∣∣∫
R2

(µrh∇F) (x− y) (f0(y)− f0(x)) dy

∣∣∣∣
≤ C ∥f0∥Cα

∫ 2r

h
ρ−1ρα ρdρ

≤ C(α) ∥f0∥Cα r
α+1

≤ C
∥∥∥div (ω̃nỸn

)∥∥∥
Cα−1

rα, (3.71)

where we used (3.66), the support of µrh, (3.1), (3.69), and the fact that r ≤ 1 (which

follows from the ultimate choice of r made at the beginning of Section 3.6).

We can estimate II in a similar manner as

|II| = C

∣∣∣∣∫
R2

(µrh∇F) (x− y) (div f1) (y) dy

∣∣∣∣
= C

∣∣∣∣∫
R2

(µrh∇F) (x− y) divy (f1(y)− f1(x)) dy

∣∣∣∣
≤ C

∣∣∣∣∫
R2

∇ [µrh∇F ] (x− y) (f1(y)− f1(x)) dy

∣∣∣∣
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≤ C ∥f1∥Cα

∫ 2r

h
ρ−2ρα ρdρ

≤ C ∥f1∥Cα r
α

≤ C
∥∥∥div (ω̃nỸn

)∥∥∥
Cα−1

rα, (3.72)

where integrated by parts and used (3.66), the support of µrh, (3.67), and (3.69).

Putting (3.71) and (3.72) together with (3.70) gives

∑
j=1,2

∣∣∣∣ limh→0
qj

∣∣∣∣ ≤ C
∥∥∥div (ω̃nỸn

)∥∥∥
Cα−1

rα. (3.73)

Using (3.68) and (3.73) together with (3.65) gives us the estimate

∣∣∣BỸn∣∣∣ ≤ C
∥∥∥Ỹn(t)∥∥∥

Cα
∥ω̃0∥L∞ rα + C

∥∥∥div (ω̃nỸn

)
(t)
∥∥∥
Cα−1

rα. (3.74)

Using (3.64) and (3.74) with (3.63) gives the estimate (appearing as (10.16) in [BK15])

lim
h→0

|B| ≤ C
P (Yn)

|Yn|4
(∥∥∥Ỹn∥∥∥

Cα
∥ω̃0∥L∞ +

∥∥∥div (ω̃nỸn

)∥∥∥
Cα−1

)
rα + C ∥ω̃0∥L∞ .

Applying (3.44) and recalling that Lemma 3.7.1 specified that P is of degree 4 yields the

estimate given as (10.17) in [BK15] and as (3.46) in Section 3.5 above, from which point

the proof of Theorem 1.6.1 continued.

81



Chapter 4

Conclusions

In this chapter, we will present some of the applications for which Theorem 1.6.1

provides a solution. We will also discuss the limitations of Theorem 1.6.1 and some possible

avenues of future investigation.

4.1 Applications of Theorem 1.6.1

Classical Vortex Patches

A classical vortex patch occurs when the initial velocity ω(0, x) = b1U , where b

is a constant and U is a simply connected domain. The following theorem reproduces the

bounded domain vortex patch regularity result from [Dep98] using Theorem 1.6.1.

Corollary 4.1.1 (Propagation of Boundary Regularity for Vortex Patches in Ω)

Let Ω be an simply connected bounded domain in R2 with a C∞ boundary. Let U ⊆ Ω be a

simply connected domain such that dist(∂Ω, U) = δ > 0 and let ω0(x) = ω(0, x) = b1U . If

∂U is C1,α, then the boundary of Ut := η(t, ∂U) remains C1,α for all time.
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Proof. Since ∂U ∈ C1,α, we can take a scalar φ0 ∈ C1,α(Ω) with the following properties:

φ0(x) > 0 in U,

φ0(x) = 0 on ∂U,

inf
x∈∂U

|∇φ0(x)| ≥ 2γ > 0.

(4.1)

Let Y0 = ∇⊥φ0. Since φ0 ∈ C1,α(Ω), we have Y0 ∈ Cα(Ω). Note that Y0 is

tangential to the boundary of the vortex patch U and that div Y0 = div∇⊥φ0 = 0, so Y0 is

divergence-free (and hence, div Y0 ∈ Cα(Ω)). Since the boundary of the patch U is compact

in Ω, we have that Y0 ≥ γ > 0 on some δ0-neighborhood Nδ0(∂U) := {x ∈ Ω : dist (x, ∂U) <

δ0} of ∂U , where δ0 < δ/2. However, by construction, Y0 necessarily must vanish for at

least one point inside Ω. Because of this, we include an auxiliary vector field Y ∗ on Ω to

form our sufficient family. We take Y ∗ to be an arbitrary non-vanishing divergence-free

smooth vector field on Ω; for example, we could use Y ∗(x1, x2) = (1, x1). We note that

any conclusions drawn from Theorem 1.6.1 about Y ∗ are inconsequential and that its only

purpose is to “fill out” our sufficient family to avoid the issue with the vanishing gradient

of φ0. Since Y
∗ is C∞, we have that Y ∗, div Y ∗ ∈ Cα(Ω). Since we now have ensured that

IΩ{Y0, Y ∗} ≥ c > 0, we have verified that Y0 := {Y0, Y ∗} is a Cα sufficient family on Ω.

We now consider the hypotheses of Theorem 1.6.1. We clearly have ω0 ∈ L∞(Ω)

and ω0 compactly supported. Formally, we have div (ω0Y0) = ω0 div Y0 + ∇ω0 · Y0 = 0.

More precisely, let ϕ ∈ C∞
c (Ω) be a test function. Then

∫
Ω
div (ω0Y0) (x)ϕ(x) dx = −

∫
Ω
ω0(x)Y0(x) · ∇ϕ(x) dx

= −b
∫
U
Y0(x) · ∇ϕ(x) dx
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= b

∫
U
div Y0(x)ϕ(x) dx

= 0.

This shows that div (ω0Y0) = 0 ∈ Cα−1. An identical argument applied to Y ∗ shows that

div (ω0Y0) ∈ Cα−1. By Theorem 1.3 of [BK15], this is equivalent to having Y0 · ∇u ∈ Cα,

so the hypotheses of Theorem 1.6.1 are satisfied.

We now follow the strategy of [BC93] and let φ(t) be φ0 transported by the flow

map so that

∂tφ+ u · ∇φ = 0, (4.2)

implying that φ(t, x) = φ0(η
−1(t, x)). By taking the perpendicular gradient of (4.2), we

can compute (for example, this is equation 3.4 of [BC93]) that

∂t∇⊥φ+ u · ∇∇⊥φ = ∇⊥φ · ∇u.

Comparing this to (3.12) and (3.14), we see that Y0(t) := ∇⊥φ(t) is the pushforward of Y0

to time t by the flow map. By Theorem 1.6.1, we have that Y0(t) ∈ Cα(Ω) for all time,

so that φ(t) ∈ C1,α for all time. Because ∂Ut remains a level set of φ(t), we have that

Y (t) = ∇⊥φ(t) remains tangential to ∂Ut. Therefore, the boundary of the vortex patch

remains C1,α for all time, proving the persistence of regularity of vortex patch boundaries

in a bounded domain.
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Sum of Disjoint Vortex Patches

Now suppose that we have a finite number of pairwise disjoint open simply con-

nected sets U1, . . . , Uk in Ω, all with C1,α boundaries, satisfying

DΩ := min
i

dist (Ui, ∂Ω) ≥ δΩ > 0,

and

D := min
i ̸=j

dist (Ui, Uj) ≥ δ > 0.

Here, DΩ is the distance from the union of the sets Ui to the boundary of the domain and D

is the smallest distance between any two of the open sets. Let Ui,t = η(t, Ui) be the image

of Ui under the flow map after time t.

Consider an initial vorticity given by a sum of vortex patches over each open set,

and write it as

ω0(x) =
k∑

i=1

bi1Ui ,

where each bi is a constant. Because ∂Ui ∈ C1,α, for each Ui, we can choose a scalar

φi,0 ∈ C1,α(Ω) with the following properties:

φi,0(x) > 0 in Ui,

φi,0(x) = 0 on ∂Ui,

inf
x∈∂Ui

|∇φi,0(x)| ≥ 2γ > 0.

Using smooth cutoff functions if necessary, we can also choose each φi,0 to be such that

suppφi,0 ⊆ ND(Ui), so that the functions φi,0 have pairwise disjoint supports.
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We can then define the vector fields Yi,0 := ∇⊥φi,0. As before, for each i = 1, . . . , k,

we have Yi,0 ∈ Cα(Ω) and div Yi,0 = 0 ∈ Cα. We again take an arbitrary non-vanishing

divergence-free smooth vector field Y ∗ to fill out our sufficient family, and define Y0 =

{Y1,0, . . . , Yk,0, Y ∗}. Thus, Y0 is a Cα sufficient family on Ω.

We clearly have ω0 ∈ L∞(Ω) and is compactly supported in the closure of the

union of the Ui. The calculations verifying that Y0 · ∇u ∈ Cα carry out identically to the

previous case, showing that the hypotheses of Theorem 1.6.1 are satisfied. By letting each

φi,0 be transported by the flow to obtain φi(t) satisfying

∂tφi + u · ∇φi = 0,

we can take the perpendicular gradient as before to find that Yi(t) = ∇⊥φi(t). Thus, we can

apply Theorem 1.6.1 to get that, for all i, Yi(t) ∈ Cα(Ω) for all time, so that φi(t) ∈ C1,α for

all time. As in the classical vortex patch case, we also have that ∇⊥φi(t) remains tangential

to the boundary of ∂Ui,t for all time. Therefore, a finite sum of classical vortex patches

with initial boundaries in C1,α will maintain their boundary regularity for all time.

Patches of Non-Constant Vorticity

Let U be an open simply connected set in Ω with ∂U ∈ C1,α and let f ∈ Cα(Ω)

with f
∣∣
∂U

= b, a constant. Consider the initial vorticity ω0 = f1U . Then we can think of

ω0 as a vortex patch of non-constant vorticity.

As with the classical vortex patch case, we can choose a scalar φ0 ∈ C1,α(Ω)

satisfying (4.1), set Y0 = ∇⊥φ0, and take an auxiliary smooth non-vanishing divergence-

free vector field Y ∗. We take Y0 = {Y0, Y ∗} as our sufficient family.
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Consider the function ω0−b1U , which can be thought of as “translating the height”

of the vortex patch so that it is equal to f − b in U and is continuous on the boundary of U .

This gives that ω0 − b1U ∈ Cα(Ω), as is Y0, so that div ((ω0 − b1U )Y0) ∈ Cα−1. However,

div ((ω0 − b1U )Y0) = div (ω0Y0)− bdiv (1UY0) = div (ω0Y0)

since in the classical vortex patch case we showed that div (1UY0) = 0, so that div (ω0Y0) ∈

Cα−1. Thus, Theorem 1.6.1 can be applied to see that Y (t) = ∇⊥φt ∈ Cα(Ω) for all time,

so that the boundary of Ut = η(t, U) will remain C1,α for all time. Thus, we have shown

that patches of non-constant vorticity maintain their C1,α boundary regularity for all time.

The same modifications used in the case of a sum of disjoint vortex patches could also be

applied to show that a finite sum of disjoint patches of non-constant vorticity maintain C1,α

boundary regularity for all time.

4.2 Future Work

One of the hypotheses of Theorem 1.6.1 is that the initial vorticity be supported

away from the boundary of the domain. It remains to be seen whether this is strictly

necessary for global regularity of vortex patch boundaries in bounded domains. This as-

sumption ensures that the Biot-Savart integral in Theorem 2.5.2 exists since KΩ(x, y) is

singular along the boundary of Ω. Further, the compact support of ω0 was explicitly used

in the regularization scheme presented in Section 3.2, where the compact support allowed

us to extend ω0 by zero to the whole plane without changing any of its norms and to use

the mollifiers ρn. If ω0 was allowed to touch the boundary, even at a single point, while it

may be possible to argue that the Biot-Savart integral would still be convergent, it would
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be difficult to smooth the initial data in a simple way since mollification would extend the

support of the smoothed data outside of the domain. Since the majority of the proof is

carried out with the smooth approximations, this presents a significant problem that would

need to be solved. Despite these issues, in [Dep99], Depauw was able to prove local-in-time

persistence of vortex patch boundary regularity when the initial patch is tangent to the

boundary using the paradifferential calculus methods of Chemin.

Another avenue of future exploration would be the expansion of the results to a

higher-dimensional setting. In higher dimensions, the vorticity is no longer a scalar, but

is vector-valued instead, so simple vortex patches in the sense of indicator functions of

simply connected bounded domains do not exist. Indeed, as the discussion immediately

preceding Definition 1.1 of [GSR95] shows, it is not possible to have a constant vorticity

field supported on a bounded domain in three or more dimensions. However, it may be

possible to prove striated regularity in a bounded domain in higher dimensions. In [BK15],

they prove whole-space analogues of Theorem 1.6.1 for Rd, with d ≥ 2, as Theorem 1.1. Due

to higher dimensional phenomena such as vortex stretching, the Rd setting is more difficult

to handle. One fact unique to the two-dimensional case that was used extensively in this

work is that the vorticity is conserved along particle trajectories since ∂tω+u ·∇ω = 0. This

allowed us to trace vorticity estimates at time t back to estimates of ω0. This is not the case

in higher dimensions, where we have ∂tω + u · ∇ω = ω · ∇u (see, for example, Proposition

1.8 of [MB02]). As a result, more technical approaches would be required to investigate

the problem in higher dimensions. In addition, the relatively simple properties of the Biot-

Savart corrector term R(x, y) in two dimensions from (3.58) allowed us to adapt the R2
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results and calculations from [BK15] to our bounded domain setting mostly by dealing with

sometimes difficult, but manageable, extra integral terms coming from the Biot-Savart Law,

Theorem 2.5.2. Again, this situation is more complex in higher dimensions, so it is unclear

whether the approach taken in this work would even be possible.

In the vortex patch applications in Section 4.1, one may notice that the interior

of the vortex patch does not play a significant role. In the classical vortex patch case, the

vorticity is constant in the interior, but we also showed that we can take it to be any Cα

function inside the patch as long as it is constant along the boundary. This leads to the

natural question of whether any vortex singularities could be allowed inside the boundary.

Such a vorticity would not be α-Hölder continuous, so the arguments used in this work

would not be sufficient, though it may be the case that they could be adapted to achieve

this result.
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Appendix A

Classical ODE Existence Theory

and Proof of Proposition 3.3.2

We now summarize a few existence and uniqueness results from classical ODE

theory used in this work (see [Eva10, MB02, Osg98]). Let U ⊆ Rd be a simply connected

bounded open set with a C∞ boundary. Let u : [0, T ] × U → Rd satisfy u · n̂ = 0 on the

boundary ∂U . Let z0 ∈ U . Consider the ordinary initial value problem
z′(t) = u (t, z(t)) ,

z(t0) = z0.

(A.1)

Theorem A.1 (Cauchy-Lipschitz-Picard-Lindelöf Existence and Uniqueness)

If u is Lipschitz continuous in space, uniformly in time, then, for any time T > 0, (A.1)

has a unique solution z : [0, T ] → U .

Definition A.2 (Osgood’s Condition) A continuous non-decreasing modulus of conti-

nuity µ : [0,∞) → [0,∞) with µ(0) = 0 and µ(s) > 0 when s > 0 is an Osgood modulus of
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continuity (or satisfies Osgood’s condition) if

∫ 1

0

ds

µ(s)
= ∞.

Theorem A.3 If u admits an Osgood modulus of continuity uniformly in time, then, for

any time T > 0, (A.1) has a unique solution z : [0, T ] → U .

Definition A.4 A function f : [0, T ]× U → U is Log-Lipschitz (in space) if it admits the

spatial modulus of continuity

µLL(r) =


−r ln r if r ≤ e−1,

e−1 if r > e−1,

bounded uniformly over [0, T ].

Remark A.5 The modulus of continuity µLL satisfies Osgood’s condition, so (A.1) has a

unique solution for all time when u is Log-Lipschitz.

Lemma A.6 (Reverse Osgood’s Lemma) Suppose L : [0,∞) → (0,∞) is differentiable

and µ : (0,∞) → (0,∞) is integrable with L′ ≥ −µ ◦ L. Then, for all t > 0,

∫ L(0)

L(t)

dr

µ(r)
≤ t.

Proof. Using a substitution, we can directly calculate that

−
∫ L(0)

L(t)

dr

µ(r)
=

∫ L(t)

L(0)

dr

µ(r)
=

∫ t

0

L′(s)

µ(L(s))
ds ≥

∫ t

0

−µ(L(s))
µ(L(s))

ds = −t,

from which the lemma follows.

We now present the details of how to adapt Lemma 9.2 from [BK15] to the bounded

domain setting to obtain the bound stated above as Proposition 3.3.2. To do so, the vector
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field Yn must be extended from Ω to R2 in a way that gives us control over the divergence

of the extension so that we may apply the result from [BK15], which the Stein Hölder

extensions Eα do not provide. Instead, we use a smooth cutoff function, which involves

changing the value of Yn near the boundary inside the domain Ω but outside the support of

ωn. While this allows us to obtain the necessary Cα−1 bound on divωnYn, this extension

is not used anywhere else in this work so the proof is provided here.

Proposition A.7 We have div (ωnYn) (t, ·) ∈ Cα−1 (Ω) with

∥div (ωnYn) (t, ·)∥Cα−1(Ω) ≤ CeC
∫ t
0 ∥∇un(s,·)∥L∞(Ω) ds.

Proof.

Recall that the smooth velocities un(t, x) ∈ C∞(Ω), so as outlined in Section 2.5,

there exist stream functions ψn(t, x) ∈ C∞(Ω) given by (2.15) so that un = ∇⊥ψn. We

now will use the Stein extension operator E for Ω and its properties given by Lemma 2.1.4.

Recall that this operator simultaneously extends all functions in W k,p(Ω) to W k,p(R2) for

all k and p.

Define ψ∗
n := Eψn. Since ψn ∈ W 2,∞(Ω), we have that ψ∗

n ∈ W 2,∞(R2). We then

define u∗n := ∇⊥ψ∗
n and ω∗

n = curlu∗n, which gives that u∗n ∈W 1,∞(R2) and ω∗
n ∈W 0,∞(R2).

By construction, we have div u∗n = div∇⊥(Eψn) = 0, so that u∗n is divergence-free. We note

that, even though u∗n and ω∗
n are not obtained by applying E to un and ωn, respectively, we

still have that u∗n
∣∣
Ω
= un and ω∗

n

∣∣
Ω
= ωn, so that ω∗

n is compactly supported in Ω.

In order to extend Yn to R2, we rely on the fact that this vector field is being

multiplied by the compactly supported vorticity. Let δ = dist(suppω∗
n, ∂Ω). We take a

radially symmetric smooth cutoff function ϕ(r) that is equal to 1 on B(0, 1−δ/2), identically
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zero outside B(0, 1− δ/4), and decreasing for 1− δ/2 < r < 1− δ/4. Note that ϕYn is then

compactly supported on Ω. We define the extension Ỹn := ϕYn, extended by zero outside

Ω. By construction, we have Ỹn ∈ Cα and div Ỹn ∈ Cα. Note that this extension changes

the value of Yn inside Ω but not on the support of ω∗
n. Because of this, we are able to use it

to obtain the necessary regularity result, but it is not suitable to be used elsewhere in the

proof.

With these extensions in hand, we turn to the quantity div
(
ω∗
nỸn

)
. Because

ω∗
n ∈ W 0,∞(R2) and Ỹn ∈ Cα(R2), we have ω∗

nỸn ∈ Cα(R2) as well. Let ϕ ∈ C∞
0 (R2) be a

compactly supported test function. Because Ỹn is compactly supported in Ω and because

ω∗
n and Ỹn are extensions of ωn and Yn from suppωn to R2, we have

∫
R2

div
(
ω∗
nỸn

)
ϕdx = −

∫
R2

(ω∗
nỸn) · ∇ϕdx

= −
∫
Ω
(ω∗

nỸn) · ∇ϕdx

= −
∫
Ω
(ωnYn) · ∇ϕdx

=

∫
Ω
div(ωnYn)ϕdx.

Thus, div
(
ω∗
nỸn

)
is well-defined as a distribution since div(ωnYn) is. This means that

we can write div
(
ω∗
nỸn

)
as 0 + div

(
ω∗
nỸn

)
where ω∗

nỸn ∈ Cα(R2), so that div
(
ω∗
nỸn

)
∈

Cα−1(R2), by definition (2.3). Further, the compact support of Yn in Ω implies that ωnYn

and ω∗
nỸn are pointwise equal on their common support, which is contained in Ω. Recall

that the definition of the Cα−1 norm was given in (2.4) as

∥h∥Cα−1(U) = inf{∥f∥Cα(U) + ∥v∥Cα(U) : h = f + div v; f, v ∈ Cα (U)}.
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Suppose that div
(
ω∗
nỸn

)
= f+div v, where f, v ∈ Cα(R2). We have div (ωnYn) =

div
((
ω∗
nỸn

) ∣∣∣
Ω

)
= f

∣∣
Ω
+ div

(
v
∣∣
Ω

)
. Since ∥f∥Cα(R2) ≥

∥∥f ∣∣
Ω

∥∥
Cα(Ω)

and ∥v∥Cα(R2) ≥∥∥v∣∣
Ω

∥∥
Cα(Ω)

, we have

∥div (ωnYn)∥Cα−1(Ω) ≤
∥∥f ∣∣

Ω

∥∥
Cα(Ω)

+
∥∥v∣∣

Ω

∥∥
Cα(Ω)

≤ ∥f∥Cα(R2) + ∥v∥Cα(R2) .

Taking the infimum over all such f and v, we find that

∥div (ωnYn)∥Cα−1(Ω) ≤
∥∥∥div (ω∗

nỸn

)∥∥∥
Cα−1(R2)

.

By Proposition 9.2 of [BK15],
∥∥∥div (ω∗

nỸn

)∥∥∥
Cα−1(R2)

≤ Ce
∫ t
0 ∥∇u∗

n(s,·)∥L∞(R2) ds, so

that

∥div (ωnYn)∥Cα−1(Ω) ≤ Ce
∫ t
0 ∥∇u∗

n(s,·)∥L∞(R2) ds. (A.2)

We now focus on the integrand in the exponent. Since ψn solves (2.13), we have

that ψn is compactly supported in Ω. Thus, we can apply Lemma 2.2.1 to see that

∥ψn(s, ·)∥Lp(Ω) ≤ C ∥∇ψn(s, ·)∥Lp(Ω)

for any 1 ≤ p ≤ ∞. Because the velocities un are divergence-free and have a zero normal

boundary condition, we can apply Lemmas 2.2.2 and 2.2.3 to see that

∥un(s, ·)∥Lp(Ω) ≤ C ∥∇un(s, ·)∥Lp(Ω)

for any 1 ≤ p ≤ ∞. Using these properties along with Property 2 from Lemma 2.1.4, we

have that

∥∇u∗n(s, ·)∥L∞(R2) =
∥∥∥∇∇⊥ψ∗

n(s, ·)
∥∥∥
L∞(R2)

≤ ∥ψ∗
n(s, ·)∥W 2,∞(R2)
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≤ C ∥ψn(s, ·)∥W 2,∞(Ω)

= C ∥ψn(s, ·)∥L∞(Ω) + C ∥∇ψn(s, ·)∥L∞(Ω) + C ∥∇∇ψn(s, ·)∥L∞(Ω)

≤ C
∥∥∥∇⊥ψn(s, ·)

∥∥∥
L∞(Ω)

+ C
∥∥∥∇∇⊥ψn(s, ·)

∥∥∥
L∞(Ω)

= C ∥un(s, ·)∥L∞(Ω) + C ∥∇un(s, ·)∥L∞(Ω)

≤ C ∥∇un(s, ·)∥L∞(Ω) .

Combining this with (A.2) gives that

∥div (ωnYn)∥Cα−1(Ω) ≤ Ce
∫ t
0 C∥∇un(s,·)∥L∞(Ω) ds,

as desired.
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Comptes Rendus de l Académie des Sciences - Series I - Mathematics, 01 1994.
8, 74

[Ser94b] Philippe Serfati. Une preuve directe d’existence globale des vortex patches 2D.
C. R. Acad. Sci. Paris Sér. I Math., 318(6):515–518, 1994. vi, 8, 74

[Ste70] E.M. Stein. Singular Integrals and Differentiability Properties of Functions.
Princeton University Press, 1970. 20

[Str08] Walter A. Strauss. Partial Differential Equations : An Introduction. Wiley, second
edition, December 2008. 33

[Wol33] W. Wolibner. Un theorème sur l’existence du mouvement plan d’un fluide parfait,
homogene, incompressible, pendant un temps infiniment long. Mathematische
Zeitschrift, 37:698–726, 1933. 30, 50

[Yud63] V. I. Yudovich. Non-stationary flows of an ideal incompressible fluid. Z̆. Vyčisl.
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