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An Information Foraging Model of Interactive Analogical Retrieval  
 

Swaroop S. Vattam & Ashok K. Goel 
Design & Intelligence Laboratory, School of Interactive Computing, Georgia Institute of Technology 

Atlanta, GA 30332 USA 
 
 

Abstract 
An essential first step in analogy is retrieval of a source 
analogue appropriate for the target situation.  In this paper, we 
focus on the phenomenon of interactive analogical retrieval 
(IAR) wherein the source analogues are obtained through 
interaction with online information environments. We first 
provide a descriptive account of IAR based on two in situ 
studies. We then describe an information-processing model 
(called PRISM) that provides an explanatory account of IAR. 
We conclude with a discussion of some of the theoretical and 
technological implications of this work. 

Keywords: analogy, analogical retrieval, biologically 
inspired design, design cognition, information foraging. 

Introduction 
Analogy appears to be ubiquitous in human cognition and 
thus has received much attention in cognitive science (e.g., 
Burstein 1986; Carbonell 1986; Clement 2008; Gentner 
1983; Davies, Goel & Nersessian 2009; Dunbar 2001; 
Gentner & Markman 1997; Hofstadter 1995; Holyoak & 
Thagard 1989; Indurkhya 1992; Keane 1988; Kokinov & 
Petrov 2001; Kunda, McGreggor & Goel 2013; Nersessian 
2008). An essential first step in analogical reasoning is the 
retrieval of a source analogue appropriate to the target 
situation. Here we focus on situated analogy wherein source 
analogues are obtained through interactions with an external 
environment rather than being recalled from internal long-
term memory. In particular, we focus on the phenomenon of 
interactive analogical retrieval (IAR) wherein source 
analogues are accessed from Web-based online information 
environments. 

In this paper, we first present a descriptive account of 
IAR based on two in situ studies of cross-domain analogies 
in biologically inspired design. Then, we develop an 
information-processing model that provides a partial 
explanation of IAR in terms of its underlying cognitive 
processes. Our model builds on Pirolli’s (2007) information 
foraging theory of human online information-seeking 
behavior and Thagard et al.’s (1990) model of analogical 
retrieval by constraint satisfaction.  

Interactive Analogical Retrieval (IAR) 
We investigate IAR in the domain of biologically inspired 
design (Benyus, 1997; Vincent & Mann, 2002), the practice 
of developing innovative technology using analogies to 
biological systems. Some well-known examples of products 
of biologically inspired design include Velcro (inspired by 
the attachment mechanism of burr seeds), high-performance 
wind turbines (inspired by the pectoral fins of humpback 
whales), self-cleaning surface coatings (inspired by the 

super-hydrophobic effect of lotus leaves), and fog 
harvesting devices (inspired by the arrangement of 
hydrophobic and hydrophilic surfaces on Namibian beetles). 

From a cognitive standpoint, biologically inspired design 
entails cross-domain analogies for solving a target design 
challenge in, say, engineering, by transferring elements of a 
source analogue from a different domain (biology).  In 
biologically inspired design, designers (often from 
engineering) typically are novices in biology: they know of 
only a small fraction of the vast space of biological systems 
that comprise the source domain. Thus, in practice the 
designers often try to access biological analogues from the 
Web. We call this phenomenon interactive analogical 
retrieval. (Due to limitations of space, our discussion of the 
in situ studies below is very brief; Vattam (2012) provides 
more details.) 

Study Context and Methodology 
We conducted two in situ studies of designers engaged in 
biologically inspired design in Fall 2006 and Fall 2008 
respectively. Both studies were conducted in the context of 
an interdisciplinary, senior-level, project-based course on 
biologically inspired design taught at Georgia Tech.  The 
most important element of the course for us was the 
semester-long design projects. Each design project grouped 
an interdisciplinary team of 4-6 engineers and biologists 
based on similar interests. Yen et al. (2011) provide details 
of the teaching and learning in this course. 

As external observers in the Fall 2006 study and 
participant observers in the Fall 2008 study, we attended 
almost all the classroom sessions, collected all the course 
materials, documented lecture content, and observed 
teacher-designer and designer-designer interactions in the 
classroom. We documented a total of ten biologically 
inspired design projects in the two studies. We attended the 
design meetings of selected teams many times to observe 
firsthand how the design process unfolded. We took field 
notes, collected all the design related documentation 
produced by the teams, and also collected their idea 
journals. We analyzed the gathered data focusing on the 
processes and the products of the designers. In terms of the 
practices, we observed and documented frequently 
occurring problem-solving and representational activities of 
designers. In terms of the design products, we observed and 
documented their “design trajectory” – the evolution of the 
conceptual designs over time. 

Main Findings 
We found that designers often searched online for biological 
systems that are analogous to their target design problem. In 

3651



fact, this was one of the dominant approaches for finding 
biological analogues. Designers reported using a range of 
Web-based information environments, including (1) online 
libraries of scholarly articles such as the Web of Science, 
Google Scholar, ScienceDirect, etc., (2) online 
encyclopedias like Wikipedia, (3) popular life sciences blog 
sites like Biology Blog, (4) biomimicry databases like 
AskNature, and (5) general search engines like Google. 
Online libraries like Web of Science and Google Scholar 
were the most frequently used websites. 

We noted that designers used several heuristics in order to 
find relevant biology articles, including “biologizing” the 
problem, problem reformulation, functional decomposition, 
and using domain-bridging abstractions such as functions, 
mechanisms, physical principles, etc. 

We noted that online information environments on which 
the designers relied upon did not adequately support the task 
of finding useful biological analogues. In particular, the 
designers reported that the online search for analogies was 
not only time consuming, but often also work intensive, 
tedious and frustrating. 

Our analysis of the designers’ online search activity 
identified three main challenges. The first challenge is 
findability. The relative frequency of encountering relevant 
articles containing biological analogues was very low. 
Designers often went for long periods without finding a 
single source analogue in a retrieval process that typically 
extended over several weeks. A rough calculation suggests 
that designers spent approximately three person-hours of 
search time on the Web in order to find a relevant article. 

The second challenge is recognizability. The designers 
were prone to making errors in judgment about the true 
utility of the information resources that they encountered. In 
almost all online environments, search queries brought back 
a ranked list of search results. An important aspect of the 
search process was assessing and selecting promising 
information resources from this list for further consumption. 
However, this decision had to be made based on limited 
information, (e.g., titles, keywords and abstracts of biology 
articles). In many instances, designers picked up on low-
utility articles and spent a lot of time and effort trying to 
understand its contents, only to realize later that they were 
not actually very useful (false positives). False positives 
have both resource and opportunity costs. Conversely, there 
were situations where designers dismissed a resource that 
they encountered during the search as having low utility 
even though it actually contained useful information about a 
relevant biological analogue (false negatives). The false 
negatives represent missed opportunities. 

The third challenge is understandability. The designers 
often found it challenging to understand the contents of the 
biological cases described in the online information 
resources and develop the knowledge required to transfer to 
their target problems.  This was in part due to the scholarly 
nature of the biology articles that were encountered and 
partly because the articles often did not explicitly describe 
how a biological system worked from a design perspective.  

PRISM: A Model of Interactive Analogical Retrieval 
We now present an information-processing model of IAR. 
Our goal here is to find explanations for the observed 
challenges of online analogy seeking, both for (i) 
understanding cognition in IAR and (ii) developing a 
technology for supporting online search for cross-domain 
analogies. Here we focus on the challenges of findability 
and recognizability; Vattam (2012) addresses the challenge 
of understandability of biological cases that requires a 
different kind of explanation.  

Our model builds on two existing theories: Analogical 
Retrieval by Constraint Satisfaction (ARCS) (Thagard et. al. 
1990), and Information Foraging Theory (IFT) (Pirolli 
2007). IFT is itself a biologically inspired theory of online 
information seeking behavior.  According to IFT, the online 
information seeking behavior of people is analogous to how 
animals forage for food in their natural environments. IFT 
posits that the human information seekers use information 
scent to navigate from one information region to another in 
an information environment that is inherently patchy in 
nature, and from one information patch to another within a 
region. IFT suggests that the information seekers adapt their 
behavior to the structure of the information environment in 
which they operate such that the system as a whole 
(comprising of the information seeker, the information 
environment, and the interactions between the two) tries to 
maximize the ratio of the expected value of the knowledge 
gained to the total cost of the interaction. 
    Although several models of analogical retrieval from 
internal long-term memory informed our work (e.g., Forbus, 
Gentner, & Law 1995; Kokinov & Petrov 1997; Kolodner 
1993; Yaner & Goel 2006), we chose to build specifically 
on ARCS because it provides a content account of the types 
of similarity that best explains our observational data. 
ARCS posits that in order to access sources (represented as 
schemas in long-term memory) that are analogous to a target 
(a schema in short-term memory), the access mechanism 
should simultaneously consider satisfying three kinds of 
constraints: semantic similarity (the overlap in terms of the 
number of similar concepts between the target and potential 
sources), structural similarity (the overlap in terms of the 
higher-order relationships between the target and potential 
sources), and pragmatic similarity (the overlap in terms of 
the pragmatic constraints or goals surrounding the target and 
potential sources). It is these three pressures acting 
simultaneously that distinguish analogical retrieval from 
other kinds of information retrieval. 
   Thus, on one hand, ARCS explains how source analogues 
are retrieved from the long-term memory but is silent about 
analogies situated in external information environments.  On 
the other, IFT explains how people seek information in 
online information environments in general, but it does not 
address the pressures of analogical retrieval. Our model 
specializes IFT to online analogy seeking by introducing the 
pressures of analogical retrieval from the ARCS model into 
information foraging. Thus we call our model PRISM 
(PRessurized Information Scent foraging Model).
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Figure 1. PRISM: An information-processing model of interactive analogical retrieval. 

 
Similar to IFT, as Figure 1 illustrates, in PRISM the task 

of retrieving a source analogue is accomplished by two 
iterative processes that constitute the general information 
seeking behavior: between-patch processes (on the left side 
of the vertical dotted line) and within-patch processes (on 
the right side). Furthermore, the structure of Web-based 
information environments has evolved to exhibit certain 
regularities in the distribution of information resources and 
the navigation mechanisms that lead to those resources. For 
instance, when an analogy seeker encounters patches in an 
online environment, the seeker cannot perceive the contents 
of those patches all at once. Instead, they are presented with 
snippets of information, called proximal cues, which the 
analogy seeker uses to perceive the information scent of the 
distal information patches. The information scent leads to 
judgments about the utility of distal information patches and 
the information seeker can choose to either navigate towards 
or away from those patches. 

Between-patch foraging 
Between-patch foraging explains the navigation process 
where the analogy seeker browses the information 
environment looking for high-utility information patches to 
consume. In the context of IAR, high-utility information 
patches correspond to information resources describing 
sources cases that are analogous to the target. In this 
process, numerous information patches (e.g., online articles, 
etc.) compete for the information seeker’s attention. These 
patches may or may not contain information relevant to the 
goals of the information seeker. Thus, the analogy seeker 

expends time and effort navigating from one patch to 
another until one that can be exploited is found. This is 
captured by the Formulate Query–Retrieve–Compute 
Information Scent cycle depicted in Figure 1. 

Between-patch foraging using information scent in IAR 
works as follows. Given a target problem or situation: 
1. The analogy seeker probes the environment by 
formulating and issuing a query. This query is context-
dependent and represents the target problem.  
2. In response, the environment retrieves and conveys an 
information region consisting of a set of information patches 
{(P1,{c11,c12,…}),(P2,{c21, c22,…})…}, where Pi is an 
information patch and cij’s are the proximal cues associated 
with the patch Pi. 
3. The analogy seeker perceives the information scent of the 
patches based on the proximal cues; the information scent is 
an estimation of the analogical relevance of different 
patches to the target: {(P1, S1), (P2, S2)…}, where Pi is an 
information patch and Si is the information scent that the 
analogy seeker associates with the patch Pi.  
4. If the information scent of an information patch exceeds a 
certain threshold, it is considered relevant (high perceived 
utility). In this case, the information seeker goes to that 
patch (by acting on the environment like clicking the 
associated hyperlink), at which point the environment 
presents the information patch to the forager. This initiates 
within-patch foraging. 
5. If the scent does not exceed the threshold, it is considered 
irrelevant (low perceived utility). In this case, one of two 
things may happen as depicted in Figure 1: (i) the analogy 
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seeker may stay within the same information region but 
loop back to Step 3 for processing the next patch in the 
region, or (ii) the analogy seeker may abandon the current 
information region and loop back to Step 1 in order to look 
for more fruitful regions. 

Within-patch foraging 
Once the analogy seeker picks up the scent of a potentially 
useful information patch, the seeker goes to the patch and 
starts consuming information in it. In the context of 
biologically inspired design, this involves comprehending 
the contents of an article and constructing a mental model of 
the biological system described in the article. In the within-
patch foraging process, the analogy seeker is also 
simultaneously evaluating the actual utility of the patch by 
comparing/aligning/mapping the emerging mental model of 
the biological system against the target problem. If the 
evaluation is successful, the agent has obtained a source 
analogue. If this evaluation fails, then the between-patch 
foraging process is again initiated, either within the same 
information region that led to the current patch or with a 
search for new information regions as depicted in Figure 1. 
 
Incorporating Pressures of Analogical Retrieval 
There are two potential places in our model where the three 
pressures of semantic, structural and pragmatic similarity 
might apply: Retrieve and Compute information scent tasks 
that are shaded in gray in Figure 1. The Retrieve process 
may use some notion of similarity to access information 
patches. But in our model, the Retrieve process is 
implemented in the environment (e.g., the Google Scholar 
search mechanism) and thus is black-boxed here. The 
Compute information scent process computes the perceived 
utility of an information patch as described below.  

 
Information Scent Perception in PRISM 
While IFT explains the scent perception for non-analogy 
information seeking tasks, it has to be adapted to account for 
the semantic, structural and pragmatic pressures of 
analogical retrieval. Hence, as part of PRISM, we developed 
a different model of information scent perception. 

 

 
 Figure 2. Scent perception in PRISM 

 
Our model of scent perception assumes that the analogy 

seeker has represented the target problem as a target schema 
as depicted in Figure 2. With a target problem in mind, the 
analogy seeker forages the information environment for 

source analogues. Following the between-patch foraging 
process described above, the analogist encounters a set of 
information patches with associated proximal cues. When 
the analogy seeker encounters proximal cues in the 
environment, she builds corresponding scent schemas as 
indicated in Figure 2. 

Given the target schema and competing scent schemas, 
the analogy seeker computes the similarity between the 
target and scent schemas in four stages similar to ARCS. 
We illustrate this process with an example. Let us suppose 
that the conceptual structures representing the dots in Figure 
2 consist of predicates. Table 1 illustrates a target schema 
(P1) consisting of two predicates (P1-1 and P1-2), and two 
scent schemas (S1 and S2) consisting of two predicates each 
(S1-1, S1-2, and S2-1 and S2-2, respectively). Let us also 
suppose that A and M are semantically similar concepts, and 
likewise concepts B and N are semantically similar. For 
example: 

A(a, b) is Regulate(kidney, potassium_ions);  
M(m, n) is Control_Production(pituitary, estrogen);  
B(b, a) is Is_Secreted_By(erythropoietin, kidney); and  
N(n, m) is Is_Released_By(hypothalmic_hormone, pituitary) 

Let us further suppose that A(a, b) is more important than 
the other predicates as dictated by the pragmatics of the 
target situation. 

 
Table 1: Example Target and Scent schemas (adapted 

from Thagard et al. (1990), pp. 275). 
Target-schema Scent-schema-1 1 

1 
Scent-schema 2 

P1 S1 S2 
P1-1: A(a, b) S1-1: M(m, n) S2-1: M(n, m) 
P1-2: B(b, a) S1-2: N(n, m) S2-2: R(n, m) 

   
Suppose that predicates A and M are semantically similar; B 
and N are semantically similar; A(a,b) is more important 
(dictated by the pragmatics of the context). 

 
Network Setup: In a manner similar to the original ARCS 
model, PRISM uses information about the semantic 
similarity of predicates in the target and scent schemas to 
create a constraint network. Figure 3 depicts the network 
corresponding to Table 1: units in the network represent the 
predicates in the target and scent schemas, and the links 
between units represent correspondences between the 
predicates.   

The most important units hypothesize that a scent schema 
is analogous to the target schema. These units have names 
of the form TARGET=SCENT. (“=” here means 
“corresponds to,” not identity). If the target is P1 and the 
scent is S1, then the P1=S1 unit represents a correspondence 
between them. If P1-1 is a proposition in P1 that 
corresponds to proposition S1-1 in scent S1, then the unit 
P1-1=S1-1 will have an excitatory link with the unit P1=S1.  

Excitatory links are also set up from a special semantic 
unit to predicate-predicate units based on the degree of 
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semantic similarity of the predicates (in Figure 3, there are 
excitatory links from the semantic unit to (A=M) and (B=N) 
because they are semantically similar according to our 
assumption). Similarly, excitatory links are also set up from 
a special pragmatic unit to predicate-predicate units that are 
considered more important than others (in Figure 3, there 
are excitatory links from pragmatic unit to (A=M) because 
predicate A was assumed to be more important than others). 
The activation level of the special semantic and pragmatic 
units is always kept at the maximum value of 1. Thus, they 
serve to pump activation to all units that are linked to it. 

Inhibitory links are constructed between units 
representing incompatible hypotheses, for example, between 
P1=S1 and P1=S2. These make utility calculation 
competitive, in that choosing one scent will tend to suppress 
choosing of an alternative.  
 

 
Figure 3. Constraint satisfaction network for computing 

analogical similarity between target and scent schemas of 
Table 1 (following Thagard et al. (1990), pp. 275). 

 
Running the Network: The constraint network is run by 
setting the activation of all units to a minimal initial 
(random) level, except for the special semantic and 
pragmatic units for which activation is clamped at 1. Then 
the activation of each unit is updated by considering the 
activations of those units to which it has links. Cycles of 
activation adjustment continue until all units have reached 
asymptotic activation. As in ARCS, the activation of unit j 
on cycle t + 1 is given by: 

 

Here d is a decay parameter, enetj is the net excitatory input, 
and inetj is the net inhibitory input (a negative number), 
with minimum activation min = -1 and maximum activation 
max = 1. Inputs are determined by the equations: 

  
for wij > 0; and 

  
for wij < 0. 

oi(t) is the output of unit i on cycle t: . 
Updating the constraint network continues until all units 

have reached asymptote, that is, a cycle is reached at which 
the activation change of each unit is less than a specified 
value, typically a low number (e.g., 0.01). (See Thagard et 
al. (1990) for more details about setting up the activation 
network, running such a network, computational 
complexity, etc.)  
 
Scent of a Patch: When the network settles, the similarity 
between a target schema, P, and a particular scent schema, 
Si, is equal to the activation value of the unit P=Si in the 
constraint network. Higher the activation accumulated by 
the unit P=Si the more analogically similar is the scent 
schema Si to the target. The scent of a particular patch, IPi, 
which is associated with a set of proximal cues, {Cij}, is 
equal to the similarity between the scent schema, Si, 
obtained from {Cij}, and the target schema, P. 

Explaining the Challenges of IAR using PRISM  
The findability challenge is attributable to the current 
keyword-based indexing and access mechanisms in which 
the Retrieval process in Figure 1 supports access to 
information based on literal similarity (word-for-word 
matching) while ignoring semantic, structural and pragmatic 
similarity. As a result, each attempt at access can contain a 
large number of superficially similar cases as opposed to 
cases that are truly analogous, which entails a lower average 
information yield per region. This yield is inversely 
proportional to the number of times the Formulate-Retrieve-
Compute Information Scent loop is executed in the PRISM 
model depicted in Figure 1: a low yield implies more 
executions of the cycle. Therefore, between-patch foraging 
time is higher, the period between successive useful finds is 
longer, and the frequency of encountering useful 
information resources is lower.  

The recognizability challenge is attributable to the nature 
of proximal cues that the information seeker encounters in 
common online environments – specifically, their lack of 
affordance for accurately perceiving information scent. 
Perceiving the scent of an information resource in the 
context of analogical retrieval requires accurately judging 
the deeper similarity between that target and the source case 
as represented by their proximal cues. However, the design 
of proximal cues typically contains small snippets of 
information, which is insufficient to construct richer 
schemas. This likely explains why the designers made many 
recognition errors in our studies. 

Conclusions 
In this paper, we identified interactive analogical 

retrieval (IAR) as an important phenomenon in the context 
of biologically inspired design. We provided a descriptive ! 

a j (t +1) = a j (t)(1" d) + enet j (max" a j (t)) + inet j (a j (t) "min)

! 

enet j = wijoi(t)
i
"

! 

inet j = wijoi(t)
i
"

! 

oi(t) =max(ai(t),0)
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account of the phenomenon based on our in situ studies of 
designers engaged in online search for biological analogues 
to their problems. Our descriptive account identified three 
main challenges associated with IAR: findability, 
recognizability, and understandability. Although our in situ 
studies were conducted in the context of a classroom 
environment, we posit that these cognitive challenges are 
quite general:  the same challenges are likely to occur in 
actual practice of biologically inspired design because 
although practicing designers are experts in their design 
domain, they are likely to be novices in biology. We posit 
further that IAR is a general phenomenon: IAR is not 
limited to biologically inspired design, but occurs whenever 
people are searching for cross-domain analogies in external 
online information environments.  

We also developed a causal model of IAR called PRISM 
combining Pirolli’s (2007) information foraging theory 
(IFT) and Thagard et al.’s (1990) ARCS model of 
analogical retrieval. PRISM extends IFT to account for 
analogy seeking; it expands ARCS into a model of 
information scent perception. PRISM provides explanations 
for the findability and recognizability challenges of IAR we 
observed in our studies of biologically inspired design. 

PRISM could help develop new technology for helping 
designers find biological analogues more efficiently and 
easily: the model predicts that the findability and 
recognizability issues could be addressed, respectively, by 
changing the indexing and access mechanism and enriching 
the proximal cues in online environments. Biologue (Vattam 
& Goel 2011) is an interactive tool for supporting 
biologically inspired design based on the PRISM model. 

In terms of cognitive theory, we view analogy as situated 
in external information environments. If we take the 
boundaries of the cognitive system as including online 
information environments, as seems to be the case in 
biologically inspired design, then the phenomenon of IAR 
becomes an important element of understanding the 
situatedness of analogical reasoning. By folding in 
interactions with external information environments, 
PRISM may provide a starting point to think about a general 
theory of situated analogy. 
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