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Abstract
Differential privacy is a mathematical concept that provides an information-theoretic
security guarantee. While differential privacy has emerged as a de facto standard for
guaranteeing privacy in data sharing, the known mechanisms to achieve it come with
some serious limitations. Utility guarantees are usually provided only for a fixed,
a priori specified set of queries. Moreover, there are no utility guarantees for more
complex—but very common—machine learning tasks such as clustering or classifi-
cation. In this paper we overcome some of these limitations. Working with metric
privacy, a powerful generalization of differential privacy, we develop a polynomial-
time algorithm that creates a private measure from a data set. This private measure
allows us to efficiently construct private synthetic data that are accurate for a wide
range of statistical analysis tools. Moreover, we prove an asymptotically sharp min-
max result for private measures and synthetic data in general compact metric spaces,
for any fixed privacy budget ε bounded away from zero. A key ingredient in our con-
struction is a new superregular random walk, whose joint distribution of steps is as
regular as that of independent random variables, yet which deviates from the origin
logarithmically slowly.
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1 Introduction

1.1 Motivation

The right to privacy is enshrined in the Universal Declaration of Human Rights [45].
However, as artificial intelligence is more and more permeating our daily lives, data
sharing is increasingly locking horns with data privacy concerns. Differential privacy
(DP), a probabilistic mechanism that provides an information-theoretic privacy guar-
antee, has emerged as a de facto standard for implementing privacy in data sharing
[22]. For instance, DP has been adopted by several tech companies [20] and will also
be used in connection with the release of the Census 2020 data [2, 3].

Yet, current embodiments of DP come with some serious limitations [17, 25, 53]:

(i) Utility guarantees are usually provided only for a fixed set of queries. This means
that either DP has to be used in an interactive scenario or the queries have to
specified in advance.

(ii) There are no utility guarantees for more complex—but very common—machine
learning tasks such as clustering or classification.

(iii) DP can suffer from a poor privacy-utility tradeoff, leading to either insufficient
privacy protection or to data sets of rather low utility, thereby making DP of
limited use in many applications [17].

Another approach to enable privacy in data sharing is based on the concept of
synthetic data [8]. The goal of synthetic data is to create a dataset that maintains the
statistical properties of the original data while not exposing sensitive information. The
combination of differential privacy with synthetic data has been suggested as a best-
of-both-world solutions [8, 12, 23, 30, 34]. While combining DP with synthetic data
can indeed provide more flexibility and thereby partially address some of the issues
in (i), in and of itself it is not a panacea for the aforementioned problems.

One possibility to construct differentially private synthetic datasets that are not
tailored to a priori specified queries is to simply add independent Laplacian noise to
each data point. However, the amount noise that has to be added to achieve sufficient
DP is too large with respect to maintaining satisfactory utility even for basic counting
queries [54], not to mention more sophisticated machine learning tasks.

This raises the fundamental question whether it is even possible to construct in
a numerically efficient manner differentially private synthetic data that come with
rigorous utility guarantees for a wide range of (possibly complex) queries, while
achieving a favorable privacy-utility tradeoff? In this paperwewill answer this question
to the affirmative.

1.2 A private measure

A main objective of this paper is to construct a private measure on a given metric
space (T , ρ). Namely, we design an algorithm that transforms a probability measure
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Private measures, randomwalks, and synthetic data 571

μ on T into another probability measure ν on T , and such that this transformation is
both private and accurate.

For clarity, let us first consider the special case of empirical measures, where our
goal can be understood as creating differentially private synthetic data. Specifically,
we are looking for a computationally tractable algorithm that transforms true input
data X = (X1, . . . , Xn) ∈ T n into synthetic output data Y = (Y1, . . . ,Ym) ∈ Tm for
some m, and which is ε-differentially private (see Definition 2.1) and such that the
empirical measures

μX = 1

n

n∑

i=1

δXi and μY = 1

m

m∑

i=1

δYi

are close to each other in the Wasserstein 1-metric (recalled in Sect. 2.2.2):

EW1 (μX , μY ) ≤ γ, (1.1)

where γ > 0 is as small as possible. In other words, our goal is to create synthetic data
Y from the true data X by adding noise of average magnitude γ , just not necessarily
i.i.d. noise.

The main result of this paper is a computationally effective private algorithmwhose
accuracy γ that is expressed in terms of the multiscale geometry of the metric space
(T , ρ). A consequence of this result, Theorem 9.7, states that if the metric space has
Minkowski dimension d ≥ 1, then, ignoring the dependence on ε and lower-order
terms in the exponent, we have

EW1 (μX , μY ) ∼ n−1/d (1.2)

The dependence on n is optimal and quite intuitive. Indeed, if the true data X consists
of n i.i.d. random points chosen uniformly from the unit cube T = [0, 1]d , then
the average spacing between these points is of the order n−1/d . So our result shows
that privacy can be achieved by a microscopic perturbation, one whose magnitude is
roughly the same as the average spacing between the points.

Our more general result, Theorem 7.2, holds for arbitrary compact metric spaces
(T , ρ) and, more importantly, for general input measures (not just empirical ones).
To be able to work in such generality, we employ the notion of metric privacy which
reduces to differential privacy when we specialize to empirical measures (Sect. 2.1).

1.3 Uniform accuracy over Lipschitz statistics

The choice of the Wasserstein 1-metric to quantify accuracy ensures that all Lipschitz
statistics are preserved uniformly. Indeed, by the Kantorovich–Rubinstein duality the-
orem, (1.1) yields

E sup
f

∣∣∣∣∣
1

n

n∑

i=1

f (Xi ) − 1

m

m∑

i=1

f (Yi )

∣∣∣∣∣ ≤ γ (1.3)
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572 M. Boedihardjo et al.

where the supremum is over all 1-Lipschitz functions f : T → R.
Standard private synthetic data generation methods that come with rigorous accu-

racy guarantees do so with respect to a predefined set of linear queries, such as
low-dimensional marginals, see e.g. [7, 12, 21, 43]. While this may suffice in some
cases, there is no assurance that the synthetic data behave in the same way as the origi-
nal data under more complex, but frequently employed, machine learning techniques.
For instance, if we want to apply a clustering method to the synthetic data, we cannot
be sure that the results we get are close to those for the true data. This can drastically
limit effective and reliable analysis of synthetic data.

In contrast, since the synthetic data constructed via our proposed method satisfy
a uniform bound (1.3), this provides data analysts with a vastly increased toolbox of
machine learning methods for which one can expect outcomes that are similar for the
original data and the synthetic data.

As concrete examples let us look at two of the most common tasks in machine
learning, namely clustering and classification. While not every clustering method will
satisfy a Lipschitz property, there do exist Lipschitz clustering functions that achieve
state-of-the-art results, see e.g. [31, 56]. Similarly, there is distinct interest in Lip-
schitz function based classifiers, since they are more robust and less susceptible to
adversarial attacks. This includes conventional classification methods such as support
vector machines [51] as well as classifiers based on Lipschitz neural networks [9, 50].
These are just a few examples of complex machine learning tools that can be reliably
applied to the synthetic data constructed via our private measure algorithm.Moreover,
since our results hold for general compact metric spaces, this paves the way for cre-
ating private synthetic data for a wide range of data types. We will present a detailed
algorithmic and numerical investigation of the proposed method in a forthcoming
paper.

1.4 A superregular randomwalk

The most popular way to achieve privacy is by adding random noise, typically either
by adding an appropriate amount of Laplacian noise or Gaussian noise (these methods
are aptly referred to as Laplacian mechanism and Gaussian mechanism, respectively
[22]). We, too, can try to make a probability measure μ on T private by discretizing T
(replacing it with a finite set of points) and then adding random noise to the weights
of the points. Going this route, however, yields suboptimal results. For example, it
is not difficult to check that if T is the interval [0, 1], the accuracy of the Laplacian
mechanism cannot be better than n−1/2, which is suboptimal compared to optimal
accuracy n−1 in (1.2).

This loss of accuracy is caused by the accumulation of additive noise. Indeed,
adding n independent random variables of unit variance produces noise of the order
n1/2. This prompts a basic probabilistic question: can we construct n random variables
that are “close” to being independent, but whose partial sums cancel more perfectly
than those of independent random variables? We answer this question affirmatively in
Theorem 3.1, where we construct random variables Z1, . . . , Zn whose joint distribu-
tion is as regular as that of i.i.d. Laplacian random variables, yet whose partial sums
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Private measures, randomwalks, and synthetic data 573

grow logarithmically as opposed to n1/2:

max
1≤k≤n

E
(
Z1 + · · · + Zk

)2 = O(log3 n).

One can think of this as a randomwalk that is locally similar to the one with i.i.d. steps,
but is globally much more bounded. Our construction is a nontrivial modification of
Lévy’s construction of Brownian motion. It may be interesting and useful beyond
applications to privacy.

1.5 Comparison to existing work

The numerically efficient construction of accurate differentially private synthetic data
is highly non-trivial. As case in point, Ullman andVadhan [44] showed (under standard
cryptographic assumptions) that in general it is NP-hard to make private synthetic
Boolean data which approximately preserve all two-dimensional marginals. There
exists a substantial body of work for generating privacy-preserving synthetic data,
cf. e.g. [1, 4, 14, 16, 35], but—unlike our work—without providing any rigorous
privacy or accuracy guarantees. Those papers on synthetic data that do provide rigorous
guarantees are limited to accuracy bounds for a finite set of a priori specified queries,
see for example [7, 11–13, 21, 43], see also the tutorial [46]. As discussed before,
this may suffice for specific purposes, but in general severely limits the impact and
usefulness of synthetic data. In contrast, the presentwork provides accuracy guarantees
for a wide range of machine learning techniques. Furthermore, our our results hold
for general compact metric spaces, as we establish metric privacy instead of just
differential privacy.

A special example of the topic investigated in this paper is the publication of differ-
entially private histograms, which is a well studied problem in the privacy literature,
see e.g. [2, 26, 36, 37, 39, 54, 55, 57] and Chapter 4 in [33]. In the specific context
of histograms, the Haar function based approach to construct a superregular random
walk proposed in our paper is related to the wavelet-based method [54] and to other
hierarchical histogram partitioning methods [26, 39, 57]. Like our approach, [26, 54]
obtain consistency of counting queries across the hierarchical levels, owing to the
specific way that noise is added. Also, the accuracy bounds obtained in [26, 54] are
similar to ours, as they are also polylogarithmic (although we are able to obtain a
smaller exponent). There are, however, several key differences. While our approach
gives a convenient way to generate accurate and differentially private synthetic data
Y from true data X , the methods of the aforementioned papers are not suited to create
synthetic data. Instead, these methods release answers to queries. Moreover, accuracy
is proven for just a single given range query and not simultaneously for all queries like
we do. This limitation makes it impossible to create accurate synthetic data with the
algorithms in [26, 54]. Moreover, unlike the aforementioned papers, our work allows
the data to be quite general, since we prove metric privacy and not just differential
privacy. Furthermore, our results apply to multi-dimensional data, and are not limited
to the one-dimensional setting.
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574 M. Boedihardjo et al.

Perhaps closest to our paper is [52], where the authors consider differentially pri-
vate synthetic data in [0, 1]d with guarantees for any smooth queries with bounded
partial derivatives of order K . The case K = 1 corresponds to 1-Lipschitz functions

considered in our paper. In that case [52] obtains an accuracy ofO(n− 1
2d+1 ), while we

achieve an accuracy of Õ(n− 1
d ).

There exist several papers on the private estimation of density and other statistical
quantities [18, 27], and sampling from distributions in a private manner is the topic
of [40]. While definitely interesting, that line of work is not concerned with synthetic
data, and thus there is little overlap with this work.

1.6 The architecture of the paper

The remainder of this paper is organized as follows. We introduce some background
material and notation inSect. 2, such as the concept ofmetric privacywhich generalizes
differential privacy. In Sect. 3we construct a superregular randomwalk (Theorem3.1).
We analyze metric privacy in more detail in Sect. 4, where we also provide a link
from the general private measure problem to private synthetic data (Lemma 4.1).
In Sect. 5 we use the superregular random walk to construct a private measure on
the interval [0, 1] (Theorem 5.4). In Sect. 6 we use a link between the Traveling
Salesman Problem and minimum spanning trees to devise a folding technique, which
we apply in Sect. 7 to “fold” the interval into a space-filling curve to construct a
private measure on a general metric space (Theorem 7.2). Postprocessing the private
measure with quantization and splitting, we then generate private synthetic data in a
general metric space (Corollary 7.4). In Sect. 8 we turn to lower bounds for private
measures (Theorem 8.5) and synthetic data (Theorem 8.6) on a general metric space.
We do this by employing a technique of Hardt and Talwar, which we present in a
Proposition 8.1 that identifies general limitations for synthetic data. In Sect. 9 we
illustrate our general results on a specific example of a metric space: the Boolean
cube [0, 1]d . We construct a private measure (Corollary 9.1) and private synthetic data
(Corollary 9.2) on the cube, and show near optimality of these results in Corollary 9.3
and Corollary 9.4, respectively. Results similar to the ones for the d-dimensional cube
hold for arbitrary metric space of Minkowski dimension d. For any such space, we
prove asymptotically sharp min-max results for private measures (Theorem 9.6) and
synthetic data (Theorem 9.7).

2 Background and notation

The motivation behind the concept of differential privacy is the desire to protect an
individual’s data, while publishing aggregate information about the database [22].
Adding or removing the data of one individual should have a negligible effect on the
query outcome, as formalized in the following definition.

Definition 2.1 (Differential Privacy [22]) A randomized algorithm M gives ε-
differential privacy if for any input databases D and D′ differing on at most one
element, and any measurable subset S ⊆ range(M), we have
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P
{M(D) ∈ S

}

P
{M(D′) ∈ S

} ≤ exp(ε),

where the probability is with respect to the randomness ofM.

2.1 Definingmetric privacy

While differential privacy is a concept of the discrete world (where datasets can differ
in a single element), it is often desirable to have more freedom in the choice of input
data. The following general notion (which seems to be known under slightly different,
and somewhat less general, versions, see e.g. [5] and the references therein) extends
the classical concept of differential privacy.

Definition 2.2 (Metric privacy) Let (T , ρ) be a compact metric space and E be a
measurable space. A randomized algorithmA : T → E is called α-metrically private
if, for any inputs x, x ′ ∈ T and any measurable subset S ⊂ E , we have

P
{A(x) ∈ S

}

P
{A(x ′) ∈ S

} ≤ exp
(
α ρ(x, x ′)

)
. (2.1)

To see how this metric privacy encompasses differential privacy, consider a product
space T = X n and equip it with the Hamming distance

ρH (x, x ′) = ∣∣{i ∈ [n] : xi 
= x ′
i }

∣∣ . (2.2)

The α-differentially privacy of an algorithm A : X n → E can be expressed as

P
{A(x) ∈ S

}

P
{A(x ′) ∈ S

} ≤ exp (α) whenever ρH (x, x ′) ≤ 1. (2.3)

Note that (2.3) is equivalent to (2.1) for ρ = ρH . Obviously, (2.1) implies (2.3).
The converse implication can be proved by replacing one coordinate of x by the
corresponding coordinate of x ′ and applying (2.3) ρH (x, x ′) times, then telescoping.
Let us summarize:

Lemma 2.3 (MP vs. DP) Let X be an arbitrary set. Then an algorithm A : X n → E
is α-differentially private if an only if A is α-metrically private with respect to the
Hamming distance (2.2) on X n.

Unlike differential privacy, metric privacy goes beyond product spaces, and thus
allows the data to be quite general. In this paper, for example, the input data are
probability measures. Moreover, metric privacy does away with the assumption that
the data sets D, D′ be different in a single element. This assumption is sometimes
too restrictive: general measures, for example, do not break down into natural single
elements.
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2.2 Distances betweenmeasures

This paper will use three classical notions of distance between measures.

2.2.1 Total variation

The total variation (TV) norm [19, Section III.1] of a signedmeasureμ on ameasurable
space (�,F) is defined as1

‖μ‖TV = 1

2
sup

�=∪i Ai

∑

i

|μ(Ai )| (2.4)

where the supremum is over all partitions � into countably many parts Ai ∈ F . If �

is countable, we have

‖μ‖TV = 1

2

∑

ω∈�

|μ({ω})| . (2.5)

The TV distance between two probability measuresμ and ν is defined as the TV norm
of the signed measure μ − ν. Equivalently,

‖μ − ν‖TV = sup
A∈F

|μ(A) − ν(A)| .

2.2.2 Wasserstein distance

Let (�, ρ) be a bounded metric space. We define the Wasserstein 1-distance (hence-
forth simply referred to as Wasserstein distance) between probability measures μ and
ν on � as [49]

W1(μ, ν) = inf
γ

∫

�×�

ρ(x, y) dγ (x, y) (2.6)

where the infimum is over all couplings γ ofμ and ν, or probabilitymeasures on�×�

whose marginals on the first and second coordinates areμ and ν, respectively. In other
words,W1(ν, μ)minimizes the transportation cost between the “piles of earth”μ and
ν.

The Kantorovich–Rubinstein duality theorem [49] gives an equivalent representa-
tion:

W1(μ, ν) = sup
‖h‖Lip≤1

(∫
h dμ −

∫
h dν

)

where the supremum is over all continuous, 1-Lipschitz functions h : � → R.

1 The factor 2 is chosen for convenience.
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For probability measures μ and ν on R, the Wasserstein distance has the following
representation, according to Vallender [47]:

W1(μ, ν) = ‖Fμ − Fν‖L1(R). (2.7)

Here Fμ(x) = μ ((−∞, x]) is the cumulative distribution function ofμ, and similarly
for Fν(x).

Vallender’s identity (2.7) can be used to define Wasserstein distance for signed
measures on R. Moreover, for signed measures on [0, 1], the Wasserstein distance
defined this way is always finite, and it defines a pseudometric.

3 A superregular randomwalk

The classical random walk with independent steps of unit variance is not bounded:
it deviates from the origin at the expected rate ∼ n1/2. Surprisingly, there exists a
random walk whose joint distribution of steps is as regular as that of independent
Laplacians, yet that deviates from the origin logarithmically slowly.

Theorem 3.1 (A superregular randomwalk)For every n ∈ N, there exists a probability
density of the form f (z) = 1

β
e−V (z) on Rn that satisfies the following two properties.

(i) (Regularity): the potential V is 1-Lipschitz in the �1 norm, i.e.

|V (x) − V (y)| ≤ ‖x − y‖1 for all x, y ∈ R
n . (3.1)

(ii) (Boundedness): a random vector Z = (Z1, . . . , Zn) distributed according to the
density f satisfies

E(Z1 + · · · + Zk)
2 ≤ C log3 n for all 1 ≤ k ≤ n, (3.2)

where C > 0 is a universal constant.

3.1 Heuristics

We will define a superregular random walk by modifying the Lévy’s construction of
the Brownian motion. In this construction, the path of a Brownian motion on [0, 1]
is defined as a random Gaussian series with respect to the Faber–Schauder basis of
the space of continuous functions, see [10, Section IX.1]. We will replace Gaussian
weights by Laplacian weights with smaller variances, and truncate the series.

To that end, recall the definition of the Faber–Schauder system of “hat functions”
φ1, φ2, . . . on the interval [0, 1]. First, we set

φ1(t) = t .
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Fig. 1 Faber–Schauder system

Next, for each level � ∈ N and each k ∈ {1, . . . , 2�−1}, we define φ2�−1+k(t) as the
function on [0, 1] that takes value 0 outside the interval

(a�,k, b�,k) :=
(
k − 1

2�−1 ,
k

2�−1

)
, (3.3)

takes value 1 at themidpoint ck := (2k−1)/2� of the interval, and interpolates linearly
in between. The Faber–Schauder system forms a Shcauder basis in the Banach space
C0[0, 1] of continuous functions that take zero value at the origin.

The Faber–Schauder system is conveniently organized by levels � = 0, 1, 2, . . .
We place a single function φ1(t) = t is on level � = 0, and each subsequent level
� ≥ 1 contains 2�−1 functions φ j supported on disjoint intervals (a�,k, b�,k) of length
1/2�−1. Throughout this section, �( j) will denote the level the function φ j belongs
to, e.g. �(1) = 0, �(2) = 1, �(3) = �(4) = 2, �(5) = �(6) = �(7) = �(8) = 3, etc.
See Fig. 1 for an illustration of these functions.

Lévy’s definition of the standard Brownian motion on the interval [0, 1] is

Bn(t) =
∞∑

j=1

G jφ j (t), (3.4)

where G j are independent normal random variables, namely

G1 ∼ N (0, 1); G j ∼ N
(
0, 2−�( j)−1), j = 2, 3, . . . .

To construct a superregular random walk, we replace the Gaussian weights G j by
Laplacian2 weights  j ∼ Lap(log n). and we truncate the series at n. Thus, we set

Wn(t) =
n∑

j=1

 jφ j (t). (3.5)

2 A Laplacian random variable X ∼ Lap(λ) is defined by P
{
|X | > t

}
= exp(−t/λ), t ≥ 0. The Laplacian

distribution has density (1/2λ) exp(− |x | /λ) on R. The mean equals zero and the variance equals 2λ2.
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Private measures, randomwalks, and synthetic data 579

The superregular random walk could then be defined as

Z1 + · · · + Zk = Wn(k/n), k = 1, . . . , n. (3.6)

3.2 Formal construction

First observe that the regularity property (3.1) of a probability distribution on R
n

passes on to the marginal distributions. For example, regularity of a random vector
(X1, X2) ∈ R

2 means that

f(X1,X2)(x1, x2) ≤ exp(− |x1 − y1| − |x2 − y2|) f(X1,X2)(y1, y2),

for all (x1, y1), (x2, y2) ∈ R
2. In particular,

f(X1,X2)(x1, x2) ≤ exp(− |x2 − y2|) f(X1,X2)(x1, y2).

Taking integral with respect to x1 on both sides yields

fX2(x2) ≤ exp(− |x2 − y2|) fX2(y2),

which is equivalent to the regularity of the randomvector X2 ∈ R
1. The same argument

works in higher dimensions.
Thus, by dropping at most n/2 terms if necessary, we can assume without loss of

generality that

n = 2L for some L ∈ N, (3.7)

Thus, the Faber–Schauder functions φ1, . . . , φn are partitioned in L + 1 full levels
0, 1, . . . , L . Consider i.i.d. random variables

1, . . . , n ∼ Lap(2L + 1), (3.8)

define the random process Wn(t) by Eq. (3.5), and define the random variables
Z1, . . . , Zk by Eq. (3.6).

The construction is complete. It remains to check boundedness and regularity.
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3.3 Boundedness

Fix k ∈ [n]. We have

E(Z1 + · · · + Zk)
2 = E

⎛

⎝
n∑

j=1

 j φ j (k/n)

⎞

⎠
2

(by definition)

=
n∑

j=1

E[2
j ] φ j (k/n)2 (by independence and mean zero)

= 2(2L + 1)2
n∑

j=1

φ j (k/n)2 (by (3.8)). (3.9)

By construction, the Faber–Schauder functions φ j on each given level have disjoint
support. Thus, on each level there can be be at most one function that makes the value
φ j (k/n)2 nonzero. By construction, this value is bounded by 1. Adding these values
for the L + 1 levels, we conclude that

∑n
j=1 φ j (k/n)2 is bounded by L + 1. Hence

E(Z1 + · · · + Zk)
2 ≤ 2(2L + 1)2(L + 1) � log3 n

where we used (3.7) in the last step.

3.4 Regularity

By definition (3.5) and (3.6), we have

Zk = Wn

(
k

n

)
− Wn

(
k − 1

n

)
=

n∑

j=1

 jψ j (k)

where

ψ j (k) = φ j

(
k

n

)
− φ j

(
k − 1

n

)
, k = 1, . . . , n.

The discrete functions ψ j can be thought as (discrete) derivatives of the Faber–
Schauder functions φ j , and they are known as (discrete, rescaled) Haar system, cf.
[10, 41]. The Haar basis is illustrated in Fig. 2.

The Haar system ψ1, . . . , ψn form an orthogonal basis of �2[n], see [10]. Thus,
every function x ∈ �2[n] admits the orthogonal decomposition

x =
n∑

j=1

λ(x) j ψ j where λ(x) j = 〈ψ j , x〉
‖ψ j‖22

,
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Fig. 2 Haar system

where 〈, 〉 and ‖ ‖2 are the standard inner product and norm on �2[n].
The key property of the coefficient vector λ(x) is its approximate sparsity, which

we can express via the �1 norm.

Lemma 3.2 (Sparsity) For any function x ∈ �2[n], the coefficient vector λ(x) satisfies

‖λ(x)‖1 ≤ (2L + 1)‖x‖1.

Proof First, let us prove the lemma for the indicator of any single point k ∈ [n], i.e.
for x = 1{k}. Here we have

λ(x) j = ψ j (k)

‖ψ j‖22
.

First, consider j = 1, the only index on level � = 0. The function ψ1(t) = 1/n
trivially satisfies ψ1(k) = 1/n and ‖ψ j‖22 = 1/n, so we have λ(x)1 = 1.

Next, consider an index j on some level � ≥ 1. By construction, any function ψ j

on that level can takes on three values: 0 and ±2�/n. Moreover, ψ j is supported on
an interval of length n/2�−1, see (3.3). Hence ‖ψ j‖22 = 2�+1/n, so

∣∣λ(x) j
∣∣ ≤ 2.

Moreover, the functions ψ j on any given level have disjoint support. So among all
such functions on each level, at most one can make the value ψ j (k) and thus λ(x) j
nonzero. As we just showed, for level 0 this value is 1, and for each subsequent level
� ∈ {1, . . . , L}, this value is bounded by 2. Summing over all levels, we conclude that
‖λ(x)‖1 ≤ 2 L + 1.

To extend this bound to a general function x ∈ �2[n], decompose it as x =∑n
k=1 x(k)1{k}. Then, by linearity, λ(x) = ∑n

k=1 x(k)λ(1{k}), so

‖λ(x)‖1 ≤
n∑

k=1

|x(k)| ‖λ(1{k})‖1.

The bound ‖λ(1{k})‖1 ≤ 2L + 1 from the first part of the argument completes the
proof of the lemma. ��

We are ready to prove regularity. Consider the random function Z = ∑n
j=1  jψ j

constructed in Sect. 3.2. In our new notation, the coefficient vector of Z is λ(Z) =
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(1, . . . , n) =: . We have for any x, y ∈ �2[n]:

r(x, y) := densX (x)

densX (y)
= dens(λ(x))

dens(λ(y))
. (3.10)

To see this, recall that the map x �→ λ(x) is a linear bijection on �2[n]. Hence for any
ε > 0 and for the unit ball B of �2[n], we have

P
{
Z ∈ x + εB

}

P
{
Z ∈ y + εB

} = P
{
 ∈ λ(x) + ελ(B)

}

P
{
 ∈ λ(y) + ελ(B)

} .

Taking the limit on both sides as ε → 0+ and applying the Lebesgue differentiation
theorem yield (3.10).

By construction, the coefficients i of the random vector  ∈ R
n are Lap(2L + 1)

i.i.d. random variables. Hence

dens(z) = 1
(
2(2L + 1)

)n exp
(

− ‖z‖1
2L + 1

)
, z ∈ R

n .

Thus,

r(x, y) = exp

(‖λ(y)‖1 − ‖λ(x)‖1
2L + 1

)
.

By the triangle inequality and Lemma 3.2, we have

‖λ(y)‖1 − ‖λ(x)‖1 ≤ ‖λ(x) − λ(y)‖1 ≤ (2L + 1)‖x − y‖1.

Thus

r(x, y) ≤ exp(‖x − y‖1).

If we express the density in the form densX (x) = 1
β
e−V , the bound we proved can

be written as

exp (V (y) − V (x)) ≤ exp(‖x − y‖1),

or V (y) − V (x) ≤ ‖x − y‖1. Swapping x with y yields |V (x) − V (y)| ≤ ‖x − y‖1.
The proof of Theorem 3.1 is complete. ��
Remark 3.3 (Boundedness of paths) One can easily upgrade the bound (3.2), which
holds in expectation, into a concentration bound that holds with high probability. To
do so, instead of applying the additivity of variance in (3.9), one can use a concentra-
tion inequality for sums of independent random variables, e.g. Bernstein’s. Moreover,
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combining the resulting high-probability bound with a union bound, one can obtain
boundedness of the entire paths of the random walk, showing that

E max
1≤k≤n

(
Z1 + · · · + Zk

)2 ≤ C log4 n.

Since we do not need this result for our application, we leave it to the interested reader.

3.5 Beyond the �1 norm?

One may wonder why specifically the �1 norm appears in the regularity property of
Theorem 3.1. As we will see shortly, the regularity with respect to the �1 norm is
exactly what is needed in our applications to privacy. However, it might be interesting
to see if there are natural extensions of Theorem 3.1 for general �p norms. The lemma
below rules out one such avenue, showing that if a potential V is Lipschitz with
respect to the �p norm for some p > 1, the corresponding random walk deviates at
least polynomially fast (as opposed to logarithmically fast).

Proposition 3.4 (No boundedness for �p-regular potentials) Let n ∈ N and consider
a probability density of the form f (z) = 1

β
e−V (z) on Rn. Assume that the potential V

is 1-Lipschitz in the �p-norm. Then a random vector Z = (Z1, . . . , Zn) distributed
according to the density f satisfies

E |Z1 + · · · + Zn| ≥ 1

4
n1−

1
p .

Proof Wecanwrite Z1+· · ·+Zn = 〈Z , u〉where u = (1, . . . , 1)T. Since ‖n− 1
p u‖p =

1 and V is 1-Lipschitz in the �p norm, the densities of the random vectors Z + n− 1
p u

and Z differ by a multiplicative factor of at most e pointwise. Therefore,

E |〈Z , u〉| ≥ e−1
E

∣∣∣〈Z + n− 1
p u, u〉

∣∣∣

≥ e−1
( ∣∣∣〈n− 1

p u, u〉
∣∣∣ − E |〈Z , u〉|

)
(by triangle inequality)

= e−1
(
n1−

1
p − E |〈Z , u〉|

)
.

Rearranging the terms, we deduce that

E |〈Z , u〉| ≥ e−1

1 + e−1 n
1− 1

p ≥ 1

4
n1−

1
p ,

which completes the proof. ��
In light of Theorem 3.1 and Proposition 3.4 it might be interesting to see if an

obstacle remains for the density f (z) = 1
β
e−V (z)p for p > 1.
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4 Metric privacy

4.1 Private measures

The superregular randomwalkwe just constructedwill become themain tool in solving
the following private measure problem. We are looking for a private and accurate
algorithm A that transforms a probability measure μ on a metric space (T , ρ) into
another finitely-supported probability measure A(μ) on (T , ρ).

We need to specify what we mean by privacy and accuracy here. Metric privacy
offers a natural framework for our problem. Namely, we consider Definition 2.2 for
the space (M(T ),TV) of all probability measures on T equipped with the TV metric
(recalled in Sect. 2.2.1). Thus, for any pair of input measures μ and μ′ on T that
are close in the TV metric, we would like the distributions of the (random) output
measures A(μ) and A(μ′) to be close:

P
{A(μ) ∈ S

}

P
{A(μ′) ∈ S

} ≤ exp
(
α‖μ − μ′‖TV

)
. (4.1)

The accuracy will be measured via the Wasserstein distance (recalled in Sect. 2.2.2).
We hope to make W1(A(μ), μ) as small as possible. The reason for choosing W1
as distance is that it allows us to derive accuracy guarantees for general Lipschitz
statistics, as outlined below.

4.2 Synthetic data

The private measure problem has an immediate application for differentially private
synthetic data. Let (T , ρ) be a compact metric space. We hope to find an algorithm
B that transforms the true data X = (X1, . . . , Xn) ∈ T n into synthetic data Y =
(Y1, . . . ,Ym) ∈ Tm for some m such that the empirical measures

μX = 1

n

n∑

i=1

δXi and μY = 1

m

m∑

i=1

δYi

are close in the Wasserstein distance, i.e. we hope to make W1(μX , μY ) small. This
would imply that synthetic data accurately preserves all Lipschitz statistics, i.e.

1

n

n∑

i=1

f (Xi ) ≈ 1

m

m∑

i=1

f (Yi )

for any Lipschitz function f : T → R.
This goal can be immediately achieved if we solve a version of the private mea-

sure problem, described in Sect. 4.1, with the additional requirement that A(μ) be an
empirical measure. Indeed, define the algorithm B by feeding the empirical measure
μX intoA, i.e. set B(X) = A(μX ). The accuracy follows, and the differential privacy
of B can be seen as follows.
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For any pair X , X ′ of input data that differ in a single element, the corresponding
empirical measures differ by at most 1/n with respect to the TV distance, i.e.

‖μX − μX ′ ‖TV ≤ 1

n
.

Then, for any subset S in the output space, we can use (4.1) to get

P
{B(X) ∈ S

}

P
{B(X ′) ∈ S

} = P
{A(μX ) ∈ S

}

P
{A(μX ′) ∈ S

} ≤ exp
(
α ‖μ − μ′‖TV

) ≤ exp(α/n).

Thus, if α = εn, the algorithm B is ε-differentially private. Let us record this obser-
vation formally.

Lemma 4.1 (Private measure yields private synthetic data) Let (T , ρ) be a compact
metric space. Let A be an algorithm that inputs a probability measure on T , and
outputs something. Define the algorithm B that takes data X = (X1, . . . , Xn) ∈ T n

as an input, creates the empirical measure μX and feeds it into the algorithm A, i.e.
set B(X) = A(μX ). IfA is α-metrically private in the TV metric and α = εn, then B
is ε-differentially private.

Thus, our main focus from now on will be on solving the private measure problem;
private synthetic data will follows as a consequence.

5 A private measure on the line

In this section, we construct a private measure on the interval [0, 1]. Later we will
extend this construction to general metric spaces.

5.1 Discrete input space

Let us start with a somewhat restricted goal, and then work toward wider generality.
In this subsection, we will (a) assume that the input measure μ is always supported
on some fixed finite subset

� = {ω1, . . . , ωn} where 0 ≤ ω1 ≤ · · · ≤ ωn ≤ 1

and (b) allow the outputA(μ) to be a signed measure. We will measure accuracy with
the Wasserstein distance.

5.1.1 Perturbing a measure by a superregular randomwalk

Apply the Superregular RandomWalk Theorem 3.1 and rescale the random variables
Zi by setting Ui = (2/α)Zi . The regularity property of the random vector U =
(U1, . . . ,Un) takes the form

123



586 M. Boedihardjo et al.

densU (x)

densU (y)
≤ exp

(α

2
‖x − y‖1

)
for all x, y ∈ R

n, (5.1)

and the boundedness property implies that

max
1≤k≤n

E |U1 + · · · +Uk | ≤ C log
3
2 n

α
. (5.2)

Let us make the algorithm A perturb the measure μ on � by the weights Ui , i.e.
we set

A(μ)(ωi ) = μ({ωi }) +Ui , i = 1, . . . , n. (5.3)

5.1.2 Privacy

Any measure ν on � can be identified with the vector ν̄ ∈ R
n by setting ν̄i = ν({ωi }).

Then, for any measure η on �, we have

densA(μ)(η) = densμ̄+U (η̄) = densU (η̄ − μ̄). (5.4)

Fix two measures μ and μ′ on �. By above, we have

densA(μ)(η)

densA(μ′)(η)
= densU (η̄ − μ̄)

densU (η̄ − μ̄′)
(by (5.4))

≤ exp
(α

2
‖μ̄ − μ̄′‖1

)
(by (5.1))

= exp
(
α‖μ − μ′‖TV

)
(by (2.5)).

This shows that the algorithm A is α-metrically private in the TV metric.

5.1.3 Accuracy

By definition definition (2.7) of Wasserstein distance for signed measures, we have

EW1(A(μ), μ)

=
∫ 1

0
E

∣∣(A(μ) − μ
)([0, x])∣∣ dx (using linearity of expectation)

=
∫ 1

0
E

∣∣∣∣∣∣

∑

j :ω j≤x

(A(μ) − μ
)
(ω j )

∣∣∣∣∣∣
dx (measures are supported on points ω j )

=
∫ 1

0
E

∣∣∣∣∣∣

k(x)∑

j=1

Uj

∣∣∣∣∣∣
dx (by (5.3), where we set k(x) = ∣∣{ j : ω j ≤ x}∣∣ )
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≤ max
1≤k≤n

E

∣∣∣∣∣∣

k∑

j=1

Uj

∣∣∣∣∣∣
≤ C log

3
2 n

α
(by (5.2)).

The following result summarizes what we have proved.

Proposition 5.1 (Input in discrete space, output signed measure) Let� be finite subset
of [0, 1] and let n = |�|. Let α > 0. There exists a randomized algorithmA that takes
a probability measure μ on � as an input and returns a signed measure ν on � as an
output, and with the following two properties.

(i) (Privacy): the algorithm A is α-metrically private in the TV metric.
(ii) (Accuracy): for any input measure μ, the expected accuracy of the output signed

measure ν in the Wasserstein distance is

EW1(ν, μ) ≤ C log
3
2 n

α
.

Let ν be the signed measure obtained in Proposition 5.1. Let ν̂ be a probability
measure on� thatminimizesW1(̂ν, ν). In view of (2.7), finding ν̂ can be cast as convex
problem, although the minimizer may not be unique. By minimality, W1(̂ν, ν) ≤
W1(μ, ν). So W1(̂ν, μ) ≤ W1(̂ν, ν) + W1(ν, μ) ≤ 2W1(μ, ν). Thus, we can upgrade
the previous result, making the output a measure (as opposed to signed measure):

Proposition 5.2 (Private measure on a finite subset of the interval) Let � be finite
subset of [0, 1] and let n = |�|. Let α > 0. There exists a randomized algorithm B
that takes a probability measureμ on� as an input and returns a probability measure
ν on � as an output, and with the following two properties.

(i) (Privacy): the algorithm B is α-metrically private in the TV metric.
(ii) (Accuracy): for any input measureμ, the expected accuracy of the output measure

ν in the Wasserstein distance is

EW1(ν, μ) ≤ C log
3
2 n

α
.

5.2 Extending the input space to the interval

Next, we would like to extend our framework to a continuous setting, and allow
measures to be supported by the entire interval [0, 1]. We can do this by quantization.

5.2.1 Quantization

Fix n ∈ N and letN = {ω1, . . . , ωn} be a (1/n)-net of [0, 1]. Consider the proximity
partition

[0, 1] = I1 ∪ · · · ∪ In
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where we put a point x ∈ [0, 1] into Ii if x is closer to ωi that to any other points in
N . (We break any ties arbitrarily.)

We can quantize any signed measure ν on [0, 1] by defining

νN ({ωi }) = ν(Ii ), i = 1, . . . , n. (5.5)

Obviously, νN is a signed measure onN . Moreover, if ν is a measure, then so is νN .
And if ν is a probability measure, then so is νN . In the latter case, it follows from the
construction that

W1(ν, νN ) ≤ 1/n. (5.6)

(By definition of the net, transporting any point x to the closest pointωi covers distance
at most 1/n.)

Lemma 5.3 (Quantization is a contraction in TV metric) Any signed measure ν on
[0, 1] satisfies

‖νN ‖TV ≤ ‖ν‖TV.

Proof Using (2.5), (5.5), and (2.4), we obtain

‖νN ‖TV = 1

2

n∑

i=1

|νN ({ωi })| = 1

2

n∑

i=1

|ν(Ii )| ≤ ‖ν‖TV.

The lemma is proved. ��

5.2.2 A private measure on the interval

Theorem 5.4 (Private measure on the interval) Let α ≥ 2. There exists a randomized
algorithm A that takes a probability measure μ on [0, 1] as an input and returns a
finitely-supported probability measure ν on [0, 1] as an output, and with the following
two properties.

(i) (Privacy): the algorithm A is α-metrically private in the TV metric.
(ii) (Accuracy): for any input measureμ, the expected accuracy of the output measure

ν in the Wasserstein distance is

EW1 (ν, μ) ≤ C log
3
2 α

α
.

Proof Take a measure μ on [0, 1], preprocess it by quantizing as in the previous
subsection, and feed the quantizedmeasureμN into the algorithmB of Proposition 5.2
for � = N .

The contraction property (Lemma 5.3) ensures that

‖μN − μ′
N ‖TV ≤ ‖μ − μ′‖TV.
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This and the privacy property of Proposition 5.2 for measures on N guarantee that
quantization does not destroy privacy, i.e. the algorithm μ �→ B(μN ) is still α-
metrically private as claimed.

As for the accuracy, Proposition 5.2 for the measure μN gives

EW1 (B(μN ), μN ) ≤ C log
3
2 n

α
.

Moreover, the accuracy of quantization (5.6) states thatW1(μ,μN ) ≤ 1/n. By triangle
inequality, we conclude that

EW1 (B(μN ), μ) ≤ 1

n
+ C log

3
2 n

α
.

Taking n to be the largest integer less than or equal to α yields the conclusion of the
theorem. ��

6 The traveling salesman problem

In order to extend the construction of the private measure on the interval [0, 1] to a
general metric space (T , ρ), a natural approach would be to map the interval [0, 1]
onto some space-filling curve of T . Since a space filling curves usually are infinitely
long, we should do this on the discrete level, for some δ-net of T rather than T itself.
In this section, we will bound length of such discrete space-filling curve in terms of
the metric geometry of T . In the next section, we will see how this bound determines
the accuracy of a private measure in T .

A natural framework for this step is related to Traveling Salesman Problem (TSP),
which is a central problem in optimization and computer science, and whose history
goes back to at least 1832 [6].

LetG = (V , E) be an undirected weighted connected graph.We occasionally refer
to the weights of the edges as lengths. A tour of G is a connected walk on the edges
that visits every vertex at least once, and returns to the starting vertex. The TSP is the
problem of finding a tour of G with the shortest length. Let us denote this length by
TSP(G).

Although it is NP-hard to compute TSP(G), or even to approximate it within a factor
of 123/122 [29], an algorithm of Christofides and Serdyukov [15, 42] from 1976 gives
a 3/2-approximation for TSP, and it was shown recently that the factor 3/2 can be
further improved [28].

6.1 TSP in terms of theminimum spanning tree

Within a factor of 2, the traveling salesman problem is equivalent to another key
problem, namely the problem of finding the minimum spanning tree (MST) of G. A
spanning tree of G is a subgraph that is a tree and which includes all vertices of G. It
always exists and can be found in polynomial time [32, 38]. A spanning tree of G with
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Fig. 3 The depth-first search
tour demonstrates that the TSP
of a tree equals twice the sum of
lengths of its edges

the smallest length is called the minimum spanning tree of G; we denote its length by
MST(G). The following equivalence is a folklore.

Lemma 6.1 Any undirected weighted connected graph G satisfies

MST(G) ≤ TSP(G) ≤ 2MST(G).

Proof For the lower bound, it is enough to find a spanning tree ofG of length bounded
by TSP(G). Consider the minimal tour of G of length TSP(G) as a subgraph of G.
Let T be a spanning tree of the tour. Since the tour contains all vertices of G, so does
T , and thus T is a spanning tree of G. Since T is obtained by removing some edges
of the tour, the length of T is bounded by of the tour, which is TSP(G). The lower
bound is proved.

For the upper bound, note that dropping any edges of G can only increase the value
of TSP. Thus TSP of G is bounded by the TSP of its spanning tree T . Moreover, TSP
of any tree T equals twice the sum of lengths of the edges of T . This can be seen by
considering the depth-first search tour of T , which starts at the root and explores as
deep as possible along each branch before backtracking, see Fig. 3. ��

6.2 Metric TSP

Let (T , ρ) be a finite metric space. We can consider T as a complete weighted graph,
whose weights of edges are defined as the distances between the points. The TSP for
(T , ρ) is known as metric TSP.

Although a tour can visit the same vertex of T multiple times, this can be prevented
by skipping the vertices previously visited. The triangle inequality shows that skipping
can only decrease the length of the tour. Therefore, the shortest tour in a complete graph
is always a Hamiltonian cycle, a walk that visits all vertices of T exactly once before
returning to the starting vertex. Let us record this observation:

Lemma 6.2 The TSP of a finite metric space (T , ρ) equals the smallest length of a
Hamiltonian cycle of T .

6.3 A geometric bound on TSP

Wewould like to compute TSP(T ) in terms of the geometry of themetric space (T , ρ).
Herewewill prove an upper boundonTSP(T ) in terms of the covering numbers. Recall
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Fig. 4 Chaining: construction of
a spanning tree of a metric space

that the covering number N (T , ρ, ε) is defined as the smallest cardinality of an ε-net
of T , or equivalently the smallest number of closed balls with centers in T and radii
ε whose union covers T , see [48, Section 4.2].

Theorem 6.3 (TSP via covering numbers) For any finite metric space (T , ρ), we have

TSP(T ) ≤ 16
∫ ∞

0
(N (T , ρ, x) − 1) dx .

Proof Step 1: constructing a spanning tree. Let us construct a small spanning tree T0
of T and use Lemma 6.1. Let ε j = 2− j , j ∈ Z, and let N j be ε j -nets of T with
cardinalities

∣∣N j
∣∣ = N (T , ρ, ε j ). Since T is finite, we must have

∣∣N j
∣∣ = 1 for all

sufficiently small j . Let j0 be the largest integer for which
∣∣N j0

∣∣ = 1.
At the root of T0, let us put a single point that forms the netN j0 . At the next level,

put all the points of the netN j0+1, and connect them to the root by edges. The weights
of these edges, which are defined as the distances of the points to the root, are all
bounded by ε j0 . At the next level, put all points of the net N j0+2, and connect each
such point to the closest point in the previous levelN j0+1. (Break any ties arbitrarily.)
Since the latter set is a ε j0+1-net, the weights of all these edges are bounded by ε j0+1.
Repeat these steps until the levels do not grow anymore, i.e. until the level contains
all the points in T ; see Fig. 4 for illustration.

If all the nets N j that make up the levels of the tree T0 are disjoint, then T0 is a
spanning tree of T . Assume that this is the case for time being.

Step 2: bounding the length of the tree. For each of the levels j = j0+1, j0+2, . . .,
the tree T0 has

∣∣N j
∣∣ edges connecting the points of level j to the level j − 1, and each

such edge has length (weight) bounded by ε j−1. So MST(T ) is bounded by the sum
of the lengths of the edges of T0, i.e.

MST(T ) ≤
∞∑

j= j0+1

ε j−1
∣∣N j

∣∣ .

Step 3: bounding the sum by the integral. Our choice ε j = 2− j yields ε j−1 =
4(ε j − ε j+1). Moreover, our choice of j0 yields

∣∣N j
∣∣ ≥ 2 for all j ≥ j0 + 1, which

implies
∣∣N j

∣∣ ≤ 2
(∣∣N j

∣∣ − 1
)
for such j . Therefore
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Fig. 5 The map F folds an interval [0,TSP(M)] into a Hamiltonian path (a “space-filling curve”) of the
metric space T

MST(T ) ≤ 8
∞∑

j= j0+1

(
ε j − ε j+1

) (∣∣N j
∣∣ − 1

)

= 8
∞∑

j= j0+1

∫ ε j

ε j+1

(
N (T , ρ, ε j ) − 1

)
dx (since

∣∣N j
∣∣ = N (T , ρ, ε j ))

≤ 8
∫ ∞

0
(N (T , ρ, x) − 1) dx . (6.1)

An application of Lemma 6.1 completes the proof.
Step 4: splitting. The argument above assumes that all levels N j of the tree T0 are

disjoint. This assumption can be enforced by splitting the points of T . If, for example,
a point ω ∈ N j is also used inNk for some k < j , add to T another a replica of ω – a
point ω′ that has zero distance to ω and the same distances to all other points as ω. Use
ω inN j and ω′ inNk . Preprocessing the metric space (T , ρ) by such splitting yields a
pseudometric space (T ′, ρ) in which all levels N j are disjoint, and whose TSP is the
same. ��
Remark 6.4 (Integrating up to the diameter) Note that N (T , ρ, x) = 1 for any
x > diam(T ), since any single point makes an x-net of T for such x . Therefore,
the integrand in Theorem 6.3 vanishes for such x , and we have

TSP(T ) ≤ 16
∫ diam(T )

0
N (T , ρ, x) dx . (6.2)

6.4 Folding

It is a simple observation that an interval of length TSP(T ) can be embedded, or
“folded”, into T :

Proposition 6.5 (Folding) For any finite metric space (T , ρ) there exists a finite subset
� of the interval [0,TSP(T )] and a 1-Lipschitz bijection F : � → T .

Heuristically, the map F “folds” the interval [0,TSP(T )] into the shortest Hamil-
tonian path of the metric space T , see Fig. 5. We can think of this as a space-filling
curve of T .
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Proof Let us exploit the heuristic idea of folding. Fix a Hamiltonian cycle in T of
length TSP(T ), whose existence is given by Lemma 6.2. Formally, this means that we
can label the elements of the space as T = {z1, . . . , zn} in such a way that the lengths

δi = ρ (zi+1, zi ) , i = 1, . . . , n − 1,

satisfy
∑n−1

i=1 δi ≤ TSP(T ). Define � = {x1, . . . , xn} by

x1 = 0; xk =
k−1∑

i=1

δi , k = 2, . . . , n.

Then all xk ≤ TSP(T ), so � ⊂ [0,TSP(T )] as claimed.
Note that for every k = 1, . . . , n − 1 we have

ρ (zk+1, zk) = δk = xk+1 − xk .

Then, for any integers 1 ≤ k ≤ k + j ≤ n, triangle inequality and telescoping give

ρ
(
zk+ j , zk

) ≤ ρ
(
zk+ j , zk+ j−1

) + ρ
(
zk+ j−1, zk+ j−2

) + · · · + ρ (zk+1, zk)

= (
xk+ j − xk+ j−1

) + (
xk+ j−1 − xk+ j−2

) + · · · + (xk+1 − xk)

= xk+ j − xk .

This shows that the folding map F : xk �→ zk is a bijection that satisfies

ρ (F(x), F(y)) ≤ |x − y| for all x, y ∈ �.

In other words, F is 1-Lipschitz. The proof is complete. ��

7 A private measure on ametric space

We are ready to construct a private measure on an arbitrary compact metric space
(T , ρ). We do this as follows: (a) discretize T replacing it with a finite δ-net; (b) fold
an interval of length TSP(T ) onto T using Proposition 6.5; and (c) using this folding,
pushforward onto T the private measure on the interval constructed in Sect. 5. The
accuracy of the resulting private measure on T is determined by the length of the
interval TSP(T ), which in turn can be expressed using the covering numbers of T
(Theorem 6.3).

7.1 Finite metric spaces

Let us start by extending Proposition 5.2 from a finite subset on [0, 1] to a finite subset
of (T , ρ).
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Proposition 7.1 (Private measure on a finite metric space) Let (T , ρ) be a finite metric
space and let n = |T |. Let α > 0. There exists a randomized algorithm B that takes
a probability measure μ on T as an input and returns a probability measure ν on T
as an output, and with the following two properties.

(i) (Privacy): the algorithm B is α-metrically private in the TV metric.
(ii) (Accuracy): for any input measureμ, the expected accuracy of the output measure

ν in the Wasserstein distance is

EW1(ν, μ) ≤ C log
3
2 n

α
TSP(T ).

Proof Applying Folding Proposition 6.5, we obtain an n-element subset � ⊂
[0,TSP(T )] and a 1-Lipschitz bijection F : � → T . Applying Proposition 5.2 and
rescaling by the factor TSP(T ), we obtain an α-metrically private algorithm B that
transforms a probability measureμ on� into a probability measure ν on�, and whose
accuracy is

EW1(ν, μ) ≤ C log
3
2 n

α
TSP(T ). (7.1)

Define a new metric ρ̄ on � by ρ̄(x, y) = ρ (F(x), F(y)). Since F is 1-Lipschitz,
we have ρ̄(x, y) ≤ |x − y|. Note that the Wasserstein distance can only become
smaller if the underlying metric is replaced by a smaller metric. Therefore, the bound
(7.1), which holds with respect to the usual metric |x − y| on �, automatically holds
with respect to the smaller metric ρ̄(x, y).

It remains to note that (�, ρ̄) is isometric to (T , ρ). So the accuracy result (7.1),
which as we saw holds in (�, ρ̄), automatically transfers to (T , ρ) (by considering
the pushforward measure). ��

7.2 General metric spaces

Quantization allows us to pass from discrete metric spaces to general spaces. A similar
techniquewas used in Sect. 5.2 for the interval [0, 1].Wewill repeat it here for a general
metric space.

7.2.1 Quantization

Fix δ > 0 and letN = {ω1, . . . , ωn} be a δ-net of T such that n = |N | = N (T , ρ, δ).
Consider the proximity partition

T = I1 ∪ · · · ∪ In

where we put a point x ∈ T into Ii if x is closer to ωi that to any other points in N .
(We break any ties arbitrarily.)
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We can quantize any signed measure ν on T by defining

νN ({ωi }) = ν(Ii ), i = 1, . . . , n.

Obviously, νN is a signed measure onN . Moreover, if ν is a measure, then so is νN .
And if ν is a probability measure, then so is νN . In the latter case, it follows from the
construction that

W1(ν, νN ) ≤ δ. (7.2)

(By definition of the net, transporting any point x to the closest pointωi covers distance
at most δ.) Furthermore, Lemma 5.3 easily generalizes and yields

‖νN ‖TV ≤ ‖ν‖TV. (7.3)

Finally, let us bound the TSP of the net N using Theorem 6.3. We trivially have
N (N , ρ, x) ≤ |N | = N (T , ρ, δ) for any x > 0. Moreover, since N ⊂ T , we also
have N (N , ρ, x) ≤ N (T , ρ, x/2), see [48, Exercise 4.2.10]. Using the former bound
for x < 2δ and the latter bound for x ≥ 2δ and applying (6.2), we obtain

TSP(N ) �
∫ diam(N )

0
N (N , ρ, x) dx

≤ 2δN (T , ρ, δ) +
∫ diam(T )

2δ
N (T , ρ, x/2) dx

= 2

(
δN (T , ρ, δ) +

∫ diam(T )/2

δ

N (T , ρ, x) dx

)

≤ 2

(
2

∫ δ

δ/2
N (T , ρ, x) dx +

∫ diam(T )/2

δ

N (T , ρ, x) dx

)

≤ 4
∫ diam(T )/2

δ/2
N (T , ρ, x) dx . (7.4)

7.2.2 A private measure on a general metric space

Theorem 7.2 (Private measure on a metric space) Let (T , ρ) be a compact metric
space. Let α, δ > 0. There exists a randomized algorithm A that takes a probability
measure μ on T as an input and returns a finitely-supported probability measure ν on
T as an output, and with the following two properties.

(i) (Privacy): the algorithm A is α-metrically private in the TV metric.
(ii) (Accuracy): for any input measureμ, the expected accuracy of the output measure

ν in the Wasserstein distance is

EW1(ν, μ) ≤ 2δ + C

α
log

3
2 (N (T , ρ, δ))

∫ diam(T )

δ

N (T , ρ, x) dx .
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Proof Preprocess the input measure μ by quantizing as in the previous subsection,
and feed the quantized measure μN into the algorithm B of Proposition 7.1 for the
metric space (N , ρ).

The contraction property (7.3) ensures that

‖μN − μ′
N ‖TV ≤ ‖μ − μ′‖TV

for any two input measures μ and μ′. This and the privacy property in Proposition 7.1
for measures onN guarantee that quantization does not destroy privacy, i.e. the algo-
rithm A : μ �→ B(μN ) is still α-metrically private as claimed.

Next, the accuracy property in Proposition 7.1 for the measure μN on N gives

EW1 (B(μN ), μN ) ≤ C

α
log

3
2 (N (T , ρ, δ)) TSP(N ).

Moreover, the accuracy of quantization (7.2) states that W1(μ,μN ) ≤ δ. By triangle
inequality, we conclude that

EW1 (B(μN ), μ) ≤ δ + C

α
log

3
2 (N (T , ρ, δ)) TSP(N ).

Thus, by (7.4),

EW1 (B(μN ), μ) ≤ δ + C

α
log

3
2 (N (T , ρ, δ))

∫ diam(T )/2

δ/2
N (T , ρ, x) dx .

Since N (T , ρ, 2δ) ≤ N (T , ρ, δ), replacing δ by 2δ completes the proof of the theo-
rem. ��

7.3 Private synthetic data

The output of the algorithm A in Theorem 7.2 is a finitely-supported probability
measure ν on T . Quantization allows to transform ν into an empirical measure

μY = 1

m

m∑

i=1

δYi (7.5)

where Y1, . . . ,Ym is some finite sequence of elements of T , in which repetitions are
allowed. In other words, we can make the output of our algorithm a synthetic data
Y = (Y1, . . . ,Ym). Let us record this observation.

Corollary 7.3 (Outputting an empiricalmeasure)Let (T , ρ)be a compactmetric space.
Let α, δ > 0. There exists a randomized algorithmA that takes a probability measure
μ on T as an input and returns Y = (Y1, . . . ,Ym) ∈ Tm for some m as an output,
and with the following two properties.

(i) (Privacy): the algorithm A is α-metrically private in the TV metric.

123



Private measures, randomwalks, and synthetic data 597

(ii) (Accuracy): for any input measure μ, the expected accuracy of the empirical
measure μY in the Wasserstein distance is

EW1 (μY , μ) ≤ 3δ + C

α
log

3
2 (N (T , ρ, δ))

∫ diam(T )

δ

N (T , ρ, x) dx .

Proof Since the output probability measure ν in Theorem 7.2 is finitely supported, it
has the form

ν =
r∑

i=1

wi δYi

for some natural number r , positive weights wi and elements Ri ∈ T .
Let us quantize the weights wi by the uniform quantizer with step 1/m where m is

a large integer. Namely, set

q(wi ) := �m wi�
m

.

Obviously, the total quantization error satisfies

κ :=
r∑

i=1

(wi − q(wi )) ∈ [0, r/m]. (7.6)

To make the quantized weights a probability measure, let us add the total quantization
error to any given weight, say the first. Thus, define

w′
1 := q(w1) + κ and w′

i := q(wi ), i = 2, . . . , r

and set

ν′ :=
r∑

i=1

w′
i δYi .

Note the three key properties of ν′. First, since the weights w′
i sum to one, ν′ is a

probability measure. Second, since ν′ is obtained from ν by transporting a total mass
of κ across the metric space T , we have

W1(ν, ν′) ≤ κ · diam(T ) ≤ r

m
· diam(T ) ≤ δ

where the second inequality follows from (7.6) and the last one by choosing m large
enough. Third, all quantized weights q(wi ) belong to 1

mZ by definition. Thus, κ =
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1 − ∑r
i=1 q(wi ) is also in 1

mZ. Therefore, all weights w′
i are in 1

mZ, too. Hence,
w′
i = mi/m for some nonnegative integers mi . In other words,

ν′ = 1

m

r∑

i=1

mi δYi .

Since ν′ is a probability measure, we must have
∑r

i=1 mi = m. Redefine the sequence
Y1, . . . ,Ym by repeating each element Yi of the sequence Y1, . . . ,Yr exactlymi times.
Thus ν′ = 1

m

∑m
i=1 δYi , as required. ��

Corollary 7.3 allows us to transform any true data X = (X1, . . . , Xn) into a private
synthetic data Y = (Y1, . . . ,Ym). To do this, feed the algorithm A with the empirical
measure on the true data μX = 1

n

∑n
i=1 δXi . Recall from Lemma 4.1 that if the

algorithmA is α-metrically private for α = εn, then the algorithm X �→ Y = A(μX )

yields ε-differential private synthetic data. Let us record this observation:

Corollary 7.4 (Differentially private synthetic data) Let (T , ρ) be a compact metric
space. Let ε, δ > 0. There exists a randomized algorithm A that takes true data X =
(X1, . . . , Xn) ∈ T n as an input and returns synthetic data Y = (Y1, . . . ,Ym) ∈ Tm

for some m as an output, and with the following two properties.

(i) (Privacy): the algorithm A is ε-differentially private.
(ii) (Accuracy): for any true data X, the expected accuracy of the synthetic data Y is

EW1 (μY , μX ) ≤ 3δ + C

εn
log

3
2 (N (T , ρ, δ))

∫ diam(T )

δ

N (T , ρ, x) dx,

where μX and μY denote the corresponding empirical measures.

An interested reader may now skip to Sect. 9.1 where we illustrate Corollary 7.4 for
a specific example of the metric space, namely the d-dimensional cube T = [0, 1]d .
Remark 7.5 (A polynomial time algorithm) The algorithm in Corollary 7.3 works in
polynomial time with respect to the size n of the input data, size m of the output data,
and the covering number N (T , ρ, δ). To see this, first, observe that the superreg-
ular random walk defined in (3.6) can clearly be implemented in polynomial time.
Using this superregular random walk as a noise, we constructed a private signed mea-
sure in Proposition 5.1. Thus, the private signed measure in Proposition 5.1 can be
implemented in polynomial time. We then project this signed measure to a probability
measure to obtain Proposition 5.2. Since this projection is done via a convex optimiza-
tion, it can be implemented in polynomial time. Note that Proposition 5.2 is in the
context where the universe is a finite subset of an interval. In order to extend this to the
context of general metric spaces in Theorem 7.2, we first discretize T by a δ-net of T
and then using a traveling salesman path, we reduce the δ-net of T into a finite subset of
an interval. The bound in Theorem 6.3 and its proof give a polynomial time algorithm
to implement the traveling salesman path. In the case T = [0, 1]d , the traveling sales-
man can be done via a space-filling curve. Therefore, the algorithm in Theorem 7.2
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can be implemented in polynomial time in N (T , ρ, δ). Finally the process of turning a
probability measure into a synthetic dataset in the proof of Corollary 7.3 (quantization
and replication) can clearly be implemented in polynomial time.

In the particular case where T is the cube [0, 1]d , which we will specialize to in
Corollary 9.2, our algorithm runs in time polynomial in m and n. This is because with
the optimal choice of δ we make there, the covering number N (T , ρ, δ) is polynomial
in n.

Although the algorithm can be implemented in polynomial time, it is rather con-
voluted. We will present a streamlined and practical algorithmic implementation of a
synthetic data generation method in a forthcoming paper.

8 A lower bound

This section is devoted to impossibility results, which yield lower bounds on the
accuracy of any private measure on a general metric space (T , ρ). While there may
be a gap between our upper and lower bounds for general metric spaces, we will see
in Sect. 9 that this gap vanishes asymptotically for spaces of Minkowski dimension d.

The proof of the lower bound uses the geometric method pioneered by Hardt and
Talwar [24]. A lower bound is more convenient to express in terms of packing rather
than covering numbers. Recall that the packing number Npack(T , ρ, ε) of a compact
metric space (T , ρ) is defined as the largest cardinality of an ε-separated subset of T .
The covering and packing numbers are equivalent up to a factor of 2:

Npack(T , ρ, 2ε) ≤ N (T , ρ, ε) ≤ Npack(T , ρ, ε), (8.1)

see [48, Lemma 4.2.8]. Thus, in all results of this section, packing numbers can be
replaced by covering numbers at the cost of changing absolute constants.

8.1 Amaster lower bound

We first prove a general result that establishes limitations of metric privacy. To under-
stand this statement better, it may be helpful to assume that M0 = M1 and ρ0 = ρ1
in the first reading.

Proposition 8.1 (A master lower bound) LetM0 ⊂ M1 be two subsets, and let ρi be
a metric on Mi , i = 0, 1. Assume that for some t, α > 0 we have

diam(M0, ρ0) ≤ 1 and Npack(M0, ρ1, t) > 2eα.

Then, for any randomized algorithmA : M0 → M1 that is α-metrically private with
respect to the metric ρ0, there exists x ∈ M0 such that

E ρ1 (A(x), x) > t/4.
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Proof For contradiction, assume that

E ρ1 (A(x), x) ≤ t/4, (8.2)

for all x ∈ M0. Let N be a t-separated subset of the metric space (M0, ρ1) with
cardinality

|N | > 2eα. (8.3)

The separation condition implies that the balls B(y, ρ1, t/2) centered at the points
y ∈ N and with radii t/2 are all disjoint.

Fix any reference point y ∈ M0. The disjointness of the balls yields

∑

x∈N
P

{A(y) ∈ B(x, ρ1, t/2)
} ≤ 1. (8.4)

On the other hand, by the definition of α-metric privacy, for each x ∈ N we have:

P
{A(y) ∈ B(x, ρ1, t/2)

} ≥ exp [−αρ0(x, y)] · P {A(x) ∈ B(x, ρ1, t/2)
}
.

The diameter assumption yields ρ0(x, y) ≤ 1. Furthermore, using the assumption
(8.2) and Markov’s inequality, we obtain

P
{A(x) ∈ B(x, ρ1, t/2)

} = P
{
ρ1 (A(x), x) ≤ t/2

} ≥ 1

2
.

Combining the two bounds gives

P
{A(y) ∈ B(x, ρ1, t/2)

} ≥ 1

2eα
.

Substitute this into (8.4) to get

∑

x∈N

1

2eα
≤ 1.

In other words, we conclude that |N | ≤ 2eα , which contradicts (8.3). The proof is
complete. ��

Can the compactness assumption of the underlyingmetric space (T , ρ) be dropped?
The covering number of a general non-compact metric space of (T , ρ) is infinite.
Hence, our lower bound in Proposition 8.1 shows that it is impossible to establish dif-
ferential privacy with any accuracy gurantees in that case without imposing additional
assumptions.
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8.2 Metric entropy of the space of probability measures

For a given compact metric space (T , ρ), we denote by M(T ) the collection of all
Borel probability measures on T . We are going to apply Proposition 8.1 for M0 =
M1 = M(T ), for ρ1 = Wasserstein metric and ρ0 = TV metric. That proposition
requires a lower bound on the packing number Npack (M(T ),W1, t/3). In the next
lemma, we relate this packing number to that of (T , ρ). Essentially, it says that if T
is large, then there are a lot of probability measures on T .

Proposition 8.2 (Metric entropyof the space of probabilitymeasures)Forany compact
metric space (T , ρ) and every t > 0, we have

Npack (M(T ),W1, t/3) ≥ exp
(
cNpack(T , ρ, t)

)
,

where c > 0 is a universal constant. 3

The proof will use the following lemma.

Lemma 8.3 (A lower bound on theWasserstein distance) Let (T , ρ) be a t-separated 4

compact metric space. Then, for any pair of probability measures μ, ν on T , we have

W1(μ, ν) ≥ μ(Bc) t where B = supp(ν).

Proof Suppose that γ is a coupling of μ and ν. Since ν is supported on B, we have
γ (Bc × Bc) ≤ γ (T × Bc) = ν(Bc) = 0, which means that γ (Bc × Bc) = 0.
Therefore

γ (Bc × B) = γ (Bc × T ) − γ (Bc × Bc) = μ(Bc).

Since the sets Bc and B are disjoint, the separation assumption implies thatρ(x, y) > t
for all pairs x ∈ Bc and y ∈ B. Thus,

∫

T×T
ρ(x, y) dγ (x, y) ≥

∫

Bc×B
ρ(x, y) dγ (x, y) ≥ tγ (Bc × B) = tμ(Bc).

Since this holds for all coupling γ of μ and ν, the result follows. ��

Lemma 8.4 (Many different measures) Let (N , ρ) be a t-separated compact metric
space, and assume that |N | ≥ 2n for some n ∈ N. Then there exists a family of at
least exp(cn) empirical measures on n points of T that are pairwise t/3-separated in
the Wasserstein distance, where c > 0 is a universal constant.

3 Throughout Sects. 8 and 9, c will always denote the same constant, while the constant C may take on
different values in different computations.
4 This means that the distance between any two distinct points in T is larger than t .
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Proof Let μ = n−1 ∑n
i=1 δXi and ν = n−1 ∑n

i=1 δYi be two independent random
empirical measures on T . Let us condition on ν and denote B = supp(ν). Then

μ(Bc) = 1

n

n∑

i=1

1{Xi∈Bc}.

Now, 1{Xi∈Bc} are i.i.d. Bernoulli random variables that take value 1 with probability

P
{
Xi ∈ Bc} = |Bc|

|N | ≥ 1

2
,

since by construction we have |B| ≤ n and by assumption |N | ≥ 2n. Then, applying
Chernoff inequality (see [48, Exercise 2.3.2]), we conclude that μ(Bc) > 1/3 with
probability bigger than 1 − e−5cn , where c > 0 is a universal constant. Lemma 8.3
yields that W1(μ, ν) > t/3.

Now consider a sequence μ1, . . . , μK of independent random empirical measures
on T . Using the result above and taking a union bound we conclude that, with prob-
ability at least 1 − (K

2

)
e−5cn , the inequality W1(μi , μ j ) > t/3 holds for all pairs of

distinct indices i, j ∈ {1, . . . , K }. Choosing K = �ecn� makes K between ecn (as
claimed) and e2cn . Thus, the success probability is more than 1− (e2cn)2e−5cn , which
is positive. The existence of the required family of measures follows. ��
Proof of Proposition 8.2 Let N ⊂ T be a t-separated subset of cardinality |N | =
Npack(T , ρ, t). Lemma 8.4 implies the existence of a set of at least exp(c |N |) prob-
ability measures on T that is (t/3)-separated in the Wasserstein distance. In other
words, we have Npack (M(T ),W1, t/3) ≥ exp(c |N |). Proposition 8.2 is proved. ��

8.3 Lower bounds for private measures and synthetic data

Nowweare ready to prove the twomain lower bounds on the accuracy for (a)metrically
private measures and (b) differential private data.

Theorem 8.5 (Private measure: a lower bound) Let (T , ρ) be a compact metric space.
Assume that for some t > 0 and α ≥ 1 we have

Npack(T , ρ, t) > Cα.

Then, for any randomized algorithmA that takes a probability measure μ on T as an
input and returns a probability measure ν on T as an output and that is α-metrically
private with respect to the TV metric, there exists μ such that

EW1(ν, μ) > t/12.

Proof The assumption on the packing number for a sufficiently large constant C and
Proposition 8.2 yield

Npack (M(T ),W1, t/3) ≥ e2α > 2eα.
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Next, apply Proposition 8.1 with t/3 instead of t , and for M0 = M1 = M(T ),
setting ρ1 and ρ0 to be the Wasserstein and the TV metrics, respectively. The required
conclusion follows. ��

Theorem 8.6 (Synthetic data: a lower bound) There exists an absolute constant n0
such that the following holds. Let (T , ρ) be a compact metric space. Assume that for
some t > 0 and and some integer n > n0 we have

Npack(T , ρ, t) > 2n.

Then, for any c-differentially private randomized algorithm A that takes true data
X = (X1, . . . , Xn) ∈ T n as an input and returns synthetic data Y = (Y1, . . . ,Ym) ∈
Tm for some m as an output, there exists input data X such that

EW1(μY , μX ) > t/12,

where μX and μY denote the empirical measures on X and Y .

Proof First note that a versionofProposition8.2 holds for empiricalmeasures.Namely,
denote the set of all empiricalmeasures onn points ofT byMn(T ). If Npack(T , ρ, t) >

2n then we claim that

Npack (Mn(T ),W1, t/3) > 2ec1n . (8.5)

To see this, let N ⊂ T be a t-separated subset of cardinality |N | > 2n. Lemma 8.4
implies the existence of a set of at least ecn ≥ 2ec1n members of Mn(T ) that is
(t/3)-separated in the Wasserstein distance. The claim (8.5) follows.

In preparation to apply Proposition 8.1, consider the sets M0 := T n and M1 :=
∪∞
k=1T

k . Consider the normalized Hamming metric

ρ0(X , X ′) = 1

n

∣∣{i ∈ [n] : Xi 
= X ′
i }

∣∣

onM0, and the Wasserstein metric

ρ1(X , X ′) = W1(μX , μX ′)

on M1. Then we clearly have diam(M0, ρ0) ≤ 1, and (8.5) is equivalent to
Npack(M0, ρ1, t/3) > 2ec1n .

IfA : M0 → M1 is a c-differentially private algorithm, thenA is (cn)-metrically
private in the metric ρ0 due to Lemma 2.3. Applying Proposition 8.1 with t/3 instead
of t and α = c1n, we obtain the required conclusion. ��
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9 Examples and asymptotics

9.1 A private measure on the unit cube

Let us work out the bound of Theorem 7.2 for a concrete example: the d-dimensional
unit cube equipped with the �∞ metric, i.e. (T , ρ) = ([0, 1]d , ‖·‖∞). The covering
numbers satisfy

N (T , ‖·‖∞, x) ≤ (1/x)d , x > 0,

since the set xZd ∩ [0, 1)d forms an x-net of T . Thus the accuracy is

EW1(ν, μ) � δ + log
3
2 (1/δ)

α

∫ 1

δ

(1/x)d dx � δ + log
3
2 (1/δ)

α
· (1/δ)d−1

if d ≥ 2. Optimizing in δ yields

EW1(ν, μ) �
( log 3

2 α

α

)1/d
,

which wonderfully extends Theorem 5.4 for d = 1. Combining the two results, for
d = 1 and d ≥ 2, we obtain the following general result:

Corollary 9.1 (Private measure on the cube) Let d ∈ N and α ≥ 2. There exists a
randomized algorithmA that takes a probability measureμ on [0, 1]d as an input and
returns a finitely-supported probability measure ν on [0, 1]d as an output, and with
the following two properties.

(i) (Privacy): the algorithm A is α-metrically private in the TV metric.
(ii) (Accuracy): for any input measureμ, the expected accuracy of the output measure

ν in the Wasserstein distance is

EW1(ν, μ) ≤ C
( log 3

2 α

α

)1/d
.

Similarly, by invoking Corollary 7.4, we obtain ε-differential privacy for synthetic
data:

Corollary 9.2 (Private synthetic data in the cube) Let d, n ∈ N and ε > 0. There exists
a randomized algorithm A that takes true data X = (X1, . . . , Xn) ∈ ([0, 1]d)n as
an input and returns synthetic data Y = (Y1, . . . ,Ym) ∈ ([0, 1]d)m for some m as an
output, and with the following two properties.

(i) (Privacy): the algorithm A is ε-differentially private.
(ii) (Accuracy): for any true data X, the expected accuracy of the synthetic data Y is

EW1 (μY , μX ) ≤ C
( log 3

2 (εn)

εn

)1/d
,

123



Private measures, randomwalks, and synthetic data 605

where μX and μY denote the corresponding empirical measures.

The two results above are nearly sharp in the setting when ε is a constant function
of n and n → ∞. Indeed, let us work out the lower bound for the cube, using
Theorem 8.5. The covering numbers satisfy

Npack(T , ‖·‖∞, x) ≥ (c/x)d , x > 0,

which again can be seen by considering a rescaled integer grid. Setting t = c/(2Cα)1/d

we get N (T , ‖·‖∞, t) > Cα. Hence

EW1(ν, μ) > t/12 � (1/α)1/d ,

which matches the upper bound in Corollary 9.1 up to a logarithmic factor. Let us
record this result.

Corollary 9.3 (Private measure on the cube: a lower bound) Let d ∈ N and α ≥ 2.
Then, for any randomized algorithm A that takes a probability measure μ on [0, 1]d
as an input and returns a probability measure ν on [0, 1]d as an output, and that is
α-metrically private with respect to the TV metric, there exists μ such that

EW1(ν, μ) > c
( 1

α

)1/d
.

In a similar way, by invoking the lower bound in Theorem 8.6, we obtain the
following nearly matching lower bound for Corollary 9.2:

Corollary 9.4 (Private synthetic data in the cube: a lower bound) Let d, n ∈ N. Then,
for any c-differentially private randomized algorithm A that takes true data X =
(X1, . . . , Xn) ∈ ([0, 1]d)n as an input and returns synthetic data Y = (Y1, . . . ,Ym) ∈
([0, 1]d)m for some m as an output, there exists input data X such that

EW1(νY , μX ) > c
(1
n

)1/d
.

where μX and μY denotes the empirical measures on X and Y .

Remark 9.5 (Low dimensions) As we can see, the accuracy bound n−1/d gets worse
with increasing dimension d, and becomes constant for d � log n. Thus, results like
Corollary 9.2 are only useful for lowdimensions. This should not comeas a surprise.As
we know from the previously mentioned no-go result by Ullman and Vadhan [44], it is
computationally not feasible to construct private synthetic data in high dimensions that
accurately preserves even two-way marginals, let alone all Lipschitz queries (which
is what Wasserstein metric does).
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9.2 Asymptotic result

The only property of the cube T = [0, 1]d we used in the previous section is the
behavior on its covering numbers,5 namely that

N (T , ρ, x) � (1/x)−d , x > 0. (9.1)

Therefore, the same results onprivatemeasures and synthetic data hold for any compact
metric space (T , ρ) whose covering numbers behave this way. In particular, it follows
that any probability measure μ on T can be transformed into a α-metrically private
measure ν on T , with accuracy

EW (ν, μ) � (1/α)1/d . (9.2)

(ignoring logarithmic factors), and this result is nearly sharp. Similarly, any true data
X ∈ T n can be transformed into ε-differentially private synthetic data Y ∈ Tm for
some m, with accuracy

EW (μY , μX ) � (1/n)1/d . (9.3)

(ignoring logarithmic factors and dependence on ε), and this result is nearly sharp.
These intuitive observations can be formalized using the notion of Minkowski

dimension. By definition, the metric space (T , ρ) has Minkowski dimension d if

lim
x→0

log N (T , ρ, x)

log(1/x)
= d.

The following two asymptotic results combine upper and lower bounds, and essentially
show that (9.2) and (9.3) hold in any space of dimension d.

Theorem 9.6 (Private measure, asymptotically) Let (T , ρ) be a compact metric space
of Minkowski dimension d ≥ 1. Then

lim
α→∞ inf

A
sup
μ

log(EW1(A(μ), μ))

logα
= − 1

d
.

Here the infimum is over randomized algorithmsA that input and output a probability
measure on T and areα-metrically privatewith respect to the TVmetric; the supremum
is over all probability measures μ on T .

Proof We deduce the upper bound from Theorem 7.2 and the lower bound from The-
orem 8.5.

Upper bound. By rescaling, we can assume without loss of generality that
diam(T , ρ) = 1. Fix any ε > 0. By definition of Minkowski dimension, there exists

5 The lower bound used packing numbers, but they are equivalent to covering numbers due to (8.1).
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δ0 > 0 such that

N (T , ρ, x) ≤ (1/x)d+ε for all x ∈ (0, δ0). (9.4)

Then

∫ 1

δ

N (T , ρ, x) dx ≤
∫ δ0

δ

(1/x)d+ε dx +
∫ 1

δ0

N (T , ρ, x) dx ≤ K (1/δ)d+ε−1 + I (δ0)

where K = 1/(d + ε − 1) and I (δ0) = ∫ 1
δ0
N (T , ρ, x) dx . The last step follows if we

replace δ0 by infinity and compute the integral.
If we let δ ↓ 0, we see that K (1/δ)d+ε−1 → ∞ while I (δ0) stays the same since it

does not depend on δ. Therefore, there exists δ1 > 0 such that I (δ0) ≤ K (1/δ)d+ε−1

for all δ ∈ (0, δ1). Therefore,

∫ 1

δ

N (T , ρ, x) dx ≤ 2K (1/δ)d+ε−1 for all δ ∈ (0,min(δ0, δ1)).

Applying Theorem 7.2 for such δ and using (9.4), we get

inf
A

sup
μ

EW1(ν, μ) ≤ 2δ + C

α
log

3
2

(
(1/δ)d+ε

)
· 2K (1/δ)d+ε−1. (9.5)

Optimizing in δ, we find that a good choice is

δ = δ(α) =
(
log

3
2 (Kα)

Kα

) 1
d+ε

.

For any sufficiently large α, we have δ < min(δ0, δ1) as required, and substituting
δ = δ(α) into the bound in (9.5) we get after simplification:

inf
A

sup
μ

EW1(ν, μ) ≤ (1 + 2CK )δ(α).

Furthermore, recalling that K does not depend on α, it is clear that

lim
α→∞

log ((1 + 2CK )δ(α))

logα
= − 1

d + ε
.

Thus

lim sup
α→∞

log(infA supμ EW1(ν, μ))

logα
≤ − 1

d + ε
.
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Since ε > 0 is arbitrary, it follows that

lim sup
α→∞

inf
A

sup
μ

log(EW1(A(μ), μ))

logα
≤ − 1

d
. (9.6)

Lower bound. Fix any ε > 0. By definition of Minkowski dimension and the
equivalence (8.1), there exists δ0 > 0 such that

Npack(T , ρ, x) ≥ N (T , ρ, x) > (1/x)d−ε for all x ∈ (0, δ0).

Set

x(α) =
(

1

Cα

) 1
d−ε

.

Then, for any sufficiently large α, we have x ∈ (0, δ0) and

Npack(T , ρ, x(α)) > Cα.

Applying Theorem 8.5, we get

inf
A

sup
μ

EW1(ν, μ) ≥ x(α)/20.

It is easy to check that

lim
α→∞

log (x(α)/20)

logα
= − 1

d − ε
.

Thus

lim inf
α→∞

log(infA supμ EW1(ν, μ))

logα
≥ − 1

d − ε
.

Since ε > 0 is arbitrary, it follows that

lim inf
α→∞ inf

A
sup
μ

log(EW1(A(μ), μ))

logα
≥ − 1

d
.

Combining with the upper bound (9.6), we complete the proof. ��

In a similar way, we can deduce the following asymptotic result for private synthetic
data. The argument is analogous; the upper bound follows from Corollary 7.4 and the
lower bound from Theorem 8.6.
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Theorem 9.7 Let (T , ρ) be a compact metric space of Minkowski dimension d ≥ 1.
Then, for every ε ∈ (0, c), we have

lim
n→∞ inf

A
sup
X

log(EW1(μY , μX ))

log n
= − 1

d
. (9.7)

Here the infimum is over ε-differentially private randomized algorithms A that take
true data X = (X1, . . . , Xn) ∈ T n as an input and return synthetic data Y = A(X) =
(Y1, . . . ,Ym) ∈ Tm for some m as an output.

Remark 9.8 (Low-dimensional data in high dimensions?) This and other results proved
here show that the accuracy of private synthetic data must deteriorate quickly as the
data dimension d increases. But does this mean that the proposed method is useless
for any high-dimensional data? In practice, this is not necessarily the case. Real-world
high-dimensional data often live in (or near) a low-dimensional smooth manifold.
Since a smoothmanifold ismetrizable and a smooth d-dimensional manifold inRn has
Minkowski dimension d, our frameworkmay still apply to the standard setting of high-
dimensional statistics, where the data lives in high dimension but its intrinsic geometry
is low-dimensional. Thus, the generalization via Minkowski dimension presented in
this section may not only be appealing from a theoretical viewpoint, but carries a
practical potential, which we hope to pursue in our future work.
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