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Abstract

Learning and Control Systems for the Integration of Renewable Energy into Grids of the
Future

by
Patricia Hidalgo-Gonzalez
Doctor of Philosophy in Energy and Resources
University of California, Berkeley
Professor Claire J. Tomlin, Co-chair

Professor Daniel M. Kammen, Co-chair

For over 30 years we have been negotiating agreements that try to reduce greenhouse
gas emissions. The aim is to stabilize their concentration in the atmosphere at a level that
would prevent dangerous anthropogenic interference with the climate system. In 2018, the
Intergovernmental Panel on Climate Change stated that the 1.5°C goal could be achieved
if the electricity sector would become net zero emissions by 2050. Different countries have
been pushing the frontier to reduce their emissions by deploying renewable energy sources
(RES). Despite these efforts, we still have a long way to go. Research on how and when
to install and how to operate more RES in power systems needs to continue advancing as
we aim to reach higher levels of penetration. In addition, academics need to translate and
communicate these findings to policy makers.

The contributions of this dissertation in this field have been to:

1. propose a new time-varying representation for power dynamics that reflects the pres-

ence of RES,

2. design through machine learning a stable time-invariant frequency controller for the
new time-varying power dynamics,

3. explore the trade-off between information availability to the frequency control agents
and their performance and stability,

4. show the cost effectiveness of stronger RES targets in the U.S. by 2030 given the carbon
reductions goals of 2050, and

5. model climate change uncertainty through a stochastic formulation of the capacity
expansion of power systems in the U.S. with high penetration of RES.



As more non-synchronous RES participate in power systems, the system’s inertia de-
creases and becomes time dependent, challenging the ability of existing control schemes to
maintain frequency stability. System operators, research laboratories, and academic insti-
tutes have expressed the importance to adapt to this new power system paradigm. However,
power dynamics have been modeled as time-invariant, by not modeling the variability in the
system’s inertia. To address this, we propose a new modeling framework for power system
dynamics to simulate a time-varying evolution of rotational inertia coefficients in a network.
Power dynamics are modeled as a hybrid system with discrete modes representing different
rotational inertia regimes of the network.

Using this new hybrid model for power dynamics, we present a framework to design a
fixed learned controller based on datasets of optimal time-varying LQR controllers. We test
the performance of the controller in a twelve-bus system. By adding virtual inertia we can
guarantee stability of high-renewable (low-inertia) modes. The novelty of our work is to
propose a design framework for a stable controller with fixed gains for time-varying power
dynamics. This is relevant because it would be simpler to implement a proportional controller
with fixed gains compared to a time-varying control. To expand this work, we introduce a
framework to learn sparse time-invariant frequency controllers in a power system network
with a time-varying evolution of rotational inertia. We design a controller that uses as
features the system’s states. In other words, we design a control proportional to the angles
and frequencies. Virtual inertia is included in the controllers to ensure stability. One of the
findings is that it is possible to restrict communication between the nodes by reducing the
number of features in the controller (from 22 to 10 in our case study) without disrupting
performance and stability. Furthermore, once communication between nodes has reached
a threshold, increasing it beyond this threshold does not improve performance or stability.
There is a correlation between optimal feature selection in sparse controllers and the topology
of the network.

In the second part of this dissertation we study the cost and lock in of carbon intensive
technologies due to weak medium-term policies. We use SWITCH WECC- a power system
capacity expansion optimization model with high temporal and geographical resolution. We
test three carbon cap scenarios. For each scenario, we optimize the power system for a
medium timeframe (2030) and a long timeframe (2050). In the medium timeframe optimiza-
tions, by 2030 coal replaces gas power. This occurs because the long optimization foresees
the stronger carbon cap in 2050. Therefore, it is optimal to transition towards cleaner tech-
nologies as early as 2030. The medium-term optimization has higher costs in 2040 and 2050
compared to the long optimization. Therefore, to minimize total costs to reduce emissions
by 80% in 2050, we should optimize until 2050 or have stronger carbon cap policies by 2030
(such as a 26% of emissions reductions from 1990 levels by across the WECC).

Typical electricity-grid capacity expansion models make investment decisions with fixed
inputs (e.g., fixed electricity demands and hydro-power availability). The resultant electricity
supply system may not be robust to future climate change-driven uncertainties in energy
demand and supply. We present the first climate change stochastic long-term (2050) capacity
expansion and operation electricity grid model for the Western North America electricity



region, with high temporal and spatial resolution. The Stochastic SWITCH WECC model
generates a least cost portfolio of power plants that is robust to varying future climate
conditions using a multi-stage optimization approach with varying electricity-demand and
hydropower-availability inputs under three climate change scenarios. Results show that an
optimal robust electricity supply portfolio in the WECC for 2050 has about 4% higher overall
installed capacity than the average mix of the three scenarios modeled separately, and about
5.6% higher installed gas capacity, due to the greater need for operational flexibility under
the wider range of possible conditions.



To the hope for a better world, and to my mom.
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Chapter 1

Introduction

1.1 Background and Motivation

Scientists have been warning us for decades about the impacts from climate change.
These impacts include glaciers melting [32], [65], [64], [99], ocean acidification and marine
biodiversity loss [53], [38], [57], [81], [52], biodiversity loss [27], [10], [9], [46] agriculture
and food availability [105], [75], [84], [28], weather changes [97], [28], hydrology and water
resource availability [39], [18], [41], [2], wildfire risk [1], [90], [68], [73], among other impacts.
In 2007, the Intergovernmental Panel on Climate Change (IPCC) released a report that
confirmed that climate change was already taking place and that it was mostly a result of
human activity [93]. The report illustrates some of the impacts from climate change and
shed light on what impacts could be expected in the future. It also describes adaptation
and mitigation options to reduce societal vulnerability, as well as policies and technologies
that could help limit the magnitude of future climate change impacts. More specifically, it
recommends limiting global warming to 2°C. This 2°C goal could be achieved if different
economic sectors in industrialized countries would reduce their emissions to specific targets.
The electricity sector in particular would have to reduce its emissions to 80% below 1990
levels by 2050. This is a challenging task considering current emissions are 9% below 1990
levels [6]. In 2015, the 21st Session of the Conference of the Parties to the United Nations
Framework Convention on Climate Change (COP 21) took place in Paris, France. Its main
outcome was the reaffirmation to limit global temperature increase below 2°C compared to
pre-industrial levels, while urging efforts to limit the increase to 1.5°C [54].

In 2018, the IPCC published a Special Report on Global Warming of 1.5°C approved
by governments [74]. The aim of this report is to highlight some of the climate change
impacts that could be avoided if we limit global warming to 1.5°C instead of limiting it to
2°C. For example, the probability of an Arctic Ocean free of sea ice in summer would be
once per century compared to at least once every ten years with 2°C of global warming.
The importance of limiting global warming to 1.5°C is not only important due to the milder
impacts we would face but also because some of the impacts from 2°C of warming would be
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irreversible. The report also addresses ways for the economy to stay below 1.5°C of warming,
what it would entail, and what impacts we could face. According to the report, world-wide
carbon dioxide emissions would need to decrease by 45% from 2010 levels by 2030, and net
zero emissions would be required by 2050. If global warming goes above 1.5°C we would
need to rely on carbon capture technologies— for which it has not been possible to prove their
effectiveness at large scale.

Therefore, if we plan to keep global warming below 1.5°C with the available technologies,
this would entail worldwide electricity systems supplied exclusively with generation from
renewable energy sources (RES) by 2050. Power systems supplied solely by RES bring a set
of technical challenges that researchers and power systems engineers have been working on
and more advances need to take place. These challenges can be classified by time scope as
follows:

e Years to decades: The challenge of RES integration in the time span of years to
decades corresponds to the power system capacity expansion [22], [23], [37]. We need
to optimize how the grid should expand its capacity and operate because power plants
and transmission lines have long lifetimes and high capital costs making this task non-
trivial to solve. In addition, the problem becomes more challenging due to the seasonal
and hourly variability and geographic resource specificity of RES.

e Hours to minutes: The challenge of RES integration in the hourly and sub-hourly
time resolution corresponds to how to optimally dispatch the generators in a grid
to optimally supply demand at all times. In the presence of RES, generators are
not controllable and the power injections they can provide to the system are time-
varying and are probabilistic. These characteristics and the non-convexity of power
flow equations call for advances in the mathematical formulation (e.g. [86]), and also
the need to adjust the more sophisticated frameworks to ease their implementation.
In addition, power systems use heuristics to determine operating reserves levels (e.g.,
operating reserves in Western North America [24]). A scheme to determine operational
reserves that would take advantage, for example, of probabilistic approaches would
improve the efficiency of integrating of RES.

e Seconds: The challenges associated to this time scope correspond to the new physics
of electric power dynamics due to RES. As more non-synchronous RES participate in
power systems, the system’s inertia decreases and becomes time dependent, challenging
the ability of existing control schemes to maintain frequency stability [95]. Additionally,
as more Photovoltaics distributed generation gets deployed, voltage regulation issues
arise, as well as reverse power flow impacts [61]. Lastly, some classical power systems
stability issues are synchronization of phase angles [31] and waveform stability [100].

These challenges show specific variations depending on the subsystem of the power sys-
tem:
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e Transmission system
e Distribution system
e Microgrids and islanded networks

At the same time as challenges arise, there are opportunities that can be taken advantage
of to aid the integration of RES:

e Flexibility: Electrical Vehicles (EV) charging and discharging to provide grid ser-
vices, deployment and management of storage technologies, demand response (DR)
and controllable loads.

e Distributed Energy Resources (DER): The deployment of DER and microgrids
can alleviate the need to rely on the transmission system by supplying local electricity
demand with local electricity production.

e Market redesign: Create new market products to aid the integration of renew-
able energy such as capacity markets, probabilistic supply curves for operational re-

serves, peer-to-peer economies for DER, rate design for microgrids, incentives design
for EV/DR, etc.

e Methods: Controller design via machine learning coupled with control theory, stochas-
tic optimization for capacity expansion and optimal power flow, distributed control,
etc.

As it has been discussed, in a non-exhaustive manner, the research space for the integra-
tion of RES is ample. We require the engineering and scientific community to join efforts
and advance its frontier to achieve 100% renewable energy power systems worldwide by 2050
to maintain global warming below 1.5°C. The work presented in this dissertation addresses
some of these questions and sets the stage for more contributions to come.

1.2 Research Questions

The body of work in this dissertation is motivated by the challenge of RES integration.
As it was described in the previous section, there are different time scopes and systems
where there is a need to advance knowledge. Driven by intellectual curiosity, societal and
environmental needs, and the lack medium and long-term electricity policy design, the work
started with studying how the electricity system in Western North American (i.e. WECC-
Western Electricity Coordinating Council) can optimally expand its electricity grid under
different scenarios, as well as under uncertain impacts from climate change. Results from
this study show that by 2050 the power system needs to be mostly composed by RES. As
more non-synchronous RES participate in power systems, the system’s inertia decreases and
becomes time dependent, challenging the ability of existing control schemes to maintain



CHAPTER 1. INTRODUCTION 4

frequency stability. This result inspired the next portion of this dissertation: how to operate
in real-time a power system dominated by RES, in particular with respect to electric power
dynamics and frequency regulation. Thus, the research questions this dissertation addresses
are:

e How can we better represent mathematically the new system dynamics introduced by
non-synchronous RES?

e How to design via learning a fized and stable frequency controller in a network with
these new time-varying power dynamics? What is the trade-off between full access to
information and reducing communication between the control agents in the network?

o What are the costs and impacts of weak medium-term electricity policies in the WECC?
What policies should be in place in the medium-term to aid a long-term least cost
transition?

o How should we expand and operate the WECC under different scenarios? How should
we optimally expand the electricity infrastructure to guarantee a robust system to dif-
ferent climate change impacts?

1.3 Contributions and Dissertation Outline
The contributions of this dissertation are organized as follows:

e Chapter 2: The work in this chapter is motivated by the need to better represent
power system dynamics in the presence of RES connected to the grid by inverters. To
address this need, we introduce a new framework to model frequency dynamics as a
time-varying system due to the variability of the inertia coefficients in a network. More
specifically, we propose to model power dynamics in a network as a Switched Affine
Hybrid system where the time-varying components are the inertia coefficients of the
nodes in a grid.

e Chapter 3: The natural question that stems from facing new frequency dynamics due
to the presence of RES is how to design a controller that is easy to implement in power
systems and that has stability guarantees. This chapter addresses this question by
presenting a framework to learn a fixed and stable frequency controller that is able to
return the frequency to its nominal value for any mode of the hybrid system. Addition-
ally, we explore the trade-off in performance and stability of reducing communication
between the control agents in the network.

e Chapter 4: In this chapter we study the cost and lock in of carbon intensive technolo-
gies due to weak medium-term policies. To address this question we use the (AMPL)
SWITCH WECC model- a power system capacity expansion optimization model with
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high temporal and geographical resolution. Through this study we are able to draw
policy recommendations for the electricity system in Western North America.

e Chapter 5: We implemented the SWITCH WECC Python model for the study shown
in this chapter. The work explores least cost electricity systems under different levels
of electricity demand growth, electrification of end uses, energy efficiency, electrical
vehicles penetration and climate change impacts in Western North America. Further-
more, we also developed and implemented the first climate change stochastic long-term
(2050) capacity expansion and operation electricity grid model for the Western North
America electricity region, with high temporal and spatial resolution. The Stochastic
SWITCH WECC model generates a least cost portfolio of power plants that is robust to
varying future climate conditions using a multi-stage optimization approach with vary-
ing electricity-demand and hydropower-availability inputs under three climate change
scenarios.

e Chapter 6: In this chapter we conclude with a summary of our main findings. We
also discuss future promising directions of research: wildfire risk mitigation through
technical and market design of microgrids and DER in the distribution network, design
of new ancillary services for the new power dynamics and power flow paradigms with
high penetration of RES, graph theory and information theory approach to frequency
regulation controller design, and machine learning and safety for power systems.



Part 1

Frequency Regulation in Low and
Variable Inertia Grids



Chapter 2

Power System Dynamics as a Hybrid
System

2.1 Preface

The work discussed in this chapter corresponds to the publication titled “Frequency Reg-
ulation in Hybrid Power Dynamics with Variable and Low Inertia due to Renewable Energy”
by Patricia Hidalgo-Gonzalez, Roel Dobbe, Rodrigo Henriquez-Auba, Duncan S. Callaway
and Claire J. Tomlin [48]. We presented this publication at the 57th IEEE Conference on
Decision and Control in Miami, Florida, United States.

2.2 Introduction

In power systems, frequency will deviate from its nominal value when there is a mismatch
between electricity generation and consumption [59]. There exists a set of mechanisms
to prevent frequency excursions. The first automatic response when frequency starts to
deviate is the inertial response. This inertial response is originated from the kinetic energy
supplied to the grid by the synchronous generators. This inertia (present in rotating masses
of generators and turbines) determines the instantaneous frequency change when imbalances
of active power occur. Therefore, more inertia in the system will translate into a slower
rate of change of the frequency. As the frequency starts deviating, some generators will
respond automatically through governor response [34]. Governor response or droop control
is an automatic control proportional to the frequency deviation. After droop control starts
actuating, slower mechanisms (e.g. spinning reserves) participate to restore frequency to its
nominal value [34].

It is a crucial aspect for the operation and stability of electrical systems to maintain the
grid frequency within acceptable ranges. Nowadays, large shares of renewable energy sources
(RES) are being integrated into power systems. Several countries have set ambitious goals
for the future to provide more electricity using renewable energy [80] and/or reducing their
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COs emissions. This global drive will steer the power system to a grid dominated by RES
[102]. In this scenario, renewable sources, such as wind and solar, are usually connected to
the grid through inverters, which decouple their rotational inertia (if existing) from the grid.

Usually, depending on the configuration of the inverters, no inertial response is delivered
to the grid. With this increasing penetration of RES, the global system inertia of the power
systems is decreasing and time-varying. This can provoke an increment in the variation of
frequency under abrupt changes in generation and demand. If no actions are taken, this can
lead to cases in which standard frequency control schemes are too slow to mitigate arising
contingencies [95].

A possible solution for this issue is to use RES inverters or large scale storage to provide
inertia. This can be done by operating the RES or storage’s inverters as virtual inertia
(control proportional to the derivative of the frequency), that could allow large penetration
of RES without jeopardizing the system’s stability [13]. Previous work studying virtual
inertia can be found in the literature. In [92], a detailed survey of different virtual inertia
techniques, topologies and future directions are presented. [107] introduces the concept of
inverters that emulate the response of a synchronous machine. [72] proposes a new controller
to address low inertia. This work argues that virtual inertia could amplify noise in an
unbounded manner. The work from [96] discusses virtual inertia (or inertia mimicking)
by enabling inverter-connected generation units to quickly modify their power output via
Model Predictive Control (MPC), mimicking the dynamic response of conventional units. In
a similar line of work, [15] studies the effect that changes in inertia have on power system
stability, and how to best place devices providing virtual inertia. Most recently [82] studied
optimal placement of virtual inertia in different nodes of a network.

The body of work around virtual inertia has mostly focused on the effects on the grid and
on its optimal allocation. The frequency dynamics have been modeled as a time-invariant
system. However, when we take into account the nature of the changes of rotational inertia
in the grid, it requires a new modeling framework that represents this time dependence and
variability of the system’s inertia. Thus, the contributions of this work are the following:

e We propose a new modeling framework for power system dynamics to simulate a time-
varying evolution of rotational inertia coefficients in the network. To do this, we model
power dynamics as a hybrid system [14] where each mode corresponds to a rotational
inertia regime. At each time step of the simulation the dynamical system mode can
switch to a different rotational inertia mode in an exogenous fashion.

o We test the performance of two classical controllers from the literature (optimal closed-
loop controller from MPC and virtual inertia placement) in this new hybrid modeling
framework.

e We propose a new controller (Dynamic Inertia Placement) to more efficiently address
low and variable inertia in the grid.

We conclude that the new modeling framework we develop is necessary to design con-
trollers that address frequency regulation in power systems with high RES penetration. We
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also find that the optimal linear closed-loop controller (referred as Linear MPC in this work)
performs best in terms of cost and energy injected /absorbed to control frequency. Lastly, we
find that our proposed controller for Dynamic Inertia Placement (when modeling dynamics
with variable inertia) is more efficient in terms of cost and energy usage than the classical
Inertia Placement from the literature.

The rest of the chapter is organized as follows: Section 2.3 presents the problem formu-
lation, Section 2.4 shows simulations from a study case, and finally Section 2.5 concludes
with our main findings.

2.3 Problem Formulation

Power system dynamics as a hybrid system

We consider an electric power network modeled as a graph with N nodes and N(N —1)/2
possible edges connecting them. The swing equation model used for this network is based
on [59], where dynamics are given by

J

m, corresponds to the equivalent rotational inertia in node i, d; is the droop control, p;, ;
represents the power input at node 4, b;; is the susceptance of the transmission line between
nodes 7 and j, and 6; is the voltage phase angle at node i. The state space representation of
the model is given by

[3 } = { _MAL _MAD } { ’ }+ { e ]pm (2.2)

where the states correspond to the stacked vector of angles and frequencies at each node
(0,w) € R*™ M = diag(m;) is a diagonal matrix with rotational inertia coefficients, D =
diag(d;) is a diagonal matrix with droop control coefficients, p;, corresponds to the power
input, and L € R™" is the Laplacian of the network. The network Laplacian is defined as
l;; = —bjj wheni # j,and {;; =), 4 bij+i.s, where y; ; are all shunt admittances connected
at node 1.

In the traditional paradigm of power systems, where generation has been dominated by
thermal generation, the inertia at each node m; has been considered constant. However,
in recent years, it has been observed that due to the increase in generation from RES, the
rotational inertia in the network has become lower and time-varying [95], [35]. In order to
model power dynamics taking into account the variability of inertia at each node, our work
proposes a new framework for modeling frequency dynamics. Instead of assuming equation
(2.2) as a time-invariant dynamical system, we propose to model it as a Switched Affine
hybrid system [14], where each mode will be given by a predetermined set of values of m;
at each node. The switching between the different m modes depends on the current online
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generators. In this work, the mix of online generators at each time step ¢ is modeled as an
exogenous input. Therefore, power dynamics will be given by

=Lt i [ 2] ar
. = _1 ] + —1 | Pin (2-3)
[ W Myl =MD || w My

where M, represents the inertia matrix M in the current mode ¢(t) € {1,...,m}. The
switching between modes g; to g; is probabilistic and can occur from any time step ¢ to t 4 1.
The probability P(q(t + 1) = ¢;]q(t) = ¢;) comes from a uniform distribution with possible
outcomes:

e No change of inertia
e Increase of inertia from ¢; to g;1
e Decrease of inertia from ¢; to ¢;_1

Thus, the evolution over time of the matrix M, is modeled as a Markov Chain. For
simplicity, for a given mode ¢(t) we assume the same inertia coefficients for all nodes. Section
2.4, describes in more detail the assumption on inertia coefficients at the nodes of the network.

Power input at node i, can be expressed as

Pin = (6 +u), & ~N(0,01) i=1.N (2.4)

where 0 is a time-varying vector whose components, d;, are disturbances at each node 17
(modeled as white noise), and the vector u is the controller (power injection). Thus, equation

(2.3) can be written as
G- [ ]2
= -1 -1
@ Myl My D ]| w

" { MS@) } (0+u)

{ é ] = Ay { z ] + By (6+u) (2.6)

W

In this hybrid formulation, the design of the optimal controller u is more complex than
in the traditional linear time-invariant (LTI) case. Recent work has shown the relevance of
the optimal placement of virtual inertia in the grid [82], which expanded on previous work
that studied the effects of rotational inertia in a network [15]. In this study we build on
this work by including the evolution over time of the rotational inertia at each node. Using
receding horizon Model Predictive Control we study three different designs for the controller
u in equation (2.5).
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Optimal frequency control for low and time-varying rotational
inertia coefficients

In order to minimize an objective function with the states and controller as variables,
we consider three possible controllers u. In addition, we take into account a constraint to
maintain the frequency w at all time ¢ in a predefined safe interval. The receding horizon
MPC formulation can be summarized by the following optimization problem:

z(%l’iul%t) /t:to z(t) Qx(t) +u(t) Ru(t)dt (2.7)
s.t. x(ty) = o (2.8)
i(t) = Agwyz(t) + By (0(t) + u(t)), € (to,T) (2.9)
b<ax(t)<b tec(t,T) (2.10)
0;(t) ~ N(0,0.1), ie{l,...,N}, te(t,T) (2.11)

where z is the vector of the states (6,w), u the controller, @) and R are symmetric positive
definite matrices, t, the initial time, 7' the final time, b and b, lower and upper bounds for
the frequency, and z, the initial state. As it was mentioned earlier, the hybrid modes ¢(t)
transition at each time step t using a Markov Chain. We consider three designs for optimal
controllers u obtained using receding horizon MPC:

1. Linear MPC:

u;(t) unconstrained, i€ {1,..,N}, te (to,T) (2.12)
2. Inertia Placement [82]:
wi(t) = —Mw;, 1€{l,...N}, te(ty,T) (2.13)
3. Dynamic Inertia Placement:
wi(t) = —M;(t)w;, i€{l,...,N}, te(ty,T) (2.14)

The receding horizon MPC formulation (2.7) - (2.12) is classified as a quadratic problem
with linear constraints, thus a convex problem. The receding horizon MPC formulation for
inertia placement, (2.7) - (2.11), (2.13) and (2.7) - (2.11), (2.14), are non convex problems.
To model the first formulation we use CVX [44], [45]. To model the non convex formulations
we use the parser YALMIP [69], and solved the optimization problem using an interior point
method.

In the case of the Linear MPC formulation, the controller u;(¢) does not have any con-
straints imposed. Implying that the feasible set of the Linear MPC formulation and the
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feasible set of the problem given by (2.7) - (2.11) are equivalent. The Dynamic Inertia
Placement formulation introduces a new variable M;(¢). This new variable needs to be op-
timized for all nodes ¢ at all time steps ¢. The controller u;(t) is constrained to be equal to
—M;(t)w;, serving as virtual inertia. The fact that the Dynamic Inertia Placement formula-
tion has an extra set of constraints on u;(t) implies that the feasible set of this problem is
contained in the feasible set of the Linear MPC formulation. Finally, the Inertia Placement
formulation, in addition to having the constraint on the structure of w;(t) as the Dynamic
Inertia Placement had, it has an additional set of constraints. This extra set of constraints
forces M;(t) to be equal to M; for all t. In other words, the design of the virtual inertia
controller cannot be specific to a node and time, but a fixed design over time for each node.
Thus, the Inertia Placement formulation has its feasible set contained in the feasible set of the
Dynamic Inertia Placement formulation. In summary, the Linear MPC formulation has the
largest feasible set, followed by the Dynamic Inertia Placement which has more constraints.
Finally the Inertia Placement formulation comes in third place with the most restrictive
feasible set. Due to this, we expect solutions u* from the Linear MPC formulation to be
best, attaining the lowest value in its objective function. We expect the Dynamic Inertia
Placement case to come in second place with a higher optimal value for its objective function
compared to the Linear MPC formulation. The formulation with the highest optimal value
of its objective function would be the Inertia Placement formulation.

One of the contributions of this work is to assess the grid’s performance when virtual
inertia is optimized over time and location (Dynamic Inertia Placement). We also com-
pare inertia placement with the Linear MPC formulation. The latter sheds light on how
the performance of frequency dynamics could improve with a more flexible controller (not
constrained to be a derivative control law as inertia placement is).

In Section 2.4 we compare these three formulations. We utilize the study case (originally
from [59]) used in some recent virtual inertia placement work [15] and [82].

2.4 Case Study: Twelve-Bus Three-Region Network

Data description

Errata: The values we use for the elements, m, in the diagonal matriz M in this work
are inertia values, however m = %, where h is the inertia coefficient, S the rated power,
and w the angular frequency. Therefore, we test the system under lower values of inertia
than intended. We expect results to hold given that this change would imply re-scaling our
matrices A and B with a diagonal and nonsingular matriz. For such transformation, stability
properties of the hybrid system hold.

The twelve-bus three-region network used in this study has also been used in [59], [15],
and [82]. The full network was modeled, without using any simplifications (e.g. no Kron
reduction of the graph). Therefore, twelve nodes were modeled with two states each (angle

and frequency). Table 2.1 shows the parameters of the network.
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Table 2.1: Parameters for the twelve-bus three-region case study [59], [15].

Parameter Value
Transformer reactance 0.15 p.u.
Line impedance (0.0001 + 0.001j) p.u./km
Base voltage 230 kV
Base power 100 MVA
Droop control 1.5 %/%
10 11 9
25 kaD
700 MW LGDJ 700 MW
203 MVar 12 208 MVar
1 ¢ 5
4 N > 8
3 7
611 MW 25 km 10 km 110 km 10 km 25 km 710 MW
164 MVar 2 J___l l/__l_ 6 133 MVar
T
1050 MW 567 MW 1000 MW 350 MW
284 MVar 100 MVar 100 MVar 60 MVar

JeAIN 002
JeAN 0S€

Figure 2.1: Case study: Twelve-bus three-region network from [59], [82], and [15].

The positive definite matrices ) and R from the objective function in problem (2.7) that
we use in the case study are the identities. With this selection we are equally penalizing
frequency deviations from zero and energy injection/absorption from the controller. This
assumption can be changed to, for example, represent the real economic cost to the grid that
frequency deviations and energy injection/absorption from the controller represent. This in
itself is an open research question.

As it was discussed in Section 2.3, the inertia matrix M is modeled as a diagonal matrix
diag(m;), whose elements m; reflect the rotational inertia at the bus i. We assume the same
rotational inertia in all buses for a given time step ¢ (m;(t) = m(t) for all 7). This implies a
similar fraction of renewable energy generation for all nodes, which is common in large net-
works. However, this assumption can be easily extended. In this work, we model the variabil-
ity of the rotational inertia in the system as a hybrid system switching modes as the inertia
changes. Each mode of the hybrid system is given by one value of inertia. For the study case
we predefined possible inertia values for the system: {0.1,0.5,1,1.5,2,2.5,3,3.5,5,9}. The
average of this set of possible inertia values is 2.8 seconds, which is equivalent to having 28
percent of thermal generation (10 s of inertia) and 72 percent of RES with zero inertia. Each
simulation starts with 2 seconds of inertia, and from there- based on a uniform distribution
draw- the inertia (hybrid mode) of the system at time ¢ + 1 will remain the same, increase,
or decrease (Markov Chain with 1/3 probability for each possible mode transition). This
process is repeated until each time step ¢ in the time horizon T' has assigned a rotational
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Table 2.2: Summary: mean and standard deviation of objective function J*, optimal control
u*, and frequency w.

Moments Linear Inertia Ei;?ijuc
MPC Placement
Placement
w(J*) 0.17 0.92 0.24
a(J*) 0.07 1.66 0.30
pu(u*) pu. | -0.004 -0.018 -0.005
o(u*) p.u. 0.13 0.29 0.15
p(w) mHz -0.34 0.93 8.10
o(w) Hz 0.07 0.04 0.05

inertia mode. B
The safety bounds for frequency are £0.1 Hz (b and b in equation (2.10)).

Results

Each receding horizon MPC formulation is run for eight time steps (7") and 100 possible
realizations (or scenarios) from the Markov Chain of the rotational inertia matrix Mq).
Thus, for each formulation we obtain an optimal value of the objective function at each time
step and each scenario (i.e. 800 values). The number of nodes, IV, is 11 because node 11 and
12 are the same (refer to Fig. 2.1). We also obtain /N control actions (one per node) for each
time step and for each scenario (i.e. 8800 values), and N frequency measurements for each
time step and for each scenario (i.e. 8800 values). Using these sets of results we calculate
moments and show histograms for the three formulations in order to compare them.

Table 2.2 shows the mean and standard deviation of the set of optimal values of the
objective function (J*) at all times ¢ and all scenarios for the three formulations. The same
moments are shown for optimal control (u*) and frequency (w) for the three optimization
problems. As discussed in Section 2.3, the Linear MPC formulation shows the lowest average
and standard deviation values in its objective function compared to the other two formu-
lations. The average of the objective function for the Linear MPC is 0.17 cost units, and
its standard deviation 0.07. In the case of the average, it corresponds to 18 percent of the
average in the Inertia Placement formulation and 71 percent of the average in the Dynamic
Inertia Placement case. This result can be interpreted as the Inertia Placement formulation
resulting in non zero frequency deviations and non zero control actions 82 percent more of
the time compared to the Linear MPC formulation (on average). This result sheds light on
the suboptimality of the virtual (dynamic and static) inertia controllers compared to the
closed-loop formulation (Linear MPC). Thus, there is an incentive to continue designing
controllers that try to address low and variable inertia coefficients in the grid.

Another relevant result is the fact that our proposed Dynamic Inertia Placement formula-
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tion provides better performance than the Inertia Placement formulation in terms of average
cost and energy usage in the controller v*. This is expected as well because we provide more
flexibility for the controller to inject/absorb energy depending on not only the node, but also
on the time step. The average objective value in the Dynamic Inertia Placement formulation
is 39 percent of the average optimal value of the objective function in the Inertia Placement
case.

6000
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Count

2000 [

1000 -

Energy (p.u.)

Figure 2.2: Inertia Placement: Histogram of optimal controller u* at all nodes, all time steps,
and all scenarios.
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Figure 2.3: Dynamic Inertia Placement: Histogram of optimal controller u* at all nodes, all
time steps, and all scenarios.

Fig. 2.2 and 2.3 show histograms of the optimal controllers u* for the Inertia Placement
formulations. Statistics in Table 2.2 show that the optimal controller for the Linear MPC
formulation case uses less energy on average to maintain the frequency within the allowed
bounds. Its maximum injection/absorption is between £0.3 p.u. (not shown in Table 2.2).
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The optimal injection from the Inertia Placement formulation ranges between —2.6 and 2.8
p-u. to maintain the same safety bounds for the frequency. The control range from the
Dynamic Inertia Placement is smaller (—1.2 and 1.4 p.u.) compared to the spread observed
in the energy absorbed/injected by the Inertia Placement controller. Therefore, it shows a
more efficient frequency control design.

800

Count
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o
o
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0 . . L
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Cost units

Figure 2.4: Inertia Placement: Histogram of optimal cost J* at all time steps and all sce-
narios.
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Figure 2.5: Dynamic Inertia Placement: Histogram of optimal cost J* at all time steps and
all scenarios.

Fig. 2.4 and 2.5 show histograms of optimal costs for the Inertia Placement formulations.
The moments in Table 2.2 show that the optimal values for the Linear MPC formulation
are concentrated around zero. However, the Inertia Placement formulations show more
spread, reaching extreme costs of 15 units (Inertia Placement) and 4.3 units (Dynamic Inertia
Placement). The distribution of the costs for the Dynamic Inertia Placement controller is
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more skewed and its tail does not reach as high of values (Fig. 2.5) compared to the tale of
the cost distribution in the Inertia Placement design (Fig. 2.4).

2.5 Conclusions

We propose a new modeling framework for power systems dynamics that captures the
variability of rotational inertia over time. Our proposed model is a Switched Affine hybrid
system, whose modes change based on the change of inertia in the nodes. The transition from
one mode to another is determined by a Markov Chain at each time step of the simulation.
With this new framework, we test two standard frequency control designs and propose a third
design: Linear MPC, Inertia Placement, and Dynamic Inertia Placement. As expected, the
Linear MPC formulation is better in terms of cost and energy injection/absorption to control
frequency. This finding encourages researchers to continue designing controllers in order to
attain such optimality without having to optimize in real time (closed-loop MPC).

Another relevant finding is the fact that the Dynamic Inertia Placement proves to be
more efficient in terms of cost and energy usage of the controller compared to the classical
Inertia Placement case. This finding sheds light on the importance of modeling dynamics
over time assuming temporal variability in the system’s inertia. Additionally, it highlights
the importance of designing a more flexible controller that would adapt over time. For future
work we plan to study stability of the hybrid system and design a controller that is more
efficient in terms of energy usage than the current virtual inertia schemes. We also plan to
characterize the disturbances at each node of the network and to model the switching of
modes of the hybrid system with data-driven approaches.
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Chapter 3

Frequency Regulation using Learned
Controllers

3.1 Preface

The work in this Chapter corresponds to the publication titled “Frequency Regulation us-
ing Data-Driven Controllers in Power Grids with Variable Inertia due to Renewable Energy”
by Patricia Hidalgo-Gonzalez, Rodrigo Henriquez-Auba, Duncan S. Callaway and Claire J.
Tomlin [49] and “Frequency Regulation using Sparse Learned Controllers in Power Grids
with Variable Inertia due to Renewable Energy” by Patricia Hidalgo-Gonzalez, Rodrigo
Henriquez-Auba, Duncan S. Callaway and Claire J. Tomlin [50]. We presented this work at
the 2019 IEEE Power & Energy Society General Meeting in Atlanta, Georgia, United States
and at IEEE 58th Annual Conference on Decision and Control in Nice, France.

3.2 Frequency Regulation using Data-Driven Control

Introduction

Our earlier work [48], introduces a new modeling framework for power system dynamics
to simulate a time-varying evolution of rotational inertia coefficients in the network. To do
this, power dynamics are modeled as a hybrid system in which each mode corresponds to
a rotational inertia regime. The novelty of this work is the design of a fixed and stable
frequency controller under a paradigm of time-varying inertia. We choose a fixed controller
because it is simpler to implement (compared to a time dependent controller) given the
existing droop control in the grid. In addition, the controller we propose does not require
information about the current hybrid mode of the system or its uncertainty. Thus, our
contributions are the following:

e In the time-varying framework for power dynamics, we design a controller with fixed
gains, proportional to the system’s states (angles and frequencies). We design the
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controller by learning its parameters from the optimal control solution of a hybrid
systems linear-quadratic regulator (LQR) formulation of power dynamics.

e For each mode of the hybrid system, we test the performance of the learned controller
against the optimal time-varying controller from the LQR formulation.

e We add virtual inertia control (linear on the derivative of the frequency) to guarantee
stability for all modes of the hybrid system when using the learned controller.

We conclude that for the hybrid power dynamics formulation it is possible to design,
through learning, a static frequency controller proportional to the system’s states that per-
forms similarly to the optimal time-varying controller from LQR. It is possible to guarantee
stability for the hybrid system when we add virtual inertia to the learned control.

The rest of the Section is organized as follows: problem formulation, stability analysis of
the hybrid system and analysis of the performance of the controller in different settings, and
finally, we conclude with our main findings.

Problem Formulation
Power grid dynamics as a hybrid system

We consider an electric power grid modeled as a graph with n nodes and n(n — 1)/2
possible edges connecting them. The swing equation model, based on the direct current
approximation [82], used for the network is given by

m,QZ + dﬂz = pin’i — Z b”(@Z — 9j)7 7 - {1, ceey N} (31)
JEN;

where m; corresponds to the equivalent rotational inertia in node i, d; is the droop control,
Pin; Tepresents power mismatch at node ¢, N; is set of nodes connected by an edge to node
i, b; is the susceptance of the transmission line between nodes ¢ and j, and 0; is the voltage
phase angle at node ¢. The state space representation of the model can be written as

m - [—Mo‘lL —MI—lD] m + [Mo_l} Pin (3.2)

where the states correspond to the stacked vector of angles and frequencies at each node
0T, 0w € R*™ M = diag(m;) is a diagonal matrix with rotational inertia coefficients,
D = diag(d;) is a diagonal matrix with droop control coefficients, I is the n x n identity
matrix, p;, corresponds to the power input, and L € R™" is the Laplacian of the network.
The network Laplacian is defined as ¢;; = —b;; when @ # j, and ¢;; = ZjeM_ bij.

To capture the variability of the inertia coefficients, we model power dynamics with the
formulation introduced in Section 2.3. Frequency dynamics are modeled as a Switched-Affine
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hybrid system [14], where each mode has a predetermined set of values of equivalent inertia
m; at each node [48]. Thus, the power dynamics are given by

= Lot o] 2]+ )
| = ~1 -1 + —1 | Pin (3.3)
L} LMt =MD |w] — [My)
Agt By
where M) represents the inertia matrix in the mode ¢(t) € {1,...,m}. Using a zero-order

hold discretization with time step 7§, we obtain the discretized time-varying dynamics
Tit1 = Aq(t)ﬂft + Bq(t)ut (34)

where z; is the stacked vector of discretized angles and frequencies, (0, ,w,") ", u is the control
action by generators and converters, Ay = exp(flq(t)Ts) and By = fOTS exp(/lq(t)T)B’q(t)dT.

In this work, as it was described in Section 2.3, the switching between modes occurs
between each time step, and it is given by a uniform distribution with the following possible
outcomes: no change of inertia, increase of inertia, or decrease of inertia. For simplicity, for
a given mode ¢(t) we assume the same inertia coefficient for all nodes M, = m,l,x,. We
assume that power electronics converters exist at every node to provide/absorb power, i.e.
Pint = Uy € R".

Using an LQR formulation we study the problem of returning to a steady-state configu-
ration zg, assuming a perturbed initial condition zy # x4 due to a contingency.

Optimal frequency control for low and time-varying rotational inertia
coefficients

To minimize an objective function where the states and controllers are decision variables
we consider the LQR formulation

T
min Z z; Qx, + u/ Ruy
Tt=0 (3.5)
s.t. xg = z©
Ti41 = Aq(t)xt + Bq(t)ut, t e {07T - ]_}
where Q is a positive semidefinite matrix, R is a positive definite matrix, and (?) is the initial
state. Depending on the modeling goal, matrices () and R can be modified to promote a
specific behavior. The optimal solution of (3.5) for a fixed mode ¢ in the entire time horizon
(i.e. a linear time-invariant system) and with 7" — oo, can be found via the discrete time
algebraic Ricatti equation [14]:
Py= A, P,A;— A] P,B,(R+ B, P,B,) 'B"P,A; + Q
K, = (R+ B, P,B,)"'B] P,A, (3.6)

Uy = _qut
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For a hybrid system with time-varying inertia, (3.5) is a Quadratic Programming problem
that can be solved directly, using for example CVX [44]. We use the solution of (3.5) as a
benchmark of an optimal controller for our problem.

Data-driven based controller

In the presented framework of variable inertia we are interested in learning a time-
invariant controller of the form u; = —Kyx; where K, is a constant matrix. The training
dataset (™, u®) we use comes from the optimal solution to (3.5) under different scenarios
k={1,..., K}. The learning algorithm we use is least-squares:

) 2
~ Ky H2 (3.7)

k=1 t=1

It is interesting to notice that when we solve (3.5) for a single mode ¢ (in the entire time
horizon) and a sufficiently long time horizon T', least-squares returns the analytical solution
K, from the LQR problem (3.6). This is because the optimal controller from (3.5) is linear
on the states, and with sufficient training data (x®,u®), (3.7) is a convex optimization
program that achieves K, and hence the optimal value is equal to zero.

We assume a stressed case in which the equivalent inertia can change rapidly over time.
Thus, inertia is allowed to change over time steps in each scenario. However, an equivalent
training set can be generated by fixing the mode ¢ at each scenario k, and only changing
the mode between different scenarios. Each scenario in this training set would represent, for
instance, a different hour of the year. During an hour, inertia could be considered fixed, and
a different optimal controller would be obtained for each scenario.

Incorporating virtual inertia in the system

Depending on how we generate the training set (), ), the controller we propose
may not be stable in modes where the inertia is too low. The learned controller may not
be fast enough to compensate the rate of change of the frequency. As an alternative, a
controller that depends on the derivative of the frequency, Kyw, can be used as a virtual
inertia resource for the system. Indeed, consider the fixed inertia continuous time system
and assume a controller of the form

Uu = —KL(QT,WT)T - Kvu} = —KLZL' - K\/[E (38)
where Ky = [0 Kvy], then:

. 0 I 0 ~
=L —M‘lD] x— {M‘l] (Kpz + Kyi)

Rearranging terms the system can be written

(I + BKy)i = (A — BKy)x
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and hence

i = (I+ BKy)™ (A - BKy)z
1 0 !
0 T4+ MKy

0 I
X {—M—l(L + Kpg) —M-YD+ KLM)] &

0 I
- {—Ml(L + Kpg) —M-YD+ KLW)} &

where M = M (I+ M 'Ky) = M+ Ky provides a new system wide equivalent inertia due to
the virtual inertia controller Ky,. To determine a proper Ky we develop a heuristic using a
bisection method. We assume Ky of the form Kv = kI, x,. Iterating over k,, and assuming
that @ in the right hand side of the discretized system can be approximated by [z; —z; 1|7,
we modify k, until the discretized closed loop system for the low inertia modes has all its
eigenvalues inside the unit circle, making it stable.

Simulations and Results
Data description

Errata: The values we use for the elements, m, in the diagonal matriz M in this work
are inertia values, however m = %, where h is the inertia coefficient, S the rated power,
and w the angular frequency. Therefore, we test the system under lower values of inertia
than intended. We expect results to hold given that this change would imply re-scaling our
matrices A and B with a diagonal and nonsingular matriz. For such transformation, stability
properties of the hybrid system hold.

Using MATLAB® we model the twelve-bus three-region network (Fig. 2.1) that was
described in Section 2.4, which has also been used in [15], [82], [48] and [59]. Each node has
two states (angle and frequency). Table 2.1 shows the parameters of the network.

We assume the same rotational inertia in all buses for a given time step ¢t (m;(t) = m(t)
for all 7). This implies a similar fraction of renewable energy generation for all nodes, but
this assumption can be easily extended. Each mode of the hybrid system is given by one
value of inertia. For the study case we predefined possible inertia values for the system:
my € {0.2,0.5,1,1.5,2,2.5,3,3.5,5,9}. The average of this set of possible inertia values is
2.8 seconds, which is equivalent to having 28 percent of thermal generation (10 s of inertia)
and 72 percent of RES with zero inertia. Each simulation starts with 2 seconds of inertia
(mode g5), and from there— based on a uniform distribution draw— the inertia (hybrid mode)
of the system at time ¢+ 1 will remain the same, increase, or decrease. In our simulations we
only allow the possibility to change modes every 1, 4 or 10 time steps. For all the simulations
we use a time step of T = 0.01s. We generate K = 400 scenarios of 7 seconds each (7" = 700).
The initial conditions we use in (3.5) are randomly drawn from a normal distribution with
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Figure 3.1: Eigenvalue placement for the closed loop system in mode ¢; using the learned
controller K, (crosses) and adding virtual inertia control K7, + VI (circles).

zero mean and unitary variance. The training set we use to learn the controller Kj, using
(3.7) are the optimal solutions (z*), u®) from (3.5).

Stability analysis

The design of the controller K7, through learning provides a stable closed loop system
Ay— By K7, for every mode except for g;. To correct this issue we use an approximated virtual
inertia controller Ky (z; — x;_1)7, ! with Ky = [0 Kvy]. The new dynamics can be written
as:

Tir1 = Aql’t + Bq[—KL$ + Tk;l[N(V(.fCt — Zlﬁ'tfl)]
= [A, — B,(Ky, — T, Ky)|z, — T, B Ky,

Augmenting the states as 2,1 = (xtT , xtT +1)T, our new system can be written as:
02n><2n I2n><2n
= ~ ~ 3.9
T STOIB Ky Ay — By(Ky — TOUKY) | (3.9)

For the learned controller, adding a virtual controller of the form Ky = 0.151,,,, results in
eigenvalues of the augmented system for mode ¢, inside the unitary circle. This is depicted
in Figure 3.1, where it can be observed that there are two modes that are unstable for the
closed loop system only using the learned controller (in red). When we incorporate the
virtual inertia controller all modes are stable (in blue).

Controllers’ comparison for fixed inertia

For each mode ¢, we compare the performance of the learned controller Ki, and the
learned controller with virtual inertia, K7, + VI, against the optimal controller from the LQR
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Table 3.1: Comparison of learned controller (Kp,) and learned controller with virtual inertia
(K1, + VI) against optimal control from LQR under different inertia modes. Units are in
percentages (%).

| Metric ‘ ¢ | % | G| wl| g g | qr | gs | ®|  quo]
Mfrillo | Unstable | 21.1 | —10.4 | 54| —1.1] 26| 59| 88| 1L9| 144
1 Fy +vi] 1o 106.7 | —16.1| —88| 43| 02| 35| 65| 95| 124 144
Fx 2 Unstable | 9.0 | —7.1] 55| 39] —25] 11| 02| 37] 112
o villz 72| 89| 74| 58| 43| —20| —15] —03| 32| 109
lum, o | Unstable | 32| —2.7] 59| 82| 102 —11.9] —133 | —17.1] —15.2
e, s vi]los 879 | 32| —27| 59| 82| —102| —11.9| —133 | —17.1 | —15.2
Mar, |h Unstable | 133 ] 62| 25] 03| —27] —47] —65] —11.0] —19.7
e, svills 781 100| 86| 42| 11| —14| —36| —55] —102] —19.1
Metzer o Unstable | 122 | 60| 46| 44| 46| 49| 53] 65] 92
e, villa 52| 164 87| 66| 59| 58| 59| 61| 71| 94
JKy Unstable 29.8 399 | 49.2 | 57.8 65.7 73.2 80.2 98.9 | 138.1
Jrp v 39.1 31.6 40.2 | 49.0 | 574 65.3 72.6 79.5 98.1 | 137.3

formulation. Table 3.1 shows peaks (/. norm), ¢, and ¢; norms for frequency deviations
f and control inputs u, and objective function values J for the different controllers under
different inertia modes (columns). The values in table 3.1 represent increases in percentage
with respect to the metrics for the LQR controller. The learned controller is unstable in
the critical inertia regime (q;, lowest inertia). When adding virtual inertia, the controller
becomes stable. The objective values for the data-driven controllers are greater than for the
LQR. This is intuitive because the learned controllers have fixed parameters over time while
the LQR changes its parameters for each mode. The ¢ norm for the frequency is in general
smaller for the learned controllers than for the LQR controllers. On the other hand, the /5
norm of the control action is higher than in the LQR case.

Controllers’ comparison for time-varying inertia

We evaluate the performance of different controllers in a simulation of the hybrid system
switching among different inertia modes. We assume that the system starts in mode ¢ =
0.5s, and possible transitions of inertia can occur every 4 time steps. Figure 3.2 depicts
the evolution of frequency deviation in node 1, under 5 different controllers for an initial
condition fo = —0.15 Hz at every node. The controllers we use are the following: In blue,
the frequency is controlled using the learned controller K. In red, we show the learned
and virtual inertia controller K, 4+ VI (ensure stability). Similarly, cyan depicts a controller
that uses Ki, and virtual inertia only when the system is in the unstable mode ¢;. In black
and green we use the optimal controllers K, obtained from (3.6) for modes g3 = 1s and
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Figure 3.2: Frequency deviations for node 1 for 5 different controllers from a hybrid system
simulation.

gs = s, respectively. Around 4 seconds of the simulation, the system enters mode ¢; for
around 0.4 seconds. This provokes an instability for controllers Kg and K. After leaving the
unstable mode the frequency is stabilized again. The other controllers are able to maintain
stability in all the modes. In addition, key differences can be observed at the beginning of
the simulation. Controller K3 shows the highest overshoot of the simulation, while controller
K1, + VI (in red) is the fastest to peak due to the usage of the derivative of the frequency.
Finally, the frequency for the first and third case (in blue and cyan) are almost identical
except when the system is in the mode ¢;. This shows that if we can detect when the system
is in critical modes, we can apply virtual inertia control only when it is necessary to obtain
a better performance.

Conclusions

In this work we propose a new framework for obtaining a constant data-driven controller
for uncertain and time-varying power system dynamics. This is relevant because it can
be intractable to solve frequency dynamics in real time (time-varying LQR) in large power
networks. In addition, time-varying controllers, as the one from LQR, rely in the ability
to predict or identify the current mode of the hybrid system. Finally, given the existing
infrastructure and droop control, it would be simpler to implement a proportional controller
with fixed gains compared to a time-varying control.

We use a switched affine hybrid system, where its modes change based on the changes
of inertia in the system [48], we find optimal controllers using an LQR formulation. We use
the solution (z,u) from the LQR as a dataset to train a fixed controller. We test our learned
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controller in different modes against optimal controllers. Results show that our learned
controller can be used to obtain a similar performance as the optimal LQR controllers in
the different modes. Finally, we show that adding a virtual inertia controller can stabilize
the system for low inertia modes. This highlights the importance of using more flexible
controllers when considering temporal variability in the system dynamics. For future work
we plan to explore the performance of our controller with AC power flow, voltage dynamics,
machine dynamics and power electronics (inverters) approximate dynamics. We will also
compare our proposed controller with a robust controller. We also plan to study different
learning algorithms with new features to test the efficiency of the learned controller, in
particular promoting sparsity and information requirements using Lasso or Block Sparse
Regression.

3.3 Frequency Regulation using Sparse Learned
Controllers

Introduction

Our publication [48], proposes for the first time a new modeling framework for power
system dynamics to simulate a time-varying evolution of inertia in the network due to the
time dependent participation of RES. We model power dynamics using a Switched-Affine
hybrid system to consider different modes corresponding to different inertia coefficients.
Time-varying power system dynamics pose a new set of challenges for frequency control.
Now control design must take into account the time dependence of the dynamical model.

In recent years, techniques from machine learning have become popular in the field of
control design [67], [78]. Interesting applications have been developed for distributed con-
trol of power flow in power systems [89], [11]. In [49] we design a fixed and stable frequency
controller under the paradigm of time-varying inertia. We use angles, frequencies and deriva-
tives of the frequencies as features or input for the controllers. An interesting question that
stems from this work is the potential trade-off of restricting communication between con-
trollers. Information availability between nodes entails a cost (sensing and broadcasting),
thus designing communication restricted control schemes, i.e. sparse controllers, is of partic-
ular interest in power systems. In a similar line of thought, [29] studies from an information
theoretic approach, the trade-off between performance and communication between control
agents.

In this Section we study how sparsity can be induced in a time-invariant learned controller
for a time-varying dynamical system. This application is of particular interest because of its
potential for aiding safe RES integration. Additionally, power system dynamics are a relevant
application for this control research question thanks to the added complexity of operating
on a graph (transmission network). Finally, information availability between nodes entails
a cost (sensing and broadcasting), thus designing communication-restricted control schemes
is of particular interest in power systems.
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The contribution of this work is the design of a sparse and guaranteed stable time-
invariant frequency controller for time-varying power dynamics. We also test the improve-
ment in performance metrics and stability of introducing more features to the controller than
the minimum identified. Our work can be summarized as follows:

e In the time-varying framework for power dynamics, we design a controller with fixed
gains, proportional to the system’s states (angles and frequencies). We design the con-
troller by learning its parameters from a training set generated by optimally solving a
Model Predictive Control (MPC) problem for different scenarios of frequency regula-
tion. We add virtual inertia to the controller to guarantee stability in all inertia modes
49].

e To test how sparse our learned controller can be and to investigate the trade-off between
communication requirements and performance/stability we use a Lasso regression [94]
for the controller at each node. We vary widely the sensitivity parameter associated
to the regularization term in the learning problem.

e We shed light on the relevance of graph topology and optimal feature selection for the
learned controller at each node.

e We show for some cases that it is not possible for the learned controller to steer fre-
quency deviation back to zero when facing inertia coefficients that are not included in
the training set. This validates the importance of controller design taking into account
time-varying power dynamics.

We conclude that it is possible to design via learning a sparse, time-invariant and stable
controller for the hybrid power dynamics formulation. Furthermore, we show that it is
possible to reduce the number of features in the controller (from 22 to 10 in our case study)
without disrupting performance and stability. Additionally, we depict how enabling more
communication beyond a threshold does not improve performance or stability.

The rest of the Section is organized as follows: problem formulation, simulations, perfor-
mance and stability analyses, and conclusions, our main findings and future work.

Problem Formulation
Power system dynamics as a hybrid system

Similarly as in Section 2.3 and 3.2, we model an electric power system network as a
graph with n nodes and n(n — 1)/2 possible edges. Using the direct current approximation
for power flow, we can write the swing equation [82] as

JEN;
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where m; corresponds to the equivalent rotational inertia in node i, d; is the droop control
or frequency damping coefficient, p; represents net power injection at node i, N; is set of
nodes connected by an edge to node i, b;; is the susceptance of the transmission line between
nodes 7 and j, and 6; is the voltage phase angle at node i. The state space representation of
the model can be written as

O = oot atn) (] o] o

where the states correspond to the stacked vector of angles and frequencies at each node
(0T,w")T € R2", the frequency, w, is the derivative of the angle, i.e. w = 0, M = diag(m;)
is a diagonal matrix with rotational inertia coefficients, D = diag(d;) is a diagonal matrix
with droop control coefficients, [ is the n x n identity matrix, p;, corresponds to the power
input, and L € R™" is the Laplacian of the network. The network Laplacian is defined as
Kz-j = _bij when 1 # j, and gm = szJ\Q bl]

To capture the variability of the inertia coefficients, we model power dynamics with the
formulation introduced in Section 2.3. Frequency dynamics are modeled as a Switched-Affine
hybrid system, where each mode has a predetermined set of values of equivalent inertia m;
at each node. The evolution of the inertia on the system depends on the current online
generators and the connected power electronics converters. In this work, as it was described
in Section 2.3, the inertia at each time step t evolves as an exogenous input. Thus, power
dynamics are given by

)= Lo gl [+ o)
| = -1 ~1 + ~1 | Pin (3.12)
L LMt =M D] Jw] = [My)
Age) Byes)
where M, represents the inertia matrix in the mode ¢(t) € {1,...,m}. Using a zero-order

hold discretization with time step 7§, we obtain the discretized time-varying dynamics
L1 = Aq(t)xt + Bq(t)ut (313)

where m; is the stacked vector of discretized angles and frequencies, (0, w/ )7, u; is the

A

discretized control action by generators and converters, Ayy = exp(AywTs) and Byyy =
T, ; -

fo exp(Aq(n)7) By dr.

Generation of training set from optimal frequency control

In order to learn a time-invariant controller, we generate a training set from solving an
MPC formulation. We minimize an objective function where the states and controllers are
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decision variables

T
min Z z! Qr, + u; Ru,
x,u
=0 (3.14)
s.t. xg = z©

Tip1 = Aq(t)xt + Bq(t)ut, tE {O,T — 1}

Q € R¥ 2" ig g positive semidefinite matrix, R € R™" is a positive definite matrix, 2 is
the initial state, and 7" is the time horizon. Depending on the modeling goal, matrices () and
R can be modified to promote a specific behavior. This is a Quadratic Programming problem
that can be solved directly, using for example CVX [44]. We describe the specifications for
the simulations of this work in the Section “Data and simulation description”.

Learned controller enhancing sparsity

In the setting of hybrid power dynamics with variable inertia, our control design via
learning has two objectives:

e Learn a time-invariant frequency controller of the form u; = Ky, where Kp, is a
constant matrix.

e Explore to what extent communication between nodes can be restricted to design a
stable frequency controller. Communication between nodes ¢ and j has to occur when
the (i, j) entry of K7, is nonzero.

To accomplish these objectives we use a Lasso regression [94], [87] to learn optimal
controllers at each node. The training set (x(*),u®)) we utilize comes from the optimal
solution to (3.14) under different initial states. Each trajectory or optimal solution (), u())
for a given initial state defines a scenario s, with s = {1,...,5}. We solve a Lasso regression
for each node i as an independent controller u;; = 3 x;, where 8 € R'?" is a row vector

that has as components the gains of the controller at node i (i.e. K = [ﬁl . @JT)I

S T
min 33

s=1 t=1

(3)_ T,..(5) 2 A . 3.15
U; ¢ By 2+ |18l 11 (3.15)

The states that multiply the resulting nonzero components of the vector 3, correspond to
the features that node ¢ uses for its controller u; ;. We solve (3.15) for each node for a range
of the regularization sensitivity parameter A using cross-validation. We vary the sensitivity
parameter A\ from zero (Least-Squares, i.e. using all possible 2n states as features) up to a
value that would result in only one nonzero coefficient in the vector ;.
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Incorporating virtual inertia in the control

As we show in [49], to guarantee stability of a learned controller for hybrid power dynamics
with variable inertia we include virtual inertia: a controller proportional to the derivative
of the frequency, Kvw. To provide some intuition, consider a fixed inertia continuous time
system and assume a controller of the form

u = KL(QT, WT)T + Kvw = K}_ﬂ? + K\/l’ (316)

where Ky = [0 Ky], then:

. 0 I 0 ~
Tr = |:_M_1L _M_lD:| T + |:M_1:| (KLZE + KV{L‘) (317)
Rearranging terms the system can be written as

i = (I — By Kv) ™ (Age) + By K1)z

o]
= -1
0 I—M Ky

0 I
X - _ T
[_MQ(tl)(L — Kvo) _Mq(tl)(D - KL:‘”)}

0 I
{_M{(;)(L — Kvg) —My,(D — KL,w)} !
where Mq(t) = My —Mq_(tl) Kv) = My — Ky provides a new system wide equivalent inertia
due to the virtual inertia controller Ky. To determine a proper Ky we utilize a heuristic
using a bisection method. We assume Ky of the form Ky = k,I,,«,,. We iterate over k, until
the closed loop system for each inertia mode has all its eigenvalues with negative real part,
stabilizing the system’s dynamics.

Simulations and Analysis
Data and simulation description

Errata: The values we use for the elements, m, in the diagonal matrix M in this work
are inertia values, however m = %, where h is the inertia coefficient, S the rated power,
and w the angular frequency. Therefore, we test the system under lower values of inertia
than intended. We expect results to hold given that this change would imply re-scaling our
matrices A and B with a diagonal and nonsingular matriz. For such transformation, stability
properties of the hybrid system hold.

We use MATLAB® to model the twelve-bus three-region network (Fig. 2.1) that was
described in Section 2.4, which has also been used in [15], [82], [48], and [49] and [59]. Each

node has two states (angle and frequency). Table 2.1 shows the parameters of the network.
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Notice bus 11 is directly connected to 12, thus we are effectively simulating an n = 11 node
network.

We assume the same rotational inertia in all buses for a given time step ¢ (m;(t) = m(¢)
for all 7). This implies a similar fraction of renewable energy generation for all nodes, but
this assumption can be easily extended. Each mode of the hybrid system is given by one
value of inertia. For the study case we predefined possible inertia values for the system:
mg € {0.2,0.5,1,1.5,2,2.5,3,3.5,5,9}. The average of this set of possible inertia values is
2.8 seconds, which is equivalent to having 28 percent of thermal generation (10 s of inertia)
and 72 percent of RES with zero inertia.

To generate the training set from (3.14), each scenario s starts with 2 seconds of inertia,
and from there— based on a uniform distribution draw— the inertia (hybrid mode) of the
system at time t + 1 will remain the same, increase, or decrease. We assume that power
electronics converters and batteries exist at every node as control agents to provide/absorb
power. The time interval T we use is 0.01 seconds and the time horizon 7' is 400, equivalent
to 4 seconds. For each scenario s, the initial states are drawn randomly from a normal
distribution with zero mean and 1.3Hz of variance to represent different perturbations in the
system. We simulate S = 400 scenarios.

To learn the controllers, we optimize (3.15) for each node using 100 possible values for
the regularization parameter A and a 10-fold cross-validation. This allows us to obtain 100
different controllers for each node. These controllers show decreasing number of features as
A increases, ranging from all 22 (2n) states down to zero. In order to analyze results we
choose to study the performance, stability and feature selection of a subset of controllers.
We group controllers by the number of features used, i.e. number of nonzero elements in ;.
Specifically, we choose a control design where all nodes use at most the following number of
features: 4, 5, 6, 10, 14, 17, and all 22 states. To all the learned controllers we add virtual
inertia as we describe in 3.3. For the rest of the manuscript, each time we mention the
learned controllers they also include virtual inertia.

Performance

In this section we explore the performance of the proposed learned controllers under
different inertia modes for the hybrid system. Fig. 3.3 shows the box plot of the mean
squared error (MSE) from training those controllers using cross-validation. As expected,
the usage of more features allows to obtain a controller with reduced MSE in the training
exercise. Nevertheless, the MSE does not significantly decrease beyond using 10 features.
This sheds light on the possibility to substantially reduce the usage of features without losing
significant performance. To show this we explore two performance metrics. One metric is
the total absolute value of the control input and the other metric is the total absolute value
of frequency deviation:

W= [ Sttt @)= [ 3 e
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Figure 3.3: Mean Squared Error (MSE) from training and cross-validating controllers with
different numbers of features.

Table 3.2: Performance metrics for learned controller under different inertia systems.

Jb i= 1|U% )|dt jb i= 1|“% (t)|dt

Number of features =0.28 =9s =0.2s =9s

22 47.75 227.67 10.51 16.9

17 48.77 222.13 10.50 16.39

14 49.88 215.45 10.49 15.79

10 51.15 213.57 10.48 15.32

6 61.50 246.90 10.50 15.24

5 463.46 951.28 16.94 22.78

4 unstable unstable unstable unstable

Table 3.2 shows the performance of the learned controllers with different numbers of features.
We simulate the controllers on systems, different than the training set, with fixed low inertia
(m = 0.2s) and fixed high inertia (m = 9s). In all simulations we consider an initial
condition of —0.15Hz of frequency deviation at each node. Results in Table 3.2 show similar
performance for the controllers with 10 or more features. The controllers with 6 and 5
features still perform well to steer the frequency deviation to zero, but they require more
energy usage to achieve this. Fig. 3.4 depicts the frequency deviation evolution using the
learned controllers for a system with inertia m = 0.2s. In the next section 3.3 we explore
stability of the closed loop system with the proposed controllers, since, as observed in Table
3.2, the learned controller with only 4 features is not stable.

Stability analysis

We study stability in continuous time for the selected controllers. To do this, we calculate
the eigenvalues of the closed loop system, derived from (3.14). We obtain
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Our dynamical system is a hybrid system, thus we calculate eigenvalues for all possible
inertia modes q. We find that all controllers in all inertia modes are stable except for the
controller with 4 features. The controller with 4 features is unstable for all inertia modes.
The case of 9 seconds of inertia is the closest case to being stable for the controller with
four features. Fig. 3.5 shows all eigenvalues for the seven controllers in the 9 seconds inertia
mode. We can observe how all controllers show eigenvalues with negative real parts, except
the controller with 4 features which shows in black triangles four eigenvalues close to zero
but positive and one eigenvalue equal to 0.93.

Fig. 3.6 plots the maximum among the real parts of the eigenvalues for each controller
under different inertia modes. We choose the maximum real part of the eigenvalues as a
metric of stability. In Fig. 3.6, as we also observe in Fig. 3.5, the controller with 4 features
is unstable. The 9 seconds of inertia mode is the closest it gets to attaining a non positive
real part. As the system’s inertia decreases, the maximum eigenvalue for this controller
increases, potentially enhancing faster frequency deviations (more abrupt instability due to
a faster exponential growth from the maximum positive real part). The observation where
an increase of inertia results in a smaller maximum real part for the controller with 4 features
cannot be observed for the other controllers. For these, their maximum eigenvalue real part
occurs when the system shows it highest inertia (m = 9s). It is also relevant to notice that
allowing the controller to have 6 or more features does not seem to impact the system’s
stability because the maximum real parts are similar.
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Figure 3.5: Eigenvalues of all controllers j for the closed loop system with inertia of 9 seconds.
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Figure 3.6: Maximum eigenvalue real part for all controllers j under 0.2s (green square), 2s
(red cross), 5s (blue dot) and 9s of inertia (black asterisk).

Stability as a Switched-Affine hybrid system

In this section we study the stability of the hybrid system under unconstrained switching
between modes. In other words, we are interested in studying the stability of the system if
we allow any adversarial switching strategy (and possibly not realistic) for inertia modes.
For example, it would be possible to switch from m = 9s to m = 0.2s at any moment. It is
a well known result that for a Switched-Affine hybrid system, even if all modes are stable
independently, a switching sequence could potentially be found to make the hybrid system
unstable [16].

A strategy to study stability of a hybrid system is to find a common Lyapunov func-
tion that ensures global asymptotic stability (in the sense of Lyapunov) over the set of all
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switching signals (Th. 1, p. 564 in [8]). The stability of a Switched-Affine hybrid system
can be assessed by using a Lyapunov function of the form V(z) = 2" Px, and by posing the
following convex SDP problem:

max r4+ti
PeS?n reRteR

s.t. P i 7,'12n><2n
Al P + PAcg) = —thanxan, Vg € {1,...,10}
Trace(P) =1

where S?* denotes the vector space of symmetric matrices of size 2n x 2n. If the optimal
solution yields r > 0 and ¢ > 0, then P > 0 and V(z) < 0. This implies global asymptotically
stability of the system. We solve the previous problem using CVX for all the proposed
controllers. Results show that controllers with only 10 or more features achieve a global
asymptotic stability for the hybrid system. This illustrates that despite the fact our sparse
controllers with 6 or 5 features achieve stability on every inertia mode, under stressed cases of
fast varying inertia the system may be unstable. Future work will explore realistic conditions
for mode switching that would preserve stability of the hybrid system using our proposed
controllers with 5 or 6 features. In particular, we will explore the required dwelling time 74
that would guarantee stability (minimum time the system would have to maintain the same
inertia).

Optimal feature selection

In this section we explore which features are selected when we enhance sparsity in the
learned controllers. Each controller (at each node) is allowed to use information of frequency
and angles of any node in the system. This would require phasor measurement units (PMU)
and instantaneous communication.

Fig. 3.7 depicts the heat map of the absolute value of the coefficients of the learned
controller from the least-squares regression (i.e. A = 0). The controllers prefer to use higher
coefficients or gains in the angles than in frequency. It is important to notice that knowing
the angles over time can be used to estimate changes of frequency as we show in equation
(3.11). This explains the importance of angle states in feedback controllers. Nevertheless, a
droop coefficient, related to their own local frequency, plays an important role in the stability
of the closed loop system and is still considered critical in the regression. Feature selection
in the learned controller with 4 features lacks coefficients on the frequencies (not pictured).
This results in instability as we discuss in 3.3 and 3.3.

In comparison, Fig. 3.8, depicts the heat map of the absolute value of the coefficients of
the learned controller from the Lasso regression, with at most 5 features per node. In this
case we can observe that a node’s own angle and frequency tends to be critical to ensure
stability of the system (except for node 11). However, information from other nodes is also
required. In particular, voltage angles of connected nodes have an important role. For
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Figure 3.7: Heat map of learned controller for A = 0, meaning each node uses up to 22
features.

example, node 1 has an important coefficient in 3, that is the node connected to node 1 via
a transformer. Similarly, node 3 uses information from 6, 5 and 6,, which are connected via
lines or transformers to that node (see Fig. 2.1). This shows the importance of the network
connectivity to understand which features have crucial roles in the stability of the system.
For future work, we are interested to study how topology and size of different networks can
affect the selection of features.

Learning controllers from training sets with fixed inertia

To illustrate the importance of creating training sets from time-varying dynamics, we
generate a separate training set using fixed inertia of m = 0.2s. We then train the controllers
with this set and test the performance of the controllers with 22 features in a system with
inertia m = 0.2s and m = 9s, and an initial frequency deviation. The controllers are
able to stabilize frequency deviation around zero for both inertia regimes. However, when
m = 9s they do not perform as well as the controllers learned from the time-varying inertia
coefficients that we show in 3.3.

We generate another separate training set using fixed inertia of m = 9s. We then train
the controllers with this set and test the performance of the controllers with 22 features in
a system with inertia m = 0.2s and m = 9. In this case, the controllers are able to stabilize
frequency deviation around zero in the setting with m = 9s, but they are not able to steer
it back to zero in the low inertia case (m = 0.2s).

From this exercise, we validate the importance of generating a training set with time-
varying inertia. Training with these scenarios allows the learned controllers to be able to
perform under different inertia regimes.
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Figure 3.8: Heat map of learned controller with A-values tuned such that each node uses up
to b features.

Conclusions

In this work we study how restricting communication between nodes affects the perfor-
mance and stability of a time-invariant controller designed for time-varying power system
dynamics due to RES. To do this, we generate a training set by solving an MPC formulation
for different scenarios of frequency control. We design controllers with different numbers of
features (states) via Lasso regressions. We add virtual inertia to these controllers to guaran-
tee stability. For the 11-bus test system we study, we are able to show that it is possible to
reduce the number of features in the controller (to 5 in our case study) without negatively
impacting performance and stability for any fixed inertia of the system. We also show how
increasing information availability beyond a threshold (10 features) does not enhance per-
formance or stability metrics. We are able to show global asymptotic stability for the hybrid
system using controllers with 10 features or more. Finally, by analyzing optimal feature
selection for sparse controllers, we find a positive correlation between feature selection and
connectivity of the nodes. For future work, we are interested to study how our results hold
for different topologies and sizes of different networks.

Our work lies at the intersection of three control theory topics: time-invariant controllers
for time-varying dynamics, information availability between control agents, and control de-
sign via learning. In this work we are able to test performance and safety (stability) of
a controller using this intersection of areas. However, safety is approached as a posterior
analysis after the controller is designed. More inte-resting would be to design a controller
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with safety guarantees already built-in. This motivates our future work where we aim to
develop a mathematical framework to design sparse time-invariant controllers via learning
while at the same time guaranteeing stability of the closed loop system.
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Chapter 4

Cost and Impact of Weak Medium
Term Policies in the Electricity
System in Western North America

4.1 Preface

The work in this chapter is part of the work presented to the California Energy Commi-
ssion through the technical report titled “Building a Healthier and More Robust Future: 2050
Low Carbon Energy Scenarios for California” by Max Wei, Shuba Raghavan and Patricia
Hidalgo-Gonzalez (primary authors) [101].

4.2 Introduction

For over 20 years we have been negotiating agreements that try to reduce greenhouse
gas emissions to stabilize their concentration [19]. A recent iconic international meeting
was the 21st Session of the Conference of the Parties to the United Nations Framework
Convention on Climate Change in 2015. Its main outcome was the reaffirmation of the
goal of limiting global temperature increase below 2°C, while urging efforts to limit the
increase to 1.5°C [54]. In 2007, the IPCC had stated that the 2°C goal could be achieved
if different sectors of the economy in industrialized countries would reduce their emissions
to specific targets. The electricity sector would have to reduce its emissions to 80% below
1990 levels by 2050 [93]. In an attempt to achieve this long-term goal, the U.S. proposed
the Clean Power Plan (CPP) —which was repealed by the U.S. Environmental Protection
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Agency in 2019 [7]. The target stated that the power system would need to reduce its
emissions to 32% below 2005 levels by 2030 [4]. Additionally, California set its state-wide
carbon cap target to reduce emissions 40% below 1990 levels by 2030 [43]. More recently, the
IPCC stated that if global warming would be limited to 1.5°C, the avoided climate change
impacts on sustainable development, eradication of poverty and reducing inequality would
be greater compared to the impacts from 2°C [74]. These different emissions reductions
goals with different timeframes present a challenge for power system regulators. What is the
most economically efficient way to plan and operate the power system? Should we optimize
investments on new power plants to reach 2030 emissions targets (e.g. CPP’s intent) and
from there optimize until 2050 to achieve the long-term emission targets (e.g. IPCC)? Or
should we plan and optimize the power system capacity expansion from today until 20507
This question has been studied for the entire economic sector using different global integrated
assessment models. It has been shown [70], [85], [58], [12], [88], [104] that weak climate near-
term targets delay the transition towards a cleaner economy, which will require aggressive
subsequent action to achieve climate stabilization goals. These studies also show that, due
to the lack of foresight, unproductive near-term investments take place, which results in
fossil fuels lock-ins and higher long-term mitigation costs. Therefore, it is relevant to study
the impacts of short or medium-term policy for the electric power system. Additionally, the
electricity and heat sector is particularly important because it is the greatest emitter in the
world, accounting for 30.4% of total greenhouse gas emissions as of 2016 [55]. To the best
of our knowledge, this type of analysis has not been applied to the electric power sector,
and this study fills that gap. This chapter expands the work done for the California Energy
Commission [101]. The main contribution of this work is to show the cost effectiveness
of having stronger medium term (2030) policies that would promote an earlier transition
towards lower carbon intensive technologies in the power system.

4.3 Problem Formulation

Description of the Optimization Problem

To study the consequences of weak short-sighted electricity policy we use the SWITCH
model (AMPL version). SWITCH is a long-term power system capacity expansion model
with high temporal and geographical resolution. So far, the SWITCH model has been
developed for different regions and used for several studies [36], [103], [76], [77], [79], [101],
[47], [17], [66]. This study uses SWITCH WECC (Western Electricity Coordinating Council)
because the electricity system is the second highest-emitting economic sector in the U.S. with



CHAPTER 4. COST AND IMPACT OF WEAK MEDIUM TERM POLICIES IN THE
ELECTRICITY SYSTEM IN WESTERN NORTH AMERICA 42

a 32% share as of 2018 [5].

As an optimization problem, it is classified as a deterministic linear or mixed integer
program. The objective function minimizes the total power system cost: investment and
operation costs of generation and transmission. The decision variables of the optimization
problem can be summarized in the following sets: capacity investment decisions for each
potential new project in each period, capacity investment decisions for each potential new
transmission line between any load areas in each period, hourly dispatch decisions for each
existing and new generator installed in each period, decisions on hourly transmitted energy
through the existing and new transmission lines. The main constraints in the optimiza-
tion problem are: hourly demand in each load area has to be met by the generation and
transmitted energy, capacity limits must be respected for generators and transmission lines,
wind and solar generators are limited by their hourly geolocated capacity factors, gener-
ation from each hydropower plant is limited by historical monthly availability (minimum,
average and maximum generation), biomass and geothermal deployment is limited by the
resource availability in the WECC, hourly ramping restrictions for generators depending on
their technology, respect yearly maintenance time for each generation technology, lifetime
of different technologies must be respected, policy constraints as carbon cap, carbon tax,
Renewable Portfolio Standards, among others. For a complete list and description refer to
the Appendix A.

For this study, the optimization horizon is divided in four investment periods of ten years
each: 2016 — 2025 (which we call “2020”), 2026 — 2035 (“2030”), 2036 — 2045 (“2040”), and
2046 — 2055 (“2050”). Each period simulates 72 hours of dispatch. For one year per period
we sample every two months, two days per month (median and peak load days) and every
four hours per day (6 months x 2 days/month x 6 hour/day = 72 hours). The peak days
have the weight of one and the median days of n—1 where n is the number of days of that
month, and this represents a full month.

Summary of Data Sources

Geographically, the SWITCH WECC model divides the WECC in 50 zones or load
areas. The transmission system was obtained from Ventyx geolocated transmission line data
[26] also using data on the thermal limits from the Federal Energy Regulatory Commission
(FERC) [21]. In total, there are 105 existing transmission lines connecting load zones in
SWITCH. SWITCH can decide to build more transmission lines if it is optimal. De-rating
of lines and transmission losses are taken into account.

Electricity demand profiles come from historical hourly loads from 2006 [20], [25] (and
ITRON). These profiles are projected for future years. Hourly existing and potential new
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wind farm power output is derived from the 3TIER Western Wind and Solar Integration
Study wind speed dataset [60], [63] using idealized turbine power output curves on interpo-
lated wind speed values. For existing and potential new solar power plants, hourly capacity
factors of each project over the course of the year 2006 were simulated using the System Ad-
visor Model from the National Renewable Energy Laboratory. The optimization can choose
from over 7,000 potential new geolocated generators in the WECC. Fuel prices projections
for each load area were obtained from the U.S. Energy Information Administration (2017)
[3]. Capital costs and operation and maintenance costs were obtained from Black and Veatch
2012 [98]. The historical pool of exiting power plants in the WECC was obtained from the
U.S. Energy Information Administration (EIA-860, EIA-923, 2007 data).

Description of Medium and Long Optimization

In order to study the impact of insufficient planning horizons with weak near-term policies
we use two optimization methods: “long optimization” and “medium optimization”. The
control case or long optimization is the traditional deterministic optimization from 2016 to
2055, taking into account carbon cap constraints for all the years.

The medium optimization was developed for this study to analyze the impacts of short
term policy goals on the power system operations and capacity expansion. The basic idea
behind the medium optimization is to break investment planning into two stages: present
day until 2030, and 2030 — 2050. In the long optimization, the timeframe optimized is from
2016 until 2050. The medium optimization optimizes in a shortsighted manner by solving
the problem in two consecutive stages: 1) optimizing the grid in 2016 — 2030 (without any
information after 2030), 2) using the optimal buildout in 2030 from stage 1 optimizes from
2031 until 2050. In other words, the first step minimizes the cost of the operation and
investment of the power system from 2016 to 2030 taking into account all policy constraints
(e.g. yearly carbon cap). The second step consists of optimizing investments and operations
from 2031 to 2055 with stronger emission policies for 2050 (i.e. 80% reductions). This
medium optimization recreates the challenge of optimizing the expansion and operation of
the power system in phases. First, only taking into account policies until 2030. Investment
decisions made until 2030 become the initial state for the second step of the optimization.
The second step optimizes decisions from 2031 to 2055 to comply with more stringent policies,
specially by 2050. Therefore, the hypothesis is that the first step will expand and operate the
system in a shortsighted way; having as a consequence carbon locks-in or a delayed transition
towards technologies with lower CO5 emissions. Thus, the second step will have to change the
energy mix more aggressively to transition towards a cleaner electric grid by 2050 compared
to the long optimization (which optimizes in only one step: 2016 — 2055, taking into account
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the more stringent 2050 carbon cap constraints). The long and medium optimization use the
same periods and hours sampled for consistency and to isolate the impact and carbon locks-
in produced by weak medium-term electricity policies. The medium and long optimization
are run for each of the three scenarios modeled (i.e. solutions from six optimization problems
are studied in this work).

4.4 Scenarios

The scenarios that are used in this study are three different carbon cap scenarios shown
in Fig. 4.1.
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Figure 4.1: WECC carbon cap scenarios. In green is the 80% emissions reductions from
1990 levels by 2050 scenario (labeled as “80% by 2050”), in blue the Clean Power Plan
scenario (labeled as “CPP”), and in red 40% emissions reductions by 2030 (labeled as “40%
by 2030”).

In Fig. 4.1, the scenario with the green line (“80% by 2050”) corresponds to a linear
decrease in emissions from 2016 until 2020 where emissions are restricted to 1990 levels
[42]. Then a linear decrease from 2021 until 2050 where 80% reductions from 1990 levels
are enforced [93]. The blue line (“CPP”) corresponds to a linear decrease in emissions from
2016 until 2020 where emissions are restricted to 1990 levels and then a linear decrease in
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emissions until 2030 where the CPP target is enforced (32% reductions from 2005 levels, or
analogously, 11% reductions from 1990 levels). From 2031 until 2050 the cap has a linear
decrease until 80% reductions from 1990 levels are achieved by 2050. Finally, the red line
(“40% by 2030”) corresponds to the same linear decrease in emissions from 2016 until 2020
where emissions are restricted to 1990 levels. Then a linear decrease until 2030 where 40%
of reductions are enforced, simulating the case if the Californian executive order B-30-15 [43]
were to be expanded to the WECC. And from 2030 until 2050 a linear decrease until 2050
when 80% reductions are mandated. Throughout this manuscript the three scenarios will be
addressed as “80% by 2050”, “CPP”, and “40% by 2030” respectively.

The intuition behind the first step of the medium optimization is that it provides decisions
that would be made until 2030 without considering the more stringent policy that will be
enforced in 2050. Therefore, they reflect the signals that are currently given to the investors
of the power system and to the grid’s operators. On the other hand, the second step of the
medium optimization faces the challenge of achieving the more stringent carbon caps from
2031 until 2050 having a grid already built by 2030 (from the first step) that did not take
into account in its expansion carbon caps beyond 2030. Therefore, the medium optimization
seeks to mimic the way we would expand the power system in the WECC if we keep imposing
only near-term policies as we have done so far. The caveat of this study is that we assume
we will have stringent carbon cap policies by 2050, whether they affect our 2030 decisions
(long optimization) or not (medium optimization). Consequently, the research question we
study is: How to plan and implement policy in the power system efficiently? From today
until 2030 and then until 20507 Or plan from today until 20507

4.5 Results and Analysis

Optimal energy mix for the three scenarios in the long
optimization case

To understand the impacts of medium term planning, we must first examine results from
the long-run optimizations (Fig. 4.2).

We can observe how in all the scenarios coal power plants are decommissioned progres-
sively over the four periods. Each scenario presents a different transition rate for decom-
missioning and electricity generation reduction from coal power plants. By period 2030,
the scenario that reduces coal power generation the most is “40% by 20307 with a 1.6%
of participation of coal. The scenario “80% by 2050” follows it with 4.0% and finally the
“CPP” scenario with 4.4% of energy generated by coal. From the 2020 period to the 2030
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Figure 4.2: Energy generation share (as a fraction) per fuel per period for the long optimiza-
tion for the scenarios studied. On the left side is the “80% by 2050” scenario, in the middle
the “CPP”, and on the right side the “40% by 2030”.

period all scenarios present an increase in energy generated by gas power plants. This gas
generation increase ranges from 45% by 2030 (“40% by 2030”) to 48% (“CPP”). Another
trend of interest is the consistent increase in wind and solar power generation from period
2020 until period 2050. Nonetheless, solar and wind generation reach a more significant
share only by 2050. By 2050, solar power generates roughly 20% of the electricity, and wind
power around 53%.

Comparison of optimal capacity installed in 2030 between
medium and long optimization

Table 4.1 shows total capacity installed per fuel by 2030 for each of the scenarios under
the medium and long-term optimizations.

Fig. 4.3 aids to identify key differences among the medium and long optimization by
showing the difference in installed capacity per fuel in 2030.

By 2030, all scenarios in the medium optimization deploy coal, a technology more carbon
emissions intensive (i.e. ton CO2/MWh), at the expense of less deployment of a cleaner one,
gas, compared to the long optimization. In the medium optimization cases, due to their
lack of foresight of the stringent carbon cap by 2050, coal power plants are decommissioned
at a slower rate than in the long optimization. This results in more installed capacity of
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Table 4.1: Capacity installed in gigawatts in the WECC per fuel by 2030 for the scenarios
studied. The columns show installed capacity from the medium and long optimization for
each scenario in 2030.

80% by 2050 CPP 40% by 2030
Fuel Medium Long | Medium Long | Medium Long
Biomass 2.4 2.5 2.4 2.4 2.5 2.5
Coal 5.7 5.5 15.1 5.8 3.8 24
Gas 111.9 1134 | 1045 1150 | 1089 111.6
Geothermal 0.5 0.8 0.5 0.6 1.1 1.1
Solar 22.3 21.3 21.3 19.6 27.0 26.2
Storage 0.0 0.0 0.0 0.0 0.0 0.0
Uranium 7.7 7.7 7.7 7.7 7.7 7.7
Water 66.7 66.7 66.7 66.7 66.7 66.7
Wind 39.2 37.6 37.4 33.7 47.4 42.0

coal power plants in the medium optimization —a carbon lock-in. On the other hand, the
medium optimization invests less in gas power plants compared to the long optimization.
The more carbon intensive mix in 2030 in the medium optimization requires an abrupt
technological change (2030 — 2050, i.e. 20 years instead of 40) to comply with 2050 stringent
carbon caps. The scenario that shows the greatest difference in installed coal and gas power
plants between the medium and long optimization in 2030 is “CPP”. There is an excess of
9.3 GW of coal power plants and a lack of 11 GW of gas.

Comparison of optimal energy generation by 2030 between the
medium and long optimization

As expected, the difference between the energy generated in the 2030 period in the
medium and long optimization follows the same pattern as the capacity installed. Fig. 4.4
shows the difference in electricity generation by 2030 per fuel between the medium and long
optimization.

In all scenarios in the period 2030, the medium optimization generates more electricity
from coal plants than in the long optimization. The energy produced by coal plants in the
medium optimization exceeds the long optimization from 13 TWh (“80 by 2050”) up to
690 TWh (“CPP”). In general, the excess in generation from coal power plants substitutes
generation from gas power plants. “CPP” shows the greatest difference in generation across
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Figure 4.3: Change in capacity installed in gigawatts per fuel by 2030 for the scenarios
studied. The difference corresponds to capacity per fuel installed by 2030 in the medium
optimization minus the capacity installed in 2030 in the long optimization. On the left is the
“80% by 2050” scenario, in the middle the “CPP” scenario (where more coal and less gas are
installed in the medium optimization), and on the right side the “40% by 2030” scenario.
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Figure 4.4: Change in energy generated in terawatt hour per fuel during the period 2030
for the scenarios studied. The difference corresponds to the generation per fuel by 2030 in
the medium optimization minus the generation in 2030 in the long optimization. On the
left is the “80% by 2050” scenario, in the middle the “CPP” scenario (where more coal and
less gas are deployed in the medium optimization), and on the right side the “40% by 2030”
scenario.
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all scenarios. In the medium optimization, it produces 690 TWh more of energy from coal
plants compared to the long optimization. To put this in perspective, 690 TWh is roughly
7.4% of the total load in the 2030 period. The change in energy for the rest of the scenarios
is less than 2% of the total load by 2030. This substitution of gas in favor of coal for the
“CPP” scenario can be explained by the fact that “CPP” does not have a stringent carbon
cap by 2030. Therefore the medium optimization does not transition from more carbon
intensive technologies to cleaner ones as early as 2030. However, decisions made for 2030
in the long optimization take into account the stringent carbon cap by 2050. This results
in a considerable decommission of coal by 2030 to cost effectively reach the 2050 emissions
target.

Comparison of optimal emissions by 2030 between the medium
and long optimization

The explanation behind the carbon lock-in in the medium-term optimizations for “CPP”
lies in the optimal CO, emissions by 2030. Fig. 4.5 shows emissions in the year 2030 for all
the scenarios for the medium (in yellow) and long (in blue) optimizations. The red dashed
lines correspond to the carbon cap for each scenario in 2030.

80% by 2050 CppP 40% by 2030
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Figure 4.5: CO4 emissions in the year 2030 for the medium (yellow) and long optimization
(blue). The red dashed line represents the carbon cap for the year 2030 for each scenario.
On the left side is the “80% by 2050” scenario, in the middle the “CPP” scenario, and on
the right side the “40% by 2030” scenario.
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The medium optimization does not have an early foresight of the more stringent carbon
caps it will have to face after 2030 during its second optimization stage. Therefore, it is
optimal to emit as much carbon as its 2030 cap allows. This can be observed where yellow
bars are at the same height as the carbon cap. For the “CPP” case, the long optimization
emits less carbon (blue bar) in 2030 than the carbon cap. This occurs because the long
optimization has perfect foresight in 2030 of the more stringent carbon cap target in 2050.
Therefore, the long optimization realizes that it is cost effective to start deploying cleaner
energy as early as 2030 in order to optimally reach the stricter emissions goal of 2050. This
shows the importance of optimizing the power system in the long-term when medium term
policies are weak. In the case of the medium optimization for “CPP”, due to its lack of
foresight, it emits CO, at the maximum allowed in 2030. Therefore, the second step of the
medium optimization has to transition more abruptly to cleaner technologies to achieve the
2050 target. This capacity expansion is suboptimal (Refer to Cost analysis section). On the
other hand, for the scenarios “80% by 2050” and “40% by 2030” optimal carbon emissions in
the year 2030 in the case of the long-term optimizations are equal to their respective carbon
caps. This suggests that the carbon caps in 2030 for “80% by 2050” and “40% by 2030”
are well aligned with the carbon cap in 2050. Therefore, through these two scenarios we
show that stronger medium-term policies yield to an expansion of the power grid closer to
the optimal expansion resulting from optimizing in the long-term. In practice, one way to
cope with the lack of foresight of optimizing in the medium term would be to enforce more
stringent policies for 2030. These policies would be designed to mimic the optimal results
of the long optimization. For example, for the “CPP” scenario, we would need to force a
26% carbon emissions reductions from 1990 levels by 2030 (which corresponds to the optimal
reductions achieved in the long optimization by 2030).

Clean Power Plan carbon lock-in maps in 2030

Fig. 4.6 shows the difference in installed capacity by 2030 between the medium and long
optimization for coal (bottom) and gas (top) for the “CPP” scenario for each zone. Darker
blue represents more installed capacity in the medium optimization, while darker red means
less.

In general, there is a substitution between installed coal and (lack of installed) gas power
plants in the medium optimization among the geographical zones.
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Figure 4.6: Change in gas (top) and coal (bottom) power plants’ capacity in gigawatts by
2030 for “CPP” scenario. The difference corresponds to capacity installed by 2030 in the
medium optimization minus the capacity installed by 2030 in the long optimization.
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Cost analysis

Fig. 4.7 shows the increase in cost per period from using the medium optimization instead
of the long optimization.

10.0-
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Figure 4.7: Increase in cost per period from using the medium optimization instead of the
long optimization. The red solid line represents cost increases from “40% by 2030” scenario,
the short dashed green line corresponds to “80% by 2050,” and the long dashed blue line
represents “CPP” scenario.

There are minor to no savings in 2020 and 2030 from using the medium optimization.
Thus, there is no economic benefit of having weaker policies by 2030. However, the expansion
and operation of the power system from the medium optimization in 2040 and 2050 is more
expensive than the cost incurred by the long optimization in those periods. The most
extreme case is for the “CP” scenario, where the total cost of expanding and operating the
grid in 2050 is 11% more expensive than for the long optimization. In other words, the
cost of electricity in 2050 obtained from using the medium optimization is of $179.70/MWh,
instead of $162.41/MWh achieved by the long optimization. Thus, we have shown the
sub optimality of the solution provided by the medium optimization. This is due to the
more abrupt transition to clean energy that has to take place in the last two decades.
This contrasts the expansion and operation of the long optimization for “CPP” because it
transitions progressively over the decades to meet its 2050 carbon cap cost effectively. In
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the other two scenarios, the increase in cost is small. Nonetheless, this minor increase in
cost in 2040 and 2050 reflects the fact that more coal is deployed in 2030 instead of gas
compared to the long optimization. Therefore, these two scenarios also have to adjust their
grid in the last two decades, but to a lesser extent compared to “CPP”. Thus, their medium-
term carbon policies are strong enough to allow a closer-to-optimal transition to meet the
strongest carbon cap policy by 2050.

4.6 Conclusions and Policy Implications

Throughout this work we study the question of planning the power system in the medium
(2030) or long-term (2050). Results are conclusive by depicting a higher deployment of coal
power instead of gas by 2030 in the medium-term optimizations compared to results from the
long-term optimizations for the same year. Conversely, the long-term optimizations show a
progressive transition towards a cleaner electric grid from early stages (2030). The medium-
term optimizations do not foresee the more stringent carbon cap by 2050. Thus, they have to
transition quicker to a cleaner grid in the last two decades (second step of the optimization)
instead of progressively transitioning during the four periods. This is clearly observed in the
“CPP” case, where its carbon cap by 2030 is inactive in the long optimization. This means
that it is optimal to emit less CO, than it is required in 2030 to achieve the 2050 goals cost
effectively. To address the impact of medium term planning, we recommend to either place
more stringent targets in the medium term (2030) or plan until 2050 with its more restrictive
carbon cap by the end of the simulation. Given that it is impractical to suggest regulators
to optimize the grid until 2050, we recommend to design stronger near-term policies (e.g.
2030) that would result in mimicking decisions made by optimizing in the long-term. For
the“CPP” scenario, instead of enforcing a reduction on emissions to 11% below 1990 levels
by 2030, a reduction in emissions by 26% in 2030 in the WECC would mimic the optimal
and cost-effective energy transition of planning in the long-term.
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Chapter 5

Power System Planning in Western
North America: Deterministic and
Stochastic Scenarios under Climate
Change

5.1 Preface

The work in this chapter is part of the work presented to the California Energy Commi-
ssion through the technical report titled “Building a Healthier and More Robust Future: 2050
Low Carbon Energy Scenarios for California” by Max Wei, Shuba Raghavan and Patricia
Hidalgo-Gonzalez (primary authors) [101].

5.2 Introduction

It is expected that future electricity systems will have high levels of renewable sources
such as solar and wind. This variability and volatility may pose several challenges in power
systems, in particular when high penetration levels of these sources are present. Earlier stud-
ies indicate that greater storage and transmission expansion are necessary to promote the
efficient integration of variable renewables while maintaining a reliable and secure system. To
decide these optimal investments, complex temporal and spatial resolution must be consid-
ered in expansion planning models. Traditionally, expansion planning models in electricity
systems consider a simplified version of the grid to decide what types of infrastructure to
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install, as well as where and when to install them in the system, such as generators or trans-
mission lines. These models usually do not capture the chronological sequence of time and
the spatial location of the resources, and so the complex temporal and spatial distribution of
variable renewable resources is not considered. Investment portfolios are then evaluated in
detailed models to simulate the operational performance of the system in particular years.
This study used the SWITCH 2.0 model [56] (i.e. Python version) to decide the optimal
investment decisions and explore the cost of generation, transmission, and storage options
for a future electricity system.

SWITCH 2.0! is a Python package that can be used to create and solve power system
expansion planning models. Taking advantage of the Python framework, SWITCH uses a
modular architecture that allows users to include specific components through a list of mod-
ules depending on the complexity of study; these components are depicted in Fig. 5.1. It uses
the open-source Python Optimization Modeling Objects (Pyomo) package as a framework to
define optimization models, load data, and solve the optimization models using commercial
or open-source solvers.

timescales — :
Francah SwitchModel [~  Generatos | e
— — — ——
Policies Balancing Energy Sources Transmission Core Extensions
rps simple load zones properties local t&d build hydro simple
carbon policies unserved load dispatch f--- hydro system
[planning reserves| no commit - | storage
[ 1 ] | R
Operating Reserves| | Electric Vehicles | | Demand Response Fuel Costs Transport Commit
areas simple simple -1 simple build operate
spinning reserves t markets \dispatch | fuel use
discrete

Figure 5.1: List of Modules in SWITCH 2.0.

SWITCH operates using many different spatial and temporal scales to minimize the
cost of transitioning from the current state to a future decarbonized power system. The

!The SWITCH electric power system planning model was initially created at the University of California,
Berkeley by Dr. Matthias Fripp, then developed by Dr. James Nelson, Dr. Ana Mileva, Dr. Josiah
Johnston and Patricia Hidalgo-Gonzalez. SWITCH WECC Python was adapted and further developed by
Patricia Hidalgo-Gonzalez, Dr. Josiah Johnston and Rodrigo Henriquez-Auba. The model is maintained
and developed in Professor Daniel Kammen’s Renewable and Appropriate Energy Laboratory (RAEL) at
the University of California, Berkeley.
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model uses a set of chronological time series with hourly demand and renewable generation
profiles in a planning expansion model. Using this framework allows consideration of the
hourly behavior of renewable variable sources, such as wind and solar power, and storage
in representative time series over several periods. The model also considers an electric
network with several load zones connected through a transmission system with limitations
to realistic capacity levels by using a derating technique over the lines. Also, policies as
Renewable Portfolio Standard and carbon cap constraints are simultaneously considered
with the investment decisions to evaluate the changes on the power system infrastructure.
SWITCH concurrently optimizes investment decisions and dispatch of the power system
infrastructure.

In this study, SWITCH is used to examine the future of the electric power system in
California and western North America (WECC) under different scenarios of climate change
and policies through the present day to 2050. These scenarios, with their particular charac-
teristics, are detailed in Section 5.3, Subsection Description of Scenarios.

5.3 Long-term Power System Planning in Western
North America: Deterministic Scenarios

Model Description

We evaluate different policy relevant scenarios using the Python SWITCH WECC model.
SWITCH is a long-term power system capacity expansion model with high temporal and
geographical resolution. As an optimization problem, it is classified as a deterministic linear
or mixed integer program. The objective function minimizes the total power system cost:
investment and operation costs of generation and transmission. In addition to operational
(reserves, ramping, etc.), technological and resource potential constraints, different policy
constraints can be modeled (e.g. carbon cap, carbon tax, Renewable Portfolio Standard
(RPS), etc.). For its detailed mathematical description refer to Appendix A. To the best
of our knowledge, SWITCH’s high time and geographical resolution makes it a power sys-
tem capacity expansion model without precedent. This allows a more realistic study of the
expansion and operation of the electrical grid with the presence of renewable intermittent
resources, such as wind and solar power. The optimization horizon is divided in four invest-
ment periods of 10 years: 2016-2025 (“2020”), 2026-2035 (“2030”), 2036-2045 (“2040”), and
2046-2055 (“2050”). Each period simulates 144 hours of dispatch. For one year per period,
we sample every month, two days per month (median and peak load days) and every four
hours per day (12 months x 2 days/month x 6 hour/day = 144 hours). The peak days have
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the weight of one and the median days of n —1 where n is the number of days of that month,
and this represents a full month. Geographically, the SWITCH WECC model divides the
WECC in 50 zones or load areas (Fig. 5.2).

Figure 5.2: WECC Divided in 50 SWITCH Load Zones

The transmission system was obtained from Ventyx geolocated transmission line data
[26] also using data on the thermal limits from the Federal Energy Regulatory Commission
(FERC) [21]. In total, there are 105 existing transmission lines connecting load zone in
SWITCH. SWITCH can decide to build more transmission lines if it is optimal. De-rating
of lines and transmission losses are taken into account.

Electricity demand profiles come from historical hourly loads from 2006 [20], [25] (and
ITRON). These profiles were updated to current projections described in Section 5.3, Sub-
section Description of Scenarios. Hourly existing wind farm power output is derived from
the 3TIER Western Wind and Solar Integration Study wind speed dataset [60], [63] using
idealized turbine power output curves on interpolated wind speed values. Afterwards, a pro-
portion of possible wind sites were removed from California according to Category 3 from
[106]. Category 3 encompasses areas that are legally excluded for energy deployment, pro-
tected ecological and areas of social value, and conservation areas. For solar energy, hourly
capacity factors of each project over the course of the year 2006 were simulated using the
System Advisor Model from the National Renewable Energy Laboratory.

All current (2017) Renewable Portfolio Standards were modeled for each load zone in the
WECC as unbundled. A WECC-wide carbon cap was modeled to achieve the 80% emissions
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Figure 5.3: In light blue are non-existing lines, but that can be installed in the optimization.
Each black dot represents the largest substation in the load zone.

reductions from 1990 levels by 2050. Additionally, a California carbon cap was modeled to
attain 40% emissions reductions by 2030, and a linear decrease to achieve 80% reductions
by 2050.

Fuel prices projections were obtained from the United States Environmental Information
Agency (EIA) (2017) [3]. Capital costs and operation and maintenance costs were obtained
from Black and Veatch [98] and Energy and Environmental Economics [33]. The current
pool of existing power plants in the WECC was also obtained from EIA (EIA-860, EIA-923,
2016 data). Hydropower historical generation was also obtained from EIA-923 data.

Description of Scenarios
Electricity Demand Scenarios and Climate Change Scenarios

Eight different demand scenarios are modeled for this study. Table 5.1 shows the Frozen,
Intermediate energy efficiency with and without electrification (SB350), and Aggressive en-
ergy efficiency with and without electricity cases.

Fig. 5.4 and 5.5 show total annual demands for the WECC and California in the periods
simulated with the Python SWITCH WECC model. In addition to these five load scenarios,
we also model three load projections from climate change models. The climate models are
CanESM2, HadGEM2ES and MIROCS5. Industrial Economics and the U.S. Environmental
Protection Agency (EPA) provided heating degree days (HDD) and cooling degree days
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Table 5.1: Electricity demand scenarios modeled.

Scenario Description

Frozen This case essentially assumes the baseline case from

the California Energy Commission demand projections

without SB350 savings, and a low rate of electrification
for 2030 and 2050.

Intermediate no electrification This case achieves the SB350 target of doubling the
rate of energy efficiency by 2030. A low rate of
electrification for buildings is assumed.

Intermediate + electrification This scenario is the same as the Intermediate
no electrification scenario but adds aggressive building
electrification starting in 2020.

Aggressive EE no electrification This scenario assumes a higher rate of energy
efficiency (EE) retrofits starting in 2020 than the
SB350 case but with a low rate of building
electrification.

Aggressive EE + electrification This case is similar to the preceding case

but with aggressive building electrification starting

in 2020 and more aggressive adoption of electrical
vehicles in transportation.

(CDD) projections with a spatial resolution of 5,163 /2 degree grids for the U.S. for all
years until 2100 . Using this data, HDD/CDD projections for the SWITCH load zones
until 2100 are calculated (but we model the electricity system until 2050). The National
Renewable Energy Laboratory provided 135 linear regression models [91] to predict hourly
changes in load using as input HDD/CDD, hour of the day, and season of the year. The
linear regression models predict hourly load changes for the ReEDS balancing areas [62].
We translate their prediction models into equivalent models for the SWITCH WECC load
zones. Finally, the hourly load predictions are post-processed so they are aligned with the
predictions for California from the University of California, Irvine.

For the climate change scenarios, in addition to new hourly load projections, we also
include monthly hydropower availability projections until 2050 from Industrial Economics.
The spatial resolution of these hydropower projections match the 135 ReEDS balancing
areas. We map these projections to each hydropower plant in the WECC.
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Figure 5.5: Electricity Demand Scenarios for California.
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Table 5.2: Expected Device Stocks in Millions and Energy Required for Charging per Zone
and Year.

LDVs stock [million] Energy required [GWh]
Zone 2020 2030 2040 2050 | 2020 2030 2040 2030
CA 0.85 6.59 19.98 31.67 | 2637 16363 46857 91493

RM-AZNM | 0.007 0.41 3.09 9.77 | 200.00 1600 8292 24107
WECC-CAN | 0.044 0.72 328 7.21 600 4223 12738 26123
NWPP 0.09 140 6.25 1348 | 1200 8192 24215 48808

Electrical Vehicles and Demand Response: Aggressive Efficiency with
Electrification

In this study, the impacts of smart charging of light duty electric vehicles (LDVs) are
analyzed in SWITCH. In particular, we study the differences in investment portfolios and
dispatch decisions when the availability of flexible charging of LDVs is controllable by system
operators or system resource aggregators at no cost.

For this purpose, the trajectory of charging must be between two bounds, determined by
the BEAM model, detailed in [40], that will depend on users’ characteristics and charging
profiles. The BEAM model simulates the mobility and charging behavior for a representative
day in a week, for three types of chargers: public, residential and work. Each of these vehicles
will have particular charging constraints that depend on users’ availability to charge. For
example, for four random plug-in electric vehicles (PEV) on BEAM, Fig. 5.6 depicts an
example of maximum and minimum charging profiles on a typical day for these PEVs.

Based on those charging sessions, aggregated profiles (calculated as the addition of the
vehicles) are created for defining energy bounds for the cumulative charge of vehicles. Fig.5.7
presents the aggregated profiles, and then normalized per kWh. This generates the region
of feasible trajectories for the charging of PEVs used in the SWITCH model.

Table 5.2 provides the estimation of energy use for EVs, based on growth projection on
expected sales of EVs and average expected use, in particular miles traveled per year and
efficiency of the batteries in kWh/miles.

These energy requirements will be enforced in SWITCH through scaling the normalized
charging profile, depending on each zone and year. In addition, load shifting service of
demand response (DR) at no cost is available with this scenario. In this case study, we are
interested in assessing the value of DR for residential and commercial buildings. When DR
is being considered, the amount of load that can be shifted per hour is limited to a specified
amount of energy. This amount of energy will depend on the specific flexibility at each load
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Figure 5.6: Example Constraints on Charging Profiles on Different PEVs.
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Figure 5.7: Average Bounds on Cumulative Charging Trajectories.
Table 5.3: Fraction of Shifted Demand by Period and Zone.
Period
Average Moveable Percentage of Hourly Total Demand | 2020 2030 2040 2050
Total % CA [w.r.t. total load] 0.30% 2.00% 7.00% 10.00%
Total % non-CA [w.r.t. total load] 0.00% 0.30% 2.00% 7.00%

zone and period. The percentages of available load shifting are shown in Table 5.3.
Through the day, the total load shifted between hours must add up to zero. This condition
is crucial to guarantee that the total demand is the same despite DR being available or not.
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Results and Analysis
Installed Capacity by 2050 in the WECC and California

Fig. 5.8 and 5.9 show installed capacity by fuel in the WECC and California, respectively.
As expected, the capacity required in the WECC by 2050 increases as the electricity demand
increases for each scenario.
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Figure 5.8: Installed Capacity in the WECC by 2050 for All Scenarios.

In all scenarios, wind power is the dominant technology. The greatest wind share is 56%
in the Aggressive Efficiency with Electrification case, and the smallest wind share is 45%
in the Intermediate Efficiency (SB 350) scenario. The second most used technology in the
WECC by 2050 is solar power with its share ranging between 22% (frozen and intermediate
efficiency scenarios) and 18% (aggressive efficiency without climate change scenarios). Gas
power comes in third place with capacity installed by 2050 ranging between 16% and 18%.
Hydropower’s capacity ranges from 6% and 11%. There is less than 3% of installed capacity
for geothermal, nuclear energy and biomass.

In the climate change scenarios, the total capacity installed in the WECC is 2% to 7%
higher than in their non-climate change counterpart (aggressive efficiency and electrification).
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Figure 5.9: Installed Capacity in California by 2050 for All Scenarios.

Load and hydropower availability projections from HadGEM2ES present the highest stress
for the power grid (total capacity 7% higher).

California observes a similar trend as the WECC for total installed capacity by 2050.
As expected, the total capacity increases along with total load in the different scenarios.
Gas power is the predominant technology for California in 2050 with its share ranging from
51% to 38%, in the aggressive efficiency and electrification scenario and in the EV and DR
scenario, respectively. The next technology that follows gas power is solar energy. Solar
power ranges between 24% and 19%. The climate change scenario from HadGEM2ES and
the intermediate efficiency and electrification scenario show a 24% share of solar power. The
next technology used the most in California is hydropower. Hydropower’s installed capacity
ranges between 13% and 18% depending on the scenario, then wind power, with one or two
percent lower fraction compared to hydropower. The smaller participation of wind power in
California compared to the WECC can be explained by the land exclusion applied to wind
farm deployment in California (refer to [106]).

The climate change scenarios show interesting results in California. The total capacity
installed by 2050 for the three scenarios using climate change is lower than their non-climate
change counterpart (aggressive efficiency and electrification). The total capacity in the cli-
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mate change scenarios is 6% to 10% lower than the capacity installed in the aggressive
efficiency and electrification scenario. This result is counterintuitive due to the higher an-
nual load that California faces under climate change. Transmission lines expansion between
California and the rest of the WECC explains this result. Thus, the strategy to face climate
change impacts that will minimize costs will rely on investing more in transmission capacity
between California and the rest of the WECC.

Installed Transmission by Periods in the WECC and California

In Fig. 5.10, we observe how two of the climate change scenarios expand the transmis-
sion system between California and the rest of the WECC more than in the non-climate
change scenario (aggressive efficiency and electrification). For HadGEM2ES, there is 6%
more transmission capacity used in 2050 between California and the WECC compared to
the non-climate change scenario. In the MIROCS5 scenario, there is 4% more transmission
capacity installed.
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Figure 5.10: Existing and New Transmission Lines Capacity for All Periods and All Scenarios
Between California and the Rest of the WECC.

This increase in transmission capacity between California and the rest of the WECC is
optimal compared to instead increasing the capacity of the generation in California.
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Another interesting finding is that to meet the strict carbon cap goals and higher load
by 2050, transmission lines must expand more aggressively in 2050 compared to the other
periods simulated. Between 18% and 40% of the total transmission lines capacity is built in
the 2050 time frame depending on the scenario.

Fig. 5.11 shows the expansion in transmission capacity in the WECC by period for
each scenario. There is a positive correlation between the scenarios with more annual load
and more transmission capacity expanded. Between 18% and 44% of the total transmission
capacity is installed in the last period (2050) depending on the scenario.
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WECC transmission lines capacity [GW]
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Figure 5.11: Existing and New Transmission Lines Capacity for All Periods in the WECC
for All Scenarios.

Fig. 5.12 shows transmission capacity expansion within California by period for all
scenarios. Most of the transmission capacity is already in place in the system. In 2050, the
Californian transmission system gets expanded by 5% to 12% of the cumulative installed
capacity.

Yearly Generation by 2050 in the WECC and California

Fig. 5.13 and 5.14 show yearly electricity generation in 2050 for the WECC and Califor-
nia, respectively. The majority of the energy generated in 2050 in the WECC comes from
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Figure 5.12: Existing and New Transmission Lines Capacity for All Periods and All Scenarios
Between Load Zones in California.

wind power. Wind generation constitutes between 47% and 59% of the energy mix by 2050
depending on the scenario. The scenarios that show the highest participation of wind gen-
eration are the aggressive efficiency and electrification scenario (59%) and also the climate
change scenarios (56% - 58%). Solar generation is the next most prevalent supply source,
generating between 15% and 21%. Because the EV flexibility provides more efficient use
of the solar PV peak output, the electrical vehicles and demand response scenario deploys
solar energy the most (21%) compared to the other scenarios. Generation from hydropower
ranges between 10% and 15%. Gas power generation varies between 7% and 9%. The sce-
narios that show the lowest gas share (7%) are the Aggressive efficiency and electrification,
electrical vehicles and demand response, and the climate change scenarios.

In the case of California, geothermal, hydropower, and solar power generate the majority
of the energy for all scenarios in 2050 (between 59% and 73%). Wind power comes next,
with a generation share ranging between 14% and 17%. Generation from gas power plants is
restricted to 9% - 14%, except for the aggressive efficiency and electrification where its share
is 22%. As expected, the electrical vehicles and demand response scenario shows the smallest
gas share (9%) and the greatest share from solar generation (34%) among all the scenarios.
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Figure 5.13: Yearly Generation in the WECC by 2050 For All Scenarios.

This is because the flexibility provided by EV and DR can replace the flexibility that gas
peaker plants provide. In the climate change scenarios, we observe less total energy generated
in-state compared to its analogous scenario without climate change. This corroborates the
importance of the transmission system between California and the rest of the WECC to
minimize total costs to operate the grid under climate change.

Electrical Vehicles and Demand Response: Aggressive Efficiency With
Electrification

Runs using SWITCH show significant differences in installed capacity when the flexibility
from EV and DR is considered in the model. Fig. 5.15 depicts the installed capacity in the
WECC by technology through periods 2020 to 2050.

It can be observed that total installed capacity in 2050 is reduced by more than 100 GW,
while the proportion of installed solar energy increases. This occurs because the flexibility
from EVs and DR is used to reduce the load peak of the system, which reduces the necessity
of capacity during peak hours, while also shifting load and charging vehicles during sunny
hours. This leads to an efficient deployment and use of solar power. This effect is also
observed in the generated energy in the region as observed in Fig. 5.16.
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Figure 5.14: Yearly Generation in California by 2050 for All Scenarios.
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Thanks to this flexibility, solar energy can be used more efficiently, particularly in Cal-
ifornia, where the flexibility from EV and DR is higher than in other states. This allows
the percentage of solar energy use to increase by 12% in California by 2050. Results show
that this flexibility yields savings around 5.2% of the total investment and operational costs
through 2020 to 2050. However, these results implicitly assume that smart charging and DR
is free to dispatch and procure, and demand shifting is controlled by the system planner,
operator, or third-party service provider.

Conclusions

In all the scenarios modeled, wind power shows the greatest share in capacity installed
in the WECC by 2050 (~51%), followed by solar power (~20%). The total capacity in the
climate change scenarios in the WECC by 2050 increases by 2% to 7% compared to the non-
climate change scenario. In terms of generation in the WECC by 2050, wind generates 57%,
followed by solar with 18% on average. The generation in California by 2050 is dominated
by geothermal, solar, and hydropower (67% on average). Wind generation has the fourth
highest renewable contribution due to the land environmental restrictions in California to
develop wind farms. Transmission line expansion between California and the rest of the
WECC is the optimal strategy to minimize costs when facing climate change. In the case of
HadGEMZ2ES, there is 6% more transmission capacity deployed in 2050 between California
and the WECC compared to the non-climate change scenario. In the MIROCSH scenario,
there is 4% more transmission capacity installed. Another interesting finding is that to
meet the strict carbon cap goals and higher load by 2050 for all scenarios, transmission lines
between California and the rest of the WECC need to expand more aggressively in 2050
compared to the other periods simulated. Between 18% and 40% of the total transmission
lines capacity gets built in 2050 depending on the scenario.

5.4 Stochastic Optimization Under Climate Change
Uncertainty

Introduction

Expanding the capacity of a power system and operating it in a cost-effective manner
is a complex task. On one hand, power plants have lifetimes that range from 20 years to
more than 50 years. On the other hand, transmission lines can be used for more than 100
years. Deciding the mix of power plant technologies and transmission lines to build, their
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capacity, location, and year to start building can be a convoluted problem. In addition,
this complexity increases due to the long lifetimes of the components of the system, and
their high capital costs. This challenge becomes a high financial burden if decisions are not
made optimally. Moreover, adding the operational layer to the capacity expansion problem
increases the complexity because the size of the optimization increases from making yearly
decisions (expansion of capacity) to hourly decisions (operation of the power system).

Besides this complexity, there is the uncertainty in the parameters used as inputs during
the entire time horizon modeled. This uncertainty makes it even more challenging to find
an optimal solution. Sources of this uncertainty include: how capital costs will vary over
the years for each technology, how fuel costs will fluctuate, what will be the hourly elec-
tricity demand, the variability of hourly capacity factors for wind and solar power plants,
hydropower seasonal and annual variability, etc. In most power system capacity expansion
studies, the method used to address this uncertainty is to analyze different possible scenarios.
To generate data for different types of analyses, there is research that focuses on forecasting
demand, solar and wind capacity factors, fuel prices, etc.

Lastly, climate change adds another dimension of complexity in the prediction of climate
driven parameters. Electricity demand and hydrology are the main parameters in power
systems modeling that could be affected by climate change. There has been an ongoing effort
to predict demand and hydrology under different climate models and RCPs (Representative
Concentration Pathways). There exist several climate change models. However, the scientific
community has not been able to determine which climate model will predict more accurately
the changes in temperature, precipitation and snowfall. The impacts on these variables vary
widely depending on the climate model.

Consequently, to study the optimal expansion of a power system considering the uncer-
tainty on impacts from climate change, a scenario-based approach will only shed light on
independent possible routes of capacity expansion. Each set of inputs projected from a cli-
mate change model would produce an independent possible capacity expansion. Although
this type of approach can provide useful information in discovering how the system should
expand and operate for each of the different load and hydrological projections, it falls short
in providing a robust answer for policy makers, regulators, and investors. A robust approach
would provide an optimal and unique capacity expansion given the lack of knowledge about
which climate model will better predict loads and hydrology. Therefore, a robust approach
to this problem would use as input different load and hydrological projections from different
climate models. These possible scenarios (each with an associated probability) would need
to be feasible from an operational perspective and would minimize the expected value of the
total cost (investment and operation). The optimal solution would provide a unique optimal
build out of power plants and transmission lines for all the years of the simulation and it
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would be robust and resilient since it would be optimized considering different possible sce-
narios. This approach removes the need to find a perfect model to predict climate change,
and uses a range of possible climate change predictions.

One stochastic optimization approach that models well the robust approach to power
system capacity expansion under uncertainty is the multi-stage optimization [23]. More
details on how we pose the optimization problem are described in the Subsection Model
Description: Stochastic SWITCH WECC Python.

Recently, there have been two power systems models of the WECC that, to some extent,
incorporate uncertainty in the framework of stochastic programming. The Pacific Northwest
National Laboratory developed a model in 2015 [71] that simulates operation (not invest-
ment) in a probabilistic manner for 38 load zones in the WECC. This model considers load,
wind, and solar forecast errors (not from climate change), and generation outages. Johns
Hopkins University developed the JHSMINE model for the WECC in 2016 [51]. JHSMINE
makes investment decisions for transmission and power plants in addition to operational
decisions (similarly to SWITCH). However, their planning horizon is until 2024 (opposed
to 2050 for SWITCH). JHSMINE takes into account different scenarios for fuel prices, load
growth, technology and policies but does not consider uncertainty from climate change.

The novelty and contribution of this work is that it is the first stochastic long-term (2050)
capacity expansion and operations model of the WECC with a high temporal (hourly) and
spatial resolution (50 load zones and ~8000 possible power plants to decide to install), which
also takes into account uncertainty in hourly loads and hydropower availability due to cli-
mate change. The stochastic SWITCH WECC model can take into account uncertainty in
any of its inputs (loads, capacity factors, fuel costs, capital costs, hydropower availability,
transmission costs, and policies). For this study, we focus on modeling uncertainty from cli-
mate change, thus we incorporate uncertainty from hourly loads and hydropower availability
for each month and year of the simulation period.

Model Description: Stochastic SWITCH WECC Python

The mathematical formulation we use is a two-stage optimization. We model three cli-
mate change scenarios: CanESM2ES, HadGEM2ES and MIROCS5. Each scenario is assumed
to have the same probability 1/3. The SWITCH model has two types of decision variables:
investment and operation. In the two-stage formulation, the investment decisions are the
first stage variables, and the operational decisions are the second stage variables. In other
words, investment decisions for all periods will be the same for the three scenarios (i.e., re-
silient investment decisions), and operational decisions will be specific to each climate change
scenario. The objective function is the expected value of the total net present value of the
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three climate change scenarios. Fig. 5.17 depicts a schematic of decision variables and how
they relate to each scenario.

ety ety Wty e
/l\ /d]\ /d]\ Q/

Operations = Operations = Operations

Figure 5.17: Decision Variables for Stochastic SWITCH WECC Python.

The equivalent robust formulation by extension is the following:

min  E{fi(2), f2(x), f3(z)}
s.t.

A.2) power balance constraints V scenario i € {1,2,3}

(

(A.15) — (A.18) dispatch constraints V scenario ¢ € {1, 2,3}

(A.10) — (A.14) investment constraints V scenario ¢ € {1, 2,3}

(A.26) — (A.30) fuel usage constraints V scenario ¢ € {1,2, 3}

(A.31) — (A.33) transmission investment and flow V scenario i € {1,2,3}
(A.34) — (A.35) demand response constraints V scenario i € {1, 2,3}
(A.36) — (A.37) hydropower generation constraints V scenario ¢ € {1,2, 3}
(A.38) — (A.43) storage investment and operation constraints V scenario i € {1,2, 3}
(A.44) RPS constraints V scenario ¢ € {1, 2,3}

(A.45) — (A.46) carbon cap constraints V scenario i € {1,2, 3}

Kgp 1= Kngz KG .3 equal generator capacity Vg € G, Vp epP

K} ipl = K} ipa = = K/ /p3 equal transmission capacity V¢ € L£,Vp € P

where f;(x) corresponds to the objective function A.1 as defined in the Appendix A for the
climate change scenario i € {1,2,3}, E{fi(x), f2(x), f3(x)} is the expected value of the cost
function (i.e. 3 ZZ 1 fi(z)), (A.X) is the set of investment and operational constraints defined

in Appendix A for each climate scenario i, ngyp is the installed capacity for generation
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project g during period p in climate scenario i, K iI,Jf,p is the installed transmission line capacity
of line ¢ until period p for climate scenario i, G is the set of possible generators, £ is the set
of possible transmission lines, and P is the set of periods in the optimization.

For this study, we developed Stochastic SWITCH-WECC and made this software open
source?. The value for policy makers of this modeling approach is that a unique optimal
capacity expansion portfolio is obtained as an output with an input of three possible climate
change scenarios. Thus, a climate change resilient capacity expansion is found with this

two-stage stochastic optimization approach.

Results and Analysis
Installed Capacity by 2050 in the WECC and California

Fig. 5.18 and 5.19 show the optimal capacity expansion for 2050 in the WECC and
California, respectively. The first notable finding is the optimal capacity installed in the
WECC by 2050 in the “Stochastic” or climate change resilient simulation is higher than
in the rest of the deterministic climate scenarios. By 2050, 840 GW are installed in the
“Stochastic” simulation, and in the deterministic climate change scenarios the total capacity
ranged between 790 GW and 830 GW. This result is expected because the “Stochastic”
simulation has to invest in enough capacity by 2050 to provide feasible and optimal dispatch
decisions for each of the climate change scenarios.

Another interesting finding is that the share in capacity of gas power plants increases
to 19% in the “Stochastic” formulation compared to 18% in the deterministic cases. This
can be explained because the “Stochastic” formulation has to face three different dispatch
scenarios instead of a single one (deterministic case). Facing three times the number of
constraints (dispatch equal to load for all hours) compared to the deterministic cases will
result in a greater need for flexibility, which can be provided by gas power plants. Total
installed capacity by 2050 of wind and solar power decreases by 1% in the “Stochastic”
formulation.

Similar findings can be observed in the total capacity installed by 2050 in California for
the “Stochastic” climate change formulation compared to the deterministic climate change
scenarios. By 2050, 97 GW are installed in the “Stochastic” case, whereas the total capacity
installed in the deterministic scenarios varies between 92 and 96 GW. The gas capacity
installed in the “Stochastic” formulation corresponds to 46% of the total capacity. Gas
capacity in the deterministic climate change scenarios varies between 46% and 44%.

Zhttps://github.com/RAEL-Berkeley/switch /tree/wecc
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Figure 5.18: Installed Capacity in the WECC by 2050 for Deterministic and Stochastic
Climate Change Scenarios.

Installed Transmission by Periods in the WECC and California

The total transmission capacity by 2050 in the WECC is slightly lower for the “Stochas-
tic” climate change simulation compared to the deterministic scenarios (Fig. 5.20). The
“Stochastic” simulation optimally installs 1,550 GW of transmission, while the deterministic
cases install between 1,560 and 1,450 GW. This difference can be explained by the greater
total installed capacity the “Stochastic” simulation shows. Less transmission is necessary
because more capacity is available for generation in the WECC.

Despite the overall slight reduction in total transmission installed by 2050 in the WECC
for the “Stochastic” simulation, the transmission between California and the WECC in-
creases compared to the deterministic climate change scenarios (Fig. 5.21). Transmission
installed in the “Stochastic” case is 145 GW, while the deterministic cases range between

137 and 144 GW.
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Figure 5.19: Installed Capacity in California by 2050 for Deterministic and Stochastic Cli-
mate Change Scenarios.

Conclusions

Typical electricity-grid capacity expansion models make investment decisions with fixed
inputs (for example fixed electricity demands and hydro-power availability). The resul-
tant electricity supply system may not be robust to future climate change-driven uncer-
tainties in energy demand and supply. This work presents, to the authors’ knowledge,
the first climate change stochastic long-term (2050) capacity expansion and operation elec-
tricity grid model (Stochastic SWITCH WECC) for the Western North America electric-
ity region, with high temporal and spatial resolution. The Stochastic SWITCH WECC
model generates an optimal (least cost) portfolio of power plants capacity that is robust to
varying future climate conditions using a multi-stage optimization approach with varying
electricity-demand and hydropower-availability inputs under three climate change scenarios
(CanESM2ES, HadGEM2ES and MIROC5, RCP 8.5). We find that an optimal robust elec-
tricity supply portfolio in the WECC for 2050 has about 4% higher overall installed capacity
than the average mix of the three scenarios modeled separately, and about 5.6% higher in-
stalled gas capacity, because of the greater need of operational flexibility under the wider
range of possible conditions.
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Figure 5.20: Existing and New Transmission Lines Capacity for All Periods in the WECC

for Deterministic and Stochastic Climate Change Scenarios.
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Figure 5.21: Existing and New Transmission Lines Capacity Between California and the
WECC for All Periods, for the Deterministic and Stochastic Climate Change Scenario.
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Chapter 6

Conclusions and Future Directions

6.1 Summary of Findings

The body of work in this dissertation addresses two time scales of challenges associated
to the integration of RES: real-time and long-term, Part I and Part II, respectively. The
long-term capacity expansion work in Western North America shows that by 2050, the
power system needs to be mostly dominated by RES to achieve the goal of 80% emissions
reductions from 1990 levels. This result inspires the portion of work that addresses real-time
operations. In a grid with a generation mix that varies depending on the time of the day,
and predominantly inverter connected, i.e. low and variable inertia, how can frequency be
controlled in order to maintain it at its nominal value. In this section we summarize the
main findings from both pieces of work.

As more non-synchronous RES participate in power systems, the system’s inertia de-
creases and becomes time dependent, challenging the ability of existing control schemes to
maintain frequency stability. System operators, research laboratories, and academic insti-
tutes have expressed the importance to adapt to this new power system paradigm. However,
power dynamics have been modeled as time-invariant, by not modeling the variability in the
system’s inertia. To address this the work in Chapter 2 proposes a new modeling framework
for power system dynamics to simulate a time-varying evolution of rotational inertia coeffi-
cients in a network. Power dynamics are modeled as a hybrid system with discrete modes
representing different rotational inertia regimes of the network. With this new framework,
we test two standard frequency control designs and propose a third design: Linear MPC,
Inertia Placement, and Dynamic Inertia Placement. As expected, the Linear MPC formu-
lation is better in terms of cost and energy injection/absorption to control frequency. This
finding encourages researchers to continue designing controllers in order to attain such opti-
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mality without having to optimize in real time (closed-loop MPC). Another relevant finding
is the fact that the Dynamic Inertia Placement proves to be more efficient in terms of cost
and energy usage of the controller compared to the classical Inertia Placement case. This
finding sheds light on the importance of modeling dynamics over time assuming temporal
variability in the system’s inertia. Additionally, it highlights the importance of designing a
more flexible controller that would adapt over time.

Using this new modeling framework for power dynamics, Chapter 3 studies how to control
frequency in a network by learning a controller (Section 3.2) and then reducing communi-
cation between the control agents (Section 3.3). The work in Section 3.2 proposes a new
framework for obtaining a constant data-driven controller for uncertain and time-varying
power system dynamics. This is relevant because it can be intractable to solve frequency dy-
namics in real time (time-varying LQR) in large power networks. In addition, time-varying
controllers, as the one from LQR, rely in the ability to predict or identify the current mode of
the hybrid system. Finally, given the existing infrastructure and droop control, it would be
simpler to implement a proportional controller with fixed gains compared to a time-varying
control. Using the mathematical formulation for power dynamics introduced in Chapter 2,
we find optimal controllers using an LQR formulation. We use the solution (z,u) from the
LQR as a dataset to train a fixed controller. We test our learned controller in different modes
against optimal controllers. Results show that our learned controller can be used to obtain
a similar performance as the optimal LQR controllers in the different modes. Finally, we
show that adding a virtual inertia controller can stabilize the system for low inertia modes.
This highlights the importance of using more flexible controllers when considering temporal
variability in the system dynamics.

In Section 3.3 we study how restricting communication between nodes affects the perfor-
mance and stability of a time-invariant controller designed for time-varying power system
dynamics due to RES. To do this, we generate a training set by solving an MPC formulation
for different scenarios of frequency control. We design controllers with different numbers of
features (states) via Lasso regressions. We add virtual inertia to these controllers to guaran-
tee stability. For the 11-bus test system we study, we are able to show that it is possible to
reduce the number of features in the controller (to 5 in our case study) without negatively
impacting performance and stability for any fixed inertia of the system. We also show how
increasing information availability beyond a threshold (10 features) does not enhance per-
formance or stability metrics. We are able to show global asymptotic stability for the hybrid
system using controllers with 10 features or more. Finally, by analyzing optimal feature
selection for sparse controllers, we find a positive correlation between feature selection and
connectivity of the nodes.

The work in Chapter 4 studies the question of planning the power system in the medium
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(2030) or long-term (2050). Results are conclusive by depicting a higher deployment of coal
power instead of gas by 2030 in the medium optimizations compared to results from the
long optimizations for the same year. Conversely, the long optimizations show a progressive
transition towards a cleaner electric grid from early stages (2030). The medium optimizations
do not foresee the more stringent carbon cap by 2050. Thus, they have to transition quicker to
a cleaner grid in the last two decades (second step of the optimization) instead of progressively
transitioning during the four periods. To address the impact of medium term planning, we
recommend to either place more stringent targets in the medium term (2030) or plan until
2050 with its more restrictive carbon cap by the end of the simulation. Given that it is
impractical to suggest regulators to optimize the grid until 2050, we recommend to design
stronger near-term policies (e.g. 2030) that would result in mimicking decisions made by
optimizing in the long-term. For the“CPP” scenario, instead of enforcing a reduction on
emissions to 11% below 1990 levels by 2030, a reduction in emissions by 26% in 2030 in
the WECC would mimic the optimal and cost-effective energy transition of planning in the
long-term.

In Chapter 5 we show results from different scenarios implemented in SWITCH WECC
Python (deterministic and stochastic). In all the deterministic scenarios modeled (Section
5.3), wind power shows the greatest share in capacity installed in the WECC by 2050 ( 51%),
followed by solar power ( 20%). The total capacity in the climate change scenarios in the
WECC by 2050 increases by 2% to 7% compared to the non-climate change scenario. In
terms of generation in the WECC by 2050, wind generates 57%, followed by solar with 18%
on average. Transmission line expansion between California and the rest of the WECC is
found to be the optimal strategy to minimize costs when facing climate change. Another
interesting finding is that to meet the strict carbon cap goals and higher load by 2050 for
all scenarios, transmission lines between California and the rest of the WECC need to be
expanded more aggressively in 2050 compared to the other periods simulated. Between 18%
and 40% of the total transmission lines capacity gets built in 2050 depending on the scenario.

The work in Section 5.4 presents, to the authors’ knowledge, the first climate change
stochastic long-term (2050) capacity expansion and operation electricity grid model (Stochas-
tic SWITCH WECC) for the Western North America electricity region, with high tempo-
ral and spatial resolution. Typical electricity-grid capacity expansion models make invest-
ment decisions with fixed inputs (for example fixed electricity demands and hydro-power
availability). The resultant electricity supply system may not be robust to future climate
change-driven uncertainties in energy demand and supply. The Stochastic SWITCH WECC
model generates an optimal (least cost) portfolio of power plants capacity that is robust to
varying future climate conditions using a multi-stage optimization approach with varying
electricity-demand and hydropower-availability inputs under three climate change scenar-
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ios (CanESM2ES, HadGEM2ES and MIROCS5, RCP 8.5). We find that an optimal robust
electricity supply portfolio in the WECC for 2050 has about 4% higher overall installed
capacity than the average mix of the three scenarios modeled separately, and about 5.6%
higher installed gas capacity, because of the greater demand for operational flexibility under
the wider range of possible conditions.

6.2 Future Directions

Wildfire Mitigation: Microgrids + Distribution Networks

A subfield that requires work is how to operate and design market schemes for islanded
distribution networks supplied by RES. This work is motivated by the wildfires that have
occurred in California and other regions. A risk mitigation strategy that is being considered
is to disconnect portions of the grid at the distribution level with self generation available.
To do this effectively, we need to ensure a reliable operation of the resulting microgrid and
a tariff scheme that will support its efficient operation. Some of the aspects of interest to
study are the stochasticity of the residential solar resource and of the electricity demand,
the challenge of a microgrid with zero inertia, and the coupling/decoupling of the microgrid
to the transmission network. These factors can inform how dispatch could be optimized and
how frequency and voltage could be controlled.

Frequency Dynamics and Power Flow to Design Ancillary Services

It is of importance to continue to shed light on how to effectively control power dynamics
(frequency and voltage) in power systems dominated by RES. The work in this dissertation
focuses on designing frequency regulation control schemes at the transmission level. This
line of work can be expanded by also studying voltage regulation under high penetration of
distributed solar panels.

Additionally, in collaboration with my colleague Dr. Line Roald, we plan to redesign the
market for ancillary services in the grid with high penetration of RES. Power dynamics and
optimal power flow have been traditionally modeled separately due to their different time
resolutions. However, the market can be optimized by considering both time scales jointly
in order to economically efficiently encourage the necessary ancillary services that a future
grid with only RES would require. I would establish a collaboration with the California
Independent System Operator in order to implement this new market scheme.
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Frequency Regulation with Low and Variable Inertia

This work can be extended by studying optimal placement and communications needs of
the control agents in these transmission networks. The importance of this question, under
normal operations, lies on the cost effectiveness that would transpire from optimally placing,
for example, batteries to provide frequency regulation in certain nodes of the grid. In addition
to the cost effectiveness argument, this work would enhance reliability in the power system
by taking into account potential faults and identifying strategic placement for frequency
regulation. To approach this question we can use graph theory by exploring controllability
guarantees in any given power systems network. It is also imperative to propose electricity
market redesigns that promote the adoption of these new control schemes. To address
this question, I have started a collaboration with my colleague Dr. Bala Poolla using the
framework in [83].

ML and Safety for Power Systems

Traditionally, this field has relied on optimality and safety guarantees that optimization
and control theory provide. In this new era of big data, new tools have become available
to solve these prevailing challenges. Machine learning and artificial intelligence have gained
popularity in the power systems community to tackle some open questions.

The recent usage of machine learning algorithms to operate the grid require these tech-
niques to be adequately connected to the system operator’s planning cycles to guarantee
learned behaviors remain adequate in shifting environments. Understanding and mitigating
these vulnerabilities requires additional analysis and design thinking that is often overlooked
in traditional power systems literature. For this reason, it is relevant to study these vulnera-
bilities, propose guidelines to avoid safety risks, as we did in [30], and propose mathematical
frameworks to use machine learning algorithms while at the same time embedding stability
guarantees at the learning stage. More generally, the new subfield of dynamical systems’
safety and learning poses many research questions that invite the scientific community to
advance knowledge.
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This Appendix contains the objective function, variables, parameters, and constraints
for the modules that were implemented for the SWITCH WECC model, and for Stochastic
SWITCH WECC Python. For a full description of the SWITCH model refer to [56]. This

Appendix was adapted and synthesized from the Supplemental material in [56].

A.1 Objective Function

The objective function minimizes the total cost of investments and operations (as net
present value):

min de Z cﬁ,—l—waear Z o (A1)

peEP cfeCfixed te‘];) cvelvar

Where P is the set of periods in the optimization, Cf*¢d is the set of fixed costs, C'*" is
the set of variable costs, 7, is the set of timepoints in the optimization, and p, ¢, ¢ and ¢
are respective elements in those sets. The term cf) is the fixed cost that occurs during period
p, ¢} is the variable cost per timepoint ¢, w;“* scales costs from a sampled timepoint to an

annualized value, and d), is the discount factor that converts the costs to net present value.

A.2 Operational Constraints

Power balance

Power injection and withdrawal must be equal in each load zone for all timepoints.

Z Py, = Z Pres Ve ZNteT (A.2)

i inject W withdraw
preP pVeEP

Depending on the SWITCH modules used, power injection P™¢t includes power output
P, for every generation project g located in load zone z and incoming transmission flows
to the load zone z, Fyn ;. Power withdrawal prithdraw tyvnically includes electricity loads I,
and outgoing transmission flows Fyout ;.
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Dispatch

When unit commitment is not being modeled, the power generation constraint per gen-
erator g is the following:

0< Py <y KS Ve LpePVteT, (A.3)

g7p’

For firm generators, 7, is constant and represents average outage rates. For intermittent
generators, 7, also represents the renewable source’s capacity factor at a timepoint ¢.

If the unit commitment module is included in the optimization, the set of constraints are
the following:

0 < Wy < ngKgh, Vge G, VpeP,VteT, (A.4)
AWy < Pyy < Wy, Vgeg,vteT (A.5)
Wg,t — Wgﬂg,l = Ug,t — ‘/g,t’ \V/g € Q,Vt € T (A6)

Eq. (A.4) limits committed capacity W,; to available capacity. Eq. (A.5) limits dispatch
P, based on the generator’s minimum dispatch fraction dgﬁ“ and committed capacity. Eq.
(A.6) defines startup and shutdown state-tracking variables (U,; and V,,) as the change
in committed capacity over time. Startup costs (fuel and O&M) are accounted for in the
objective function.

The constraint on transmission limits flows F; through a line ¢ based on capacity K £L7p
and derated by the factor ny:

0< Fpy <nyKyp,, Ve LpePVteT, (A7)

Minimum up and down times

When the unit commitment module is included, constraints on minimum up and down
times are modeled:

t
Woe> Y Uy, VgegVteT (A.8)
t'=t—7y
t
Woe S ngKghn = > Vau VgegGvteT (A.9)

t'=t—7d
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where 7, is the number of prior timepoints to ¢ to consider. SWITCH uses circular indexing
for time series, so that ¢ = —1 refers to the last timepoint in the same time series (end state
equal to start).

A.3 Investment Constraints

Generation projects that have a cap, k:_Gg, on their maximum capacity installed are con-
strained by A.10. Egs. (A.11) and (A.13) represent cumulative installed capacity for gen-
eration projects K’ G and transmission lines K- i until period p. As such, they are defined
as the sum of prev10us capacity additions BGp, and Be ,, including existing infrastructure.
The set P’ corresponds to the set of all periods when capacity of type g could be built and
still be in service in period p. Eqs. (A.12) and (A.14) fix the investment decisions of some
generation projects and transmission lines over some periods PgG and P} with predetermined
values specified in input files (which is the case of existing, or pre-planned capacity).

0<KG < kS, Vge G peP (A.10)
= > BS,. Yge G ¥pePU{p} (A.11)
1)67’0’rl
BS, =03 Vg€ G, Vpe P (A.12)
Ki,= Y By, VieLVpeP (A.13)
p'€PU{po}:p'<p
By, = b, vl e L, Vp e Py (A.14)

A.4 SWITCH Modules

Treatment of time

SWITCH uses three levels of time scales: timepoints, timeseries and period. Time-
points represent the highest time granularity in the optimization. Depending on the user
of SWITCH, a timepoint can represent one hour or a set of hours. Timeseries are a set of
consecutive timepoints. Examples of timeseries would be a day, a few days, a week, a month,
or a year. A period is a set of consecutive years where investments can be made. Table A.1
summarizes the time components in SWITCH.
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Type Symbol Component Name Description
Set P PERIODS Set of all investment periods, indexed by p.
Parameter stp period_start[p] Year in which period p begins.
Parameter Yp period_length_years[p] | Length in years of period p.
Set S TIMESERIES Set of all time series. Indexed by s.
Subset S, TS_IN_PERIOD|[p] Subset of time series that fall in period p.
Parameter nums ts_num-tps[s| Number of time points in time series s.
Duration in hours of each time point in time series s. Used for
Parameter AS ts_duration_of _tp[s] short-term thermodynamics such as energy storage
calculations.
Parameter AT tp_duration_hrs[t] Duration ir} hou.rs of t.ime point ¢ (equal to AS for the
corresponding timeseries).
Parameter | wPe°d tp-weight|t] Weight of timepoint ¢ within simulation (hours).
Parameter | w}® tp_weight_in_year[t] | Weight of timepoint ¢ within its year (hours/year).
Number of times a time series s (or equivalent conditions)
Parameter 0s ts_scale_to_period[s] occurs in its period. Used statistically for sample weighting for
economics, pollution and long-term energy demand.
Set T TIMEPOINTS Set of all time points, indexed by t.
Subset Ts TPS_IN_TS[s] Subset of time points that fall in time series s.
Subset To TPS_IN_PERIOD[p] | Subset of time points that fall in period p.

Table A.1: Model components defined in the timescales module.

The weight of a timepoint’s within a period is given by

eriod
wy

:A;F'esa

Vp € P,Vs € 5, Vt € T,.

This reflects the fact that each timepoint represents AT hours within its timeseries, and each
timeseries is treated as recurring 6, times in its period.

Financial components

Type Symbol Component Name Description
. Annual real discount rate used to convert future dollars
Parameter r discount_rate
to present.
Parameter i interest_rate Annual real interest rate used to finance investments.
. Base financial year in which future costs will be
Parameter | baseyear base_financial_year .
converted to net present value via discount rate r.
Set Cfixed Cost_Components_Per_Period leed cost compopgnts th'at c‘ontrlbut('e to the total cost
in the cost-minimizing objective function.
Set cvar Cost_Components_Per TP Variable cost components that contribute to the total

cost in the cost-minimizing objective function.

Table A.2: Model components defined in the financials module.
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Load zones and power injection/withdrawal

Type Symbol Component Name Description
Set Z LOAD_ZONES Set of all load zones, indexed by z.
Parameter Izt zone,demta]md,mw[z, Demand in MW at zone z at time point ¢.
EXTERNAL_
Subset zpeak COINCIDENT. Subset of load zones, period pairs for which and expected peak
PEAK_DEMAND_ load has bbeen provided.
ZONE_PERIODS
Parameter lp?;k ci?ﬁs{gggtﬁ)teei; }Expecte% ;Bei%k loifl de{nand in zone z in period p,
demand[z,p] z,p) € (optional).
Set pinject Zone_Power_ Model components that inject power to the central bus of each
Injections load zone.
Set pwithdraw Zone_Power_ Model components that withdraw power from the central bus
Withdrawals of each load zone.

Table A.3: Model components defined in the balancing.load zones module.

Energy sources

Type Symbol Component Name Description
Set & ENERGY _SOURCES Set of all energy sources, indexed by f.
Subset Ex FUELS Subset of all fuel-based energy sources.
R NON_FUEL_ENERGY - . . .
Subset & SOURCES Subset of all non-fuel energy sources.
Parameter | &, f € EF f_co2_intensity][f] Direct emissions of CO2 of a fuel in tCO2/MMBtu.
Parameter | s, f € & f_upstream_co2_intensity]f] Emissions attributable to an energy-source before it is

consumed in tCO2/MMBtu.

Table A.4: Model components defined in the energy_sources.properties module.
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Type Symbol Component Name Description
Set g G%)l\é%}}gg%osl\k Set of all generation projects, indexed by g.
Subset GgB BASELOAD_GENS | Subset of all generation projects that are baseload.
Subset G¥ FUEIé’]};\‘?SSED’ Subset of all generation projects that use fuels.
Subset Gk VARIABLE_GENS Subset of all generation projects that are variable renewable.
Subset gre LIS/IAliggléﬁE()i\IS Subset of all generation projects that are resource constrained.
Subset gz GENS_IN_ZONE[/] Subset of all generation projects that are located in load zone
Parameter bt gen_unit_size[g] Size of individual generating units within project ¢g (optional).
Subset Gumit DISCRETELY - Subset of generation projects for which a discrete unit size
SIZED_GENS b},”“t has been specified.
F FUELS_FOR_
Subset &g GEN[g] Subset of fuels that can be used by generator g.
G Operational lifetime of capacity added to generation project g
Parameter lyg gen.max_agelg] (years). Capital costs are also amortized over this period.
_predetermined_ | Predetermined addition of capacity in project g during period
Parameter s gen-pre pacity in project g
9P caplg,p] p (MW). 4 _ ‘ o
Set GpB GEN_BLD.YRS Set Of: tuples of generation projects g and periods p in which
capacity may be added.
5 PREDETERMINED. Subse.t of gerlle.ratlon projects g apd perlods.p for which the
Subset gP GEN_BLD_YRS capacity additions are predetermined (may include years before
B b the main study).
g o BLD_YRS.FOR_ Set of pgrlods (1nf:1ud111'g D) W'hen' capac_lty of type g could have
ubset Pap GEN_PERIOD]g, ] been built and still be in service in period p. This excludes
N &P capacity that would be retired before period p.
. PERIODS.FOR.. Suk.)set of Perlods when gf}neratlon project g may have capac.:lty
Subset P online. This excludes periods before g can be built or after it
g GEN[g] .
must be retired.
Parameter kG, gen’calﬁ‘fjl[g]”hmlt’ Maximum allowed capacity for project g (MW).
. . Amount of capacity built (added) in project g in period p;
Variable B¢ BuildGen|g, ’
9,p [g p] (g7p) c QPB
Variable K gp GenCapacity[g,p] Cumulative capacity of project g as of period p.
G, inv gen_overnight_cost[g, | Overnight capital cost per MW to add capacity to project g in
Parameter Cq ] eriod p; (g,p) € GPB.
p p p; (g,p
.G, upg gen_connect_cost_ Overnight cost of grid upgrades to support the project g, per
Parameter | ¢ per_mw/g] MW installed.
Fixed operation and maintenance costs per MW of capacity
G, fix per year, for capacity added to project g in period p;
Parameter = genfixed om(g,p] (g,p) € GPB. This cost recurs every year until the capacity
retires (ly? years).
Parameter (Gvar gen_variable_om|g] Variable operatlgn and maintenance costs per MWh of power
9 produced by project g.
on_full load heat Full load heat rate (inverse of thermal efficiency), in MMBtu
Parameter hg gen-tul- N - per MWh. May be supplemented by part-load heat rates in

rate[g]

generators.core.commit.fuel _use.

Table A.5: Model components defined in the generators.core.build module.
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Dispatch components

Type Symbol Name Description
Subset of timepoints when generation project g may have
Subset T TPS_FOR_-GEN|g] capacity online. Corresponds to Pg" defined in
generators.core.build.
on Set of tuples of generator g and timepoint ¢ when capacity can
Subset gT GEN_TPS be online. GT°" = {(g’ t)igeGandte Eon}.
g | | TPSTORGEN | St of i e genration pof € o capaits
9,0 PERIOD[g,p] 11 g perlo. p € P. Includes all timepoints 1n p 1
(g,p) € GT°", otherwise the empty set.
Variable Py DispatchGen|g, t] Average power in MW produced by project g during timepoint ¢.
Variable R GenFuelUseRate[g,t, | Rate of use of fuel f € SgF by project g € G¥ during timepoint ¢
9:t.f f] (in MMBtu/h). Each generator may use multiple fuels.
Parameter " gen_forced_outage_ Fraction of time a project g € G is expected to be available (used
g rate[g] to de-rate for forced outages).
Parameter Mo gen_max_capacity - Maximum possible output from renewable project g € G% in
9 factor[g, 1] timepoint ¢ (per-unit).

Table A.6: Model components defined in the generators.core.dispatch module.

Type | Symbol | Component Name | Description

. B . . Amount of power to produce from baseload generator
Variable P, ‘ DispatchBaseload ByPeriod|g,p] g € GP during all timepoints in period p € PO (MW)

Table A.7: Model components defined in the generators.core.no_commit module.

The constraints for no unit commitment are the following:

Pyv = Py Vg€ g8 vt e T (A.15)
0 < Pyy <ngkgm VgeG—-Gtvte T (A.16)
0 < Pyy < nglig Ky Vg e GN vt € T (A.17)
> Ryup=hyPy, Vg € " vt € T (A.18)
Je&f

Table A.8 and constraints A.19 - A.23 apply when unit commitment is modeled.
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Type Symbol Component Name Description
How much capacity to commit (have online) in project

Variable Wt CommitGen|g, t] g in timepoint ¢ € T°".
. . How much additional capacity to commit (startup) in
Variable Ug,t StartupGenCapacity|g, t] project g in timepoint ¢ € T2,
Variable Vi ShutdownGenCapacitylg, ] How much cpmn'mtted.capamtyogo decommit (shutdown)
’ in project g in timepoint ¢ € 7; .
‘ Minimum dispatch fraction (minimum load) of the
Parameter dg™" gen_min_load_fraction|g] committed capacity (defaults to 1 for baseload projects,
0 for others).
Parameter c‘;p’OM gen_startup-om]g| O&M costs per MW for starting up capacity.

up, fuel Fuel requirements for starting up additional generation
Parameter | 9y gen.startup-fuelfg] capacity, in units of MMBtu/MW.
u . . Minimum time that generator g can be committed (up,
Parameter Ty gen_min_uptime[g] online) in hours
Parameter 7—5 gen_min_downtimel[g] Minimum time that generator g can be uncommitted

(down, offline) in hours.

Table A.8: Model components defined in the generators.core.commit.operate module.

0 < Wy <K Vgeg.vteT™ (A.19)
A2 Wy < Py, Vgeg.vteT™ (A.20)
Py < Wy, Vge G -Gt vteT™ (A.21)
P, <1yiWyi, Vg e Gt vt e T (A.22)
Wg,t — Wg,tfl = Ug,t — ‘/g,t, Vg € Q,Vt < 7;on <A23)
t
Wea> Y Uy, VgegvteT (A.24)
t'=t—13
1K S — Wae > Z Vi, VgegvteT (A.25)
t'=t—7g

where 7, = round{7,/A[}.

The startup operation and maintenance costs for each generator at each timepoint are
converted to an hourly rate as ¢f>M. Uy, /A and then added to the set C**" in the objective
function (A.1).
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Fuel costs

Fuels costs can be modeled as a yearly cost per fuel for each load zone, and as a supply
curve for a regional market (set of load zones).

Type | Symbol | Component Name | Description
Parameter ci‘fﬁp fuel_cost|[z,f, p] Cost per MMBtu for fuel f in load zone z during period p.
Set unav GEN_TP_FUELS_ Set of tuples of (project g, timepoint ¢, fuel f) where fuel f is
UNAVAILABLE not available (i.e., user has not specified a cost).

Table A.9: Model components defined in the energy_sources.fuel_costs.simple module.

Total fuel costs for each zone and timepoint are calculated as

S My X Rews VeeZteT. (A.26)

Z. F
geGLHETon  feEl

Type Symbol Component Name Description
Set M REGI\I/ICX}I{?{IE;EEL’ Set of all regional fuel markets (rfm), indexed by m.
Parameter M rfm_fuel[m)] Type of fuel that is sold in the regional fuel market m.
Subset ZM ZONES_IN_RFM]m] Set of all load zones served by the regional fuel market
m N m

SUPPLY_TIERS.FOR. Set of supply tiers (i.e., complete supply curve) for a

Set Ym,p RFM_PERIOD %‘iven regional fuel market m and period p, indexed by
Set of valid tuples of regional fuel market m, period p

Set MPXE RFM_SUPPLY_TIERS and supply curve tier o;
MPE ={(m,p,0) : me M,peEP,0 €EXpmp}t

Set unav GEN_TP_FUELS_ Set of tuples of (project g, timepoint ¢, fuel f) where

UNAVAILABLE fuel f is not available.
fuel . Cost of a fuel in a particular tier of a supply curve
Parameter Crmip,o rfm_supply _tier_cost[m,p,o] (m, p,o) € MPY..

Annual limit of fuel available for a particular tier in the
supply curve (m,p,o) € MPX.

The annual rate of fuel consumption in each tier of a
supply curve, (m,p,o) € MPX, in MMBtu/year.

Parameter | limity,, po | rfm_supply_tier_limit[m,p,o]

Variable R};f; - ConsumeFuelTier[m,p,o,]

Table A.10: Model components defined in the energy_sources.fuel _costs.markets mod-
ule.

Constraints regarding the tier limits and linkage with power production are defined in
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this module:
0 < Ry < limity, po, V(m,p,0) € MPX A.27)
> R =) > > w™ Ry YmeMV¥peP  (A28)
oE€m,p z€ZM geGZ:fMeel teTpnTm
Rg,t,f = 07 V(g, t, f) SV <A29>

Total fuel costs of all tiers of a supply curve from all regional fuel markets during period

p are calculated as:

AnnualFuelCosts, = Z Z fuel

. Rtier
m7p?a- ?

Vp € P

m?p’o-

meM O'sz,p

These are added to the set C™°d in order to be considered in the objective function (A.1).
When unit commitment is modeled, fuel costs are handled with the module fuel_use.

Table A.11 shows its components.

Type Symbol Component Name Description
Set U, SE(E‘;AJE;%JSS,E‘bR, Ord.ered sgt ((i)f segngents used to define the heat rate curve of
GEN[g] project g, indexed by u.
Parameter pg"izf power_start_mw* Minimum power in MW of segment line w of project g.
Parameter pmax power_end_mw* Maximum power in MW of segment line u of project g. It is
gu N required that P,"** = P,}1.
Parameter Yg fuel_use_rate* Fuel use rate in MMBtu/h at minimum power of project g.
p I Incremental heat rate in MMBtu/MWh for segment line u of
arameter Og,u ihr .
project g.
Expression - intercept* Normalized y—int(.ercept in MMBtu/ (h 'I%Wﬁjfadtw of the
segment u of project g. Derived from pyl,', pge ,7e and 0g. .
Set of tuples of generator g, timepoint ¢, y-intercept ng,, and
incremental heat rate g4, needed for generator fuel usage
GEN_TPS_FUEL_ calculations. This includes one tuple for each combination of
Set GTNA PIECEWISE_ fuel-based generators g € G, segments of the piecewise-linear
CONS_SET heat-rate curve u € U, for those generators, and active
timepoints for those generators ¢ € 7,".

Table A.11: Model components defined in the generators.core.commit.fuel use module.
Components marked with * are local to the module (some read from input tables), and are
not added to the main model.
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Total fuel use (MMBtu/h) for each generation project is constrained as:

Vfe€F

Transmission components

1
§ : Rgry 2 AT ((%lpfuel Ugi) + g Woi +0gu - Pots V(9,8 Mg, 00u) € GTNA
i

(A.30)

Type Symbol Component Name Description
Set L TRAI\}JSIDI\/I%SSSION’ Set of all transmission corridors, indexed by #.
Parameter ¢ trans_1z1[]] Load zone at the start of corridor .
Parameter ¢ trans_1z2[]] Load zone at the end of corridor £.
Parameter km, trans_length_kml]l] Length in km of transmission corridor ¢ € L.
Overall derating factor for transmission corridor ¢ that can
Parameter nk trans_derating _factor[l] reflect forced outage rates, stability or contingency
limitations.
Lief . Efficiency; proportion of power sent through corridor ¢ that
Parameter N trans_efficiencyl[l] reaches the other end.
Subset B TRANS.BLD_YRS Set of transmission corridors £ and periods p where
capacity can be added
Parameter b existing_trans_capl] Transfer capability existing in corridor ¢ prior to the start
of the study.
. L . Transfer capability added in corridor ¢ during period p
Variable By, BuildTx][l,p] (MW); (¢, p) € LB.
Expression K- TxCapacityNameplatel[l, Cumulatlve transfe.r capability through transmission
P p] corridor ¢ as of period p.
Parameter oL trans_capital_cost_per_ Generic cost of expanding transfer capability in base year
mw_km dollars per MW per km.
Parameter ar trans_terrain_multiplier Cost. multiplier for expanding capacity on a specific
corridor £.
Parameter 3 trans_fixed_om_fraction Des.crlbes the fixed O&M costs per year as a fraction of
capital costs.
Lifetime over which capital costs are amortized (years).
Parameter v trans_lifetime. vrs Note that capacity is assumed to continue in service after
y - nd this date, with the same annual payment (equivalent to
automatically reconstructing capacity when it retires).
Set of directed transmission corridors. It consists of the
D tuples (¢}, ¢?) and (¢7,¢}), for all £ € £. Elements of this
Set £ DIRECTIONAL.TX set refer to flows from the first zone of the tuple to the
second zone.
Set D TX_CONNECTIONS_ Set of directed transmission corridors that flow into zone z

TO_ZONE[Z]

(i.e., the second element is equal to z).

Table A.12: Model components defined in the transmission.transport.build module.
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The annualized cost (capital and O&M) per MW of capacity in transmission corridor ¢
is:

L,inv { ~L
c, = ¢ - ay-km
‘ (1—(1—i)-lyL> c

C?,ﬁx _ C?,inv
These costs are multiplied by the installed transmission capacity as of each future period,
K l%p’ then discounted to the base year, and added to the set Cf*°4 for inclusion in the objective
function (A.1).

The installed capability until period p is calculated as:

KE =0br + > By, Vie L,VpeP. (A.31)

p":(€,p')ELB and p'<p

Type | Symbol | Component Name | Description
7 . 7 D
Variable Fo, DispatchTx[z,7., Power flow thr01l1gh a .dlrec'ted co‘rmdor (z,2") € L” (i.e., from
o zone z to zone z') during timepoint ¢.
Net power inflow to zone z from all other zones during
timepoint ¢

Expression e TXPowerNet|z,1]

Table A.13: Model components defined in the transmission.transport.dispatch module.

The constraint of maximum flow through lines is defined as:
0< Foorp < Mo Koz V(z,2') € LP,Vp e PVt € Tp, (A.32)

where ((z, z') identifies the transmission corridor ¢ € L corresponding to the directed corridor
(2,2') € LP. With this approach, net inflows to zone z from all other zones can be calculated
as total inflows minus total outflows:

I D S Ty S Y S Vze Z. (A.33)

2':(2',z)eLh 2':(z,2")eLP

F?" is added to the set of power-injecting components P™* for inclusion in the power
balance equation (A.2).
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Demand response components

This is an optional module that was used for the California Energy Commission study.

Type | Symbol | Component Name | Description
Parameter e dr_shift _up_limit[z,t] g/ie;in;um increase in demand allowed in load zone z at time
Parameter | [maxdown dr_shift_down_ Maximum reduction in demand allowed in load zone z at time
2t limit|z,t] point ¢. This value must be less than the local demand.

Describes how much load (in MW) is reduced (if it is negative)

. dr .
Variable Lew ShiftDemand(z,t] or increased (if it is positive) in load zone z at timepoint ¢.

Table A.14: Model components defined in the balancing.demand response.simple mod-

ule.

The DR shift is bounded by the specified limits, and another constraint ensures that all
the changes in demand balance out over the course of each timeseries:

. lgj?x,down < L(zi,rt < lzfxyup’ Vz € Z,Vt eT (A34)
Z LY =0, Ve ZVseS (A.35)
teTs

The demand shift LY, is added to the set PV o be included in the balance constraint
(A.2).

Hydropower components

Type | Symbol | Component Name | Description
Subset GgH HYDRO_GENS Subset of all hydro-based generation projects.
h.min . Minimum flow level, expressed as electrical MW, for all
Parameter | pg’s hydro_min_flow_mw(g,s] . . . -
9> timepoints of timeseries s.
Parameter pg:?vg hydro_avg_flow _mw(g,s| Average flow level, in electrical MW, that must be achieved

during timeseries s.

Table A.15: Model components defined in the generators.extensions.hydro_simple mod-
ule.
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Power dispatch must exceed the minimum level for all timepoints, and the average power
production during a time series must be equal to the average flow rate:

h,min
Pgt_pgs ’

§ : h,avg
Pgt_pg, )

teTs

numg

Storage components

Vge Gl Vse S vteT,. (A.36)

Vg e Gl Vs e S. (A.37)

Type Symbol Component Name Description
g S Subset of all generation projects that can store
ubset g STORAGE_GENS . .
electricity for later discharge.
Subset of all tuples of generation project g and period
Subset GPS STORAG?RGSEN’BLD’ when storage prpojects %an be buili); ey P g
GP° ={(9,p) : (9,p) € GP and g € G°}.
s . Round trip efficiency of a storage technology.
Parameter "lg gen.storage.efficiencylg] Self—dischzfrge over t}i,me is assuried to be ngeZgligible.
. gen_storage_energy. Overgight capital cost per MWh adding energy s‘gorage
Parameter Cqlp overnight_cost|g] Ic)zgs)c&t% (not power output) to storage project g in
The maximum charging rate for storage project g,
Parameter Ty gen_store_to_release ratio[g] | expressed as a ratio relative to the maximum power
output rate.
< gen_storage_energy to Fixed ratio of storage capacity to power rating (hours)
Parameter ry P - ower I:atio[ ] - for storage project g. Optional; if not specified, Switch
p N & optimizes the amount of energy storage capacity.
" les Maximum amount of discharging allowed per year, for
Parameter | pSmax | 8eN-StOragemax.cyclesper- storage project g, expressed as a multiple of the

yearg]

Variable BS

g,p

BuildStorageEnergy (g, p]

Variable KS

o StorageEnergyCapacity[g,p]

Variable Cgs’t ChargeStoragelg, t]
Variable Py DispatchGen|[g,t]
Variable Pyt DispatchUpperLimit[g,t]
Variable Z5, StateOfCharge[g, t]

installed storage capacity (optional)

Amount of energy storage capam by to add to project g
in period p, in MWh; (g,p) € GP".

Cumulative capacity in MWh of storage project g at
period p.

Decision of how much to charge a storage project g at
time point t.

Decision of how much to discharge a storage project g
at time point ¢, i.e., how much power to deliver to the
grid (defined in generators.core.build).

Maximum possible power production by project g at
timepoint ¢, (defined by equation (A.16) or (A.21)).
State of charge in MWh of storage project g at
timepoint t.

Table A.16: Model components defined in the generators.extensions.storage module.

Overnight costs cS inv are annualized and added to the set C*d to be part of the objective

function (A.1).
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Power used for charging/discharging is added to the set of withdrawals P"ithdraw / injec-
tions Pt in the balance equation (A.2).

The constraints introduced to model investment and operation of storage consider cumu-
lative energy storage capacity, charging limits, storage required, and cycle limits per year.

K;,= Y B, VgeGipeP (A.38)
p'€P: p'<p

0<C8, <ri™P,,, Vge g te T (A.39)
0<Z5, <K, Vge g te T (A.40)
Zs, =75, 1+ (mSC5, — P A, Vgegs teT™ (A.41)
By, =1)PBy Y(g,p) € GP% r> P specified (A.42)
Z P Al < ni’maXK;pyp, Y(g,p) € GP® (A.43)
t€7;,

RPS components

Renewable Portfolio Standards were modeled in SWITCH WECC for each State. Table
A.17 shows the components used.

Type | Symbol | Component Name | Description
RPS .. Binary indicator of whether fuel f € EF is eligible for
Parameter if f_rps_eligible[f] the RPS.

Fraction of total demand in period p that must be

Parameter P,z rps-target(p,z] generated from RPS-elegible sources in load zone z.

Table A.17: Model components defined in the policies.rps_unbundled module.

The RPS target in each period is enforced via the following constraint:

) R . .
Z Z ngtwfemd + Z Z Z ;L—z’fwfemd > ersp’z X Z lzjtwfemd, Vp e P

geEGR  teETPR geGy €Ty fe€, ifPS=1 2€Z te€Tp

(A.44)

This requires that generation that qualifies as RPS supply meets the renewable production
target. This module assumes all production occurs at the full-load heat-rate (h,), so the
production from fuel f in timepoint ¢ is given by R, /h,.
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Carbon cap components
Type | Symbol | Component Name | Description
p Carbon cap in tons of CO2 per year during period p
arameter cap, carbon_cap_tco2_per_yr[p] (defaults to oo)
Parameter c;arb carbon,i(zb;)tiﬁllar,per, Carbon cost per ton of CO3 in period p (defaults to $0).

Table A.18: Model components defined in the policies.carbon policies module.

AnnualEmissions, = Z Z Z AF Ry p % (&5 + ), VpeP (A.45)

gegr  fegf eIy

The constraint that enforces the carbon cap is:

AnnualEmissions, < cap,, VpeP (A.46)
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