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MOLECULAR ‘AUTOIONIZATION LIFETIMES AND CROSS SECTIONS
FOR PENNING quIZATION: .NUMERICAL RESULTS FOR
He (1s2s 3S) + H(1s 28) T
W. H. Miller and C. A. Slocomb
Inorgahic Materials Research Division, Lawrence Radiation Laboratory
Department of Chemistry, University of California
' Berkeley, California 94720
and .
Henry F. Schaefer III
Department of Chemistry, University of California
Berkeley, California 94720

- ABSTRACT
The width ' (or 1ifetime h/I') for autoionization of He*(ls2538) +
H(1s 2S) has been calculated as a function of internuclear gistancé; and
cross sections for Penning ahd'associative ionization (Hé*+H+He+H++é_,
HeH'+e~) have been detefmined for low collision energies. Associative:
ionization‘is 22% of the total ionizatiop cross section in the limit of
zZero coilision energy; this~fraction decreases with increasing energy;
being %iS%Vat a collision gnérgy corresponding to‘300°K. The distribution
iﬁvenergy of the ionized electron is also calculated, and it is suggested
thaf measuremeﬁt'of this qﬁantity'shoﬁld lead to-a gdéd estimate of ﬁhe
well-depth of the Hé*-H potential. Cpmparison of these reSults to those
obtained by an‘orbitting-model shows that the model (sﬁitably sgaled) is

adequate in predicfing the total ionization cross section, but .is less

accurate for the more detailed collision properties.

.r. Lo . - . . .
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I, INTRODUCTION
Of.fériousjcollision<prdceséés.which iﬁvolve electronic transitions,
‘Penning fonization® (PI) |
o A* +'B ;'A'+'B+ +e o | ' (l).
is' one of thé.simplesi*from a theroretical point of view, the reason~
.being tha£ it takes plgcevwithin the Born—Opﬁenheimér approximation for
'the‘sepa?ation.of eleCtrbnic and nuclear motion. [In Eh-(l)A* ié an
eiéctronicaily excited state of'speéiés A, and the éxcitétion energy  of
A~ A*.hust be greater than the ionization potentia1 of |
species B;J Thué at each internuéiear’distance the.initial electronic
sfatefA*;B finds itseif-embéddéd'oh‘a7c0ntinuum of electronic st;teéﬁof
fhe-typeAA;B+ + e and therefore undeféoes autoionization with some
¢haractéristic-rate; this is a simple ex;mpie of a di%crete4continuum
"golden-rule", or "radiationless" traﬁé;fion.z
Because of the resonant nature of the tfansition, cross sectioné fof

2

PI may bg appreciable, on the order of 10's of AQ; non-resonant elec-

tfonic transitions are typicglly an order of magnitude smaller. Thus
.Pi can be an importént process in'#tmospherié chemistry and phyéics,s’6
particularly so if the electronically excitéd specieé Af ié metastable
(i,e.,‘dannot decay'radiétiﬁély by optically allgwéd transitions); in:
this case Eq. (1) may be the key process which detérmines the steady-
state concentration of species A*; - _ { |
| The metastable states of héliuin’(ls?s;s,3s) have received most
atteﬁtion with regard to PI, both expérimeﬂtally3’h’7v

‘for (1) they are sufficiently energetic (v19-20 eV) to ibnize'almost any

collision‘partner, (2) helium is an important constituent of thé atmosphere,

and theoretic'a.lly_8-'15
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(3) the radiative lifetime of these states is long enough for them to be

studied under a variety of experimental conditions, and (4) helium is

L

>suffi¢iently simple electronicéily to allow theofqtiéal treatments from

first pfinciples. The simplest collision partner being the hydrogen -
atom, the particular process
He(1s2s 3S)_+ H(1s 28)

%) (2)

.? He(1s® 1s) + u" +e (
has'béeﬁlthe'subject of sevéfal recent thedretical»studies, and experi-.
mental results have also beeh'reportéd for the macroscopic'rate constant.
More'details of the COllisiOn'dynaﬁics will preSumAbly be available‘soon
from mélecular beam type measurements.

15

In»a.'previéus paper ~ we report-ed.ac;:uraté ‘calculations for the
diatomic potentiél'cuf?es which pertain‘to the proéess in Eq. (2), and
a éimpie orbitting modello was employéd to obtain the various cross
sectiohs; this_modél did not require knowledge_of the autoionization raté;_
This pfesent paﬁer reports the’calculétioh df the_autdionization ratel
és-a function of iﬁtéfhﬁélear distance. With.this_qﬁantity it is now
possible td evaluatevquife rigorouéiy the various collision propertiés
of interest: the total ionizati&n‘cross section, the relative amount of

+ , - +
associated (HeH ) and dissociated (He+H ) product, the energy and/or

‘angular diétributibn of the ionized electron, and the angular distribu—

tion of.the heavy pafticlesf

Section.il discuSses the calculation of the.autoionization rate,
and Seétioﬁ I1T sumﬁaiizés the necessary cross sectioﬁ formulas. . Séc;
tion IV presents results fér‘the-total ionization cross section é§ a

function of collision energy, the relative amount of associated and



he

§i559ciﬁtédlproducta_andbthé énergyndistribution of the ionizid électron. "
iCp@parison‘of these collisionfproperties-Qith those givenjby the or=-
bitting model of referehcé"ls show;'thap the.model gives good results
gt_low'colliéion ehergy for the total ionizationiérOSS'sectidn (if‘if?is
scaled éﬁpropri&tély), but is poorer Vith regard to the mbre~detailed

"collision properties. Isotope'effeéts within this "scéled orbitting

" model" are considered in the Appendix, and it is predicted that the
-total:ionizgtion cross section for He + D is 10% greater than that for o .

.
He + H.
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II. CALCULATION OF THE AUTOIONIZATION RATE

Any figorous evaluatidn of cross sections fof PI requires knowledge
of thé autéionizatiqn.rate, of.width of the initial electronic'statevas
.a function of internuclear diétance., Calculation of the width is an
elecﬁroﬁic strucﬁurevproblem whichvliés within thevBorn—Oppenheimer'
approximation. With the nﬁclei held fixed, therefore; autoionizatibn‘
of the electronic state of the "diatomic molecule™ A-B which dissociates
to A*¥B is no differént>from‘autoionization of an atom (exéept, of

coﬁrée, in the lack of spherical symmetry).

“A. Thebretiéal.Considerations

It has been shownu’18 that quite accurate autoionization widths

can be obtained by the "gblden—rule"-like”expression

r=omp [CxlE-Elp 2 (3)
where f is the autoionization width (units df‘energy), Y is the initiél
(discrefe) electronic 'state, x is fhé final (continﬁum) electronic state
which is enefgetically dégenerate'with ¥, H is the total electronic.
Hamilfénian, E is the electronic energy of the'discrefe state, and p
is the density of final continuum sﬁates (which is determingd by the way
X is normalized asymptoticallY). Equation (3) is expected18 to be mostv
accﬁrate for autoionizatidn of a ﬁeutral species, leaving a positively
charged-fragment; this is, of course, the case for PI.

For our'caléulétioﬁ the discrete electronic function Y is a con-~
figuration interaction (CI)'type of wavefunction (norméiizgd to‘unity)..
v(1,2,.-.,8) = ] c(rg;) l,ic'N_i_ . . W
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where ,[Kﬁ)b= ]klskg,...,kﬁ),vdenotes an Néelectron normalized Slater
determinant ‘ |

IKN) = (N')

-1/2
x

{¢ } belng the orthogonal molecular orbitals, the coeff1c1ents C‘(KN

aet|d, (1>¢k2(é)-~¢ wl, (5)

are determlned by dlagonallzlng the matrix (Kﬁ IH,Kﬁ) and ch0051ng the
partlcular elgenfunctlon and eIgenyalqe whlch dlssoclate to A +B as the
internuclear dietance R+ | |

_‘For'the continuhm functibn first consider X in.the.form

X(1,2,- L) = Nl/2 8,(1,2, N—1)¢+(N) I - (6)

where'¢+.is tHe_electronic,Wavefhnction of the.(Nal)-electron molecular:

- ion A-B and ¢Z is tbe_continunm orbital (& denotes the asymptotic

-energy € and direction g”of the ionized electron); .

wavefunction. (normalized to unity)

1B T () e s
¢, (1,2,00008-1) = § 0 C Ky ) Ky g0 ()
,'KN—J‘ ‘
vhere [Kg )= [ky kg, o,k o) is an (N-1)-electron normalized Slater
' (+)

determinant [The coefficients C KN l) are 31m11arly determined. by

dlagonallzlng the (N—l)—electron Hamlltonlan on the IKN l) basis. ] The

purpose of the factor Nl/ in Eq. (6) is so that the resultlng width has.

the factor NG

Ts 2np Nl( +¢"’H-—E|‘P)l . :‘/ | (8) 2

' Equatlon (8) w1thout the factor of N would be approprlate 1f only the N
, electron’could aut01onlze; since Y is totally antlsvmmetrlc 1n'all N
electrohs however, any one of the N electrons may aut01onlze, and the.

width 1s thus N tlmeu larger.

® is also a CI type -
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Rather than using Fq. (8), a more symmetrical (ahd more useful) form

is obtained by taking the continuum function as
'X,(l,2,"’,N) = Z C (Klv_l)l—K-N)a . . (9)
‘where IKN) is the N-electron Slater determinant

detlg, (18, ()b (RDRD] (10)

'|K-N> - (! )-1/2

in which the Nth orbital for each configuration is the continuum orbital.

By noting that

- S _1/2‘ _*.. * » ‘
(Ry|H-E[x, ) = [ar,(m)7 7 “get|g, (1)---9, (§-1)¢z (I)]
o 1 TN-1 :

-1/2

(H-E)(N1)™"" “det|¢, , (1) ¢, (I)]

1 N

< far, n) ™ 2aet o ") -0 (-1 ]03m)
/ N K, Koy €

(1-8) (1) 2get [o, (1) 20, o ()]
1 N

R 1/2/ -1/2 * *
=N drt, [(N-1)!] det|¢, (1)-++¢ ~ (N-1)
oo o , - K kN-:L_ |

(N)

o3 *

)—1/2

() ()72 et o (1) -0 1 (D],
. 1 N

one sees that xbin Eq. (9) gives-the same.resﬁlt'forvT as does the form of
x.iﬂ‘Eq. (6). This latter form [Eq. (9)]; héﬁever, being the sum of N-
electron.Slater determinants (as is V) mgané that the matrix element

(XIH—EIw){cén'be computed By sténdard methods; this is.also true only

because the same molecular orbitals were used to‘éonstruct the CI
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expghsioh for ¢ _ as for y.- Had this not been done, one would have the
difficult_task of evaluating matrix_elementé between determinants with
non~-orthogonal orbitals.

For the continuum orbital ¢Z(;) we use a coﬁldmb function centered
on nucleus B; this is.obviously a réalistic description of the continuum
electron when it is nbt too close to the nucléi, and the width expression
is knOwnl8 to be insensitive to the nature of the continuum fu;ction
close in.

As mentioned above, our standard routines for evaluating matrix
elements between N-electron Slater determinants can be employed onlyfif
all the orbitals are mutually orthogonal. If M bound—étate molecular
orbitals‘{¢k_}; i=1,--+,M are used in constfucting P and.®+, therefore,

it o
the actual continuum orbital we use is the function 63

. M
bp =0z - E : o (o Lo - (12)
) =1 .l' ‘ 1 '

it is ciear that 6; is orthogonal to 811 the bound-state orbiﬁals and
also that the asymptotic normalization of $Z is the same as that ofvthe
original coptinuum orbital ¢g (for all the bound—state’orbitals vanish
exponentially in the asymptotic‘regiqn)} One may question whether‘this
modification of the conﬁinuum orbital caused by orfhbgonalizing it to
all the}boundfstate orbitals will affect the value obtained for T'; the

" 14

vanswef is "no” and can be seen in the following manner: Modifying the

continuum orbital as in Eq. (11) modifies the function X similarly,
X = X+ Ax - (12)

where ¥ is the continuum function if ¢Z is used as the continuum

orbital and X is the continuum function if the orthogonalized function

8
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' 52 is used as the continuum orbital;'Ax is given explicitly by
- (+) 3y E : :

s 20 el 200 g g (13)
» j=1 N | |

where ’[KN(J)> = |k <.k k,> . The difference in the discrete-

l-akes" EN-1°F

continuum matrix element whicﬁ'results from uSing X of i is thus

Cax|B-Elp) = H° (‘¢Z'¢k3) > C(+)(KN_1)
< _

J=1

Dy IH—EIKN o, )
K:" ’ . B ’ . . ' . .
k ).v But thev

e (3)
where KI = (k 'k, 'y k') a.nd_-K.N(J = (e akps ek oKy

1722

coefflclents C(KN) satisfy the homogeneous equatlons'
b> KN el o) =0 )
Ky ' |

(J)

for all Slater determinants IKN ). which are included on the CI expansion

of Y. Since we carried out’? a complete CI for our chosen set of molec-
. N

ular orbitals, all ]KN(J ) are included in the expansion of Y, so that

each term in the sum over J in EQu.(lA) is zero; thus

( Ay |H-E|¥) = b,
aﬁd_this proves that the matrix element (XIH—E|w) is unchanged by using
vtﬁe.orthogonalizedicontinuum orbitél 52.'in placevof.the original one

ks

E:
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To see how the argument proceeds if one carries out less than a

complete CI expansibn for Y, note that Eq. (15) can also be written as

Z' (KN(J")IH-EIKI:I) c(k) ) = (I(_N<j)]H—Ellp) = 0. (15")
y
If IKN(j)) ié one of the configurations included in Y, then (as before)
Bq. (15') is satisfied. If.lKN(j)) is a configuration which was not
included in Y, however, the quantity in Eq. (15') must still be essential-
ly zero--or else one should re—do_the CI calculation for ¢ and include
this configuration; i.e., the matrix eleﬁent in Eq. (15') is the measure

)

of‘how much a configuration IKN(J ) "mixes"_with Y and is thus the
normal criterion for whether or not it should be included in the CI ex-
pansionvof‘w. One conqlﬁdes, therefore, that to the extent that all
"important'" configurations have been included in the CI expansion for
Y, the matrix elemént (x]H—EIw) is ‘unchanged by orthogonaiizing the
original continuum orbital ¢g to all the bound-state orbitals [as. is
done in Egq. (11)].

| Finally, we conclude this sub-section by noting that one will
ordinarily employ a partial wave expansion for the continuum orbital
¢z (),

-

@ = Y ym*(s) %192 begn(P)s (16)

19

where gy is the coulomb phase shift and the continuum orbital ¢eﬁm is

bogn(®) = L F Lk, k2, (B), ) a7
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and ke'?‘.( é)l/z

is the asymptotic momentum.of the continuum electron
(atomic units being used, h = m, = 1). The angles € and ? are referred
to the internuclear axis. The coulomb radial function F‘2 is normalized

19

at large r as

. : 1, o
.Fg (—l/ke,ker) ~ gln[ker + k. Qn(2k€r) - mL/2 + ol],

and with this normalization the density of_continuum states is such
that in atomic units

2ﬁp = h/ke.

 The width for autoiomization in direction € with respect to the

. . . 20
internuclear axis is thus

.r(g) = 2Wp|§ Y, (€) 177 e R 1|7, (17)
where o _ I, = <X€£mlH -Ely) (18)
and X oo is given by Eq. (9) with the continuum orbital now being

¢

bound-state orbitals as in Eq. (11)]. Since the component of electronic

> ; . . - - . .
clm (r) [gctually it is ¢_, (r) which has been orthogondllzed to the
. orbital angular momentum 'along the internuclear axié is a good quantum .
number, only one value of m contributes to the -sum in Eq. (l?),'namély

the value m = Ao -A+,.where Ao and A+ are the usual A—quéntum,numbers
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» for.@he efate A* -B and A -B;, reepectively ({.e., A="0, 1, 2 ... is
‘dehoted:by”Z, H,vA, c..); all valuee of %>[m| contribute to the sum. |

[Note that siﬁce only-eneJValue of m contributes to the sum in Eq. (x7), ' @
the aﬁgulef dependence of K(Z)'is such that it depende enlj‘on the |

angle between £ and R.] The value of € is fixed by energy conservation

€ = g(R) = VO(R) fY+'(R), _ ' _ v (19) o
Vo and V+ being the electronic energy of A -B and A -B at internuclear v |
distance R. [Fig. 1 shows these potential curves for He’ -H and He -5t

The total width

r'zfa, er(e) - ~(20)

1s easily evaluated from Eq. (17) and seen to be the sum of all partial

widths .
..g=|m| L’ '

where: o r, =2m |1 ]2 L o (22) o

S | ) gl | |

In sub-section ¢ it will be Seen how one can estimate the number:off

. terms that are required for convergence of this sum.
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B. Numerical Methods‘

The task, then, is to compute the matrix elements Il defined by

Eq. (18). In terms of I, Eq. (17) gives the width for autoionization

['3

in any direction, and Egs. (21) and (22) give the total width.
Since the CI calculations for wavefunctions w and ®+ have been -
AT . 15 s )
carried out previously ~ and the coefficients C(KN) and C* (KN—l)
thus determined, the problém(reduces>to that of evaluating one- and

two-electron integrals of the types

Gl - fary 6, (1) [- 12 Pl ()
'. ' I 1 * o
[i3]xe) = del f¢12 ¢, (1)¢J(1) [;I;J¢k (2) ¢€Qm(2>.

The Eound—staté orbitals {éi} are normalized Slater functions times
spherigal>hafmoﬁics, and the continuum orbital ¢€2m(;) is the coulomb
fﬁnctiohﬂof Eq. (i?). For sbme test calcﬁlatiéns a plane wave was

used for the éontinuum orbital; the only modification.in this case is
.tha£ the coulomb radial function is replaced in Eg. (17) by a spherical

Bessel function:

% 'F2< _l/ke’ kEr) +_kgr g (ker).
S ' There are a number of methods available for the evaluation of
; e : : : . 21-27 .
one- and two-electron integrals involving Slater functions. Since

these'methodé make explicit use of the analytical properties of the

Slater functions, however, they cannot be directly used tc evaluate
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'iﬁtegfals‘of_the aBove t&pes containing the continﬁum‘dfbitai_¢€2@.
In édditioﬁ; the L vaiues for the continuum functién can take én raﬁher
high values (up fo L =‘9 were necessary in thé present work) and the
deriva£ion of special analytic,forﬁulas;for‘differeht £ values would
be extreﬁely'fedious.
fhé conceptualiy simplesﬁ way of evaluafiné integrals of the above

type is via e completeiy numerical’procedure which does not depend on

the anaiytic propérties of eithef the.bound-staté or continuum orbitals.

With Calculations of this typeiin mind, such a procedure has been

impiementéd ahd-repOrted in the liter’é.ture.2-8 Essentially the dnly

changefrequired'in our stahdard program28 was the additioh of subroutines -

ﬁo évéluafé the pafticﬁlaf type of éontinuum function being used to
describe'thelejeéted eieétron. We aiso foundbthat.it wés neceésafy to
change the numerical intégratioh grids fairly'drastically to allow for
thé_fact'that ﬁhe.intégrands.are much méfe diffuse than in staﬁdard'
eiecﬁronic sfructure problems. |

' The féct thét the integral evaluation scheﬁg ﬁas eésentially
identical to that thoroughly tested for bound-state calculation529
reduced the poééibility of error. However, a seédnd test of the
method.Wés carfied out. For this purpose the'féét was used tﬁat the
total width T [given by Eq. (él)] obtéined by using e plane wave
cont inuum orbital.will be independent of the point in spacé at whichv
the orbital is centered. The width [ was calculated with the plang‘
. wave-céhtered'at'boih'thé He énd H<nuélei for internuclear se?aration
4.0 bths; and the fwo widths thainea werétidenficg@ to 3 éignificant

'figures.'

€
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'C. Results for He (1s2s °S) + H(ls 28) and

Comparison_with Previous Work

Figs. 2 and 3 show our results for the matrix elements IQ(R) and

- the totalvﬁidth I'(R), respectively, .

rR) = (/) §OIT,RZ, (23)
/207 = € = 1 (®) ¥, (R), : (2b)

L A ' +
VO and V+,being the He -H and He -H potential curves computed

15

previously' and shown in Fig. 1. Table I gives the numerical values
correspbnding'to Figs. 2 and 3.
' One notices that the matrix elements I, osciilate with & and that

the number of partial waves required increases with increasing inter-

nuclear distance R. Both of these features can be understood by noting

that on .the basis of electron spin considerationé,

He (44) + H(¥) * He(™¥) + H + e (f),

. the eJected electron must "come from" helium. The contintum orbital,

however, is a coulomb function centered on H, so that the matrix element

IQ(R)vcan be expeéted to be roughly proportional to the amplitude of -
the coulomb function at the Hé center,
I(R) ~ F

2,(°1/k€?'k€R>'
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For fixed 2 this is an oscillatory function of R, and for
fixed R,'it oscillates with £. The function takes on its maximum
valuev(in an absolute'value sensé) when R and % are related by the

classical turning point criterion

(1/2)k€2 = -1/R + 22/2R?,

or 8 = (x °R° + 2r)Y/2,
max €

Thus IQ(R) oscillates with & for £ < Qmax’ takes on its maximum value:

for £ ~ £ ., and then decreases exponentially for £ > £ .
. max : max

In Fig. 3 are also shown the results of Be11™ for the total width

as a function of internuclear distance; there is rough qualitative

agreement. Apart from the use of much less sophisticated wavefunctions

forvHQ*VQH'and He —H+, fhere are several other approximations in-
corporéted in these célculations. Bélllh uses asvcontinuum orbital
abcoulomb function centered on H (as do we), but for all R takes €,
the energ&‘of thé ejected elecfron, to be that appropriate ﬁo'R_; o,
namely € = Vo(@) - V;(W) = .233 hartree ~ 6.06 eV. The gorrecf value
e(R) = YO(R) - V+(R) varies considerably with.R, as seen in Fig. b,

being 9.09 eV at R = 2 a, and L.3h eVat R=4 g

o for example, with

our calculatéd potential curves. Even more serious, however, is the
féct that only terms g = 0 and 1 were incliuded in the partial wave
summation for I'; as seen in Fig. 2, this i$ clearly insufficient even

for R =2 g .
o]
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Fﬁjii et éi.lg have also computed I'(R) within a similar framework
as that of Bellly: the continuum orbital is a coulomb function centered
on H with € taken as Vo<®) -V+(w), and they included partial waves

1k

£ =20,1, 2. Their reéﬁlts appear to be similér to those of Bell

‘but it is difficult to tell accurately from their figure.
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III. CROSS SECTION FORMULAS

_ There have been a number of theoreticdiVdescription$8_15’39—35

‘of collisional autoionization(of which PI is an example ) jour notation

follows. the fOrmulatidn of Ref. 35. The most detailed cross section

'pQSSible is that which is differential in the scattering angle of the

.heavy particleé'ahd also differeﬁtial iri the energy and anglevof the

ionized electron, o(e, Kf); less detailed cross sections are partial

'Aintégrals of this. . The energy.distributiéﬁ of ;ﬂexeleétron; for example,

is
o(e) = fa g [ak. ol ,&.)
gle) = Jde [a R, ole ,R.),
and the tdtal-iohiiation cross-sectiqn is
o > L +'~
g = f@e a(e) = fd3€ fdzﬁf o(e,R.).

The ‘quantum mechanical expression for the cross section is the

square modules of an amplitude
G2 ) =|t(@ &, «o0,&)|?
"f" ’ e 0ol

where-o denotes the initial electronic state A -B, kd is the initial

relative momentum vector of A and B, € is the energy and direction -of

- ) . N v v : o
the ionized electron, and kf‘is the final relative momentum vector of.

A and B ;- energy conservation requires that

s
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h2

k 2/op + A = 0%k 2/2u + €,

o 4

where U is the reduéed mass of A andﬂB, and A'is the difference in the
N - . : _ : .

excitation energy A > A and the ionization potential of B. The

scattefing amplitude, exect within the Born-Oppenheimer approximation,

e .30 ' |

is given by

1/2 1 - 1/2
Im Pe

—+"+ _ 1l 2y ‘
f(E,Kf O,RO) = -jﬂ%-hZ (kf/ko)

> (=) > * > (+),2,.
_fd3R w T (R) VE,O(R) uy (R),
£ : o
'whgré thé‘elecﬁronic metrix element is the quantity discussed in

Section IIa

S,
Vz,o-(R) = (XEIH -E|y >

D rgle v B e,
except that now € and R are independent of one gnother; é V R denotes
nthe anglés € with reépect to'ﬁ'gﬁd Pe is ﬁhé-density-of contiﬁuum
.elgctronic states. The functions up (ﬁ) aﬂd ur (R) are the scattering
functions (normalized as plane waves) which resilt for the spherically
symmetric poténtials VO(R)'— iF(R)/é and V+(R), respécti&eiy; the + and‘
- denote the'usual cutgoing gnd incoming boundafy éonditions;-
.Claésical and semiclassical apprbkimatiohsvmay bevdEVElOpéd from
35 ’

this quantum expression. _Withinvthese approximations there is a
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correlation between €, the energy of the ionized electron, and R, the

internuclear distance at which ionization takes place,

€= v (R) - V+<R);'" S " '-‘ (25)

A 7 e » I ‘
Fig. 4 shows this function for the He + H case. For fixed €, therefore,

i

autoioninationﬁmust occur at-R(e),_the root'of'Eéj (25) [note that
tnefe nay be.more than one such rootj.' I1f autoionizotion ocecurs at
infefnﬁclear distance R, however, one knows the'claesical defiectione
function associated with the heaVy particle'trajector&:

[+ o}

. ) . o ' 2 ry1=1
:eih(g,R) -_W ~L fR dr' [R nko(R )]

R ar [r? k(R - 2 fwdR' “x (R')]'l (26)
. (L.R) = n-zf“aai[a'Qko(Rv)]fl - lfRdR'[R'zké(R')]—l |
27 ar' [R'® K (R)]T, | (en
yhere L is thejorbitel'angﬁlar momentum for relative motion of A and B
(which is conserved), k_(R) and k(R) are the local momenta in v (R) and
V+(R), "in" and "out" refer to whether auotionization occure on the .
_ inward or outwafd part of the radial motion, and &hefunspecifiedvlower
.limits of thevintegrals are the claséical turning:points; From these .
deflection functions one can ea51ly construct the angular dlstrlbutlon

for the heavy partlcles whlch corresponds to an 1onlzed eleetron energy

L4

g
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of €. From Eq. (17) one, in addition, knows the angular distribution of
* the electrons with respect to the instantaneous internuclear axis. Thus

the completely differential'cross section is given classically by
4 ’ . .

0(g,k} )_E O(E ',6‘€,¢E‘,S,¢)

cin(€,6€,¢€,9,¢) +0

out (£:0c505850)  (20)

where

(e,0,,0,) =2 and  (0,0) =K, ana
. 90, (b,R) A
Oin(e’e‘E’q)E’e’(b): b[51ne|'—a—b"’—| IE'(R)IJ
« LEEEL el apt TROMY, (RD)) (29)

where R is evaluated at the root of Eg. (25). In Egs. k28) and (29)
.the deflé¢tioh functiéh @in is considered as a function of the initial
impacf péfameter b = Q/ko, rather than 2, and b is evalﬁated at thé root
of |

@in(b,R) =t 0,

- [If there are multiple roots for b and/or R, then Eq. (29) is a sum of

such terms, one for each pair of roots (b,R).] The direction R in
Eq. (29) is that of the internuclear axis at the instant of autoioniza-
tion; thus' R = (8, ,$), where . R

| e, =20 ar [R% (R

in R 0

I'(R,€:R) 'is the function from Eq. (17), and
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“alm L.  ming’ inh (6 —6).
€R cosf_ cps?in sinf_ sinf, ¢?5(¢€ ?)
One sees that the .aximuthal dependence of o(e,kf) only involves the
difference of azimuthal angles_(¢é;¢).‘ A similar‘eipressipn gives

§5ut(;,eéé¢€,e,¢), the modifications of Eq. (29) being

o exp[-f; ar" '(R')/v, (R')]> exp[-/" aR' T(R')/hv, (R')

~F @R TR MY, (RO,
where . . ' | ' e o :
2

8 = TR R (RO ¢ e s ar (R

out

1) _l‘.. |

'the unspecified lower limit of the inteérals is the Classi¢al turning

' point.

‘The two quantities for which we present'numerical results in the,’

next section are the total ionization cross section

S0 o= 2ﬁ'fo.db bR R .~ o (30)

and the:énergy-distribution of the ionized electron
Lo(e) = en /5 ab b P (R) ler(r)| ™t (31)

‘where P _(R)dR is the probability that (for impact. parameter b) auto- -

_iOnizatibn tékes place in the interval (R, R+dR),

Sy
piel




—-23-
B (R) = [F(R)Awy(H)) expl- /™ aB' T(R')/hv, (R")]

x 2cosh[ /" aR' T(R')/hv, (B')], (32)

. and Pb is the total probability“of autoionization for impact parametér b,

Pb= i dB'Pb(R),

or one finds that

Py =1 - exp[-2 it I'(R") /v (R') ] l o o (33)

vb(R) is the local velocity,

’1/2'

v (R) = v_[1-V_(R)/E-0 /R 12,

v, being the initial asymptotic velocity. Since e(R) = Vé(R) ‘,V+(R)'-

is not monotonic (see Fig. b4), there are typically two values of R which
satisfy Eq. (25), so that Pb(R) is the sum of two terms, one for each
root.

35

As discussed previously,>’ the classical expression for o(€) fails

for € near £x, the minimum of €(R) (see Fig. 4). The appropriate semi-
ST , : v .
classical extension has been developed'for € near €4, and this corresponds

to modifying Eq. (31) by the replacement36

o' (R) |7 > (h) ™ 3(276,M3/3 2w a1%(<2) (34)

where

. E*" = e"_(R*),

" Rx being that value of R for which e'(R) = 0; also



b

’(hv;)f?/3(é/e*")1/3(5-5*).

N
i

Fin@}l&, although it does,ﬁot appiy in the He* + H case;,we‘note
" that if:the:transitioﬁ.ié weak (i.e;; if Pﬁ << 1 fér all b), then
Eq.\(3é) bécomes o

Pp(R) = T(R)/hv (R),
'and,théh the integral over‘b in Eq. (31) can be carried out; this gi#es
- the following explicit expressioﬁ for o(g) | | ”

ale) = [e'(®)] ™ WRPr(R)My_](1-7_(R)/E)YZ

where R is evaluated at the root of Eg. (25). The total ionization

cross section is given in this case by

o= S% ar LR® [r(R)/nvo][1;vo(ﬁ)/E]l/2f"
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IV. CROSS SECTIONS FOR He (1s2s Sg) + H(1s °g)

38) +.H(ls‘2S) all of the cross section

 For the case e (Ls2s
formulas of thé preceding section mﬁst be multipliedbby 1/3; this ié
a purely statistical factorlo thatiaccéunts for the fact that of the
*(3 v '

six spin states arising from He (~8) + H(2S), four are components of

® : . * .
l‘Z He -H and cannot autoionize, while two are components of 22 He -H

and do autoionize.

A. Total Tonization Cross Sections

Figﬁre 51shows the total ionization cross section [computed'from
Eqs.'(30) and (33)] as a function of iﬁitial translational energy. |
Alsd shown is the fraction 6f this which results in éssociated proauct,
HeH+,vthis prbcesé being associative ionization (AI). The cross section
for AI was detérmined by assuming thét all resonant states of HeH+ are
associéted; i.e., tuﬁneling was:neglected. [See thé'diScuSSion.of.this
point in references 15 and 35.] Figufe 6 shows the percentage of.
associéted product as a fﬁncfion of collision energy .

éihce VO(R) for He*—ﬁ is strongly attractive and gince we are
considering the region of low collision energy, the integral over b
in Eq: (30)vhés a sharp cut-off at B, thaf value at which clasSiéél
orbitting occurs. This is true becéuse-the'oute:most classical turning
pbint.in VO(R) jgmpé discontinuocusly from small R to large R at b = B;
since F(R)‘deqreases exponentially with R, éb drops eésehtially to zero
for 5'>'B.v_Furthermore, the transition frobability Pb is almost in-
dependent of b for b < B, beiﬁg equal esséntially to'ifs b = O-yalﬁé; :
for loﬁ energies it is also independent'of E. This results because the

contribution to the integral over R' in Eq.‘(33)'comes dominantly from
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- the tuining point region, and for low energy and a strong attractive

interaction the turning point varies only slightly with b and E beforé

the orbitting cut-off. With these approximations Egs. (30) and (33) give &
=1 '
O =3 %rit Fo (35)
~ where -
_ 2 - ' | R
Torbit = P - L (36)

%1/2}

P =1 - expl-(2u/m®)2 12 art r(r))[-v_(R')] (31)

o]
: o}

ie., Pévis P of Eq. (33) for the case b = E = 0. From our potential

V_(R) and I(R) ve find

, - . 15
and Oorbit(E)~has been computed prev1ou§1y.

The dashed lines in Fig.'s ére'thé results of the "scaled orbitting
modei"; Egs. (35)-(38). It is seen that it gi?eé excellent reéu;ts for
ﬁhe'total ionization croés secticn, but is rather poor fdr pfedicting
GAI,'thebffaction §f the total that is associated product. This ﬁailure

is due to the fact that determinatibn of OAI requirés that the model
specify at what value of R.autoionizétion occurs;lthis detail of the

dynamics is not required for the total ionization cross section. The:

[}

orbitting model of reference 15 assumes that autoionization takes plaée
only at.the classical turning point, and this appears to be unrealistically

restrictive. Autéiohization’actu&lly occurs for all classically allowed

valués of R with varying probability, and this autoidnization’at larger

values of R reduces OAi COnsiderably'beiow that predictediby the or-

 bitting model.
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To illustrate this feature more clearly, Figure T shows the
quantitvao(R)._ i.e., the fUnction Pb(R) of EqQ (32) for the case
b =E= 0. ~Figure 8 shows its indefinite integral'Po(R),

- , .
P (R) =/

e R
Q

dR"PO(R') , ) , (39)

= (1-Po)l/2 2 sinh[fg dR' T(R')/hv_(R')]; - (bo)

o ' . :

go(R)‘is the probabiiity that autoionization occurs for an internuclear
distance less than_or‘equal to R. Figures 7 and 8 show that althdugh

most autoionization,ddes take place at small R, a significant amount oe-

curs at disﬁances'away from the classical. turning point; the orbitting

model would give EQ(R)as é step—funcfion

PO(R) = Pobh[R-RO], |
Ro being the turning poiht.‘\The difference between these two distributions
of autoionization probebility has impdrtant'consequenées'for'the amount of
associated product because the turning point in the He ~H potential is

‘ L . _ .
high up on the outer wall of the He-H potential well (see Fig. 1).

With the function P_(R) of Eq. (39) and Fig. 8 it is easy to deter-

mine the fraction of associated product in the limit of zero collision

energy. As E > O, only b = 0 contributes, the orbitting cut-off pro-
hibiting. contribution from other impact parameters. For b = 0, however,
autoionization at internuclearvdistaﬁce R will result in associated

product.if;_and.only if,

CVLR) + V() -V (R) <V (), -



28

or

Ce(®) > el®). - - ('ul)
| If R, is that finite value of R for which e(R) = e(w) [see Fig. h} ‘then
lim. o, /o, J aR P (R)/S/ 4R P _(R)
To AT Ctot R on'l'R o
ST ) 0 v o
lin o, /Ott"PO(RAI)/P.O(oo).V. v o o (k2)

B0

TAT -

of associated product in the limit of zerevcollision energy is %22%7 [The

Since R, = 2.49 ao.(see Fig. 4), one finds from Fig. 8 that the fraction-

’»orblttlng model would predlct the fractlon to be 100%. ] siﬁée'Eo(R)jrisés'
vrapldly to its asymptotlc value as R 1ncreases (see Flg 8) aud_sinee”the
: value Qf RAI is a sen51t1ve function of the patentlal curves, thisullmit%
ing‘fréctien ovaI is a.sen31t1ve function of the shape of V_ (R) andiV+(R);
‘prlmarlly 1n the reglon about the zero energy turnlng point of V (R).

The results of Fujll et al 12 for the total 1on1zat10n cross seetion
agree well w1th our results in F1g 5 at the lower range of energles, ‘but
deerease faster at hlgher'energles,_belng 7 A® at O-B_GV, compared to'

12 A% in Fig. 5. _Belllh,obtains & thermally averaged cross section of

28'A21at T = 300°K, compared to a value'of 33 A° from Fig. 5 at E = 0.03 eV.

37 o

The flow1ng afterglow measurements of Shaw et al. .glve an average,éress
sectloh of (22 +6) Az at T = 300°K, ehd the major product is found“he_be_
He + H*, althOugh’HeH is also found. Our results (Fig. 6) at E =‘O;Q3 eV
'Lgives 18Z Her ahd_82%.He + H as theiproduct aistribution{ in.Qualitetive

agreement with these measurements.

-

b
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Bi Energy ﬁistribution of -the Ionized Flectron

Figﬁrés_g—ll show o(g), the distribution in energy of the ionized
eiectron, for typical "low",'ﬁmediﬁm", and "highﬁ cdliision energies
E = 0.0l eV, 0.03 &V, and 0.136 eV, res@eétifely. The classical ex-
pression [Eq. (31) and'(32)] waé used, and the semiélassical modification
given by Eq. (34) for € near €4 1s shown by dashed lines.

The dominant feature in U(e) is the maximum near é*; although the
classical infiﬁity is removed by Eq. (3&), the beék is still prominent,
incfeasing in height as the collision energy decreases.' For the éresent'

*

case of He and H, the difference betweenfe* = 4,32 eV and the asymptotic

‘value e(w) ~ 6.06 eV is a rough measure of the well-depth of v_(R)

» - | i . . + ) A
[the He -H potential]. This follows because V+(R) [the He-H - potentiall]

is of much shorter range than VO(R), being only slightly different from

its asymptotic value at the minimum of VO(R) (cf.vFig. 1). For our

potentials €(») = g, = 1.Th eV, and the well—depth_of.Vo(H) is 1.91 eV.

Measurement of G(e), therefore, should give important information about

- the depth of the He -H potential well. It should be noted, however, that

~ the maximum in o(e) does not occur precisely at €,; thus it would be ..

necessary to fit ihe peak to fhe Airy function form in Eq. (34) in order
to.extrﬁct €y |

At low collision energies (i.e., Figs.v9 and 10) fwo other peaks
appear 'in 0(e), these at larger €. ~The origin of_fhese features can.be
seen by éonsidefingvfhe limit of O(E) as E+d.' As‘discuséed aboVe,-only
b=0 contfibutes in this limit, so that |

ole) ~p R/ ()= B (), (13)

e}
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where PO(R).is given by Eq. (37) and ;hown.in Fig. T, and R is the root
of e(R) = é; Po(e) is shéwn'in Fig. 12. The singularity in‘PO(E) at
€ = 7.#3 eV ;orresponds to R = R , the root of VO(R) = Vo(w); i.e.,
this is the:"turﬁing—point singularity"‘thaf is present in PO(R)

(cf. Fig. T) because only b = 0 contributes. For small but non-zero
collision energy, a sméll range of impact parameters contributes to the
integral over b in Eq. (31), and this averages out thé turning-point
singulgfity;»the peaks in 0(€) at € = T eV in Fig. 9 and € = 6.3 eV in
Fig. 10, however, are the remnant of this singularity. Tt is seen that
this peak is shifted to progressively smaller € as the coilision energy
increases, as well as being rapidly reduced in height; it is cormipletely
absent in Fig. 11 (E = 0.136 eV). |

| The other peak in Fig. 12 is located at € = () = 6.06 eV and is 
due to a large contribution from large values of R becausé'!s'(R]+O as

R -+ @, " Although it is true that

lim :
Ln [ (r)/m oy (R))/ ] (R)] = o,
our potential curves and width give a region of large R for which [e'(R)]|

decreases faster than P(R)/hw%(R), giving rise tc this sharp spike near

35

g(). F[Actually, the stationary phase approximation used™  to obtain the
classical expression for o(e) from the quantum oﬁe_fails if €'(R)»0; a
more refined semiclassical treatment for € near g(x), thefefore, would
round-off this spike somewhat.] This peak in‘G(e)'élso_diminishés as

the collision energy increases (only a faint shoulder remains in Fig. 11),

but its position remains fixed at ().
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Finally, we npte that the scaled orbittingﬂmodél (i.e., the results
from Eq. (6) of refereﬁce 15 multiplied‘by %-Po = 0.263)‘gives poor
agréemenﬁ with ﬁhe results in Figs. 9—11,” due again to the fact that it

»reéuifes fhat autoionization occur while the atoms are at a classical

turning point of their relative motion. The model gives better agreement
wifh Egs. (31) and (32) for higher collision energies (E ;' O;h eV); for
energies E ; 1 ev, héwever, the model begins to fail even for the tdtal

ionization cross section (as seen in Fig. 5), so that the range of its

utility regarding o(e), O.4 eV < E < 1 eV, is quite limited.
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C APPENDIX: Isotope Effects

Here wé consider the total ionization cross section, defined by
Eqs,_(BO)-and (33), as a function of initial translational energy E and

‘thevredu¢ed mass of the atoms H.. If the transition is weak-(i}é.,

P <<1 for all b), then it has been shown>’ that

o(u,E) ='ul/2 x function (E) _ v (A1)

so that if differént isotopic species of the same atoms &re ~studied,

one has’ _ : .
R 0(uy,B)/0(u,E) = (uy/ u)YE )

* . KN .
For  He -H: (isotope number 1) and He -D (isotope number 2), for -

example, the cross section ratio would be (5/3)1/2': 1.29, a 30% effect.

"The case of He*_H however, is not that of a-weék transitioﬁ;
because of‘the stfong attractive inferactidn, hdﬁevér, ﬁhe orbitting model
- discussed in Section IV is vaiid at low energy. From Egs. (35);(37),
thereforé,'

1/2yy, a3

o(1,E) = S0 .0 (B) [1-exp(-cu

orbit

where it has been noted that the cross section for orbitting is independent

- of U and that ¢ is independent of U and E. The crossfsection_ratio in

this case thus becomes

R = [l-exp(—cugl/?)]/[l—exp(—'cpll/g)']. " (Aﬁ)»'
Aé.c + oo, R » 1 (the strong limit), and as ¢ > 0, R ~ (ug/ul)l/2 (the

weak limit).
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One will generally not be able to calculate the constant c in
- order to predict the cross—séction'ratid, the only prediction being that

‘ o
R lies between 1 and‘(u2/u1)l/'

. If three isotopig variants are oOb-
servéd,’however, then measurement‘of the cross section for 1 and 2 will
determine ¢ via Eq; (A4), so that the cross section for isofopé numbér
3 will be predicted. From another point of view, measurement of the
cross section ratio in Eg. (Ah)_defermines the constant c and thus
determines the efféctiVe tranéition proﬁability in Eq. (AB).

~  Finally, for He'tﬁ we found in Section IV an effective transition

-1/2

~ probability of 0.789, which gives ¢ = 1.740 (amu)™"’“; this predicts the

: . * * ' -
cross section ratio for He -D to He ~H to be R = . 1.10, a 10% effect.
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Table I. 'Autoionizatibh Width versﬁs Internuclear Distancei

Internuclear Distance (Bohrs )

2 o 6 8

. 3.781x10°

riob. f41j83EXiQ;2 ~5.416x107> 7.282x10'h 2.132x107
I, 1.846x1072 391073 1.921x1070  1.223a07
I, ~9.754x1073 1.012x107% -9.878x10™" -h.9h1x;0"u
I, 7.753x10'3 1.421x1073 -2.772510™"
I, 2.640x1073 1748073 3.953x107
I, s.275x10™" - 9.9k8x10™ 6.71hxio'h:'
I | 3.81sv>§<1o'LL | 5.375X10_%'
I, 3.021x10'h'
I, 13413007
I,  14.981x107°
e° 0.334238" 0.15952k | 0.197397 0.219123

ré 1x10™3 1.522x1073 7.262x10™ 8.122x10~°

aAll quentities are in atomic units.

b'I'he matrix element IZ(R) defined in Eq. (18).

?The asymptotic energy of the electron if autoionization occurs at R,

e(R) =”VO(R) - V+(R). |
_dThé'total autoionization width at’ internuclear distance R,'given.by

vK.:(23)—(2h),
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‘Figure Captions

ro

_ _ . , .
Fig. 1. The potential energy curves for He (1s2s 3S)-—H(ls S)

+ 1., »
21 lZ[V+(R)], as calculated in reference 15.

2Z[VQ(R)] and He(1ls” ~g)-H

Fig. 2. The natrix elements I, (R) defined in Eq. (18) and calculated
by.the prbcedure described in Section iI of the text; corfesbonding
nﬁmerical values are given in Table I.

- Fig. 3. The total autoionization width [given by Eqs. (23)-(24)] as a
function of internuclear diétance.R; corresponding ﬁumeriéal values
are given in Table I. The dashéd curve 1s the résult of Bell
[reference 14] for this quantity.

Fig.:h. The asymptotic kinetic energy of the iéﬁiéed electfén as a

vfﬁnctiohbof the intérnuclear distance R at which aﬁtoionization
oceurs: e(R) = VO(R)_V+(R), where VO(R) and V*(R)‘are the'potenfial
curVeé for He*4H and He-H +? respectively, as shown in Fig; l.. The
dotted lines iﬁdicate théviﬁternuclear distance R, of Hq. (41)-(k2)
for which e(R) = €(). |

' % o )
Fig. 5. The total ionization cross section for He (1s2s ~8) + H(ls 2

(l

8)~

ol
He(lsgg s)

+H O+ e",'HeH+ I) + e s a functioﬁ of collision energy
E; AT indicates the cross section for associated product HeH+. The
dashed lines are the results of the "scaied'orbitting mgdel”, |
Egs. (35)-(38). |

Fig{ 6. The pércentage of the total ionizatipn'éross section whicb‘
yields,assdciated ?rodﬁct HeH+, as a fuhctién of éollisidn.energyﬁ-

The zero energy limit of this quantity is 22%, the top border of

the figure.



-38-

‘Fig. T. PO(R) is the function Pb(R) of Eq. (32) for the case b = E = 0;
PO(R)dR'is the probability that autoionizatiohs_occur for an inter-

nuclear distance in the interval (R, R+dR). RO and R._ are the

o AT
roots of VO(R) = Vo@”) and €(R) = e(»), respectively.

Fig. 8. '5$(R) [defined by Egs. (39)-(&0)] is the probability that auto-
ionization occﬁrs at an interhuélegr distance less then or equal to
R for the case that the impacf parameter aﬁd céllision énergy are

v zero‘(b=E#O); the asymptotic (R+e) value is PO = O.789;'lThe pesifions

R, and R, are the roots of VO(R) ='vo(w) and é(R) = e(é),'
respecti&ely. |

Fig. 9. The energy distribution.of the ionized electron, o(e), as
gompufed from the classical éxpressions Egs. (31) and (Bé), for the
collision energy E = 0.01 eV. The dashed line indicates the.semi-:
classical modification given by Eq. (34), and the arrow'sho&s the
ldcétion of €, * k.32 eV, the minimum of &(R).

Fig. 10.  Same as Fig. 9, except for the collision energy E

Il

0.03 eV.

i

Fig. 11. Same as Fig. 9, except for the collision energy E 0.136 eV.
Fig. 12. P (), defined by Eq. (43), is the probability distribution of
€ for the case that b = E = 0. The vertical lines at € = 4.32 eV and

> 2'7.h3 eV are .the values €, and €(RO),'respectively, where R is

the zero-energy turning point for the potential VO(R).
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or-implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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