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Kernel Knockoffs Selection for Nonparametric Additive Models

Xiaowu Dai,

Xiang Lyu,

Lexin Li

University of California, Berkeley

Abstract

Thanks to its fine balance between model flexibility and interpretability, the nonparametric 

additive model has been widely used, and variable selection for this type of model has been 

frequently studied. However, none of the existing solutions can control the false discovery rate 

(FDR) unless the sample size tends to infinity. The knockoff framework is a recent proposal that 

can address this issue, but few knockoff solutions are directly applicable to nonparametric models. 

In this article, we propose a novel kernel knockoffs selection procedure for the nonparametric 

additive model. We integrate three key components: the knockoffs, the subsampling for stability, 

and the random feature mapping for nonparametric function approximation. We show that the 

proposed method is guaranteed to control the FDR for any sample size, and achieves a power that 

approaches one as the sample size tends to infinity. We demonstrate the efficacy of our method 

through intensive simulations and comparisons with the alternative solutions. our proposal thus 

makes useful contributions to the methodology of nonparametric variable selection, FDR-based 

inference, as well as knockoffs.

Keywords

False discovery rate; Knockoffs; Nonparametric additive models; Reproducing kernel Hilbert 
space; Subsampling; Variable selection

1 Introduction

In the past decades, the nonparametric additive model has been widely used in statistics 

and machine learning, thanks to its fine balance between model flexibility and model 

interpretability (Stone, 1985; Hastie and Tibshirani, 1990; Wood, 2017). For a univariate 

response variable Y ∈ ℝ and p predictor variables X = X1, …, Xp
⊤ ∈ Xp ⊆ ℝp, the model 

postulates that,

Y = μ +
j = 1

p
fj Xj + ϵ, (1)
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where μ is the intercept, fj:X ℝ, with EXj fj Xj = 0, j = 1, …, p, are the component 

functions that are modeled nonparametrically, and ϵ ∼ N 0, σ2  is the random error, with 

unknown σ. Furthermore, we assume throughout this article that the component functions 

fj’s reside in a reproducing kernel Hilbert space (RKHS, Aronszajn, 1950; Wahba, 1990).

Variable selection for the nonparametric additive model dates back to Lin and Zhang (2006), 

and has seen substantial developments ever since (Meier et al., 2009; Ravikumar et al., 

2009; Huang et al., 2010; Koltchinskii and Yuan, 2010; Wood, 2017, among others). In 

particular, Lin and Zhang (2006) proposed a component selection and smoothing operator 

(COSSO) penalty that extends the Lasso penalty to the nonparametric additive model, 

and penalized the sum of the reproducing kernel Hilbert space norms of the component 

functions. Meanwhile, Meier et al. (2009) and Ravikumar et al. (2009) both employed 

basis expansion, and penalized the sparsity and smoothness seminorms. Huang et al. (2010) 

employed the group Lasso penalty to obtain an initial estimator and to reduce the dimension 

of the problem, then employed the adaptive group Lasso to select nonzero components. 

This family of methods guarantee the asymptotic optimality of the function estimation and 

the selection consistency as the sample size tends to infinity. However, none has achieved 

the control of false discovery rate (FDR) unless the sample size tends to infinity. There 

has been another family of solutions that target simultaneous testing of multiple hypotheses 

and concentrate on controlling some forms of false discovery (see, e.g., Benjamini and 

Hochberg, 1995; Efron et al., 2001; Storey, 2007; Sun and Cai, 2007, 2009, among others); 

see also Cai and Sun (2017) for a review. Nevertheless, none of the existing solutions in this 

family directly addresses the problem of variable selection for the nonparametric additive 

model while controlling the false discovery at the same time.

More recently, Barber and Candes (2015) proposed a powerful framework called knockoffs 

that effectively controls the FDR for variable selection in the linear model under the finite-

sample setting, in the sense that the sample size does not have to go to infinity. The key 

idea is to construct a set of so-called “knockoff variables” that are not associated with the 

response conditioning on the original variables, while the structure of the knockoff variables 

mimics that of the original ones. It then computes an importance score for each variable, 

and selects those that have considerably higher scores than their knockoff counterparts. 

There have then been numerous generalizations of this work; see Barber et al. (2020) 

and many references therein. Related to our target of high-dimensional nonparametric 

additive model, Barber and Candes (2019) considered the high-dimensional fixed design, 

and focused on the linear model only. Dai and Barber (2016) developed an “expansion first” 

strategy that performs feature expansion first then constructs the knockoffs based on the 

expanded features, and proposed to employ a group Lasso penalty for subsequent variable 

selection. They actually still studied the linear regression setting; however, their proposal 

can, in principle, be extended to the nonparametric additive model. Candès et al. (2018) 

proposed a model-X knockoffs extension that works for random designs of predictors and 

allows the conditional distribution of the response given the predictors to be arbitrary and 

unknown, though they mostly focused on the step of how to generate the knockoff variables. 

Fan et al. (2020) further built on the model-X knockoffs framework, and developed a 

knockoffs-based variable selection procedure that is applicable to the nonparametric additive 
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model. It employs data splitting, uses half of the data to estimate the predictor precision 

matrix and screen the predictors, and uses the other half to perform knockoffs based on some 

empirical norm of the estimated component functions. These pioneering works have opened 

the door for knockoffs-based selection for the nonparametric additive model. However, some 

may be difficult to extend beyond the linear model, and others suffer a limited power or 

expensive computation. In addition, there is generally a lack of theoretical power analysis 

for the existing knockoffs-based methods, except for Fan et al. (2020) and Weinstein et al. 

(2020), who made important first steps, but only studied the power behavior for the linear 

model.

In this article, we propose a novel kernel knockoffs selection procedure for the 

nonparametric additive model (1). We build on and integrate three key components: the 

knockoffs, the subsampling for stability, and the random feature mapping for nonparametric 

function approximation in RKHS. Specifically, we employ the random feature mapping 

(Rahimi and Recht, 2007) to approximate the component function fj, and construct a 

projection operator between the RKHS and the original predictor space. Such a projection 

allows us to define an analog of the effect size of the individual predictor in the setting 

of nonparametric additive model. We then construct the importance score based on the 

projected component function fj, instead of the original predictor Xj or its knockoff. 

Moreover, we note that the random features may introduce additional stochastic errors, 

which can disturb the order of the variables entering the model and lead to both false 

positives and false negatives. We thus further employ the subsampling strategy to improve 

the selection stability (Meinshausen and Buhlmann, 2010). That is, we subsample the data 

and apply the random feature mapping multiple times, and compute the importance score as 

the difference of selection frequencies over subsampling replications between each predictor 

and its knockoff counterpart. We show that the proposed method is guaranteed to control the 

FDR below the nominal level under any sample size, and achieves a power that approaches 

one as the sample size tends to infinity.

Our proposal makes useful contributions to the methodology and theory of nonparametric 

variable selection, FDR-based inference, as well as knockoffs.

First, whereas the methods such as Lin and Zhang (2006); Ravikumar et al. (2009) have 

obtained the variable selection consistency asymptotically, there has been no existing 

method that controls the FDR in the setting of nonparametric additive model for the 

finite-sample setting. A low FDR in such a setting assures that most of the discoveries 

are indeed true under any given sample size. By contrast, the asymptotic control is valid 

only when the sample size goes to infinity, which can be problematic for the applications 

with limited sample sizes. In those cases, the asymptotic control may provide little guidance 

on quantifying the threshold of variable selection (Barber and Candes, 2015), and it is 

possible that the selected variables may still include many unrelated ones (Su et al., 2017). 

On the other hand, the classical reproducing kernel methods usually involve non-separable 

variables and their knockoffs, which renders the FDR control infeasible. To address this 

challenge, we employ the random feature mapping to ensure the exchangeability of the 

null variables and their knockoffs, and in turn achieve the finite-sample FDR control. 

The random feature mapping nevertheless introduces an extra layer of randomness. We 
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further resort to subsampling, construct an importance score by averaging over multiple 

subsampling replications, and show these techniques can handle the extra randomness; see 

Section S1.2 of the Appendix for more technical details. In short, the finite-sample FDR 

control for nonparametric variable selection has been a long-standing and open question, and 

our proposal is among the first solutions for this type of question.

Second, we employ the subsampling strategy, but it is different from the existing 

subsampling based methods for FDR control. Specifically, Bach (2008) proposed a selection 

method based on bootstrap replications, which may suffer from a limited power when 

the sample size does not go to infinity. Meinshausen and Buhlmann (2010) proposed a 

stability-based procedure to select the variables with the selection frequencies exceeding a 

threshold level over the entire solution path, which guarantees the control of the expected 

number of false positives, but may fail to control the FDR. Li et al. (2013) proposed to 

use a mixture model for the distribution of selection frequencies, whereas Ahmed et al. 

(2011); He et al. (2016) suggested to estimate this distribution via permutations. However, 

such a distribution estimation requires either strict parametric assumptions, or expensive 

computations. By contrast, our method does not require estimation of the distribution of 

selection frequencies, but uses subsampling to tackle the extra randomness introduced by 

random feature mapping and to achieve the FDR control.

Last but not least, our method expands the scope of the currently fast growing area of 

knockoffs. Compared to Barber and Candes (2019) who focused on the high-dimensional 

linear model only, we generalize the knockoffs to the high-dimensional nonparametric 

additive model. Such an extension is far from incremental, as it has to deal with nonlinear 

dependency between the response and predictors, as well as the non-separability of variables 

of the usual reproducing kernel methods. Compared to Dai and Barber (2016) who did 

“expansion first”, we adopt a “knockoffs first” strategy, which leads to an easier construction 

of the knockoff variables, ensures a good statistical power, and is computationally more 

economical. Compared to Candès et al. (2018) who developed the model-X framework, 

but can not handle the nonparametric additive model directly, and did not provide any 

formal theoretical justification for the model-X knockoffs beyond the generalized linear 

model setting, we propose a new and effective importance score based on random feature 

mapping and resampling, and we explicitly study the power behavior in the nonparametric 

setting. Finally, compared to Fan et al. (2020) who extended the model-X framework, and 

proposed a novel importance score based on the basis functions and some empirical norm 

of the estimated component functions, but only studied the power for the linear model, 

we again develop a new importance score that is built on the selection probability of the 

variables and their knockoffs. As a result, we show that our solution is more powerful 

and also more robust to the data distribution. Moreover, we establish the power guarantee 

for the nonparametric additive model, which is more challenging than the linear model 

case as it involves nonlinear associations. Toward that end, we employ some functional 

data analysis techniques and concentration inequalities for functional empirical processes to 

study the spectral properties; see Section S1.4 of the Appendix for more technical details. 

We also briefly comment that, our theoretical tools are applicable to the FDR control for 

more general nonparametric models, e.g., the functional analysis of variance type models 

that involve higher-order interactions (Wahba et al., 1995; Lin and Zhang, 2006). Moreover, 
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in Section 5, we further compare with some of these key alternative knockoff solutions 

numerically, and demonstrate the advantages of our proposed method empirically as well.

The rest of the article is organized as follows. Section 2 formulates the problem. Section 3 

develops the kernel knockoffs procedure. Section 4 establishes the theoretical guarantees 

on the FDR and power. Section 5 presents the simulations, and also an analysis of 

brain imaging data. The Supplementary Appendix collects all proofs and some additional 

numerical results.

2 Problem Setup

2.1 Kernel learning

Throughout this article, we consider regression functions that reside in an infinite-

dimensional reproducing kernel Hilbert space. We begin with a Mercer kernel 

K :X × X ℝ,

K X, X′ =
v = 1

∞
λνψν(X)ψv X′ ,

where ψν ν = 1
∞  are eigenfunctions, λν ν = 1

∞
 are eigenvalues of the integral operator defined by 

the kernel function, and λνψν(X) = XK X, X′ ψν X′ dX′ (Mercer, 1909). The domain X ⊆ ℝ
can be either a compact or an unbounded space. We consider the RKHS ℋ1 generated by this 

kernel, which is defined as the closure of linear combinations of the basis functions ψν ν = 1
∞

as follows, where ·  denotes the closure of a function space,

ℋ1 = f :X ℝ f X = Ψ(X)⊤c, and f K<∞ with f K
2 =

ν = 1

ℏ cν
2

λν
.

Here Ψ X  is an infinite-dimensional vector with the νth element equal to λνψν(X), and c is 

an infinite-dimensional coefficient vector with the νth element cv, ν = 1, 2, ….

Next, define the kernel Kp:Xp × Xp ℝ,

Kp X1, …, Xp
⊤, X1

′ , …, Xp
′ ⊤ = K X1, X1

′ + … + K Xp, Xp
′ .

The RKHS ℋp generated by Kp is of the form (Aronszajn, 1950),

ℋp = ℋ1 ⊕ … ⊕ ℋ1 = f :Xp ℝ f X = f X1, …, Xp = f1 X1 + … + fp Xp ,
fj ∈ ℋ1, and E fj Xj = 0, j = 1, …, p
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Suppose the observed training data xi, yi i = 1
n  consist of n i.i.d. copies of (X, Y) following 

the nonparametric additive model (1), with xi ∈ ℝp, yi ∈ ℝ. The representer theorem (Wahba, 

1990) shows that the solution to the kernel learning problem when restricting f ∈ ℋp,

min
f ∈ ℋp

n−1
i = 1

n
ℒ f xi , yi + λ f Kp

2 ,

for some loss function ℒ, the kernel Kp, and the penalty parameter λ, is of the form,

f(X) =
i = 1

n
αiKp X, xi ,

where α = α1, …, αn
⊤ ∈ ℝn are the corresponding coefficients. This in effect turns an 

infinity-dimensional optimization problem to an optimization problem over n parameters. 

This minimizer can be further written as, for any X ∈ Xp,

f(X) = Ψp(X)⊤cp, (2)

where Ψp X = Ψ X1
⊤, …, Ψ Xp

⊤ ⊤
 assembles Ψ Xj ′s and is an infinite-dimensional vector, 

and cp = Ψp x1 , …, Ψp xn α is the infinite-dimensional coefficient vector.

2.2 Variable selection for nonparametric additive models

Next, we formally frame variable selection in the context of nonparametric additive models. 

We say a variable Xj is null if and only if Y is independent of Xj conditional on all other 

variables X−j = {X1, …, Xp}\{Xj}, i.e., Y ⊥ Xj|X−j, and say Xj is non-null otherwise 

(Li et al., 2005). Let S ⊆ 1, …, p  denote the indices of all the non-null variables, and 

S⊥ ⊆ 1, …, p  the indices of all the null variables, or equivalently, the complement set of 

S. Let ·  denote the cardinality, and S the indices of variables selected by some selection 

procedure. Our goal is to discover as many non-null variables as possible while controlling 

the FDR, which is defined as,

FDR = E
S ∩ S⊥

S ∨ 1
.

We next establish the identifiability of the problem under the following condition.

Assumption 1 (Irrepresentable Condition in RKHS). For any j ∈ {1, …, p}, and any 
functions gk ∈ ℋ1, k ≠ j, fj Xj ≠ k = 1; k ≠ j

p gk Xk .

This condition simply says that the component function fj(Xj) in model (1) can not be 

strictly written as a linear combination of some functions of other variables Xk, k ≠ j. This is 
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a fairly mild condition, and its parametric counterpart that Xj ≠ k = 1; k ≠ j
p βkXk for any βk ∈ ℝ

has been commonly imposed in the linear model scenario (Candès et al., 2018).

Under this condition, we establish the equivalence between variable selection and selection 

of the component functions fj in model (1). In other words, testing the hypothesis that Xj is 

null is the same as testing whether fj = 0.

Proposition 1. Suppose the nonparametric additive model (1) and Assumption 1 hold. Then 

j ∈ S⊥ if and only if fj = 0, for j = 1, …, p.

Proposition 1 makes the variable selection in a nonparametric additive model comparable 

to that in a linear model, and is to serve as the foundation for the new kernel knockoffs 

procedure in Section 3, and the finite-sample FDR control in Section 4, both of which 

are built upon the selection of the component functions fj’s. We next develop the selection 

procedure for model (1) that is capable of controlling the FDR below any given nominal 

level q ∈ (0, 1) under any sample size, while achieving a good power at the same time.

3 Kernel Knockoffs Procedure

3.1 Algorithm

Our kernel knockoffs selection procedure consists of six main steps. Step 1 is to 

generate the knockoff variables. Step 2 is to subsample without replacement half of the 

sample observations. Step 3 is to construct the random features for both the original 

and knockoff variables. Step 4 is to solve the coefficient vector through a group Lasso 

penalized regression based on the subsamples, which in effect leads to the selection of 

a set of important variables. In addition, Steps 2 to 4 are carried out repeatedly over a 

number of subsampling replications. Step 5 is to compute the importance score for each 

original variable, which is defined as the empirical selection frequency based on multiple 

subsampling replications. Finally, Step 6 is to apply a knockoff filter to the importance 

scores to produce the final set of selected variables under the given FDR level, as well as the 

final estimate of the component functions. We summarize our procedure in Algorithm 1 first, 

then discuss each step in detail.

3.2 Knockoff variable construction

A random vector X ∈ ℝp is said to be a knockoff copy of X ∈ ℝp (Candès et al., 2018) if

(X, X) =d (X, X)swap(A), for any A ⊆ 1, …, p , and Y ⊥ X X, (3)

where the symbol =d  denotes the equality in distribution, and swap(j) is the operator 

swapping Xj with Xj. For instance, if p = 3 and A = 1, 3 , then X1, X2, X3, X1, X2, X3 swap(A)

becomes X1, X2, X3, X1, X2, X3 . In the variable selection literature, there are alternative 

methods that add pseudo-variables to help control the false positives in selection, e.g., 

by generating independent features, or permuting entries of the existing features (Miller, 

2002; Wu et al., 2007). Different from those methods, the knockoff framework has a unique 

property of exchangeability as given by (3).
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There have been numerous ways proposed to construct the knockoff variables. We adopt two 

particular constructions, depending on the data.

The first is the second-order knockoffs construction (Candès et al., 2018), which generates 

the knockoffs by matching only the first two moments of the two distributions. In this case, 

X is a second-order knockoff copy of X if

E[X] = E[X], and cov[(X, X)] = Σ Σ−diag s
Σ−diag s Σ ,

where Σ is the covariance matrix of X, and s is a p-dimensional vector such that cov[(X, X)]
is positive semi-definite. To ensure a good statistical power, s should be chosen as large 

as possible, so that the original and knockoff variables are differentiable (Candès et al., 

2018). This strategy is implemented in practice by approximating the distribution of X as the 

multivariate normal, and is employed in numerous knockoffs-based applications (Barber et 

al., 2020).

Algorithm 1

Kernel knockoffs selection procedure for nonparametric additive models

  1: Input: Training data xi, yi i = 1
n

, the number of random features r, the number of subsampling replications L, 
and the nominal FDR level q ∈ [0, 1].

  2: Step 1: Construct the knockoff variables xi i = 1
n

 to augment the original variables xi i = 1
n

 using the second-
order knockoffs or the deep knockoffs machine.

  3: for ℓ = 1 to Ldo

  4:  Step 2: Draw without replacement to obtain a subsample Iℓ ⊂ {1, …, n} of size ⌊n/2⌋.

  5:  Step 3: Sample 2p of i.i.d. r-dimensional random features wν, bν ν = 1
r

 by (5), and construct the augmented 
random feature vector Ψ2p(X) by (6).

  6:  Step 4: Solve the coefficient vector c2p Iℓ  by (8), and record the selected variables.

  7: end for

  8: Step 5: Compute the importance score by (10), i.e., the empirical selection frequency, Πj j ∈ 2p  based on the L 

estimates of c2p Iℓ ℓ ∈ L .

  9: Step 6: Apply the knockoff filter by (11) at the nominal FDR level q.

10:
Output: the set of selected variables S, and the function estimate fRF(X).

The second is the deep knockoffs machine (Romano et al., 2019), which generates the 

knockoff variables using deep generative models. The key idea is to iteratively refine a 

knockoff sampling mechanism until a criterion measuring the validity of the produced 

knockoffs is optimized. This strategy is shown to be able to match higher-order moments, 

and also achieve a better approximation of exchangeability.

In our construction of knockoff variables, we employ the second-order knockoffs when 

there is clear evidence that the predictor variables approximately follow a multivariate 

normal distribution, and employ the deep knockoffs machine otherwise. Given the training 
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samples xi, yi i = 1
n , we first augment with the knockoff samples xi i = 1

n , and form the data 

xi, xi, yi i = 1
n , where xi = xi, 1, …, xi, p

⊤ ∈ Xp, and xi = xi, 1, …, xi, p
⊤ ∈ ℝp.

3.3 Random feature mapping

We next construct the random features for both original and knockoff variables. The key idea 

is to employ the random feature mapping (Rahimi and Recht, 2007; Båzåvan et al., 2012) 

to approximate the kernel function, which enables us to construct a projection operator 

between the RKHS and the original predictor space. Specifically, if the kernel functions 

that generate ℋ1 are shift-invariant, i.e., K(X, X′) = K(X − X′), and integrate to one, 

i.e., XK X − X′ d(X − X′ = 1, then the Bochner’s theorem (Bochner, 1934) states that such 

kernel functions satisfy the Fourier expansion:

K X − X′ =
ℝ

p(w)exp −1w X − X′ dw,

where p(w) is a probability density defined by

p(w) =
X

K(X)e−2π −1wXdX .

We note that many kernel functions are shift-invariant and integrate to one. 

Examples include the Laplacian kernel, K(X, X′) = c1e−|X−X′|/b1, the Gaussian kernel, 

K X, X′ = c2e−b2
2 X − X′ 2/2, and the Cauchy kernel, K X, X′ = c3 1 + b3

2 X − X′ 2 −1
, where c1, 

c2, c3 are the normalization constants, and b1, b2, b3 are the scaling parameters. It is then 

shown that (Rahimi and Recht, 2007; Båzåvan et al., 2012) the minimizer in (2) can be 

approximated by,

fRF(X) = Ψp(X)⊤cp, (4)

where Ψp(X) = Ψ X1
⊤, …, Ψ Xp

⊤ ⊤ ∈ ℝpr, and Ψ Xj = ψ1 Xj , …, ψr Xj
⊤ ∈ ℝr is a vector 

of r Fourier bases with the frequencies drawn from the density p(w), i.e.,

ωj, v ∼i.i.d. p ω , bj, v ∼i.i.d. Uniform 0, 2π ,
ψν Xj = 2

r cos Xjωj, v + bj, v , j = 1, …, p, v = 1, …, r . (5)

The use of random feature mapping achieves potentially substantially dimension reduction. 

More specifically, the estimator in (4) only requires to learn the pr-dimensional coefficient 

cp, compared to the estimator in (2) that involves an infinite-dimensional vector cp. Rudi and 

Rosasco (2017) showed that the random feature mapping obtains an optimal bias-variance 

tradeoff if r scales at a certain rate and r/n 0 when n grows. They further proved 

that the estimator in (4) can achieve the minimax optimal estimation error. Beyond the 

estimation optimality, we note that the random feature mapping also efficiently reduces the 

computational complexity. That is, the computation complexity of the estimator in (4) is 
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only O(nr2), compared to the computation complexity of the kernel estimator in (2) that is 

O(n3). The saving of the computation is substantial if r/n → 0 as n grows.

In our setting of kernel knockoffs selection, we construct the random features for both 

original and knockoff variables and obtain the augmented random feature vector as,

Ψ2p(X) = Ψ X1
⊤, …, Ψ Xp

⊤, Ψ X1
⊤, …, Ψ Xp

⊤ ⊤
∈ ℝ2pr, (6)

where Ψ Xj = ψ1 Xj , …, ψr Xj
⊤ ∈ ℝr, and Ψ Xj = ψ1 Xj , …, ψr Xj

⊤ ∈ ℝr, j = 1, …, p, 

are two sets of r-dimensional random features that are independently sampled from (5). Then 

the minimizer in (2) can be approximated by,

f(X) = Ψ2p(X)⊤c2p . (7)

Meanwhile, we note that the randomness of the features generated from (5) may alter the 

ranking of variable significances. As such, we couple the random feature mapping with 

knockoffs and subsampling to achieve the desired FDR control and power.

3.4 Resampling, importance score, and knockoff filtering

We adopt the subsampling scheme similarly as that in Meinshausen and Bühlmann (2010); 

Dümbgen et al. (2013). Specifically, we subsample a subset of the training samples without 

replacement with size ns, and let I denote the corresponding subsample indices out of {1, …, 

n}. We set ns = [n/2], where [n/2] is the largest integer no greater than n/2. We then estimate 

the coefficient vector c2p = c1
⊤, …, c2p

⊤ ⊤ ∈ ℝ2pr in (7), in which each cj ∈ ℝr for j = 1, …, 2p, 

via a group Lasso penalized regression based on the subsample I of the observations,

min
cj ∈ ℝr

j = 1, …, 2p

1
I i ∈ I

yi − y(I) −
j = 1

p
Ψ xi, j

⊤cj −
j = p + 1

2p
Ψ xi, j − p

⊤cj

2
+ τ

j = 1

2p
cj 2

,
(8)

where y(I) = i ∈ I yi/ I  is the empirical mean, and τ ⩾ 0 is the penalty parameter. Let 

c2p(I) = c 1
⊤(I), …, c 2p

⊤ (I) ⊤ denote the minimizer of (8). We remark that the group Lasso 

penalty in (8) encourages the entire vector cj ∈ ℝr to be shrunk to zero, for j = 1, …, 

2p. Consequently, estimating c2p via (8) in effect leads to the selection of important 

variables among all 2p candidate variables X1, …, Xp, X1, …, Xp . We also remark that, our 

use of the group Lasso penalty in (8) is different from Huang et al. (2010). Specifically, 

Huang et al. (2010) used the B-spline basis for nonparametric function approximation, 

and used the group Lasso twice, first for obtaining an initial estimator and reducing the 

dimension of the problem, then for selecting the nonzero components. By contrast, we 

use the random feature mapping for nonparametric function approximation, and apply 

group Lasso for selection and finite-sample FDR control. These differences have different 

theoretical implications; for instance, the B-spline basis is usually orthonormal, whereas 

the random feature mapping is generally not orthogonal. Our group Lasso penalty is 

also different from the COSSO penalty used in Lin and Zhang (2006), which takes the 
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form 
j = 1

p
Ψ xi, j

⊤cj K +
j = p + 1

2p
Ψ xi, j − p

⊤cj K. Since the random feature mapping generally 

cannot form an orthogonal basis, there is no closed-form representation of the RKHS norms 

Ψ xi, j
⊤cj K and Ψ xi, j − p

⊤cj K in our setting. As a result, the COSSO penalty is difficult to 

implement, and instead we adopt the group Lasso penalty in (8) that also yields the desired 

theoretical properties.

Given the penalized estimate c2p I , we obtain an estimate of the selected variable indices 

S(I) ⊆ 1, …, 2p . That is, for each j ∈ {1, …, p}, j ∈ S(I) if c j I ≠ 0 and the original 

variable Xj is selected, and j + p ∈ S(I) if c j + p I ≠ 0 and the knockoff variable Xj is 

selected. Then the probability of being in the selected set S(I) is

Πj = ℙ j ∈ S(I) , for j = 1, …, 2p, (9)

where ℙ is with respect to both subsampling I and the random features. We note that Πj

can be estimated accurately using the empirical selection frequencies (Meinshausen and 

Bühlmann, 2010). Specifically, we repeat the above subsampling and coefficient estimation 

procedure L times, each time for a subsample Iℓ, ℓ = 1, …, L. We then obtain the selected 

variable indices S Iℓ  for Iℓ, and compute (9) using the empirical selection frequency as the 

percentage of times the jth variable, j = 1, …, 2p, is included in S Iℓ ℓ = 1

L
.

Next, we define the importance score for the original variable Xj, j = 1, …, p, as,

Δj = Πj − Πj + p . (10)

We comment that Δj in (10) is calculated for only one run of the knockoffs procedure, i.e., 

we generate the knockoffs only once. This is different from the derandomized knockoffs 

method recently proposed by Ren et al. (2020), which aggregates the selection results across 

multiple runs of knockoffs to reduce the randomness of the knockoff generation.

Finally, given the target nominal FDR level q, we apply a knockoff filter (Barber and 

Candès, 2015) to the importance scores to produce the final set of selected variables,

T = min t ∈ Δj : Δj > 0 : # j:Δj ⩽ − t
# j:Δj ⩾ t ⩽ q knockoffs . (11)

Set T = ∞ if the above set is empty. Another commonly used but slightly more conservative 

knockoff filter (Barber and Candès, 2015; Candès et al., 2018) is,

T+ = min t ∈ Δj : Δj > 0 : # j:Δj ⩽ − t + 1
# j:Δj ⩾ t ⩽ q knockoffs+ . (12)

In our simulations, we have experimented with both filers, which produce very similar 

results, so we only present the results based on T.

Given the threshold value T, the final set of selected variables is,
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S = j ∈ 1, …, p :Δj ⩾ T . (13)

We then reestimate cp in (4) using all the sample observations as,

cp
RF = c 1

RF ⊤, …, c p
RF ⊤ ⊤

= arg min
cj ∈ ℝr, j ∈ S

1
n i = 1

n
yi − 1

n i = 1

n
yi −

j ∈ S
Ψ xi, j

⊤cj

2
.

We obtain the final knockoffs-based kernel regression estimator as,

fRF(X) = Ψp(X)⊤c p
RF . (14)

3.5 Parameter tuning

We next discuss the parameter tuning. We further carry out a sensitivity analysis in Section 

S2.2, and a parallelization experiment in Section S2.5 of the Appendix.

For the number of random features r, we start with an initial set Ξ of candidate values for 

r. For each working rank r ∈ Ξ, we calculate the selection frequencies Πj, r j ∈ 2p , r ∈ Ξ, and 

the standard deviation σr = sd Πj, r j ∈ 2p , with a relatively small number for the subsampling 

replications. We then choose the value of r ∈ Ξ that maximizes the following criterion that 

balances the selection standard deviation and model complexity,

r = argmax
r ∈ Ξ

2pσr − ln(r) .

We have observed through our numerical simulations that, when we start from a small value 

of r, the selection frequencies of both original variables and their knockoffs counterparts are 

close to zero. As r increases, it starts to separate the truly important variables from the null 

variables and knockoffs, where the selection frequencies of those truly important variables 

grow positively, and correspondingly, the standard deviation σr increases. Meanwhile, the log 

penalty term helps balance the model complexity.

For the regularization parameter τ in (8), we choose it by minimizing the BIC criterion,

τ = argmin
τ ⩾ 0

log[RSS(τ)] + r logn
n S(τ) ,

where RSS(τ) is the cross-validation residual sum of squares, and S(τ)  is the cardinality.

For the number of subsampling replications L, our numerical experiments have found that L 
= 100 results in a competitive performance in FDR control and power. For the subsampling 

sample size ns, we have found that, when ns is no smaller than ⌊n/2⌋, the method performs 

well. We also comment that, the computation of our method can be easily parallelized, since 

it requires no information sharing across different subsamples.
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4 Theoretical Guarantees

4.1 FDR Control

We show that our proposed procedure controls the FDR under any given nominal level 

and any given sample size. Due to the intrinsic difficulty of the nonparametric additive 

model, we employ the random feature mapping to approximate the component function fj, 

and construct a projection operator between the RKHS and the original predictor space. 

By construction, the random features of the knockoff variables have a similar structure 

mimicking the random features of the original variables, even though the knockoffs are not 

associated with the response conditioning on the original ones. Since the random features 

may introduce additional stochastic errors, which can disturb the order of the variables 

entering the model, we further employ the subsampling strategy to improve the selection 

stability. Finally, we compute the importance score for each variable based on the projected 

component function fj, and select the variables that have considerably higher scores than 

their knockoff counterparts. Intuitively, such a procedure enjoys the finite-sample FDR 

control, similarly as the existing knockoff solutions (Barber and Candès, 2015; Candès et al., 

2018).

We first show that the importance score Δj in (10) has a symmetric distribution for a 

null variable Xj ∈ S⊥, and is equally likely to be positive or negative. The symmetric 

property of the null variables is crucial for the knockoffs procedure, which then chooses a 

data-dependent threshold while having the FDR under control (Barber and Candes, 2015).

Theorem 1. Suppose Assumption 1 holds. Let (s1, …, sp) be a set of independent random 

variables, such that sj = ±1 with probability 1/2 if j ∈ S⊥, and Sj = 1 if j ∈ S. Then,

Δ1, …, Δp =d Δ1 · s1, …, Δp · sp .

Next, we show that our selection procedure successfully controls the false discovery under 

any sample size. The result holds regardless of the distribution or the number of predictors, 

and does not require any knowledge of the noise level. The false discovery here is measured 

by both the FDR, and the modified FDR, which is defined as,

mFDR = E
S ∩ S⊥

S + 1/q
.

The definition of mFDR follows the knockoffs literature (Barber and Candès, 2015), with 1 

replaced by 1/q in the denominator compared to FDR. Meanwhile, it is close to FDR in the 

setting when there are a large number of variables selected, i.e., when S  is large, and it is 

less conservative than FDR, in that mFDR is always under control if FDR is.

Theorem 2. For any q ∈ [0, 1] and any sample size n, the selected set S in (13) based on the 

knockoff filter T in (11) satisfies that mFDR ⩽ q. Meanwhile, the selected set S based on the 
knockoff filter T+ in (12) satisfies that FDR ⩽ q.
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We remark that, Theorem 2 achieves the valid FDR control with no restriction on the 

dimension p relative to the sample size n. As such, the proposed method works for both 

settings of p < n and p > n. In particular, the FDR control under p > n is achieved by building 

upon the model-X knockoffs (Candès et al., 2018), which treats the variables as random and 

utilizes the stochasticity of the random variables. This is different from the original knockoff 

solution (Barber and Candès, 2015), which treats the variables as fixed and relies on specific 

stochastic properties of the linear model, and thus excludes the setting of p > n or nonlinear 

models.

4.2 Power Analysis

Next, we show that our proposed kernel knockoffs selection procedure achieves a power 

that approaches one as the sample size tends to infinity. We first note that, the theoretical 

power analysis for the knockoff methods is largely missing in the current literature, with 

a few exceptions such as Fan et al. (2020) and Weinstein et al. (2020). Fan et al. (2020) 

studied the power for linear regressions under the model-X knockoff framework. Weinstein 

et al. (2020) studied the power of knockoffs with thresholded Lasso for linear models. 

By contrast, we study the power for nonparametric models. We also remark that, as is 

common for all knockoffs selection methods, the power of our knockoffs-based method is 

usually no greater than that of the group Lasso-based selection. This is because the proposed 

knockoffs procedure is built on top of the group Lasso selection in (8). In a sense, the 

knockoffs procedure further selects variables from the set of variables that are identified by 

group Lasso for the augmented predictors. Therefore, the key of our power analysis is to 

investigate how much power loss that the knockoffs procedure would induce. We introduce 

some regularity conditions.

Assumption 2. The number of nonzero component functions, i.e., S , is bounded.

Assumption 3. Suppose there exists a constant Cmin > 0, such that the minimal eigenvalue 

of matrix E n−1ΣS
⊤ΣS  satisfies that,

Λmin E 1
nΣS

⊤ΣS ≥ 1
2Cmin,

where the expectation is taken over the random features and ΣS ∈ ℝn × 2r |S| is the design 

matrix with the ith row equal to Ψ xi, j1
⊤, …, Ψ xi, j S

⊤, Ψ xi, j1
⊤, …, Ψ xi, j S

⊤ , i = 1, …, n, 

S = j1, …, j|S| .

Assumption 4. Suppose p < en. Let ηR ≡ cη n−β /(2β + 1) + [(logp)/n]1/2  for some constant cη 

> 0. Suppose minj ∈ S fj Xj L2 Xj ⩾ κnηR, for some slowly diverging sequence κn → ∞, as n 

→ ∞, where the RKHS ℋ1 is embedded to a βth order Sobolev space with β > 1.

Assumption 5. Suppose there exists a constant 0 ⩽ ξΣ < 1 such that,
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max
j ∉ S

Σj(I) ⊤ΣS(I) ΣS(I)⊤ΣS(I) −1
2

⩽ ξΣ, and ξΣ S + 1
τ ηR + ξΣ S < 1.

All these conditions are reasonable and are commonly imposed in the literature. Specifically, 

Assumption 2 concerns the overall complexity in that it upper bounds the total number of 

nonzero component functions. Similar conditions have been commonly adopted in sparse 

additive models over RKHS (e.g., Koltchinskii and Yuan, 2010; Raskutti et al., 2012; Yuan 

and Zhou, 2016; Dai and Li, 2021). Moreover, we carry out a numerical experiment in 

Section S2.4 of the Appendix, and show empirically that our method still works reasonably 

well when the number of nonzero components S  increases along with the sample size. We 

speculate that it is possible to allow S  to diverge, but leave the full theoretical investigation 

as future research. Assumption 3 ensures the identifiability among the S  submatrices of 

ΣS. The same condition has been used in Zhao and Yu (2006); Ravikumar et al. (2010). 

Assumption 4 imposes some regularity on the minimum regulatory effect. Similar conditions 

have been used in Lasso regressions (Ravikumar et al., 2010; Raskutti et al., 2012; Fan et al., 

2020). In addition, similar to the treatment of high-dimensional linear and additive models 

(Raskutti et al., 2011; Yuan and Zhou, 2016), we assume that p < en to ensure nontrivial 

probabilistic bounds. In other words, we allow the dimension p to diverge at the exponential 

order of the sample size n. Assumption 5 reflects the intuition that the large number of 

irrelevant variables cannot exert an overly strong effect on the relevant variables. Besides, 

the second inequality characterizes the relationship between ξΣ, the sparse tuning parameter 

τ, and the sparsity level S . This condition is again standard for Lasso regressions (Zhao and 

Yu, 2006; Ravikumar et al., 2010).

Next, we characterize the statistical power of the proposed kernel knockoffs procedure. For 

the true set S and the selected set S, the power is defined as

Power(S) = E
S ∩ S
S ∨ 1 .

Theorem 3. Suppose Assumptions 1–5 hold, and the number of random features r ⩾ 
crn2β/(2β+1) for some cr > 0. Then, the selected set S in (13) satisfies that, power S 1, as n 

→ ∞.

We again remark that, Theorem 3 holds for both settings of p < n and p > n, or more 

specifically, n < p < en, which is implied by Assumption 4. The power property under p 
> n is achieved by integrating Rademacher processes and the concentration inequalities for 

empirical processes (van de Geer, 2002; Yuan and Zhou, 2016) with the deviation conditions 

for nonparametric regressions (Loh and Wainwright, 2012; Dai and Li, 2021).

Together, Theorems 2 and 3 show that our proposed selection method is able to achieve both 

the finite-sample FDR control and the asymptotic power that approaches one.
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5 Numerical Studies

We carry out intensive simulations to examine the empirical performance of our proposed 

method under the varying signal strength, the predictor distribution, the nonparametric 

component function, the sample size and the number of predictors. We compare with 

several alternative solutions. We also illustrate our method with an analysis of brain imaging 

data for Alzheimer’s disease. We report additional simulation results in Section S2 of the 

Appendix.

5.1 Alternative methods for comparison

We abbreviate our proposed kernel knockoffs selection method as KKO. We solve the group 

Lasso penalized problem in (8) using the R package grpreg. We employ the Laplacian 

kernel with r ∈ Ξ = {2, 3, 4}, and tune the hyperparameters following Section 3.5. We set 

the target FDR level at q = 0.2 following Fan et al. (2020). We also briefly comment that, in 

addition to the reproducing kernel approach, the spline basis expansion is another commonly 

used approach in the nonparametric additive modeling. But it involves a totally different set 

of methodological tools and theoretical analysis, and we leave it as future research.

We compare our method with three main competitors. The first competitor is the 

nonparametric selection method for sparse additive models (SPAM) of Ravikumar et al. 

(2009), which combines B-spline basis expansion with grouped Lasso. We set the number 

of B-spline expansions at [n1/5], i.e., the largest integer no greater than n1/5, and tune the 

sparsity penalty by generalized cross-validation. We implement the method using the R 

package SAM. We did not compare with the COSSO method of Lin and Zhang (2006), 

due to that the code is not available, and SPAM usually achieves a similar and sometimes 

more competitive performance than COSSO. The second competitor is the linear knockoffs 

(LKO) selection method, and we implement it using the R package knockoffs. The third 

competitor is the graphical nonlinear knockoffs (RANK) selection method of Fan et al. 

(2020). We follow the same parameter setup as in Fan et al. (2020), and implement their 

method based on the R package gamsel.

We also compare our method with that of Dai and Barber (2016). More specifically, Dai and 

Barber (2016) adopted an “expansion first” strategy, which first performs feature expansion 

Ψ Xj , j = 1, …, p, then constructs the knockoffs based on the expanded features. By 

contrast, we adopt the “knockoffs first” approach, which constructs the knockoffs directly 

for the variables Xj j = 1
p , then performs the random feature expansion on both original 

variables and their knockoffs. There are two advantages of doing the knockoffs first. First, 

it ensures a better knockoffs construction and eventually a better statistical power. That is, 

to construct a good knockoff variable using either the second-order knockoffs or the deep 

knockoffs, it requires a reasonably slow eigenvalue decay of the covariance Σ, so that the 

original variables and their knockoffs are differentiable (Candès et al., 2018). We consider a 

simulation example replicated 200 times, where the predictors follow a multivariate normal 

distribution with the zero mean and the identity covariance matrix, n = 500, p = 5, and 

we employ the Laplacian kernel with r = 3. Figure 1(a) shows the eigenvalue decay of the 

sample covariance matrix (blue line), and the random kernel expansion (red line). It is seen 
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that the former decays more slowly than the latter, and therefore it is better to construct 

the knockoffs based on the original variables. Second, the “expansion first” leads to larger 

correlations between the original variables and their knockoffs, compared to the “knockoffs 

first”, as shown in Figure 1(b), which would in turn make the subsequent group Lasso 

selection harder. Finally, the “expansion first” is computationally more expensive. This is 

because the “expansion first” approach requires generating the knockoffs for pr-dimensional 

variables, whereas our “knockoffs first” approach only requires generating the knockoffs for 

p-dimensional variables.

5.2 Varying signal strength, predictor design, and component functions

We first study the performance with the varying signal strength and the predictor 

distribution.

We simulate the response, Y = j ∈ S θjfj Xj + ϵ, where S is the set of relevant predictors 

with S = 10, and ϵ is a standard normal error. We sample θj independently from a uniform 

distribution (−θ, θ) for some positive constant θ. The magnitude of θ reflects the strength of 

the signal, and we vary θ = {0.1, 1, 10, 100, 200}. We simulate the predictors independently 

from three different distributions, a multivariate normal distribution with mean zero and 

covariance Σij = 0.3 i − j , a mixture normal distribution, with an equal probability from 

three multivariate normal distributions, all with mean zero, and different covariances where 

Σ1, ij = 0.1 i − j , Σ2, ij = 0.3 i − j , and Σ3, ij = 0.5 i − j , and a uniform [−2, 2] distribution. We 

employ the second-order knockoffs when the predictor distribution is normal, and the deep 

knockoffs otherwise, to generate the knockoff variables. We first consider a trigonometric 

polynomial component function, and fix the number of predictors at p = 50, and the sample 

size at n = 900. We later consider other forms of component functions, and different (p, n).

fj(x) = uj, 1sin cj, 1x + uj, 2cos cj, 2x + uj, 3sin2 cj, 3x + uj, 4cos2 cj, 4x , (15)

where uj,k follows a uniform (1, 2) distribution, and cj,k follows a uniform (1, 10), for k 
= 1, 2, 3, 4. Figure 2 reports the FDR and power over 200 data replications for the four 

methods with the varying signal strength θ and three different predictor distributions. It is 

seen that our method successfully controls the FDR blow the expected level, and at the same 

time achieves the best power. Besides, the performance is robust with respect to different 

predictor distributions. By comparison, the alternative methods are much more sensitive 

in terms of the FDR control, and the powers are consistently lower. Moreover, the linear 

knockoffs method often fails to control the FDR.

Next, we consider more forms of component functions. The first is a sin-ratio function,

fj(x) = sin cj, 1x
2 − sin cj, 2x , (16)

where cj,k follows a uniform (1, 10) distribution for k = 1, 2, and |S| = 10. We note 

that it is generally more difficult to estimate the sin-ratio function (16) compared to the 

trigonometric polynomial function (15). The second is a mixed additive model, where we 

sample the component function with an equal probability from (15) or (16). We fix the 
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predictor distribution as the multivariate normal, p = 50 and n = 900. We continue to vary the 

signal strength θ = {0.1, 1, 10, 100, 200}. Figure 3 reports the FDR and power based on 200 

data replications. It is seen again that our method achieves the best power while controlling 

the FDR under the nominal level for the new component functions.

5.3 Varying sample size and dimension

Next, we investigate the empirical performance with the varying n and p.

For the varying n, we consider the trigonometric polynomial function (15) with p = 50, 

S = 10, θ = 100, and the multivariate normal predictor distribution with mean zero and 

covariance Σij = 0.3 i − j . We vary the sample size n = {400, 900, 1500, 2500}. Figure 4 

reports the FDR and power based on 200 data replications. It is seen that our method 

successfully control the FDR at all sample sizes, while its power quickly increases as n 
increases, and dominates the powers of all the competitive methods considerably. Besides, 

both LKO and RANK have an inflated FDR especially when the sample size is small.

For the varying p, we consider the trigonometric polynomial function (15) with n = 900, 

S = 10, θ = 100, and the multivariate normal predictor distribution with mean zero and 

covariance Σij = 0.3 i − j . We vary the number of predictors p = {30, 50, 150, 500, 1500, 

2000}. As such, we have considered both cases that p < n and p > n. Recall that the 

proposed method can handle both the low-dimensional and high-dimensional regimes, and 

the theoretical guarantees in Section 4 are established for both p < n and p > n. Moreover, 

for the p > n case, we construct the knockoff variables for all the original variables; 

i.e., we construct the p-dimensional knockoffs X for the p-dimensional X. This follows a 

similar strategy as in Fan et al. (2020), but is different from Barber and Candes (2019), 

where a precedent step of feature screening is carried out first, and the knockoff variables 

are constructed only for those selected variables. Our approach avoids to require the sure 

screening property; see also the discussion in Fan et al. (2020). Figure 5 reports the FDR 

and power based on 200 data replications. It is seen that our method again achieves the best 

performance in terms of FDR and power in both regimes. By contrast, LKO and RANK have 

a low power and inflated FDR. Although SPAM sometimes obtains a power similar to ours, 

its FDR is much inflated and is far above the nominal level.

5.4 Brain imaging data analysis

We illustrate the proposed method with a brain imaging data analysis to study the 

Alzheimer’s disease (AD). AD is an irreversible neurodegenerative disorder, and is 

characterized by progressive impairment of cognitive and memory functions, loss of bodily 

functions, and ultimately death. It is the leading form of dementia in elderly subjects, and 

is the sixth leading cause of death in the United States. Over 5.5 million Americans were 

affected by AD in 2018, and without any effective treatment or prevention, this number 

is projected to triple by 2050 (Alzheimer’s Association, 2020). Brain atrophy as reflected 

by brain grey matter cortical thickness is a well-known biomarker for AD. We study a 

dataset with n = 697 subjects, each of whom received an anatomical magnetic resonance 

imaging (MRI) scan that measures cortical thickness. The data is publicly available at 

http://adni.loni.usc.edu/. The MRI image has been preprocessed by the standard pipeline, 
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and is summarized in the form of a vector of cortical thickness measurements for a set of 

parcellated brain regions-of-interest. There are p = 68 regions in total. Brain parcellation is 

particularly useful to facilitate the interpretation, and has been frequently employed in brain 

imaging analysis (Fornito et al., 2013; Kang et al., 2016). In addition to the MRI image, for 

each subject, the data also records a composite cognitive score, which combines numerous 

tests that assess episodic memory, timed executive function, and global cognition (Donohue 

et al., 2014). Our goal is to study the association between the composite cognitive score 

and the vector of brain cortical thickness, and identify individual brain regions with strong 

associations. A linear model is inadequate to capture such an association, and we turn to 

the nonparametric additive model instead. We apply the proposed kernel knockoffs selection 

procedure. As the distribution of the predictors is not necessarily normal, we employ the 

deep knockoffs machine to generate the knockoff variables. We continue to set the target 

FDR level at q = 0.2.

Table 1 reports the ten brain regions selected by our method. These findings agree with 

and support the current literature on AD research. Particularly, the middle temporal gyrus 

is located on the temporal lobe, and is associated with processes of recognition of known 

faces and accessing word meaning while reading. Middle temporal lobe atrophy is common 

in AD as well as its prodromal stage, mild cognitive impairment (Visser et al., 2002). 

The superior parietal lobe is involved with attention, visuospatial perception, and spatial 

orientation. Damage to the parietal lobe is common in AD, and leads to problems with 

performing gestures and skilled movements (Pini et al., 2016). The fusiform is linked with 

various neural pathways related to recognition. The inferior parietal lobe is involved in 

perception of emotions. The superior temporal gyrus is involved in auditory processing, 

and has also been implicated as a critical structure in social cognition. Numerous studies 

have found involvement of these brain regions in the development of AD (Convit et al., 

2000; Du et al., 2007; Pini et al., 2016). The precuneus is associated with episodic memory, 

visuospatial processing, reflections upon self, and aspects of consciousness, and is found to 

be an AD-signature region (Bakkour et al., 2013). Finally, the entorhinal cortex functions 

as a hub in a widespread network for memory, navigation and the perception of time. It is 

found implicated in the early stages of AD, and is one of the most heavily damaged cortices 

in AD (van Hoesen et al., 1991).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Comparison between the “expansion first” strategy and the “knockoffs first” strategy. 

Left panel: the eigenvalue decay of the sample covariance matrix (blue line) and the 

random kernel expansion (red line). Right panel: the marginal sample correlations between 

the original variables and the knockoff variables (blue line), between the random kernel 

expansion and the “expansion first” knockoff variables (red line), and between the random 

kernel expansion and the “knockoffs first” knockoff variables (green line).
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Figure 2: 
Empirical performance and comparison in terms of FDR and power with the varying signal 

strength and predictor distribution. Four methods are compared: the nonparametric selection 

method for sparse additive models (SPAM) of Ravikumar et al. (2009), the linear knockoffs 

(LKO) of Barber and Candès (2015), the graphical nonlinear knockoffs (RANK) of Fan et 

al. (2020), and our proposed kernel knockoffs (KKO).
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Figure 3: 
Empirical performance and comparison in terms of FDR and power with the varying signal 

strength and component function. The same four methods as in Figure 2 are compared.
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Figure 4: 
Empirical performance and comparison in terms of FDR and power with the varying sample 

size n. The same four methods as in Figure 2 are compared.
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Figure 5: 
Empirical performance and comparison in terms of FDR and power with the varying number 

of predictors p in both regimes where p < n and p > n with n = 900. The same four methods 

as in Figure 2 are compared.
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Table 1:

Brain regions identified by the kernel knockoffs selection procedure. “l-” stands for the left hemisphere, and 

“r-” stands for the right hemisphere.

l-middletemporal l-superiorparietal r-fusiform r-inferiorparietal l-entorhinal

l-fusiform l-inferiorparietal l-precuneus l-superiortemporal r-entorhinal
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