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Abstract

We present a trajectory‐based technique for calculating solute transport in a 
porous medium that has several advantages over existing methods. Unlike 
streamlines, the extended trajectories are influenced by each of the 
important parameters governing transport, including molecular diffusion and 
transverse dispersion. The approach is complete and does not require any 
additional techniques, such as operator splitting or particle tracking, in order 
to account for the full dispersion tensor. The semianalytic expressions make 
it clear how the flow field, the concentration distribution, and the dispersion 
tensor contribute to the velocity field of an injected solute. The equations are
valid for an arbitrary porous medium, including those with rapid spatial 
variations in properties, overcoming limitations faced by previous 
approaches based upon asymptotic techniques. A test on a layered model 
with sharp boundaries indicates that the extended trajectories are 
compatible with the results of a numerical simulator and differ from 
streamlines. We also describe a new form of the dispersion tensor that 
incorporates a known asymmetry. The trajectories indicate that the 
modifications of the dispersion tensor lead to more focused transport within 
regions of high conductivity. Finally, the trajectories are used to define a 
semianalytic relationship between solute travel times and variations in solute
velocities along a path that may be used for tomographic imaging. In an 
application to the injection of a radioactive tracer into a Berea sandstone 
core, monitored using micropositron emission tomographic (micro‐PET) 
observations, the sensitivities are used to map the spatial variations of 
permeability within the core.

1 Introduction

Solute transport is an important aspect of hydrology and a useful aid in 
understanding fluid flow and in reservoir characterization. The transportation
of dissolved substances is critical for activities such as groundwater 
remediation, enhanced oil recovery, and agriculture. Advanced techniques, 
such as the use of arrays of multilevel samplers and partitioning tracers 
(Datta‐Gupta et al., 2002) have extended the usefulness of transport data for
reservoir characterization and the mapping of fluid saturations in three 
dimensions. The incorporation of geophysical techniques for monitoring 
tracer transport have proven valuable in imaging two‐ and three‐dimensional
solute migration as a function of time. For example, electrical resistance 



tomography (ERT) has been used to track the migration of a saline plume 
within a groundwater system (Doetsch et al., 2012) and to image infiltrating 
river water (Coscia et al., 2012). Crosswell and surface ground‐penetrating 
radar (GPR) have been used to image saline fluid movement along fractures 
in the subsurface (Becker & Tsoflias, 2010; Day‐Lewis et al., 2003; Tsoflias & 
Becker, 2008).

The movement of a solute is a complicated process that depends upon the 
spatial variations in flow properties over several scales. First, there is a 
dependence upon the flow field that is controlled by medium‐ and large‐scale
spatial variations in permeability. Second, transport depends upon small‐
scale or local flow that determines the nature of the dispersion of the solute, 
such as its anisotropy (Dagan, 1982, 1987; Gelhar et al., 1979; Gelhar & 
Axness, 1983; Schwartz, 1977). The variability in geological porous media, 
where there may be significant deviations in grain distributions and sizes and
fracture density, is an additional complicating factor. As a result of these 
issues, the nature of the dispersion tensor is an area of active research 
(Auriault et al., 2010; Delgado, 2007; Flekkoy et al., 2017; Lichtner et al., 
2002; Liu & Kitanidis, 2013; Pride et al., 2017).

Because of the complexity of solute transport, it is a challenge to accurately 
model the process. Analytic approaches are generally restricted to simplified 
structures such as a homogeneous whole space, a semiinfinite half‐space, or 
a uniform layer (Javandel et al., 1984; Park & Zhan, 2001; van Genuchten & 
Alves, 1982). Methods based upon integral transforms produce semianalytic 
solutions that are valid in general layered and one‐dimensional porous media
(Guerrero & Skaggs, 2010; Moridis, 2002; Shan & Javandel, 1997; Yates, 
1990). The most straightforward numerical techniques, Eulerian approaches 
on fixed numerical grids, are very general (Oldenburg & Pruess, 1995, 1996) 
but typically suffer from numerical dispersion and unstable oscillations in the
presence of sharp concentration fronts necessitating small time steps or 
more sophisticated differencing schemes (Crane & Blunt, 1999; Datta‐Gupta 
et al., 1991; Oldenburg & Pruess, 1998). Lagrangian methods, whereby one 
tracks the movement of solute particles in a calculated flow field, have 
proven successful in modeling advective transport with little or no 
dispersion. Lagrangian methods may be broadly classified as particle 
tracking techniques (Bear & Verruijt, 1987; Zheng & Bennett, 1995), stream 
function calculations (Fogg & Senger, 1985; Javandel et al., 1984; Nelson, 
1978), and streamline methods (Crane & Blunt, 1999; Datta‐Gupta & King, 
1995, 2007).

If dispersion is significant, the Lagrangian approaches must be modified, 
using such techniques as the random walk model (Prickett et al., 1981), 
operator splitting (Bratvedt et al., 1996), smoothed particle hydrodynamics 
(Herrera et al., 2009, 2010; Tartakovsky et al., 2008), or stochastic 
streamline methods(Cirpka et al., 2011; Dagan & Cvetkovic, 1996) to model 
lateral and transverse dispersion. A hybrid mixed Eulerian‐Lagrangian 
method, known as the method of characteristics (Konikow & Bredehoft, 



1978), combines particle tracking and Eulerian numerical methods by 
averaging the concentration of particles within the cells of the fixed grid. 
Asymptotic techniques (Chapman et al., 1999; Smith, 1981; Vasco & 
Finsterle, 2004; Vasco et al., 2016) provide an alternative, grid‐free means 
for modeling transport, though the approach is restricted to porous media 
with smoothly varying properties.

In this paper we present a trajectory‐based technique for calculating solute 
transport. The trajectories are influenced by the diffusive and dispersive 
properties of the medium, similar to the asymptotic paths developed in 
Vasco et al. (2016). Moreover, the paths presented below are valid for an 
arbitrary porous medium and rapid spatial variations in medium properties 
are not an issue, as long as the macroscopic heterogeneity is several times 
larger than the representative elementary volume used to average over 
microscopic variations in properties (de Marsily, 1986, p. 15). The approach 
allows for a general dispersion tensor and a time‐varying flow field. We shall 
discuss some modifications of the dispersion tensor that provide a form 
compatible with the results of Koch and Brady (1987), Auriault et al. (2010), 
and Pride et al. (2017). The expression for the trajectories provides a means 
for computing a semianalytic sensitivity relating a tracer arrival time to 
variations in hydraulic conductivity along the trajectory. Such sensitivities 
form the basis for a tomographic imaging algorithm. We illustrate this 
imaging technique through an application to positron emission tomographic 
(PET) monitoring of the injection of a radiotracer into a core of Berea 
sandstone.

2 Methodology

2.1 Trajectories Associated With Solute Transport

The equation governing the evolution of a solute concentration c(x,t) in a 
velocity field q(x,t) is

 (1a)

where

(1b)

D(x,t) is the dispersion tensor, φ(x) is the kinematic porosity, k(x) is the 
specific permeability, μ is the fluid viscosity, and p(x,t) is the fluid pressure. 
The kinematic porosity is the accessible pore space, that is, the pores that 
may be visited by solute particles carried along in the flow field q. We 
discuss the dispersion tensor in greater detail in Appendix A. The effects of 
density differences between the solute and the aqueous fluid are assumed to
be negligible in equations 1a and 1b.

A trajectory‐based solution for the evolution of the solute follows from a 
representation of the concentration in an exponential form



(2)

Substituting this form into the governing equation 1a produces

(3)

a nonlinear partial differential equation for S(x,t). Defining the vectors

(4)

(5)

and

(6)

one can write equation 3 as

(7)

The form of equation 7 suggests a Lagrangian reference frame moving with 
velocity v. For such a reference frame we may consider a path x(t) and a 
total derivative of S(x,t) along that path,

(8)

where the trajectory x(t) is defined by

(19)

Due to the presence of the unknown vector p, equation 19 is not sufficient to
determine the path. To produce an equation for p, we return to equation 7, 
representing the left‐hand side by the total derivative of S(x,t) and using 6 to
define w in terms of D, p and q

(10)

Applying the gradient operator ∇ to both sides of equation 10 and using the 
definition of p in equation 4 produces the other differential equation

(11)

and completes the system of equations determining x and p.

Summarizing the preceding developments, the system of equations

(12)

(13)

defines the trajectory x(t) and the gradient vector p(t) along the trajectory. 
The differential equation 10 provides the final expression for

 along the trajectory. From equation 12 it is clear that the
trajectories depend upon the dispersion matrix D, the kinematic porosity φ, 



and the flow field q. Given suitable initial and boundary conditions, one can 
solve this coupled system of ordinary differential equations using established
numerical techniques (Cash & Carp, 1990; Press et al., 1999). Such an 
approach is used in quantum mechanics to solve a similar system of 
equations associated with Schrödinger's equation for chemical systems 
(Goldfarb et al., 2006; Garashchuk, 2010; Garashchuk & Vazhappilly, 2010; 
Garashchuk et al., 2011; Liu & Makri, 2006; Wyatt, 2005). However, the 
presence of the gradient operators in equation 13 complicates the numerical 
treatment by introducing nonlocal effects and coupling the calculations for 
neighboring trajectories. For example, one may extend the numerical 
methods, for instance, by computing the trajectories simultaneously and 
interpolating quantities onto a background numerical mesh (Wyatt, 2005). 
Such approaches are quite efficient and faster than a finite difference 
solution of the full Schrödinger's equation, particularly for complex chemical 
systems (Bittner et al., 2010; Gu & Garashchuk, 2016).

2.2 Relationship to Existing Techniques

Streamline simulation is an efficient approach for modeling transport 
processes (Crane & Blunt, 1999; Datta‐Gupta & King, 1995, 2007; Fay & 
Pratts, 1951; Hewett & Behrens, 1991; Higgins & Leighton, 1962; Strack, 
1984; Yabusaki et al., 1998). In streamline simulation the trajectories used in
the modeling of solute transport are determined by the flow field q

(14)

and the solute concentrations are found by solving a series of one‐
dimensional conservation equations defined along each streamline (Datta‐
Gupta & King, 2007). Streamline simulation is most accurate for advection‐
dominated transport and typically does not account for dispersion. As 
mentioned in section 1, cross‐streamline mechanisms can be incorporated 
by a technique such as operator splitting (Bratvedt et al., 1996; Datta‐Gupta 
& King, 2007; Obi & Blunt, 2004; Vasco & Datta‐Gupta, 2016), smoothed 
particle hydrodynamics (Herrera et al., 2009, 2010; Tartakovsky et al., 
2008), or stochastic streamline methods (Cirpka et al., 2011; Dagan & 
Cvetkovic, 1996). It is evident in equation 14 that streamlines follow the flow 
field and are not influenced by the dispersion tensor D. Comparing equations
12 and 14, we can interpret the trajectories in our approach as an extension 
of streamline modeling that includes the dispersion tensor in defining the 
path x(t). The sign difference between equation 14 and the first term on the 
right‐hand side of equation 12 is due to the fact that we used the definition 2
with a negative sign for the exponent. Thus, ∇c = −∇Se−S and hence p = ∇S 
points in the opposite direction to the concentration gradient, and the path is
traversed in the opposite direction.

Asymptotic techniques provide semianalytic, trajectory‐based solutions to 
convection‐diffusion equations such as 1a. Such methods are restrictive in 
the sense that they assume that some coefficient or parameter, such as 



frequency, attains large or small values (Chapman et al., 1999; Knessl & 
Keller, 1997; Smith, 1981) or that the properties of the medium are smoothly
varying in comparison to the length scale of the propagating tracer front 
(Vasco & Finsterle, 2004). The analysis of Vasco et al. (2016) produced a set 
of ordinary differential equations, the characteristic equations

(15)

(16)

for the path x(t) and gradient vector p(t). These equations, valid for a 
medium with smoothly varying properties, are generalizations of those given
by Smith (1981) and Chapman et al. (1999) that allow for spatial variations 
in the medium properties and a full dispersion tensor. Equations 15 and 16 
may be solved using numerical techniques for integrating systems of 
ordinary differential equations (Cash & Carp, 1990; Press et al., 1999). These
two equations are somewhat similar to the extended equations 12 and 13, 
with a few important differences. First, only first‐order derivatives appear in 
equation 16 while equation 13 contains second derivatives. Second, the 
derivatives in equation 16 are projected onto the vector p, while the 
expression on the right‐hand side of equation 13 may contain contributions 
that are not in the direction of the vector p. Finally, equations 15 and 16 are 
only valid when the heterogeneity is smoothly varying in comparison to the 
length scale of the tracer front (Vasco et al., 2016). That is, the 
heterogeneity must vary smoothly in comparison to the width of the 
transition zone from the background solute concentration to the 
concentration behind the tracer front. In essence, the asymptotic approach is
equivalent to neglecting the right‐hand side in equation 3. If the medium, 
flow field, and concentration distribution are smoothly varying, then the 
divergence of the term on the right‐hand side may be neglected and an 
eikonal equation results (Vasco & Datta‐Gupta, 2016; Vasco et al., 2016). 
The characteristic equations associated with the eikonal equation are given 
by 15 and 16.

2.3 A Physical Interpretation of the Velocity Vector

By considering end member solutions, such as when the background 
concentration or the flow field vanishes, we gain insight into the two primary 
contributions to the velocity vector v, defined by equation 5. First, we use 
equation 2 to determine S(x,t) in regions where the concentration does not 
vanish

(17)

Equation 17 provides values of p(x(t),t)=∇S along the trajectory. Substituting
this into equation 5 provides an expression defining the velocity vector along
the trajectory

(18)



Now consider the case in which the concentration gradient is zero or there is 
no diffusion or dispersion so that D vanishes. In this case the velocity vector 
v is the Darcy flow velocity and the trajectory is identical to a streamline, 
given by equation 14. Alternatively, if the flow field q vanishes, then the only
contribution comes from the second term on the right‐hand side of equation 
18. Substituting the standard form of the dispersion tensor, given in 
Appendix A by equations A5 and A6, into equation 18 and setting q to zero 
gives

where dm is the molecular diffusion and F is the formation factor (de Marsily, 
1986, p. 34), and the velocity vector, and hence the path, follows the 
gradient of . In this case molecular diffusion controls the movement 
of the solute, and hence, the paths are determined by the distribution of the 
solute. The velocity vector is usually a combination of these two scenarios in 
which both the flow field and the concentration‐dependent diffusion and 
dispersion influence the solute movement. The vector p is a measure of the 
deviation from purely advective transport. That is, the degree to which the 
advected component dominates the concentration‐dependent component 
depends upon the relative magnitude of the vectors q and p and on the 
dispersion of the medium, as determined by the tensor D.

Equation 18 provides an alternative approach to solving equations 12 and 13
directly, one that is based upon the use of a numerical simulator. 
Specifically, it is assumed that a numerical simulator, such as TOUGH2 
(Pruess et al., 1999), can be used to find both c(x,t) and q(x,t) in 18. Thus, 
equations 12 and 13 decouple and one may find the trajectory solely by 
solving equation 12. Such an approach can be used to find the trajectories 
easily from a numerical reservoir simulation in cases where computation 
time and numerical dispersion are not concerns. A complete specification of 
the path requires a set of initial conditions, such a source location and the 
initial angle at which the trajectory leaves the source. Alternatively, one 
could specify two boundary conditions, such as the initial and final points of 
the path.

3 Applications

In this section we apply the new method for calculating solute trajectories to 
several examples. Unlike earlier asymptotic approaches for calculating the 
paths (Vasco et al., 2016), a method based upon equation 12 does not make 
assumptions regarding the smoothness of macroscopic spatial variations in 
medium properties. To illustrate this, we examine trajectories for a layer with
sharp boundaries, a common occurrence in the subsurface. We also consider
the implications of a modified dispersion tensor proposed by Pride et al. 
(2017) for the solute paths. Finally, we describe a three‐dimensional 
tomographic imaging experiment where solute arrival times are used to 
estimate the variations in effective permeability in a sandstone core sample.



3.1 Solute Transport Within and Around a Layer

In geologic settings the most abrupt changes in material properties are due 
to interfaces, layering, and fractures. Here we will consider variations in 
properties that mimic a layer. In this particular subsection we adopt the 
conventional form of the dispersion tensor, given by equation A5 in Appendix
A

where DL and DT are the longitudinal and transverse dispersion coefficients. 
Starting with this representation of the dispersion tensor will facilitate 
comparisons with previous work (Vasco et al., 2016) and will provide a 
baseline for our study of the effects of the modified dispersion tensor given 
in the next subsection (see equation A7 in Appendix A).

Layering is probably the most common source of rapid transitions in a 
geologic medium. In order to simplify the situation, we consider a single 
high‐permeability zone bounded above and below by half‐spaces. As a model
of the transitions at the upper and lower boundaries of the zone, consider a 
medium with vertically varying permeability

(19)

where Ko is a constant background permeability and χ(z) is a multiplier of the
form

(20)

where zi specifies the depth of the interface. The parameter σ signifies the 
sharpness of the boundary, larger values correspond to interfaces that more 
closely resemble a step change in properties. A combination of such steps 
can be used to describe a compact zone with step‐like changes in properties,
as plotted in Figure 1. The parameters were chosen such that the 
permeability within the layer is an order‐of‐magnitude greater than the 
background medium. Note that the linear feature might also represent a 
high‐permeability fault zone, and we could consider the panels in Figure 1 to 
be horizontal slices through the fault.



We will consider tracer injected at a single source point, indicated by the 
filled square in Figure 1. The left edge of the medium is subject to uniform 
injection in each grid block, of a cubic meter per second, while the right edge
experiences uniform fluid withdrawal of equal magnitude. The injection and 
production from the grid blocks at the left and right edges results in the 
spatially varying pressure field shown in Figure 1. The dispersive properties 
of the medium are a longitudinal dispersitivity (αl in equation A6 of Appendix 
A) of 20.0 m, a transverse dispersitivity (αt) of 2.0 m, and negligible 
molecular diffusion. We calculate the solute concentration after 125 days of 
injection using the numerical TOUGH2 simulation and plot it in Figure 1, and 
as the background in Figure 2. The two‐dimensional dispersion module T2DM
for TOUGH2 has been verified against analytic calculations and compared 
with different numerical approaches (Oldenburg & Pruess, 1993, 1994, 1995,
1996). We also compared the solute spreading against analytical estimates 
(Cleary & Ungs, 1978; Javandel et al., 1984), as in Vasco et al. (2016), and 
found satisfactory agreement. The solute concentration migrates toward the 
high‐permeability layer and advances to the right‐hand side under the 
influence of the flow field. The low permeabilities outside the layer lead to 
larger pressure drops at the right‐hand side of the simulation grid, away from
the layer. Thus, the concentrations bifurcate out of the high‐permeability 
zone with the majority moving up and out of the layer near the right edge. 
However, a notable fraction does travel through the zone, emerging on the 
opposite side, migrating to a low‐pressure area. In Figure 2 we compare the 
streamlines, representing flow from the injection well to the rightmost edge 
of the model, and the extended trajectories, representing solute migration 
from the source to the sinks at the right edge of the model. We calculated 20
trajectories covering an angular range of ±180°. In the left panel we plot the 
trajectories calculated using the streamline expression 14. The streamlines, 
determined solely by the flow field, are deflected into the high‐permeability 
layer. In the panel on the right in Figure 2 we display the extended 
trajectories. The extended trajectories indicate solute movement to both the 
upper and lower half‐spaces, in keeping with the concentrations from the 
numerical simulation.



3.2 The Influence of an Asymmetric Dispersion Tensor on Solute Transport

As was pointed out by Koch and Brady (1987), Auriault et al. (2010), and 
Pride et al. (2017), the dispersion tensor is asymmetric and the conventional 
representation (as in equation A5 in Appendix A) is incomplete. We provide a
more in‐depth discussion of these considerations in Appendix A. In this 
subsection we consider the implications of adopting the modified form A7,

proposed by Pride et al. (2017) to account for the asymmetry of the 
dispersion tensor. The parameter a has units of length squared and depends 
upon the Peclet number of the flow field (Pride et al., 2017). The single‐layer 
model shown in Figure 1, and described above, is adopted as a reservoir 
model as this will facilitate comparisons with our previous work involving the 
symmetric dispersion tensor. Because the heterogeneity is two‐dimensional, 
there will be two nonzero off‐diagonal terms, which are denoted as D12 and 
D21, where the index 1 signifies the x (horizontal) coordinate and the index 2 
signifies the z (vertical) coordinate. Using the pressure distribution from the 
TOUGH2 reservoir simulation, we calculated the symmetric component of the
off‐diagonal term, given by

(21)

The symmetric component of the off diagonal term, , is plotted in Figure 
3. The asymmetric contribution to the dispersion tensor, given by the last 
term on the right‐hand side of the representation of D given above, is plotted
in the right panel of Figure 3. The asymmetric component is a significant 
contribution to the overall dispersion tensor and is concentrated at the 
boundaries of the layer, where the heterogeneity is large. At the layer edges 
the flow field is changing rapidly and the spatial derivatives of the 



components of q are largest. The trajectories, computed using equation 12, 
with D given above, are shown in Figure 4 for two different values of a. Using
the formula presented in Pride et al. (2017), values of a = 100 and 1,000 m2 
correspond to Peclet numbers of 22.4 and 0.01, respectively. Comparing the 
trajectories in Figure 4 to those in Figure 2, it appears that the additional 
term in the dispersion tensor causes the solute paths to diverge at the top of
the layer and to converge at the bottom of the layer, leading to a general 
concentration of solute paths near the base of the layer. The effect is not 
strong, however, and only occurs for relatively low Peclet numbers.



3.3 Positron Emission Tomographic Monitoring of Solute Movement

One useful application of the extended trajectories is the estimation of 
variations in the hydraulic conductivity of a porous medium (Datta‐Gupta et 
al., 2002; Vasco & Datta‐Gupta, 1999, 2016; Vasco & Finsterle, 2004; Vasco 
et al., 2016). We make use of the expression for the trajectory, equation 18, 
to derive a semianalytical expression for the solute travel time. Specifically, 
we can combine equations 1b and 18, to arrive at



(22)

Integrating equation 22 along the trajectory x(t) produces an explicit 
expression for the travel time of the solute along the path from the source to
an observation point

(23)

where

(24)

and r is the distance along the trajectory. Equation 23 provides a relationship
between the travel time of the solute and the velocity along the trajectory. 
As we shall see, it can be used to calculate the spatial variations in φ/k within
a porous medium.

We illustrate the imaging technique using a series of three‐dimensional 
micropositron emission tomography (micro‐PET) images of radiotracer 
concentration. Images were obtained by injecting a pulse of radiotracer at 3 
mL/min into a 2‐in. diameter Berea sandstone core which was initially 
saturated with water. The outer boundary of the core was sealed, loaded into
a coreholder, and connected to a coreflooding system as described in detail 
in Zahasky and Benson (2018). Once the PET scan was started, a 4‐mL pulse 
of water containing the radiotracer Fludeoxyglucose (FDG) was injected into 
the left face, while the right face of the core was kept at a constant pressure 
of 17 bar. The confining pressure was kept constant at 38 bar. Following the 
pulse of injected radiotracer, water was injected at the same rate to displace 
the tracer through the core. During the injection, the core was imaged 
continuously using a Siemens preclinical Inveon DPET scanner at the 
Stanford Center for Innovation in In‐Vivo Imaging. The detected gamma rays 
resulting from positron emission were used to reconstruct the radioactivity 
(concentration) of each volume element (voxel), as a function of time. The 
time‐varying radioactivity was reconstructed into 40‐s time frames in order 
to estimate the change in concentration over time (Figure 5). The PET scan 
was reconstructed with 3‐D Ordered Subset Expectation Maximization using 
Maximum A Priori (OSEM‐OP MAP; Hudson & Larkin, 1994). The scan was 
reconstructed with voxels 0.77 mm × 0.77 mm × 0.79 mm (x, y, z); 
however, the images were coarsened to 2.33 mm × 2.33 mm × 2.39 mm by 
taking the average of nine adjacent voxels. The images were coarsened to 
this resolution to reduce data noise (Zahasky & Benson, 2018). It is evident 
that variations in radiotracer advection rates reflect heterogeneities in the 
core and that the radioactivity arrives in some regions of the core much 
earlier than in other areas, even though the distances from the injection core
face are similar. This suggests that one can use these changes to quantify 
spatial variations in hydraulic conductivity within the core.



While it is possible to use the magnitude of the changes in radioactivity to 
infer the flow properties of the core, the relationship between the magnitude 
of the computed radioactivity and the magnitude of the concentration 
change is complicated by factors such as the sample location in the scanner 
field of view and variations in sample mineral composition, which lead to 
local variations in photon attenuation. It is more straightforward to use the 
onset time, the clock time at which an observable starts to change from its 
background value (Vasco et al., 2014, 2015), as a measure of the arrival 



time of the tracer. For this experiment, we define the onset time as that 
instant when the concentration change attains a peak value in a particular 
volume element (voxel). Other measures of onset time are possible, 
including the first temporal moment of the concentration (Harvey & Gorelick,
1995), the time at which the steepest slope is observed, and the time at 
which the normalized concentration exceeds some threshold, such as 5% of 
the peak. In order to obtain voxel‐scale precision, we fit a quadratic equation
to the five points defined by the peak and the four adjacent points of 
radiotracer concentration for every voxel in the sample. The arrival or onset 
time is defined by the peak of the quadratic function and the estimated 
times for the core are shown in Figure 6. The onset or travel times in Figure 6
comprise our basic data set, and we take them as the arrival times of the 
solute and interpret them using equation 23.



In order to formulate the inverse problem, we discretize the core into the 
same geometry as the PET images, subdividing the volume into a three‐
dimension grid of 20 (x) by 39 (y) by 20 (z) grid of nearly cubic cells. We can 



then rewrite the integral 23 as a discrete sum over the trajectory segments 
in each of the grid blocks that the ray traverses

(25)

where vi is the average velocity in the ith grid block, Li is the length of the 
trajectory in cell i, and si is the inverse of the velocity (1/vi), known as the 
slowness. The trajectories are derived from a numerical simulation based 
upon the initial model of the porous medium. That is, the flow properties, the
pressure field, and the concentration fields as a function of time, are used 
along with equation 22 to calculate the trajectory x(t). If the initial flow 
properties are taken to be constant throughout the core, then the initial 
trajectories will be straight lines parallel to the axis of the core, given a 
uniform flow field from the inlet to the outlet. Formulating the inverse 
problem in terms of slowness, si, produces sensitivity coefficients that are 
constant for each grid block. In contrast, formulating the inverse problem in 
terms of velocity introduces a  term in the sensitivities, potentially 
leading to instabilities in any inversion as vi tends toward large or small 
values.

One calculates an expected travel time based upon an initial simulation 
model of velocity or slowness and then writes an expression for travel time 
deviations in terms of slowness perturbations. That is, an expression for the 
model parameter sensitivity follows if we consider a small perturbation in the
slowness of the ith grid block, δsi, with respect to an initial or background 
slowness value , then

The quantity δT is the difference between the travel time and the travel time
in the initial model, To. Subtracting To from both sides and using the fact that 
the initial model generates this travel time:

leads to

(26)

The sensitivity for the ith model parameter is the coefficient associated with 
δsi, that is Li, the length of the trajectory in the ith grid block.

Because the trajectory x(t), and hence the set of grid blocks intersected by 
the path, depends upon the slowness distribution, the relationship between 
the solute arrival time and the slowness is still nonlinear. However, it can be 
linearized if the slowness changes are not large in relation to the background
value . If the changes are large, we can adopt an iterative approach to 
solve the system of equations, starting with a uniform distribution of 



properties and run the reservoir simulator TOUGH2 (Oldenburg & Pruess, 
1995) to calculate p(x,t) and c(x,t) and the trajectories x(t) from each 
observation point. An updated conductivity is calculated at each iteration 
and the reservoir simulator is rerun with the new model.

Given a large set of travel times, we may solve for the velocity, or the 
slowness, in each voxel. Each travel time provides a constraint, such as 
equation 26, on the slownesses of the subset of grid blocks that the path 
traverses. For each observation point there is a trajectory from that location 
to a source point located on the inlet. Given a collection of arrival times to 
each sample point, we may write the resulting linear system of equations in 
vector matrix form

(27)

where M is the matrix containing the coefficients in equation 26, the 
trajectory lengths in each grid block, and δs is the update to the current 
slowness model vector. We may use the method of penalized least squares 
(Menke, 1989) to solve the system for the vector of unknowns δs. We applied
the linearized inversion approach to the micro‐PET data obtained during the 
injection experiment. Neglecting the voxels that are outside of the sample 
there are a total of 12,251 arrival times within the core, providing a large 
system of equations. The first step of the inversion algorithm produced a 
three‐dimensional distribution of solute slownesses s(x). From the slowness 
we may extract the velocity and use equation 24 to solve for the 
permeability in terms of the velocity and quantities estimated from the 
numerical simulator

(28)

When the dispersion is negligible or the concentration is uniform in the 
medium, the second term on the right vanishes and the permeability 
estimate is identical to that provided by Darcy's law (de Marsily, 1986). In 
that case this trajectory is identical to a streamline. Equation 28 provides an 
estimate of the effective permeability because any variations in porosity will 
also map into k. Other methods, such as X‐ray imaging or ultrasonic 
methods, may be used to estimate the porosity variations and incorporate 
them into expression 28. For the Berea sandstone core used in this study, 
the porosity variations were fairly uniform, with values of around 20% based 
upon 3‐D porosity maps obtained with a clinical CT scanner (Akin & Kovscek, 
2003). The estimated permeability variations, obtained from equation 28, are
plotted in Figure 7. Note the generally higher permeability near the base of 
the core and the subhorizontal elongated anomalies suggestive of layering. 
Selected trajectories associated with the heterogeneous model (Figure 7) are
plotted in Figure 8. The trajectories are largely along the axis of the core, but
the bending of the paths due to the permeability variations is evident both in
the top and side views.





4 Conclusions

We have described a trajectory‐based approach for modeling solute 
transport in a flow field. The trajectories may be used for visualization or as 
the basis for a tomographic‐like imaging algorithm. No assumptions about 



the smoothness of the medium are made in the derivation and the 
trajectories are valid for spatial variations that contain sharp boundaries, an 
improvement over existing asymptotic techniques (Vasco et al., 2016). 
Unlike streamline methods, the trajectories are influenced by molecular 
diffusion and the dispersivities of the porous medium. A comparison between
streamlines and the extended trajectories in a medium containing a layer 
illustrates the influence of transverse dispersitivity on the paths of the 
solute. By incorporating the output of a numerical simulator, one may 
calculate the trajectories using a straightforward integration. The technique 
is applicable to other processes, such as the study of transient pressure 
propagation (Vasco, 2018).

Recent work (Auriault et al., 2010; Pride et al., 2017) supported the 
conclusion of Koch and Brady (1987) that the dispersion tensor D is 
asymmetric, and we explored the implications of the form proposed by Pride 
et al. (2017). A model containing a high‐permeability layer indicated that the
asymmetry is only significant locally, where the heterogeneity is significant. 
These results are in agreement with the observation of Carbonell and 
Whitaker (1983) and Amaral Souto and Moyne (1997) that the antisymmetric
component of the dispersion tensor is annihilated in a homogeneous 
medium, as discussed in Appendix A. For the case under consideration, the 
significant spatial variations were at the top and bottom edges of the layer. 
For the heterogeneous model containing a layer the modifications of the 
dispersion tensor had the effect of concentrating the flow of the solute in the 
high‐permeability layer.

The semianalytic expression for solute travel time provided by this approach 
leads to an imaging algorithm for estimating hydraulic conductivity in 
heterogeneous geologic porous media. This imaging technique is illustrated 
using solute arrival times measured experimentally with micro‐PET 
monitoring of radioctivity changes due to the injection of a radiotracer in a 
heterogeneous sandstone core. For tests involving a single injection site, 
only one numerical simulation is needed in order to compute sensitivities for 
all observations. The method is well suited for geophysical time‐lapse 
monitoring of tracer tests where a number of snapshots of the concentration 
distribution are imaged. Such monitoring has been shown to be feasible 
(Becker & Tsoflias, 2010; Day‐Lewis et al., 2003; Tsoflias & Becker, 2008) 
and should become more common as automated data collection systems are
developed (Daley et al., 2011). As demonstrated in the PET images, given a 
sufficient number of snapshots, one can construct the distribution of fluid 
arrival times and from this infer the hydraulic conductivity. In this regard, the
concept of onset time, the time at which a geophysical attribute begins to 
change from its background value, is useful in reducing the series of 
geophysical images to a single map of values (Vasco et al., 2014, 2015, 
2016). From the map of onset times it is possible to infer hydraulic 
conductivity in a stable fashion as shown in Vasco et al. (2016) and in the 
application above.



Acknowledgments

Theoretical work, formulation, synthetic testing, and data inversion 
performed at Lawrence Berkeley National Laboratory was supported by the 
U.S. Department of Energy under contract DE‐AC02‐05‐CH11231, Office of 
Basic Energy Sciences. Experimental work was funded by the Global Climate 
Energy Project, the Stanford Center for Carbon Storage, and the Department 
of Energy Resources Engineering. The Inveon DPET (micro‐PET) scanner was 
funded by NIH grant 1S10OD018130‐01. The micro‐PET normalized 
radioactivity data for the core plug experiment are available from the public 
data sharing site Zenodo by accessing the file using the digital identifier doi 
10.5281/zenodo.1299325 and in the Stanford Digital Repository accessible 
through the link https://purl.stanford.edu/wj853cz6083.

Appendix A: The Nature of the Dispersion Tensor

The physical characteristics of solute transport have been studied 
extensively, from the early experiments of Slichter (1905) and mathematical 
descriptions of the flow in capillary tubes by Taylor (1953) and Aris (1956), to
the present day (Fel & Bear, 2010; Liu & Kitanidis, 2013; Pride et al., 2017). 
The study by Scheidegger (1954), in which the term dispersivity was 
introduced, appears to be the first statistical treatment of the hydrodynamics
of solute transport. Soon after, de Jong (1958) completed a statistical 
analysis that accounted for the variations of the pressure gradient in 
channels due to differences in their orientations with respect to the direction 
of the macroscopic flow field. This led to the conclusion that dispersion in the
direction parallel to the flow field (longitudinal dispersion) is greater than 
dispersion transverse to the direction of the flow field (transverse 
dispersion), even if the flow properties of the medium are isotropic. Saffman 
(1959) extended the statistical approach by explicitly including molecular 
diffusion in the model, in addition to mechanical dispersion. Bear (1961) 
analysis, based upon the finding of de Jong (1958), that the solute 
distribution from a point injection in a uniform flow field approximates a 
bivariate normal distribution, emphasizes that the dispersion is described by 
a second‐rank tensor. By extending Bear (1961) analysis to uniform flow 
within an isotropic medium, de Jong and Bossen (1961) deduced the form

(A1)

where aklij is a fourth‐rank tensor of dispersion coefficients, Vk are the flow 
velocity vector components, and V is the flow velocity magnitude. They also 
derive a governing equation for dispersive solute transport, written in terms 
of Dij. Note that D scales as the flow velocity magnitude V, as was observed 
experimentally (Scheidegger, 1961). A similar expression was derived by 
Nikolaevskii (1959) who drew from the statistical studies of turbulence, using
a theorem stating that a point tensor of dispersion must have even rank 
when the medium is isotropic. Nikolaevskii adopts the representation A1 as 
the simplest form consistent with this requirement. Other studies, based 



upon averaging techniques (Amaral Souto & Moyne, 1997; Carbonell & 
Whitaker, 1983; Koch & Brady, 1985) and asymptotic approaches, such as 
the method of multiple scales (Koch & Brady, 1987) and homogenization 
(Auriault et al., 2010; Hornung, 1997; Mei, 1992; Rubinstein & Mauri, 1986) 
have shown that the dispersion tensor is of the general form

(A2)

where dm is the molecular diffusion, τ is the tortuosity tensor (Amaral Souto 
& Moyne, 1997; Carbonell & Whitaker, 1983), and Adis is the hydrodynamic 
dispersion tensor that depends in a nonlinear fashion upon the flow field q. 
The exact nature of the dependence of Adis upon q, the magnitude of q, or on
the Peclet number Pe = ql/dm, where l is the diameter of the grains in a 
porous medium, has not been definitively established. An asymptotic 
analysis, in the limit of a low volume fraction of fixed spheres, produced 
estimates that contained terms of order Pe, Pe2, and , depending 
upon the nature of the flow (Koch & Brady, 1985). Fits to laboratory data 
identified five flow regimes in which longitudinal dispersion took on various 
forms (de Marsily, 1986, p. 237; Delgado, 2007).

Scheidegger (1961) provided an early discussion of the symmetry properties 
of the dispersion matrix. He relied upon an admittedly naive application of 
Onsager's principle of microscopic reversibility (Onsager, 1931a, 1931b) to 
justify the symmetry of D. Koch and Brady (1987) present a rigorous 
application of Onsager's relations to show that an asymmetric component of 
the tensor D may exist in a medium lacking three orthogonal planes of 
reflective symmetry. It was pointed out by Carbonell and Whitaker (1983) 
and Amaral Souto and Moyne (1997) that if D does not vary in space, then 
equation 1a becomes

(A3)

Due to the symmetry of the operator ∇∇c, any antisymmetric component of 
the dispersion tensor will be annihilated and will not influence the evolution 
of the solute concentration. Note that this argument only applies to a 
homogeneous medium with a flow field that does not vary in space. In the 
presence of inhomogeneities the dispersion tensor D may well be 
asymmetric. The lack of sensitivity in the case of a homogeneous medium 
may explain why it has often been assumed that the dispersion tensor is 
symmetric. The asymmetry of the dispersion tensor pointed out by Koch and 
Brady (1987) has been confirmed by Auriault et al. (2010) using a 
homogenization technique for low Peclet number flows. They also verified a 
symmetry associated with a reversal of the flow field q,

(A4)

The asymmetry of the dispersion tensor was demonstrated by Pride et al. 
(2017) for general flow conditions. The symmetry under flow reversal, 



equation A4, was derived by Pride et al. (2017), and verified by Flekkoy et al.
(2017), without imposing the conditions of Auriault et al. 2010.

A general form of the dispersion tensor that incorporates many of the ideas 
reflected in equations A1 and A2 is the widely used representation

(A5)

where  is a unit vector in the direction of q, DL and DT are the longitudinal 
and transverse dispersion coefficients, given by

(A6)

where F is the formation factor (de Marsily, 1986, p. 34), and αl and αt are 
the longitudinal and transverse dispersivities (Oldenburg & Pruess, 1995). 
The formation factor is given by F = 1/φτ in Oldenburg and Pruess (1995) 
where τ is the tortuosity, the ratio of diffusion in the porous medium to 
diffusion in the fluid (de Marsily, 1986, p. 233).

Note that D given by expression A5 is symmetric, in contrast to the findings 
of Koch and Brady (1987), Auriault et al. (2010), and Pride et al. (2017). Pride
et al. (2017) suggest a modification of A5,

(A7)

that satisfies equation A4 and displays the appropriate asymmetry. The 
parameter a has units of length squared and numerical Lattice‐Boltzmann 
computations in Pride et al. (2017) indicate that it is a function of the Peclet 
number. The form A7 reflects that fact that if flow differs in magnitude in 
adjacent regions, there will be off‐diagonal components in the dispersion 
tensor. Simulations based upon Lattice‐Boltzmann computations are 
consistent with a dispersion tensor of the form A7 (Pride et al., 2017).
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