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Quantifying the effect of multiple load flexibility
strategies on commercial building electricity demand

and services via surrogate modeling
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aLawrence Berkeley National Laboratory, Building Technology and Urban Systems Division,
Berkeley, CA, USA

Abstract

The expansion of commercial building demand response as a demand-side man-

agement resource for the electric grid necessitates new decision support resources

for customers seeking to assess the benefit-risk tradeoffs of possible strategies

for energy flexible building operations. To address this need, we develop sur-

rogate models that predict the impacts of several load flexibility strategies on

commercial building electricity demand and indoor temperature, focusing on

offices and retail buildings at multiple scales. The surrogate models are fit to

a synthetic database generated via whole building simulations, which estab-

lish the relationships between the key operational features of a given strategy

and potential changes in building demand and temperature in a wide variety

of contexts. The surrogate models are translated to a Bayesian framework to

allow straightforward communication of uncertainty and parameter updating

given new evidence. We find strong predictive performance across the suite of

models, underscoring the usefulness of the approach in guiding decisions about

implementing load flexibility strategies under a particular set of operational and

environmental conditions.

Keywords: commercial building demand response, surrogate modeling,

Bayesian framework, demand-side management, grid-interactive efficient

buildings
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1. Introduction

Commercial building demand response (DR), which encompasses a set of

time-dependent utility program activities and tariffs that seek to reduce electric-

ity demand or shift demand across time periods [1], is likely to play an expanded

role in the coming years as a demand-side management tool that facilitates grid

reliability and resilience in the face of day-to-day stresses, increased renewable

energy penetration, and emergency events [2]. Applications of DR have been re-

ported and assessed across the individual building, building district, electricity

system, and whole sector levels [3]. At the system level, previous studies suggest

multiple power grid benefits from improved demand management through DR,

including: lower peak demand, improved market efficiency, and coordination of

efficient and flexible demand-side resources [4]; support of load shifting from

peak to off-peak times [5]; and increased ability of grid operators to manage

high penetration of renewable energy sources such as solar and wind energy

that have highly variable generation profiles [6, 7].

Along with these grid benefits, however, expanded commercial DR intro-

duces new risks on the utility customer side. Commercial building operators

and owners have a primary interest in providing comfortable environmental con-

ditions for building occupants, given the role of indoor environmental quality

in facilitating workplace productivity, health, and well-being [8]; the potential

for disruption to normal operating conditions constitutes a key concern about

participation in DR programs [9]. Moreover, the prospect of further automating

customer responses to DR calls from the grid engages additional customer con-

cerns about a lack of transparency into or control over scheduled adjustments

to normal building operations [10] — particularly if customers are not allowed

to override or opt-out of responding [9, 11]. Looking ahead, widespread adop-

tion of expanded commercial DR program offerings will require customer-facing

resources that address such concerns by providing greater insight into the poten-

tial implications of flexible adjustments for building operations, including both
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the likelihood of changes in electricity demand and changes to core building

services like comfortable temperatures.

Existing reviews of the commercial DR context establish the range of load

flexibility strategies that customers will typically consider, grouping these strate-

gies into four areas: HVAC, lighting, miscellaneous equipment, and measures

that work across components or end uses [12, 13]. Adjustments to commercial

HVAC and lighting set point schedules are considered as particularly attractive

strategies, due to the substantial portion of total loads that these strategies

can affect and their comparatively lower risks to occupant comfort than strate-

gies that make centralized adjustments to air distribution or cooling systems,

for example. Thermal load flexibility strategies include pre-cooling and pre-

heating [14, 15, 16, 17], which shift cooling and heating loads to the hours

preceding those of peak demand on the grid, along with global temperature

adjustments (GTA) [18, 19], which relax zone thermostat set points across all

thermal zones in a building during peak periods. Lighting strategies include

dimming or switching off lights for load shedding during peak demand peri-

ods; while such actions may be performed manually, previous studies demon-

strate the ability to implement lighting load flexibility through a central energy

management system (EMS) [18]. Outside of HVAC and lighting, commercial

flexibility strategies may also target miscellaneous electric equipment (e.g., com-

puters and office equipment, fountain pumps, industrial process loads, etc.) to

reduce demand without influencing the basic activities of occupants [18]. Non-

component-specific measures, which coordinate across the aforementioned types

of DR strategies based on conditions such as outdoor temperature and electric-

ity price, constitute more sophisticated ways of managing a building’s demand

dynamically, but also require a higher degree of programming [12].

Recent studies have attempted to represent the key types of commercial

load flexibility strategies in dynamic building energy simulations [20, 21]. Such

studies use physics-based energy modeling tools such as EnergyPlus, DOE-2,

and TRNSYS to investigate changes in building demand, thermal dynamics, and

changes to other building services from flexible operations during DR events.
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Since the underlying modeling tools are able to capture both whole building

and sub-system/component changes under DR at temporal increments that are

suitable for grid planners (e.g., 5 minute-to-hourly changes in HVAC, lighting,

and electric equipment schedules), these tools are well-suited to represent the

various types of load flexibility strategies identified above. Other tools such as

Demand Response Quick Assessment Tool (DRQAT) [22], and EnergyPLAN

[23] have drawn from physics-based building simulation capabilities specifically

for the purpose of assessing tradeoffs across candidate flexibility strategies, in

terms of potential changes in building demand.

Data-driven models offer an alternative to physics-based simulations for

characterizing a building’s response to dynamic load adjustments [24]. Yin

et al. [25] develop a surrogate modeling framework for estimating the theoret-

ical demand flexibility of both commercial and residential buildings, in which

regression models are trained to large EnergyPlus datasets on the simulated de-

mand impacts of thermostat adjustment strategies. Kara et al. [26] use statisti-

cal autoregressive moving average models fit to measured data to quantify the

flexibility of residential thermostatically controlled loads for demand response.

The approach relates thermostat setpoint to changes in indoor temperature

and instantaneous HVAC power consumption, estimating both the magnitude

and duration of demand shedding potential. Afzalan and Jazizadeh [27] seg-

ment load data by user types to determine demand reduction potential, using

a rough estimate of power reduction potential per degree change in thermostat

set point to determine load shedding potential. Pinto et al. [28] combine a sur-

rogate modeling approach with machine learning techniques, developing a deep

reinforcement learning controller that manages the operation of heat pumps

and chilled and domestic hot water storage at the district scale, minimizing

peak demand across the district while maintaining indoor temperatures within

a comfort band for individual buildings. Chen et al. [29] use a comfort tem-

perature band to determine potential load flexibility in offices from thermostat

adjustments and occupant temperature preferences, including the comfort band

as an input to simple single zone energy balance equations; simple models of
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demand reduction potential from lighting and appliance and thermal storage are

also reported. Hurtado et al. [30] quantify the available demand flexibility of in-

dividual commercial buildings by fitting models of the conditional probability of

various flexibility parameters, including ramp rates, power and energy capacity,

and the time taken for indoor temperature to reach the edge of the set point band

and subsequently recover to the normal temperature, to a synthetic database

generated using whole building energy simulation of baseline and flexible oper-

ations. Contreras-Ocaña et al. [31] use clustered synthetic data generated via

EnergyPlus reference buildings for offices and supermarkets to train linear mod-

els of feasible building load regions under HVAC flexibility, constraining these

regions by acceptable temperature limits. The authors demonstrate the use of

the models to support aggregators tasked with compensating deviations from

forecasted wind generation with building load flexibility. Amara et al. [32] iden-

tify a hybrid physics-statistical modeling framework as most effective among

data-driven approaches for managing building energy use, and other studies

similarly highlight the use of hybrid models for building control and operations

[33]. Finally, multiple studies use a resistance-capacitance circuit analogy to

model thermal dynamics under load flexibility, requiring physical building in-

formation (e.g., zone volume, thermal envelope characteristics) to infer model

parameters [34, 35, 36, 37].

Data-driven approaches require substantial measured or simulated data for

model training – including building energy use, indoor and outdoor environmen-

tal variables, and system control data [38]. Accordingly, data-driven approaches

remain a promising but uncommon basis for informing commercial load flexibil-

ity strategies in practice [39].

On the basis of existing literature, we identify the following key challenges

to quantitative assessment of commercial building load flexibility strategies:

• Existing models of building load flexibility are not easily adapted to spe-

cific building instances; given the lack of modeling and computational

resources and/or metered data for model training purposes, it is not feasi-
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ble for building owners, operators, or consultants to build unique physics-

based or data-driven models of the potential impacts of flexibility strate-

gies in specific building applications.

• Few studies attempt to model the potential energy and service impacts

of multiple load flexibility strategies at once across multiple commercial

building types, with many studies focusing on individual flexibility strate-

gies relating to HVAC adjustments in offices. This is despite the potential

for flexibility packages to yield deeper demand reductions while distribut-

ing risks across building services, and despite interest in pursuing load

flexibility in other commercial building contexts — particularly retail set-

tings.

• Studies tend to focus on the implications of thermal load flexibility strate-

gies in terms of potential changes in building demand; while multiple

studies examine the associated implications of such strategies for indoor

temperature — a key concern for building operators and owners – such

studies tend to either equate indoor temperature changes with set point

adjustment levels or rely on idealized models of thermal dynamics that do

not account for context-specific factors such as HVAC system constraints

or the effects of having multiple thermal zone types in the building.

• Few studies communicate the uncertainties in their predictions, imparting

false confidence about potential flexibility impacts.

To address such limitations, we develop surrogate models of key load flex-

ibility strategies for multiple commercial settings that are comprehensive, pre-

dictive, and adaptable to new information. Specifically, we use EnergyPlus to

generate synthetic data on the potential demand and service impacts of an array

of commercial load flexibility strategies and packages across office and retail con-

texts of multiple scales; train a series of multiple regression models of building

demand and service changes under these strategies; and translate the regression-

based surrogate models to a Bayesian framework to facilitate communication of
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model prediction uncertainty and parameter updating given new evidence. The

developed models are intended to serve as simple tools that commercial DR par-

ticipants, consultants, and/or service providers can use to prospectively assess

the relative benefits and risks of candidate load flexibility response strategies

under a particular set of conditions (e.g., weather, occupancy, economic incen-

tives).

2. Methodology

Surrogate models of commercial building demand and temperature service

under load flexibility are developed through the following steps: 1) define com-

mercial DR contexts (climate, building type, building vintage) and develop can-

didate load flexibility Measures in OpenStudio/EnergyPlus; 2) simulate load

flexibility Measures across climate zones, building types, and vintages of in-

terest; 3) compile results into synthetic database covering simulated electricity

demand and indoor temperature outcomes under the various measure settings

and contexts; 4) fit a series of multiple regression models of building demand and

indoor temperature under load flexibility using the synthetic database; trans-

late the regression models to a Bayesian inference framework to address model

uncertainty and new parameter updating; and 5) assess model fit and predictive

performance using quantitative metrics and qualitative graphical checks. Fig-

ure 1 summarizes the methodological steps used in this study, which are further

enumerated below.

2.1. Definition of DR contexts and energy models

In this study, we model five different types of commercial buildings using

the EnergyPlus engine [40]: medium offices, large offices, all-electric large of-

fices, standalone retail, and big box retail. The medium and large office and

standalone retail models are drawn from the U.S Department of Energy’s com-

mercial prototype models [41]; the all-electric large office model is based on the

prototypical large office model, but is modified to reflect an all-electric HVAC
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Figure 1: Summary of methodological steps for developing surrogate models of changes in

commercial building demand and temperature service under load flexibility strategies.

system; the big box retail model draws from the base-case EnergyPlus model

previously developed by the National Renewable Energy Laboratory (NREL)

for the assessment of the ASHRAE Advanced Energy Design Guide (AEDG)

for medium-to-big-box retail [42]. The characteristics of each building type are

further described here.

2.1.1. Medium office

The prototypical medium office building is a three-storey office building of

4,900 m2 with 13 space types. The building is conditioned by a central packaged

air conditioning unit with a gas furnace. The building’s air distribution is

through variable air volume (VAV) terminal boxes with dampers and electric

reheating coils. During weekdays, the building is occupied between 6 AM and

midnight, with peak occupancy at a fraction of 0.95 for two periods of 8AM-

12PM and 1PM-5PM. For lighting, the building is scheduled to a peak fractional

intensity of 0.9 from 7AM-5PM, which is gradually reduced to zero by midnight.

Equipment schedules (representing plug loads such as PCs and non-PC office

type equipment) follow a peak fractional intensity of 0.9 from 8AM-5PM, which

is sharply reduced to a baseline level of 0.4 for the remainder of each night.
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2.1.2. Large office

The large office building corresponds to the version of the prototypical large

office with more detailed thermal zoning; in total, the building is modeled with

100 zones and 14 space types, allowing a more finely-grained assessment of

the impacts of load flexibility in different parts of the building. The detailed

large office prototype version is available via the OpenStudio energy modeling

environment [43]. The building has 13 floors in total including a basement

level, ground floor, and 11 above-ground floors; the total conditioned building

area is 46,321 m2. The building is conditioned by a chiller for cooling and gas

boiler for space heating with air handling units in each floor that distribute air

to each zone via variable air volume (VAV) terminal units with a hot water

reheat system. During weekdays, the building is occupied from 8AM-6PM,

with peak occupancy from 10AM-12PM and 2PM-5PM. Occupancy, lighting,

and electric equipment schedules for the large office are the same as the medium

office building. The large office prototype has a main data center in the basement

and small data center spaces on each floor; for the purposes of this study, we

do not include data center spaces in the scope of electricity demand reductions

from load flexibility measures.

2.1.3. All-electric large office

The all-electric large office building variant used in this study is derived di-

rectly from the large office detailed standard prototype, but we replace the pro-

totypical gas boiler and chiller HVAC and VAV terminal reheat systems with a

water-source heat pump (WSHP) and dedicated outdoor air system (DOAS) us-

ing the OpenStudio Building Component Library Measure, WSHP with DOAS

[44]. With the application of this Measure, the all-electric large office model

has centralized DOAS per floor with zone-level conditioning to all space types

except storage, stair, and mechanical/electrical rooms. We model an all-electric

large office variant for this study in anticipation that the current emphasis on

building electrification [45, 46] will result in such buildings and heat pump sys-

tems becoming more common in the future, with associated implications for
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the scope and applicability of our prototype-based surrogate models of load

flexibility impacts.

2.1.4. Standalone retail

The prototypical standalone retail building is a one-storey building of 2,290

m2 with 5 space types. The building is conditioned by a packaged air con-

ditioning unit with a gas furnace. The building’s air distribution is through

a constant air volume (CAV) system with four rooftop units (RTUs) serving 4

thermal zones. During weekdays, building occupancy begins at 7 AM, with peak

occupancy occurring from 11AM-5PM at a fraction of 0.95 of the maximum;

the occupant fraction is then gradually reduced to zero by 9PM. The building

is scheduled to a peak fractional lighting intensity of 0.9 from 9AM-6PM, which

gradually reduces to zero by midnight. Equipment schedules follow a peak frac-

tional intensity of 0.9 from 9AM-7PM, which is sharply reduced to a baseline

level of 0.2 for the remainder of each night.

2.1.5. Big box retail

Finally, the big box retail building model is an adapted version of the base-

line model developed originally by NREL [42] to represent larger merchandise

stores under the ASHRAE 90.1-2004 code level. The model has sales floor and

back-of-house areas – 11 zones and 9 space types in total with a conditioned

building area of 9,218 m2. The building is conditioned via unitary heating and

cooling equipment, with a single duct air terminal, direct expansion (DX) air

conditioner, and electric baseboard heating. During weekdays, building occu-

pancy begins at 7 AM and lasts until midnight, with peak occupancy occurring

between 11PM-1PM and 5PM-7PM at a fraction of 0.625 of the maximum; the

occupant fraction is then gradually reduced to zero by 1 AM the following day.

The building is scheduled to peak fractional lighting and electric equipment

intensities of 0.9 from 7AM-9PM. For the purposes of this study, we set the

building’s humidistat, which controls indoor humidity, to 90% to avoid over-

cooling issues observed with this control in place in the original model (the
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original model uses a 60% humidistat set point). The original model is available

for EnergyPlus version 6.0 on the Building Component Library website [47] and

was updated to be compatible with EnergyPlus version 9.2.

2.1.6. Climate zones and building vintages

Office and retail building models are simulated across two building vintages,

1980-2004 and 2010, which are chosen to represent older and newer building

construction characteristics, respectively. The adapted big box retail model is

only available for the 2004 vintage and simulations of this building type are

therefore limited to this vintage. All building types are simulated across a

range of ASHRAE 90.1 climate zones [41] – 2A, 3C, 4A, and 6B – which are

chosen to capture the influence of variation in weather as well as location-specific

building design codes. In all, we simulate 36 unique contexts (4 building types

* 2 vintages * 4 climate zones, plus 4 climate zones for the single big box retail

vintage).

2.2. Definition of load flexibility strategies

Table 1 summarizes the load flexibility strategies implemented in the En-

ergyPlus simulations, presenting key characteristics assumed for each strategy.

We represent the application of four types of flexibility strategies: 1) lighting

dimming, 2) plug load reduction through low-priority computer/office electronic

device switching, 3) global temperature adjustment (GTA), and 4) GTA + pre-

cooling in the hours directly preceding a DR event window. Each strategy is

implemented in response to an assumed DR event window of 3-7 PM, which is

chosen to reflect a net summer peak load period that is expected to be typi-

cal for utility systems in the coming years, as summarized across U.S. regions

in the Supplemental Information of [48].1 In the simulations, each strategy

is represented as a modification of daily baseline operational schedules. The

lighting and plug load strategies are assessed together exclusively across a full

1Net peak load is defined as the peak in total summer system load minus projected variable

renewable energy generation.
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year, while the GTA and pre-cooling strategies are assessed for the summer

period only (May–Sep), in some instances alongside packaged lighting and/or

plug loads strategies. Modified schedules that represent the strategies are gen-

erated and applied in EnergyPlus simulations using the OpenStudio Measures

feature, which consists of small scripts that adjust an EnergyPlus model across

various dimensions including the building and system characteristics as well

as operational and occupancy schedules [49]. The modified hourly schedules

are represented in ”Compact:Schedule” objects in order to maintain the same

system design settings as those in the baseline. Measure definitions for each

flexibility strategy have been published on a GitHubrepository 2.

Table 1: Load flexibility strategy assumptions.

Category Measure
Magnitude of adjustment

Duration of adjustment
Low (Uniformly distributed) High

HVAC Global cooling temp. adjustment (GTA) +1°F to +6°F 3-7 PM

GTA and +1°F to +6°F 3-7PM

pre-cooling -1°F to -4°F 1 to 6-hour ahead

(Uniformly distributed)

Lighting Dimming
0% to -100% 3-7 PM

Plug Loads Low-priority device switching

To ensure that a wide range of possible adjustment levels is represented for

each flexibility strategy, we sample schedule values from uniform distributions

that cover the feasible ranges of values shown in Table 1. Specifically, for both

lighting and plug loads strategies, the reductions are generated using a continu-

ous uniform distribution bounded from 1% to 100%. The GTA and pre-cooling

strategy settings are also generated using a discrete uniform distribution; GTA

cooling set point increases during the DR period are sampled between the range

of 1°F and 6°F, while pre-cooling set point decreases are sampled between the

range of 1°F and 4°F. Pre-cooling is represented for half of the simulated summer

2https://github.com/jtlangevin/flex-bldgs/tree/master/measures
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days to ensure a balance in the data set between days with and without pre-

cooling applied; pre-cooling application ranges between 1 and 6 hours directly

preceding the DR event period, with duration drawn from a discrete uniform

distribution. Sampled schedule draws are independent across the strategies.

Finally, to ensure that we capture the effects of individual strategies in isola-

tion in our data, we force a single occurrence of 0% for the lighting strategy, plug

loads strategy, and both lighting and plug loads on a weekly basis. As a result of

this approach and the aforementioned restriction on pre-cooling instances, there

are 22 occurrences of a GTA + pre-cooling-only strategy, 18 occurrences of a

GTA-only strategy, 32 occurrences of a GTA + lighting + plug loads strategy,

and 30 occurrences of a GTA + pre-cooling + lighting + plug loads strategy

across simulated summer weekdays (May to September); there are 52 weekday

occurrences of a lighting-only strategy, 48 weekday occurrences of a plug loads-

only strategy, and 150 weekday occurrences of a lighting + plug loads strategy

in the year-round simulations of those measures exclusively.

2.3. Whole building simulation of load flexibility strategies

Load flexibility strategies represented as OpenStudio Measures are executed

via batch simulations of EnergyPlus that leverage the OpenStudio Workflow

(OSW). Using the OSW, the office and standalone retail prototype models are

seeded as OpenStudio Models, to which flexibility Measures and an additional

set of Reporting Measures are applied. The big box retail runs are also per-

formed in batches utilizing the JEPlus software platform [50], a tool for running

EnergyPlus models parametrically. Flexibility Measure settings are applied via

.csv files consisting of pre-defined schedules for each candidate strategy (based

on settings in Table 1), while Reporting Measure arguments contain the type

of reporting variable desired and the time resolution with which that variable

should be reported. Given these arguments, the OSW executes the EnergyPlus

engine and generates the required reporting files across the various DR contexts.

All simulations are executed with an hourly time step.

Table 2 summarizes the full range of flexibility measure types, simulation
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periods, building types and vintages, climate zones, and output metrics that

are covered by the whole building simulations.

Table 2: Summary of load flexibility measure categories, simulation periods, building types

and vintages, climate zones, and output metrics that are covered by this paper’s whole building

simulations.

Measure Simulation Building Types Building Climate Output Types

Category Period Vintage(s) Zones [41]

HVAC, Summer Medium Office, 1980-2004, 2A, Demand shed intensity (W/sf),

HVAC and (May-Sep) Large Office, 2010 3C, Indoor temp. change (ºF)

Lighting and/or All-Electric Large Office, 4A,

Plug Loads Standalone Retail 6B

Big Box Retail 2004

Lighting and/or Full Year Medium Office, 1980-2004, 2A, Demand shed intensity (W/sf)

Plug Loads Large Office, 2010 6B

All-Electric Large Office,

Standalone Retail

Big Box Retail 2004

2.4. Development of synthetic database

After conducting the batch simulations of commercial load flexibility strate-

gies across the dimensions listed in Table 2, hourly results are compiled into a

synthetic database that includes the electricity demand and indoor temperature

outputs and potential predictors of these outputs. Regarding indoor tempera-

ture results, the following adjustment is applied to the raw temperature data

generated for each building thermal zone to yield a single occupant-weighted

average indoor temperature variable to use in the dataset:

Tave =

∑n
i=1(Ti ×Occi)∑n

i=1 Occi
(1)

Where Tave represents the occupant-weighted averaged indoor temperature;

i represents the conditioned zone number, while n represents the total number
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of conditioned zones; Ti represents the indoor temperature within zone i; and

Occi represents the maximum potential occupant number within zone i.

Leveraging the authors’ domain expertise and the literature review presented

earlier, we identify three categories of potential predictors to report to the syn-

thetic database and include in subsequent model development: 1) outdoor envi-

ronmental conditions and occupancy, 2) load flexibility strategy characteristics

(e.g., changes in cooling set point, lighting and plug load schedules) and – for

cooling set point – its single time step lag, and 3) time duration indicators (e.g.,

hours since flexible operations have started and ended).

Raw simulation results are further filtered in the following ways to develop

the final synthetic database:

• we restrict the data to weekdays only, under the expectation that com-

mercial load shedding and shifting opportunities will be limited for this

day type, when the buildings are typically occupied;

• within each weekday, we restrict hourly data points to those that fall

in the DR event window, as well as any hours preceding the window in

which pre-cooling was simulated and one hour following the event for any

strategies with temperature adjustment, to capture a potential rebound

in demand as the HVAC system recovers from this adjustment; and

• for any strategies with temperature adjustment (i.e., GTA and pre-cooling),

we restrict the data to hours in which the outdoor air temperature is

equal to or higher than 70°F, which is assumed to be a threshold at which

substantial cooling loads are present and consistent with previous stud-

ies finding fundamentally different relationships between building demand

and moderate to low outdoor temperatures [25].

The synthetic data are published on GitHub3.

3https://github.com/jtlangevin/flex-bldgs/tree/master/data
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2.5. Surrogate model development using synthetic data

To develop surrogate models of building electricity demand and indoor tem-

perature under load flexibility strategies, we fit multiple linear regressions to

the synthetic data that predict these outcomes of interest in terms of their key

correlates. In choosing the multiple regression approach, we prioritize model

simplicity and interpretability, seeking to develop accurate predictions that rely

on only a few readily quantified predictor variables for improved usability. A

minimum set of model predictors is determined as outlined in section 2.4 based

on expectations about the variables that are likely to have a real-world rela-

tionship to building demand and indoor temperature that is well-captured by

a linear model. Given the multiple regression framework, we are able to assess

the significance of individual variables to the predicted outputs alongside the

determination of overall model predictive performance. Interaction terms are

included in the multiple regressions under the expectation that the influence

of certain model predictors on the output is conditioned on the values of other

predictors in the model, such as the moderating effect of weather and occupancy

on the impacts of changing a zone cooling setpoint.

We group our surrogate models by the five building types and two vintage

bins described in section 2.1 under the expectation that differences in the opera-

tional schedules across building types and in construction characteristics across

building vintages warrant the development of unique models for each building

type and vintage combination in our synthetic data. Within each building type

and vintage combination, we further segment the surrogate models of changes

to building demand into models for strategies that drive changes in demand

through changes in thermal loads (e.g., GTA and pre-cooling) and strategies

that do not primarily influence demand through changing thermal loads (e.g.,

dimming lights and reducing plug load power). The former thermally-driven

demand model is trained on synthetic data that includes the one hour rebound

period, while the latter non-thermally-driven demand model is trained on syn-

thetic data that excludes the rebound period – lighting and plug load strategies

are observed to cause negligible recovery demand in the hours following the
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DR period. We also fit a separate model for changes in demand during the pre-

cooling period, given the unique thermal load dynamics of this period compared

to the DR event window (e.g., pre-cooling increases in thermal load vs. the de-

creases during the DR event window). Finally, to predict changes to indoor

temperature, we restrict the synthetic training dataset to exclude data points

that reflect only lighting or plug load changes, as such changes were observed to

have only small effects on zone temperature. The temperature model is trained

on synthetic data with the one hour rebound period removed, as the indoor

temperature tends to move quickly back to the thermostat set point during this

period, leaving no temperature changes for the model to predict.

Table 3: Summary of demand and temperature surrogate model inputs and outputs for a given

combination of building type and vintage. Shown are model types, outputs, and predictors,

with interactive predictor variables highlighted in red.

Whole Building Demand Whole Building Demand Whole Building Demand Indoor Temperature

(DR, Non-thermally-driven) (DR, Thermally-driven) (Pre-cool) (DR)

Output Demand shed intensity (W/ft2) Demand shed intensity (W/ft2)) Demand shed intensity (W/ft2) Indoor temperature change (°F)

Input Lighting dimming (%) Outdoor temperature (°F) Outdoor temperature (°F) Outdoor temperature (°F)

Plug loads reduction (%) Outdoor humidity Outdoor humidity Outdoor humidity

Occupancy fraction Occupancy fraction Occupancy fraction

Cooling set pt. change (°F) Cooling set pt. change (°F) Cooling set pt. change (°F)

Lighting dimming (%) Hours since pre-cool started Cooling set pt. lag (°F)

Plug loads reduction (%) Cooling change * Outdoor temp. Hours since DR started

Cooling set pt. lag (°F) Cooling change * Occ. fraction Pre-cool set pt. change (°F)

Hours since DR started Cooling change * Since Precool started Pre-cool duration

Hours since DR ended Cooling change * Outdoor temp.

Pre-cool set pt. change (°F) Cooling change * Occ. fraction

Cooling change * Outdoor temp. Cooling change * Since DR started

Cooling change * Occ. fraction Pre-cool change * Pre-cool duration

Cooling change * Since DR started

Table 3 summarizes the ultimate set of surrogate models that was developed

for each combination of building type and vintage, including the outputs and set

of predictor variables that were chosen for each model. The surrogate models

for demand yield demand shed intensity (W/ft2), while the surrogate model

for indoor temperature yields the change in indoor temperature (°F). Predictor

variables follow the three categories identified in section 2.4, and also include
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interactive terms that capture the moderating effect of one predictor variable

on another. Note that in the models of thermally-driven changes in demand

and indoor temperature during the DR event window, inputs concerning the

magnitude and duration of any pre-cooling before the event are included to

account for the effects of pre-cooling during the DR event window.

Initial inference of model coefficient estimates is performed with frequentist

regression methods using the full synthetic dataset for training purposes; sub-

sequent Bayesian inference of coefficient distributions is performed using the

full synthetic dataset as described in the following section. Use of the full syn-

thetic dataset for model inference avoids the need to set aside potential training

data for model testing; however, this approach introduces the possibility of

overfitting the models to data that do not generalize well to the true distri-

bution of observations. To mitigate this issue, we use k-fold cross validation

[51] to re-estimate the models under multiple partitions of training/testing data

and compare model performance under those alternate training/testing cases to

those generated using the full synthetic database for model training and testing.

Specifically, under k-fold cross validation, the original sample is randomly parti-

tioned into k equal sized sub-samples. Of the k sub-samples, a single sub-sample

is retained as the validation data for testing the model, while the remaining k

- 1 sub-samples are used as training data. The cross validation process is then

repeated k times, with each of the k sub-samples used once as the validation

data. In this work, we use k=10; thus, model performance metrics (see 2.7) are

recorded for each of the 10 assessments for each model and the resulting ranges

and averages of these metrics are summarized alongside the estimates based

on the use of the full synthetic dataset for training, to determine sensitivity to

training and testing data choice and identify potential overfitting issues.

2.6. Translation of surrogate models to Bayesian framework

In practice, the input/output relationships that are mapped by the surrogate

models may differ between prototypical and real offices. To mitigate this issue,

uncertainty in surrogate model predictions should be represented in a straight-
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forward manner and the models must be flexible to updating given new evidence

collected in real building environments. Both of these criteria are well supported

by translation of the surrogate models to a Bayesian inference framework.

Bayesian inference treats model parameters as random variables, deriving the

posterior probability of model parameter values as a function of the likelihood

of observed data given the parameters and prior parameter probabilities:

p(θ|y,X, α) ∝ p(y|θ,X)p(θ|α) (2)

Where θ is a vector of model parameters, y and X are the observed re-

sponse variable and covariates, respectively, and α is a vector of hyperparame-

ters; p(θ|y,X, α) is the posterior parameter probability given the observed data

and hyperparameter values; p(y|θ,X) is the likelihood of observed data given

the parameter values; and p(θ) is the prior parameter probability given the

hyperparameter values.

Following from equation 2, the posterior predictive distribution of new data

points ŷ is generated by marginalizing over the posterior parameter distribu-

tions:

p(ŷ|y,X, a) =

∫
p(ŷ|θ)p(θ|y,X, α) dθ (3)

The range of model predictions generated by equation 3 satisfies the re-

quirement of communicating uncertainty in model outcomes, while the ability

to weigh prior expectations about model parameters against new evidence as in

equation 2 supports model updating with data collected in the field.

To implement the surrogate models in this framework, we use PyMC3 [52],

a Python package for probabilistic programming. Models are initialized using

the previously described synthetic data to populate the likelihood function for

standard linear regression (p(y|θ,X) ∼ N (µ = XT θ, σ)) and assuming diffuse

parameter prior distributions (θ ∼ N(µ = 0, σ = 10), σ ∼ H(σ = 20)) to reflect

our lack of a priori beliefs about parameter values. Model inference is performed

using the No U-Turn Sampler (NUTS) algorithm [53], a Markov chain Monte
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Carlo (MCMC) sampling method that utilizes gradient information from the

likelihood function to converge more quickly than traditional sampling meth-

ods for Bayesian inference, avoiding the random walk behavior and sensitivity to

correlated parameters of the traditional methods while also requiring no no man-

ual user tuning to converge. The posterior parameter distributions estimated

through this process are published on GitHub4 and may serve as informative

prior distributions in subsequent rounds of model updating.

2.7. Model evaluation

The fit and predictive performance of the surrogate regression models were

assessed via the following metrics:

1. Adjusted R-squared (R2) is a goodness–of–fit metric; The R2 metric indi-

cates the proportion of the variability in the response data about its mean

that is explained by one or more independent variables. The adjusted R2

additionally accounts for the explanatory power of each variable that is

added to the model, increasing only if the variable improves the model

more than would be expected by chance; accordingly, the adjusted R2

is always equal to or lower than the R2 value. Previous building energy

simulation studies tend to report R2 values, finding R2 up to 0.78 for pre-

diction of hourly DR potential using regression models [25]; studies that

predict annual energy use with linear models suggest that higher R2 values

above 0.90 are possible [54].

2. Absolute Relative Error (ARE) is a predictive accuracy metric; ARE sub-

tracts observed from predicted values and normalizes each difference by

the observed values [25]. Previous work focused on DR potential estima-

tion for global temperature adjustments via linear models Yin et al. [25]

demonstrates that more than 80% of data points can be predicted with

an ARE of 20% or less.

4https://github.com/jtlangevin/flex-bldgs/tree/master/model_stored
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3. Mean Absolute Deviation Percentage (MADP) is a second measure of ac-

curacy; MADP is the ratio of the sum of deviations between observed and

model-predicted values to the sum of observed values, and is one of the

most commonly-used evaluation measures for models that predict build-

ing energy use [55]. MADP is preferred as a performance metric over

Mean Absolute Percent Error (MAPE) because the latter misrepresents

the overall error rate when actual values are close to zero [56]. A previous

building energy simulation study by Fan et al. [57] documents MADP val-

ues less than 9% for prediction of next-day energy use and peak demand;

more generally, MADP values less than 20% are considered acceptable in

the building simulation context [56, 58].

4. Variance inflation factor (VIF) is a measure of variable multicollinearity

[59]; VIF is the ratio of overall model variance to the variance of a model

that includes only a given predictor variable [60]. VIF values higher than

10 are assumed to suggest the need for model adjustments to improve the

stability of variable coefficient estimates. In Aghdaei et al. [54]’s work, for

example, regression models that predict annual cooling and heating de-

mand are evaluated with VIF values less than 1.6, indicating insignificant

correlation between model parameters.

5. Posterior predictive checks (PPCs), which are relevant specifically to the

Bayesian model implementation, graphically compare observed and mod-

eled data [61]. PPCs are a qualitative assessment method that can be used

to check for systematic discrepancies between the modeled and observed

outcomes.

3. Results

The following sub-sections summarize the predictive performance of each

of the developed surrogate models in accordance with the aforementioned as-

sessment metrics. Each sub-section presents two types of plots: 1) a bar plot

showing the distribution of the absolute relative errors (ARE) between predicted
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values and values observed in the synthetic training dataset, with the 20% error

line denoted on the plots by a red dashed line; and 2) a scatter plot compar-

ing predicted vs. simulated values for the modeled variable, with a red solid

line denoting an ideal 1:1 relationship between the two and a red dashed line

indicating the 20% error threshold.

Model coefficient estimates and their statistical significance levels are re-

ported in Appendix A, Tables A1 - A4. We also demonstrate in Appendix B

that the use of the full synthetic database for model training and assessment

does not present overfitting issues, as model performance under the k-fold cross

validation method described in section 2.5 is generally comparable to or some-

what better than that reported in the following sections, under the use of the

full synthetic database for training and assessment.

3.1. Electricity demand models

3.1.1. Non-thermally-driven demand during DR event period

Figure 2 shows the performance of the surrogate model of the non-thermally-

driven change in electricity demand under DR for the prototypical offices. The

error distribution plots in Figures 2a–d show that 88% and 83% of the predic-

tions fall within the 20% error threshold for the new and old medium offices,

respectively, while 90% and 97% of predictions fall within this error threshold

for the new and old large offices, respectively. R2 values are similarly high at

generally above 0.88 across models, while MADP values are at between 12–16%

for medium offices and 3–8% for large offices, respectively. The scatter plots

in (e–h) indicate that most of the predicted data points fall within 20% of the

ground truth values from the synthetic database, though a slight tendency to

over-predict changes in demand is observed in the medium office results. De-

mand shed intensities predicted for lighting and plug load strategies in the older

vintage office buildings are generally higher than that of the new office buildings

– a reflection of the lower efficiency of baseline lighting and electronic equipment

in the older building vintages that is apparent across all building types examined

in this analysis.
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Figure 2: Histogram of the absolute relative error (a–d) and scatter plot of the predicted

versus simulated values (e–h) in the model of non-thermally-driven changes in demand during

the DR event window, for new medium office (a, e), old medium office (b, f), new large office

(e, g), and old large office (d, h).

Figure 3: Histogram of the absolute relative error (a, c) and scatter plot of the predicted versus

simulated values (b, d) in the model of non-thermally-driven changes in demand during the

DR event window, for new all-electric large office (a, b), and old all-electric large office (c, d).
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Figure 3 shows the same information as Figure 2 for new and old vintages of

the all-electric large office, respectively. The error distribution plots in Figures

3a and c show that 89% and 91% of the predictions fall within the 20% error

threshold for the new and old all-electric offices, respectively. R2 values are

generally above 0.91 for the models in both vintages, while MADP values are

at between 6–9%. The scatter plots in (b) and (d) indicate that as for the pro-

totypical large office, most of the predicted data points for the all-electric large

office fall within 20% of the ground truth values from the synthetic database,

though the distribution of points around the 1:1 reference line is wider in the

all-electric case.

Figure 4 shows the same information as Figures 2-3 for the retail building

types. Here again, predictive performance is high – 94% and 97% of the pre-

dictions fall under the 20% error threshold for new and old standalone retail,

respectively, while 95% of predictions fall under the threshold for big box retail.

R2 values are consistently above 0.98 across models, while MADP values are

comparably low to the office context at 4–6%. As in Figures 2-3, the scatter

plots in Figure 4d–f indicate that almost all predicted data points fall within

20% of the ground truth values from the synthetic database. As for offices, the

demand shed intensities predicted for lighting and plug load strategies in the

older vintage standalone retail buildings are generally higher than that of the

new standalone retail buildings.

3.1.2. Thermally-driven demand during DR event period

Surrogate models of thermally-driven changes in building demand under DR

demonstrate comparable predictive capability to the non-thermally driven de-

mand models, across building types. Per the error distribution plots in Figures

5a–d, more than 90% of the predictions fall under the 20% error threshold for

prototypical medium offices and large offices across vintages. Across models, R2

values are above 0.97, while MADP values are between 7–8%. The scatter plots

in Figures 5e–h further indicate good agreement between predicted values and

those observed in the underlying synthetic data. Models of thermally-driven
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Figure 4: Histogram of the absolute relative error (a–c) and scatter plot of the predicted

versus simulated values (d–f) in the model of non-thermally-driven changes in demand during

the DR event window, for new standalone retail (a, d), old standalone retail (b, e), and 2004

vintage big box retail (c, f).

demand in the older large office vintage demonstrate a superior predictive per-

formance to the other model types – likely reflecting the poorer envelope char-

acteristics of this particular building type, which leads to a stronger relationship

between outdoor air temperature, cooling set points, and cooling loads that fa-

vors higher predictive performance for the surrogate model of change in demand

under DR. The poorer envelope and HVAC equipment performance character-

istics of the older vintage models yield a larger range of demand shed intensities

than the newer vintage models, mirroring the trend seen in the models of non-

thermally-driven changes in building demand under DR.

Figure 6 shows the same information as Figure 5 for new and old vintages of
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Figure 5: Histogram of the absolute relative error (a–d) and scatter plot of the predicted

versus simulated values (e–h) in the model of thermally-driven changes in demand during the

DR event window, for new medium office (a, e), old medium office (b, f), new large office (e,

g), and old large office (d, h).

the all-electric large office, respectively. The error distribution plots in Figures

6a and c show that 92% of the predictions fall within the 20% error threshold

for both vintages, while R2 values are also high at above 0.97 and MADP values

are low at between 6–7%. Accordingly, scatter plots for the all-electric office

in Figure 6b and 6d indicate that most of the predicted data points fall within

20% of the ground truth values from the synthetic database.

In retail buildings, a strong relationship is observed in the synthetic data

between outdoor air temperature, cooling set points, and cooling loads, which

yields even higher performance for the thermally-driven demand model than is

achieved in the office building contexts. As shown in Figure 7, in the retail

context more than 94% of the thermally-driven demand model’s predictions

fall within the 20% error threshold; R2 values are consistently above 0.98, and
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Figure 6: Histogram of the absolute relative error (a, c) and scatter plot of the predicted

versus simulated values (b, d) in the model of thermally-driven changes in demand during the

DR event window, for new all-electric large office (a, b), and old all-electric large office (c d).

MADP values are between 4–6%; data points in the scatter plots of Figures 7d–f

are consistently well within the 20% error threshold.

3.1.3. Thermally-driven demand during pre-cooling period

Figures 8-10, which summarize the performance of models of the effects of

pre-cooling on demand in prototypical and all-electric offices, and prototypi-

cal retail buildings, respectively, demonstrate somewhat lower but acceptable

predictive performance than is observed for the models of changes in demand

during the DR event period in Figures 2-7. Under pre-cooling, the range of

simulated changes in demand observed in the scatter plots of Figures 8-10e–h

is notably narrower than the range of simulated changes in demand during the

DR event window, reflecting greater consistency in the need for cooling energy

to maintain the lower pre-cooling set point temperature. Nevertheless, across

building types, more than 85% of predictions are within 20% of the ground truth

data for the prototypical offices; 91% of the predictions are within 20% of the

ground truth data for all-electric large offices; while more than 83% of predic-

tions are within 20% of the ground truth data for retail buildings. R2 values are

consistently above 0.88 for offices and above 0.82 for retail buildings, and scatter

plots demonstrate good correspondence between predicted demand values and

those observed in the synthetic database. MADP values range between 7–15%
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Figure 7: Histogram of the absolute relative error (a–c) and scatter plot of the predicted

versus simulated values (d–f) in the model of thermally-driven changes in demand during the

DR event window, for new standalone retail (a, d), old standalone retail (b, e), and 2004

vintage big box retail (c, f).

across building types and models, with the largest errors observed for the big

box retail building type. In this case, a wider range of occupancy fractions ob-

served during the pre-cooling period – from 0.1-0.7 during the 8 hours preceding

the DR period, compared to 0.3-0.6 for the office buildings – likely challenges

the model’s ability to capture hour-to-hour changes in the additional cooling

demand that is needed to meet the pre-cooling set point, pushing up the model

error.

3.2. Indoor temperature models

The final set of surrogate models predicts changes in indoor temperature

under DR, given the expected need for building operators to trade off predicted
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Figure 8: Histogram of the absolute relative error (a–d) and scatter plot of the predicted versus

simulated values (e–h) in the model of changes in demand during the pre-cooling period, for

new medium office (a, e), old medium office (b, f), new large office (e, g), and old large office

(d, h).

Figure 9: Histogram of the absolute relative error (a, c) and scatter plot of the predicted versus

simulated values (b, d) in the model of changes in demand during the pre-cooling period, for

new all-electric large office (a, b), and old all-electric large office (c, d).

changes in demand and associated economic benefits against the risk of building
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Figure 10: Histogram of the absolute relative error (a–c) and scatter plot of the predicted

versus simulated values (d–f) in the model of changes in demand during the pre-cooling period,

for new standalone retail (a, d), old standalone retail (b, e), and 2004 vintage big box retail

(c, f).

service losses. Here, model performance is highest across the all-electric large

office (in Figure 12) and retail types (in Figure 13), and lower but still acceptable

for the medium office and standard large office building types (in Figure 11).

For all-electric large offices and retail, more than 95% of predictions fall

within the 20% error threshold; R2 values are consistently above 0.93; and

MADP values range from 3–6%. For prototypical medium and large offices,

more than 81% of predictions fall within the 20% error threshold across building

types and vintages; R2 values are generally above 0.76; and MADP values range

from 12–17%.

Examining the scatter plots in Figures 11-13, a notably fuller range of tem-
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Figure 11: Histogram of the absolute relative error (a–d) and scatter plot of the predicted

versus simulated values (e–h) in the model of changes in indoor temperature during the DR

event window, for new medium office (a, e), old medium office (b, f), new large office (e, g),

and old large office (d, h).

Figure 12: Histogram of the absolute relative error (a, c) and scatter plot of the predicted

versus simulated values (b, d) in the model of changes in indoor temperature during the DR

event window, for new all-electric large office (a, b), and old all-electric large office (c, d).
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Figure 13: Histogram of the absolute relative error (a–c) and scatter plot of the predicted

versus simulated values (d–f) in the model of changes in indoor temperature during the DR

event window, for new standalone retail (a, d), old standalone retail (b, e), and 2004 vintage

big box retail (c, f).

peratures is observed for the prototypical medium and large office building types

(Figures 11e–h) than the all-electric (Figures 12b and 12d) and retail building

types (Figures 13d–f), where more stratification in the temperature values is ev-

ident. This stratification in values reflects the tendency for indoor temperatures

to quickly reach heightened cooling set points under DR in the all-electric office

and retail contexts. In the all-electric office case, this tendency is attributable to

the DOAS with zone-level ventilation control chosen for that model. This sys-

tem provides more efficient introduction of outdoor air to zones, as opposed to

the prototypical large office model with central chiller systems where ventilation

needs are met with a global minimum outdoor air flow rate and a constant sup-
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ply air temperature of 55°F; this leads to over-cooling under the higher cooling

set points of the GTA strategy that prevents the indoor temperature from reach-

ing the new set point. In the retail case, the performance of the prototypical

building envelopes is generally inferior to that of the office prototypes, causing

the indoor temperature to be more sensitive to warm outdoor conditions under

a higher set point, and aforementioned changes to humidstat settings in the big

box retail model prevent the over-cooling that is observed for the prototypical

offices.

3.3. Bayesian model assessment

All models described in sections 3.1–3.2 were successfully re-estimated in

a Bayesian framework and subjected to a series of posterior predictive checks

(PPCs) as described in section 2.7. Figures 14a–b and 14d–e demonstrate exam-

ple PPC results for the model of thermally-driven changes in demand during the

DR event window in the two prototypical large office vintages. Figures 14a and

14d show that the distribution of mean demand reductions under the Bayesian

modeling is well-centered on the observed mean demand reduction in underlying

synthetic training data; Figures 14b and 14e further demonstrate that the full

Bayesian posterior predictive distribution of demand reductions closely follows

the distribution of demand reductions in the training data. Indeed, such pos-

terior checks on the posterior distribution of all model outputs (including those

not shown in Figure 14) reveal no systematic discrepancies between simulated

and observed data.

Figures 14c and 14f compare the Bayesian posterior distribution of the

set point change parameter coefficient in the thermally-driven demand model

against the point estimate for this parameter generated via frequentist inference;

these plots also demonstrate the potential to update model parameter distribu-

tions given new evidence. In both of the prototypical large office vintages, the

initial set point parameter distributions –– which reflect the full influence of the

training data, given the use of uninformative prior distributions in their esti-
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(a) (b) (c)

(d) (e) (f)

Figure 14: Example of Bayesian estimation and assessment of thermally-driven demand change

model for newer (a–c) and older (d–f) prototypical large office vintages. (a, d, b, e) Posterior

predictive checks against observed mean demand change and the distribution of observed

demand change, including histogram (a, d) and kernel density estimation (b, e) of demand

reduction output as observed in the underlying synthetic dataset and predicted by the Bayesian

models. (c, f) Distribution of set point change model parameter estimate given full training

datasets for the two large office vintages (“Initial Bayesian estimate”) and after 5 successive

updates with training data from 10 events in the all-electric large office analogues, climate

zone 2A (hot-humid); the initial parameter estimate distributions are benchmarked against

parameter point estimates generated via frequentist inference methods.

mation5 –– is well-centered on the frequentist estimate of approximately -0.12.

5As mentioned, we use Normal prior distributions on all model parameters (µ = 0, σ = 10),

and a Half Normal prior error distribution (σ = 20).
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To demonstrate the parameter updating process, these initial distributions are

used as priors for a subsequent round of parameter inference that introduces

new evidence –– in this case, a subset of the synthetic training data from the

all-electric large office analogue for the same vintages, restricted to a hot-humid

climate (2A). Each round of new evidence spans 10 DR events, and we carry out

five successive parameter updating rounds. Across both vintages, Figures 14c

and 14f show that the introduction of the new evidence from the all-electric large

office setting shifts the initial set point parameter distribution in the positive

direction, somewhat more strongly in the older than the newer vintage model,

and that the variance of the parameter distribution is reduced with each up-

date, implying greater certainty about the parameter estimate as more evidence

is introduced.

4. Discussion

4.1. Implications of findings on model performance

Model assessment results generally show strong predictive performance for

the developed surrogate models, which yield MADP values of less than 17% and

R2 values above 0.76 across the various model types and DR contexts explored;

higher R2 values above 0.95 and MADP values below 9% are observed for the

models of thermally-driven changes in building demand under DR. This level

of predictive accuracy compares favorably with the most directly comparable

previous study of DR potential from Yin et al. [25], which reports 90% of pre-

dictions falling within a 20% prediction error for a surrogate regression model

that is fit to simulation data aggregated across the medium and large office pro-

totypes and a GTA strategy only. The high performance and wide scope of the

investigated models underscores their practical usefulness in guiding decision-

making regarding load flexibility strategies for office and retail contexts under

a wide variety of conditions.

Moreover, reformulating the models in a Bayesian framework supports up-

dating of parameter coefficients given new input data from real buildings, where
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non-prototypical equipment scheduling and occupant behavior and/or faulty op-

erations may lead to different input and output relationships than are initially

expected by our models. The Bayesian implementation also facilitates the char-

acterization of uncertainties in predictions for building operators, which is nec-

essary to directly assess the risk of flexible load adjustments disrupting normal

building operations.

4.2. Limitations and related work

While our findings on the potential performance of surrogate models for DR

are encouraging, we note the following limitations with our approach:

• our models are trained against simulated, rather than metered data; while

this approach allows examination of a wide range of flexibility strategies,

settings, and building contexts, further validation of model performance

against real-world case studies is needed to bolster the practical utility of

our models,

• we investigate a limited set of load flexibility strategies and contexts, fo-

cusing on strategies that adjust control schedules rather than more funda-

mental modifications of equipment settings, examining set point adjust-

ments in in summer only; future DR programs may also target commercial

building participation in winter DR, particularly given high electrification

that shifts regional grids towards winter peaks in grid system loads,

• our models are limited to producing decision-making insights at the hourly

temporal resolution, in line with the resolution that outcomes are assessed

under for many traditional DR programs and in wholesale energy markets;

the models do not provide insights regarding faster DR services such as

frequency regulation or load modulation, for which sub-hourly predictions

are required,

• we do not extend our modeling to other building services such as control

of humidity, illuminance, and CO2, which are not as readily measured
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or modeled by the physics-based simulations that underpin our synthetic

database of load flexibility impacts, and

• while we predict the likely magnitude of impacts from load flexibility

strategies on demand and indoor temperature, we do not assign opera-

tor valuations of these impacts; in practice, operators may weigh changes

to demand (and associated economic benefits) more heavily than changes

to temperature, or vice versa.

Parallel efforts to investigate commercial building operator and occupant

load adjustment preferences have aimed to address the latter of these limi-

tations. Specifically, discrete choice experiments were conducted to elicit the

weightings that decision-makers use in trading off the potential benefits and

drawbacks of possible responses to DR event calls – for example, the trade off

between a certain level of economic benefit and a certain magnitude of temper-

ature, lighting, or plug load reduction. Results have been integrated into an

openly available decision tool, FlexAssist [62], that layers the weightings from

the choice experiments on top of the predictions of the likely change in building

demand and temperature from the surrogate models developed in this paper

to enable a comprehensive assessment of the risks of implementing candidate

load flexibility strategies in commercial office and retail settings. The Bayesian

surrogate models developed in this paper are also separately available for use in

the PyMC3 framework via the previously referenced GitHub repository.6

5. Conclusion

In this study, we used a surrogate modeling approach to predict changes in

office and retail building electricity demand and indoor temperature under can-

didate strategies for flexible building operations under demand response (DR),

including adjustments to HVAC, lighting, and plug load schedules. The surro-

gate models were fit to a large synthetic database generated via whole build-

6https://github.com/jtlangevin/flex-bldgs/tree/master/model_stored
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ing simulations of the strategies under a variety of conditions; models were

translated to a Bayesian framework to allow straightforward communication of

uncertainty and parameter updating given new evidence. The surrogate mod-

els showed strong predictive performance, yielding overall prediction errors of

less than 17% and R2 values above 0.76. Surrogate models of thermally-driven

changes in building demand under the various strategies display particularly

high accuracy, yielding error values less than 9% and R2 values above 0.95 across

multiple building types and vintages. The strong predictive performance of the

models underscores the potential for surrogate modeling approaches to support

decision-making about commercial customer DR participation, by generating

reliable predictions about possible changes in building demand and services un-

der candidate DR strategies with an approach that is both computationally

tractable and adaptable to a wide variety of building settings.
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Appendix A. Model coefficient estimates

Tables A1 — A4 summarize the model coefficient values derived using fre-

quentist inference (see section 2.5) for the full range of models covered in this pa-

per — models of non-thermally-driven demand, thermally-driven demand (dur-

ing DR event period), thermally-driven demand (during a pre-cooling period),

and indoor temperature, respectively. The tables report mean model coefficient

estimates and the statistical significance of these estimates, demonstrating that

most input variables included in the models are highly significant across the

wide range of building types and vintages covered in the study.

Appendix B. Assessment of model performance using k-fold cross

validation

Table B1 summarizes the results of the analysis of the sensitivity of model

performance results to choice of model training and testing data, which is con-

ducted using the k-fold cross validation method (k=10) described in Methods

section 2.7. In general, model assessment results under each of the 10 train-

ing/testing data subsets are comparable to or better than those reported with

the use of the full synthetic dataset for training and testing in Results sections

3.1.1 to 3.2, suggesting the models estimated using the full dataset do not suffer

from overfitting.
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Table A1: Model coefficient values for the non-thermally-driven demand model (during DR

event period) across all building types and vintages
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Table A2: Model coefficient values for the thermally-driven demand model (during DR event

period) across all building types and vintages
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Table A3: Model coefficient values for the thermally-driven demand model (during pre-cooling

period) across all building types and vintages
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Table A4: Model coefficient values for the indoor temperature model across all building types

and vintages
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Table B1: Summary of R2 and MADP values for models estimated using the full synthetic

database for training and assessment vs. estimated using k-fold cross validation (k=10), for

all model types, building types and vintages
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