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Test of Causal Nonlinear Quantum Mechanics by Ramsey Interferometry with a
Trapped Ion

Joseph Broz, Bingran You, Sumanta Khan, and Hartmut Häffner
Department of Physics, University of California, Berkeley, California 94720, USA and

Challenge Institute for Quantum Computation, University of California, Berkeley, CA 94720

David E. Kaplan and Surjeet Rajendran
Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218, USA

(Dated: September 4, 2024)

Quantum mechanics requires the time evolution of the wavefunction to be linear. While this
feature has been associated with the preservation of causality, a consistent causal nonlinear theory
was recently developed. Interestingly, this theory is unavoidably sensitive to the full physical spread
of the wavefunction, rendering existing experimental tests for nonlinearities inapplicable. Here, using
well-controlled motional superpositions of a trapped ion, we set a stringent limit of 5.4 × 10−12 on
the magnitude of the unitless scaling factor ε̃γ for the predicted causal nonlinear perturbation.

Introduction.–Quantum Mechanics (QM) is central to
our understanding of nature. Its principles are used to
predict phenomena ranging from the microscopic world
of atoms and nuclei, the mesoscopic world of solids and
materials, and the macroscopic behavior of the cosmos.
Given its central importance to all branches of physics,
it is important to test its foundations. One of the key
foundations of QM is that the time evolution of a quan-
tum system is described by a linear equation of motion.
This axiom underpins a number of important results in
QM [1] including the no-cloning theorem [2].

Given that linearity is an approximation in every other
known physical theory, why should linearity be an abso-
lute requirement of QM? There have been many theoret-
ical suggestions [3–6] for incorporating nonlinear evolu-
tion in single particle QM. But QM needs to be able to
describe multiple particles that can exist together in an
arbitrarily complicated entangled state. Naive general-
izations of [3–6] to such states generally lead to violations
of causality (i.e. instantaneous communication of infor-
mation) [7–9], contributing to a widespread belief that
linearity is necessary for causality [10]. However, as first
pointed out by Polchinski [9], causal nonlinear quantum
mechanical (NLQM) evolution of multi-particle states is
possible if the nonlinear terms in the Schrödinger equa-
tion are restricted to a specific form.
Recently, Kaplan and Rajendran [11], building on ear-

lier work by Kibble [12], have developed a systematic ap-
proach for incorporating causal nonlinear evolution into
quantum field theory (QFT). The introduction of nonlin-
earities directly into QFT as opposed to the single par-
ticle Schrödinger equation is motivated by the fact that
QFT is the natural framework to describe the causal evo-
lution of multi-particle states. This is a general frame-
work and it permits the incorporation of nonlinearities
in any interaction such as electromagnetism and gravi-
tation. While [11] was concerned with robustly incor-
porating nonlinearities, this framework could potentially
be extended to gravitational collapse models (GCM). In

a GCM, gravitational interactions are believed to cause
a state to collapse when it evolves to a macroscopic su-
perposition. Such a process is state dependent and thus
nonlinear. The general framework of [11] to causally in-
corporate nonlinear evolution into any interaction could
thus potentially be applied to GCMs. Excitingly, it was
shown in [11] that the nonlinear structure demanded by
[9] for multi-particle states was a natural consequence of
QFT. Importantly, [11] and [9] recognized that unlike lin-
ear QM where the physical spread of the wave-function
is irrelevant for QM observables such as energy levels
of quantum systems, any causal NLQM theory is highly
susceptible to the physical spread of the wave-function.
This aspect of NLQM was not appreciated in prior ex-
perimental work [13–18] and thus the bounds on causal
NLQM theories imposed by these experiments are quite
weak [11]. In light of the existence of possible causal
NLQM theories and the weak nature of these bounds, it
is important to robustly experimentally test parameter-
ized nonlinear deviations from QM. These tests are par-
ticularly important since deviations away from linear QM
may open new doors to solving long standing problems
in physics such as the black hole information problem
while potentially enabling a variety of new technological
possibilities [11].
The basic approach of [11] is to start with a given QFT

and introduce nonlinearities by shifting bosonic field op-
erators by a small amount proportional to the expecta-
tion value of the field operator acting on the full quantum
state. When applied to single particle systems, the pro-
cedure yields a nonlinear Schrödinger equation. For ex-
ample, the time evolution of a single particle with charge
q and Hamiltonian H is described in this theory by:

i�∂tΨ(t,x) =

(
H + ε̃γ

q2

4πε0

∫
d4x1|Ψ(t1,x1)|2Gr(t,x; t1,x1)

)

×Ψ(t,x) (1)

where ε̃γ is a small unitless parameter scaling the non-
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linearity of the theory [19] and Gr is the relativistic re-
tarded Green’s function from the spacetime coordinates
(t1,x1) to (t,x) . Gr naturally appears in this expression
from the underlying QFT derivation and enforces causal-
ity. The new term added to the Hamiltonian in Eq. (1)
admits the simple interpretation of a classical Coulomb
potential causally sourced by the quantum probability
distribution of the particle’s position.

One might expect that strong bounds set from previ-
ous searches for NLQM [13–18] would limit this theory.
But this expectation turns out to be false for the follow-
ing fundamental reason. The tests performed by [13–18]
are on energy levels of various bound states. In linear
QM, the level structure is independent of the center of
mass spread of the bound state wave-function. This is
not true in causal NLQM where nonlinear effects alter
time evolution via the position space wavefunction as in
Eq. (1). These effects are highly suppressed if the center
of mass wave-function is spread out.

To illustrate this point, it is helpful to take the non-
relativistic limit of Eq. (1). When ||H||/� � c/|x1 − x|
the nonlinear Schrödinger equation becomes:

i�∂tΨ(t,x) =

(
H + ε̃γ

q2

4πε0

∫
d3x1

|Ψ(t,x1)|2
|x1 − x|

)
Ψ(t,x)

(2)
Here one can see that denominator of the integrand scales
with the full position-space spread of the wave function,
damping the perturbation accordingly. This is a simple
consequence of the Coulomb potential that sources the
nonlinearity, but the implication is that any sensitive test
based on standard atomic or nuclear spectroscopy must
also pin down the test system’s center of mass motion
to a dimension comparable to the spread of the internal
degrees of freedom. This condition was not well-satisfied
in previous tests for NLQM [13–18], but by requiring the
nonlinear correction to be smaller than the uncertainty
in recent Lamb shift measurements of hydrogen, Kaplan
and Rajendran have set a modest bound of |ε̃γ | � 10−4,
giving a sense for the limitations of atomic spectroscopy
[11].

For a more precise test, one might perform Ramsey
spectroscopy [20] on a superposition of the Fock states
|n〉 of a harmonic vibrational mode of a trapped ion [11].
The state |ψ(t=0)〉 = αn|n〉 + αm|m〉 can be prepared
and then allowed to freely evolve for an interrogation
time τ . The Coulomb field sourced by the position-space
expectation value of |ψ〉 interacts differently with the two
branches of the wave function leading to an energy shift
and thus the accumulation of a measurable phase differ-
ence between them [21]. The advantage of this method is
that a superposition can be created where 1) the physical
spread of the center-of-mass wave function is well local-
ized with respect to the size of the wave function and 2)
there is still very little overlap between the position space

distributions of the two branches. The first point ensures
that nonlinear perturbation is not small and the second
point ensures that the effect it has on the two branches
of the wave function is dissimilar – maximizing the phase
difference.
These conditions are satisfied when n=0 and m=1, i.e.

the initial state is a superposition of the ground and
first excited state. If one replaces H in Eq. (2) with
the Hamiltonian for a three-dimensional, isostropic har-
monic oscillator [22] and assumes that the vibrational
modes in the two transverse directions remain in their
ground state, the phase difference accumulated between
the ground and first excited state of the superposition
after a time τ is given by:

φNL(τ ; {αi}) = ε̃γ
10α2

0 + α2
1

30
√
2π�

e2

4πε0x0
τ (3)

where the αi are assumed to be real and x0 =
√

�/mν
is the characteristic length scale of a harmonic oscilla-
tor with mass m and natural frequency ν. Note that
the state-dependence of φNL, i.e. its dependence on the
weight of the energy eigenstates via αi, is a character-
istic nonlinear effect, which has no analog in the linear
theory. For an ion localized to x0 = 10nm, a phase of up
to order 1010 × ε̃γ is accumulated for every millisecond
of interrogation time. In this Letter we perform such
a Ramsey experiment designed to maximize the signal
φNL and thus tighten the bound on ε̃γ by 8 orders of
magnitude relative to the current best estimate.
Experimental implementation.– Experiments were per-

formed using a single 40Ca+ ion confined inside of a
radio-frequency (RF) Paul trap in a parameter regime
where the center of mass motion is well modelled as a
3-dimensional anisotropic harmonic oscillator (Fig. 1a)
with vibrational frequencies νx ≈ 2π × 1.01 MHz, νy ≈
2π × 2.52 MHz and νz ≈ 2π × 2.79 MHz.
The ion’s internal state is manipulated by shining res-

onant laser light on various electronic transitions (Fig.
1b). The short-lived 42S1/2 ↔ 42P1/2 and 32D5/2 ↔
42P3/2 dipole transitions are used for entropy-altering op-
erations like cooling and measurement. Measurement, in
particular, is performed via the electron shelving method
on 42S1/2 ↔ 42P1/2 and allows us to determine the pop-
ulation of the 42S1/2 manifold [23]. For coherent op-
erations, narrowband light at 729 nm is used to couple
the |42S1/2,mJ=−1/2〉 and |32D5/2,mJ=−1/2〉 states,
whose degeneracy is broken with a static magnetic field of
B ≈ 4G. We call this our qubit transition and reference
it as |S〉 ↔ |D〉.
To prepare the ion in a well-defined state, we first

cool its temperature to several hundred microkelvin using
Doppler cooling and then optically pump its electronic
state into |S〉. Afterwards, resolved sideband cooling is
applied along the x-direction, driving the axial vibra-
tional mode into its ground state with high probability
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FIG. 1. Experimental implementation. (a) A 40Ca+ ion is trapped using a combination of RF and DC electric fields.
In a time-averaged sense, the confinement is well modeled by a 3-dimensional harmonic potential. (b) Motion along the
x-direction is excited by resonantly coupling to the internal electronic Zeeman sublevels of the 42S1/2 ↔ 32D5/2 transition
using narrow band light near 729 nm. The degeneracy of the Zeeman states is broken through application of a strong magnetic
field of ≈4G. Measurement is performed by scattering photons of the short-lived 42S1/2 ↔ 42P1/2, which are then focused
onto an EMCCD camera. (c) The experimental pulse sequence. Pulses that address the qubit are colored gray and those
that address the blue sideband, blue. After preparing the state |S, 0〉, the first pair of pulses is used to generate the state
|ψ(t = 0)〉 = |D〉(α0|0〉 + α1|1〉). This is then allowed to freely evolve for a time τ , accumulating a relative phase of Φ(τ),
which is sensitive to the proposed causal nonlinear perturbation. Afterwards, the information is mapped onto the qubit with
a blue sideband pulse and then the expectation value of the Pauli spin operator cos(ξL)σx + sin(ξL)σy is measured. (d) An
illustration of the two-step process for generating the state |ψ(t = 0)〉, as described in more detail in the main text. The key
feature is the fact that the state |D, 0〉 is transparent to the resonant blue sideband drive as illustrated in (e). This allows us
to map an arbitrary qubit state onto the ground and first excited state of the vibrational mode.

[24]. Once this process is complete, the ion is measured to
be in the state |S, nx = 0〉 with a confidence greater than
99%, where nx refers to the phonon number of the vibra-
tional mode along the x-direction. The two transverse
vibrational modes are left in thermal states with mean
phonon occupations determined by the Doppler-limit of
〈ny,z〉 ≈ 3). These modes remain separated from the
|S, nx〉 state and so we ignore them in what follows ex-
cept for taking into account the additional spread of the
wave function in position space to determine the nonlin-
earity in Eqs. 2 and 3.

In order to create the desired superposition state, we
use laser light resonant with the a motional sideband of
the qubit transition. From the ion’s perspective, a laser
pointing along one of its vibrational axes will appear to
be phase modulated by motion along that direction. By
detuning the laser from the qubit frequency by an amount
equal to +νx, this effect can be used to couple the states
|S, n〉 ↔ |D,n+ 1〉, which we refer to as blue sideband
transitions (Fig. 1e) [25]. The energy of the blue side-
band transitions is already sensitive to the nonlinear per-
turbation and, in principle, can be used for our Ramsey
experiment. But the electronic states are first-order sen-
sitive to ambient magnetic field fluctuations leading to a
coherence time an order of magnitude less than that of
the vibrational mode – unnecessarily limiting the Ramsey
interrogation time.

So, instead we first map the desired Ramsey superpo-
sition onto the ion’s internal states by resonantly driv-
ing the qubit transition for a fixed duration, generating
the state (α1|S〉 + α0|D〉)|0〉, in an appropriate rotating
frame. Here α0 = sin(θ/2), α1 = cos(θ/2) and the value

of θ is controlled by adjusting the intensity of the ad-
dressing laser. Next, we drive a blue sideband π-pulse
that nominally transfers all of the population from |S, 0〉
to |D, 1〉 but leaves the population in |D, 0〉 untouched
(Fig. 1d-e). Together, these operatons result in the sep-
arated state |ψ(t = 0)〉 = |D〉(α0|0〉+ α1|1〉), where the
qubit state information has been written onto the vibra-
tional mode [21].
Once the state |ψ〉 has been prepared, it is allowed to

evolve freely for a time τ so that a relative phase Φ(τ ; θ) is
accumulated and |ψ(τ)〉 = |D〉(α0|0〉+ eiΦ(τ,θ)α1|1〉). To
extract this phase, we repeat the steps used to generate
|ψ(0)〉 in a time-reversed order (with the value of θ now
fixed at π/2 where the signal is maximized) and then
measure |D〉, which will be occupied with a probability
of:

P (τ) = B − A(τ)

2
cos[Φ(τ ; θ) + ξL] (4)

here 0 ≤ A(τ) ≤ 1 is the signal contrast which will gen-
erally be less than one when θ 	= π/2, B ≈ 1/2 is an
offset whose precise value is sensitive to errors in state
preparation/ measurement and ξL is the laser phase of
the final qubit π/2-pulse relative to the initial θ-pulse.
Since P (τ) is an expectation value, a single estimate is
obtained by repeating the experiment 200 times, which
is large enough that the propagation of the quantum pro-
jection noise (QPN) converges when inverting Eq. (4).
The full pulse sequence is illustrated in Fig. 1c.
In order to gauge the performance of the Ramsey ex-

periment, we conduct a test experiment where we apply a
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FIG. 2. Experimental Performance. (a)Measured P (τ),
as described by Eq. (4) (red). The black dashed line is the
predicted decay envelope taking into account only heating of
the vibrational mode at a rate of 10 quanta/s. The reason-
able agreement between the predicted and measured decay
suggests that the Ramsey signal contrast is dominated by this
heating process. (b) The black circles represent the sample
standard deviation from repeated measurements of ΔφNL(τ)
taken at various interrogation times and normalized to an in-
tegration time of 1 s. The blue shaded region bounds the sim-
ulated predictions assuming only QPN and a heating rate be-
tween 7 and 13 quanta/s (lower and upper edge of the region,
respectively). The dark blue line corresponds to 10 quanta/s.

detuning Δ from resonance of several kHz to the first blue
sideband pulse. In the rotating frame, this breaks the de-
generacy of |0〉 and |1〉 leading to a phase of Φ(τ) = Δτ
and, thus, sinusoidal oscillations of P (τ). The result is
plotted in Fig. 2a, where one can see that the signal con-
trast A(τ) exhibits a clear time-dependence due to zero-
mean noise effects beyond the simple model described in
Eq. (4).
The dominant source of this noise is found to be a

Markovian heating of the vibrational mode caused by
ambient electric field fluctuations at the position of the
ion and, perhaps, high frequency noise on the trapping
potential [26]. This means that during free evolution, the
vibrational mode may spontaneously absorb a phonon
from its environment with a probability that grows lin-
early in time. When n phonons are absorbed, the state
of the system after the final blue sideband pulse will be
|S〉(α0|n〉 + α1|n + 1〉) and the result of the final π/2-
pulse, regardless of Φ, will be a symmetric distribution
of {|S〉, |D〉} – diminishing the averaged signal contrast.
The dashed line in Fig. 2a is a simulated decay envelope
computed assuming only this heating process as charac-
terized by the heating rate ˙̄n ≈ 10 quanta/s, indepen-
dently measured by monitoring the red sideband [25].
The good agreement between the simulated and mea-
sured decay validates our earlier claim that the contrast
is limited by environmental heating.
For a precise determination of the nonlinearity it is

most convenient to estimate Φ(τ) at a fixed τ . But since

A, B and Φ are all empirical quantities, inverting Eq.
(4) requires at least three independent measurements.
We obtain these by repeating the experiment for three
different values of ξL spaced by ninety degrees such that

ξ
(3)
L = ξ

(2)
L + π/2 = ξ

(1)
L + π. The targeted value of ξ

(1)
L

is chosen to minimize the standard deviation of Φ(τ):

|δΦ(τ)| =
√√√√∑

i

(
∂Φ

∂Pi
δPi

)2

(5)

which occurs when Φ(τ) + ξ
(1)
L = π/2. Here Pi is the

population measurement associated with ξ
(i)
L and δPi is

its standard deviation, nominally dominated by QPN.

A single measurement of Φ(τ) contains the nonlinear
signature φNL(τ), as described by Eq. (3), but also
includes information about the detuning Δ of the blue
sideband pulses from resonance and any AC Stark shifts
that occur during state preparation and readout. Ex-
plicitly: Φ(τ ; θ) = φNL(τ ; θ) + Δτ + φSS , where φSS is
the phase imprinted by the Stark shifts. Ideally, the fre-
quency of the blue sideband pulses are calibrated such
that Δ = 0, but slow drifts of the trapping potential on
a time scale that is long relative to the Ramsey inter-
rogation time generally cause this condition to be vio-
lated. Likewise, Stark shifts incurred while driving the
blue sideband cause a phase offset. But importantly,
both Δ and φSS are independent of θ meaning that we
can obtain an unbiased estimate of the nonlinearity by
repeating the measurement for two different values of θ
and taking their difference:

ΔφNL(τ ; {θi}) = Φ(τ ; θ1)− Φ(τ ; θ2)

= φNL(τ ; θ1)− φNL(τ ; θ2) (6)

We choose θ1 and θ2 such that the ground state popu-
lation of |ψ(t = 0)〉 is 0.2 and 0.8, respectively. We also
verify that there is not phase difference due to the Stark
shift for both preparation sequences.

The nonlinear signal ΔφNL grows linearly with inter-
rogation time τ . But this effect must contend with the
contrast decay and QPN, both of which increase the un-
certainty of the signal (Eq. (5)) and both of which favor
shorter, more frequent measurements [27]. The combi-
nation of these effects results in an optimal interroga-
tion time, which we determine experimentally by mea-
suring ΔφNL(τ) at various τ and computing the sam-
ple standard deviation. These results are normalized
to an integration time of 1 s and plotted in Fig. 2b.
The blue shaded region is a corresponding simulation
that assumes only QPN and vibrational heating bounded
by 7 ≤ ˙̄n ≤ 13 quanta/s. Based on this data, we fix
τ = 15ms.
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FIG. 3. Results. (a) (top to bottom) The measured con-
trast, frequency and offset over a full day of data collection.
The blue circles represent data taken at an interrogation time
of 15ms and the red circles were taken at a time of 15ms di-
vided by the golden ratio (≈9.3ms). (b) The distribution of
ε̃γ estimated from the data. The mean value is 5±5.4×10−12.
The black curve is a Gaussian fit to the distribution.

To determine a more rigorous bound on ε̃γ we repeat
the measurement of ΔφNL(τ=15 ms) many times. Be-
fore each φNL measurement, we independently measure
the initial qubit excitation to determine the precise val-
ues of θi which may change slightly over time due to in-
tensity drifts of the addressing light. We also perform a
preliminary 3-point Ramsey measurement with the pop-
ulation of |0〉 set to 0.5 to produce a maximum signal

that we use to optimally bias ξ
(1)
L . Next, we perform

1200 measurements of the Ramsey signal, 200 for each of
the 3 Ramsey points for θ1 and θ2. The ordering of these
experiments is randomized so as to avoid a bias due to
drifts in Φ(τ). From this data we compute ΔφNL, the
average contrast A of the two runs and the average off-
set B. For a single day of data, this is plotted in Fig.
3a. The blue dots show data taken at τ = 15 ms. The
red dots show data taken at 15ms divided by the golden
ratio (1 +

√
5)/2 ≈ 9.27ms, which does not improve the

estimate of the nonlinearity but allows us to rule out
the remote possibility that ΔφNL(τ=15 ms) modulo 2π
vanishes even though the perturbation is not small.

The distribution of ε̃γ computed from the measured
values of ΔφNL(τ=15 ms) and θi is shown in Fig. 3b.
The black curve is a Gaussian fit. The mean value is
determined to be 5± 5.4× 10−12 where the reported un-
certainty corresponds to 1 standard deviation. The av-
erage uncertainty of the individual measurements com-
puted using standard propagation of error when solving
the system of equations Eqs. (5), (6) and assuming only
QPN is found to be 7.7× 10−11, which is in good agree-
ment with the sample standard deviation 8.2× 10−11.

In summary, we have improved the bound of poten-
tial nonlinearities of a causal extension to QM from
|ε̃γ | � 10−4 to |ε̃γ | � 5.4× 10−12. Further improvements
could be achieved with longer averaging times, longer
coherence times, or sophisticated quantum measurement

protocols such as using squeezed states. Similarly tighter
bounds can also be achieved by localizing the test parti-
cle better, for instance, by increasing the mass m or the
confinement ν.

During the preparation of this manuscript, we became
aware of related work [28].
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