
University of California

Los Angeles

Multiple Imputation of High-dimensional Mixed

Incomplete Data

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Biostatistics

by

Ren He

2012



c© Copyright by

Ren He

2012
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It is common in applied research to have large numbers of variables with mixed data types

(continuous, binary, ordinal or nomial) measures on a modest number of cases. Also, even

a simple imputation model can be overparameterized when the number of variables is mod-

erately large. Finding a joint model to accommodate multivariate data with mixed data

types is challenging. Here we develop two joint multiple imputation models. One is us-

ing multivariate normal components for continuous variables and latent-normal components

for categorical variables. Following the strategy of Boscardin and Weiss (2003) and using

Parameter-expanded Metropolis-Hastings estimation (Boscardin,Zhang and Belin 2008), we

use a hierarchical prior for the covariance matrix centered around a parametric family. The

second one is using a factor analysis model to impute missing items. It is an extension of

Song and Belin (2004).

The report is organized as follows: Chapter 1 gives a brief introduction of the research

problem. Chapter 2 lists the review of the background knowledge related to our two new

approaches. We introduce two existing methods of handling high-dimensional continuous

incomplete data in Chapter 3 and another two methods of handling mixed incomplete data

in Chapter 4. Our newly developed methods are outlined in Chapter 5. In Chapter 6,

simulations under various conditions are carried out to compare the results based on our

approaches with the results from the rounding method (Bernaards et al. 2007) as well as

ii



available-case analysis. In Chapter 7, our two approaches are applied to the California Health

Interview Survey (CHIS) 2009 data set. Several possible extensions and further directions

of our methods are discussed in Chapter 8.
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CHAPTER 1

Introduction

In research on populations that have a shared characteristic which makes them interesting to

study, such as that they have a particular illness or gene, it is standard practice to collect as

much information on them as possible to address wide-ranging questions of scientific interest.

By the term ”high-dimensional data”, we are thinking broadly of settings where traditional

models allowing each variable to be correlated with each other variable would have too

many parameters to estimate with precision. Beyond involving technical challenges, it can be

cumbersome to organize analysis of such data sets one outcome variable at a time. When the

number of variables is large relative to the number of cases, even a small number of missing

items on each variable can result in a large number of incomplete cases. For example, with

20 variables on 100 cases, if 10 percent of the values on each variable are randomly missing,

we would expect only about 100× 0.920 ≈ 12 cases with complete records.

When applying multiple imputation to incomplete data sets, it is recommended to include

available information to the fullest extent possible because systematic differences between

completely and partially observed cases may be reduced by incorporating important covariate

information (Rubin 1996). However, when the sample size is modest, even a simple model

can be overparameterized when the number of variables is moderately large. For example,

for 50 variables, 50 × 49/2 = 1225 correlation parameters would need to be estimated in a

multivariate normal model with a general covariance matrix. Moreover, sometimes several

variables are closely related to one another, which can cause problems with model stability.

Even if it is not overparameterized, a model for a large number of variables may include

inestimable or unstable parameters due to the close relationships among variables, mak-

ing the analysis impossible. Without additional structure to the model, treating data as
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multivariate normal with a general covariance structure might give rise to a need to delete

variables to avoid inestimable or unstable parameters or to engage in tedious and time con-

suming model checking. Moreover, data from applied research often include many correlated

variables, but it is not always reasonable to analyze data after deleting closely related vari-

ables. In this case, we need to use proper priors to make all parameters estimable. The

estimates of those parameters will then depend on the prior specification.

Beyond the challenges of modeling continuous data, one can expect to have different types

of variables in applied settings, including continuous, binary, ordinal and nominal variables.

The idea of developing methods for a joint model to accommodate multivariate data of mixed

types presents considerable challenges but would be valuable to applied researchers. The goal

of this dissertation is to develop joint modeling strategies that will accommodate realistic

data structures involving large numbers of mixed types of variables and modest numbers of

cases with general patterns of incomplete data.

The report is organized as follows: Chapter 2 gives a review of the background knowledge

related to our two new approaches. We introduce two existing methods of handling high-

dimensional continuous incomplete data in Chapter 3 and another two methods for handling

mixed incomplete data in Chapter 4. However, the four methods listed in Chapter 3 and 4

are not quite applicable for high-dimensional mixed incomplete data. Our newly developed

methods are outlined in Chapter 5. In Chapter 6, simulations under various conditions

are carried out to compare the results based on our approaches with the results from the

rounding method (Bernaards et al. 2007) as well as available-case analysis. In Chapter 7,

our two approaches are applied to the California Health Interview Survey (CHIS) 2009 data

set. Several possible extensions and further research directions of our methods are discussed

in Chapter 8.
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CHAPTER 2

Background review

2.1 Modeling assumptions for incomplete multivariate data

We represent a multivariate data set as a matrix Y with n rows and p columns, where n

denotes the number of observations and p denotes the number of variables. The variables

can be either continuous or categorical, with the latter including the possibility of binary,

ordinal or nominal variables. It is assumed that observations are independently, identically

distributed (iid) random draws from a joint multivariate distribution, with the n rows being

exchangeable. Missing data can occur anywhere in the data set.

Analysis of incomplete data relies, whether explicitly or implicity, on underlying modeling

assumptions. To help characterize important distinctions in the types of models that might

be considered, Rubin (1976) classified missing data mechanisms as follows. When missing

items do not depend upon both observed values of Y , denoted by Yobs, and the missing values

of Y , denoted by Ymis, we say the missingness is missing completely at random (MCAR).

Assume that R is a n× p missing indicator matrix, where Rij = 1 means the value in the ith

row and jth column is observed, and Rij = 0 if that value is missing. If P (R|Yobs, Ymis, φ) =

P (R|φ), where φ refers to the parameters of the missing data mechanism, then the missing

mechanism is MCAR. If P (R|Yobs, Ymis, φ) = P (R|Yobs, φ), then the mechanism is called

missing at random (MAR). Conceptually, MAR allows missing values to depend on observed

quantities, but after controlling for observed quantities there is no residual dependence on

the underlying missing value.

When the missing data mechanism is either MCAR or MAR and the data Y and the

missing data indicators R depend on distinct parameters θ and φ respectively, then likelihood-

3



based inferences about parameters of the data do not depend on the missing data mechanism,

and we say the missingness is “ignorable”.(Rubin 1976, Little and Rubin 2002). Although

the assumption that the missing data mechanism is not always reasonable, it is hard to

develop general-purpose missing-data models for nonignorable data, and many methods for

nonignorable missingness build on approaches for ignorable missingness. The work presented

here will focus on models for settings where the missing data mechanism can be assumed to

be ignorable.

2.2 Multiple imputation

Multiple imputation (Rubin 1987) is a technique for imputing m ≥ 2 plausible values for

each missing item. The m plausible values are chosen to reflect the sampling variability

of the missing items. Therefore, multiple imputation remains valid in settings where the

missing data are MAR and imputations are“proper” in that they accurately represent the

distribution of plausible values of unobserved values (Rubin 1987).

Multiple imputation results in m complete data sets. Simulation studies have shown

that values of m between m = 2 and m = 10 give rise to satisfactory coverage when the

percentage of missing information is not too large. The standard complete data analysis

can be applied to each imputed data set, and the results of the analysis from each imputed

data set can be combined to obtain an overall inference (Rubin 1987). Moreover, since the

approach involves generating complete data sets, many different analysis can be applied to

these data sets.

We denote a complete-data quantity of interest as Q. Building on theory that calls for

obtaining draws from the posterior predictive distribution of missing values given observed

values, one can multiply impute missing items and get m imputed data sets. The standard

complete data analysis for each of m imputed data sets results in the parameter estimates,

Q̂(1), ..., Q̂(m) where Q̂(i) = Q̂(Yobs, Y
(i)
mis), for i = 1, ...,m, and their corresponding variance
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estimates U (1), ..., U (m). Then, the multiple imputation point estimate for Q is:

Q̄ =
1

m

m∑
i=1

Q̂(i) (2.1)

and the variance estimate for Q̄ is:

T = Ū + (1 +
1

m
)B (2.2)

where Ū = 1
m

m∑
i=1

U (i), reflecting the average “within-imputation” component of variance,

and B = 1
m−1

m∑
i=1

(Q̂(i) − Q̄)2, reflecting the “between-imputation” component of variance.

The factor (1 + 1
m

) is a correction for performing a finite rather than an infinite number of

imputations. The term

r = (1 +
1

m
)
B

Ū
(2.3)

is called the relative increase in variance due to nonresponse, and

λ̂ =
(r + 2)/(v + 3)

r + 1
, where v = (m− 1)[1 +

Ū

(1 + 1/m)B
]2 (2.4)

is an estimate of the fraction of missing information about Q. When Q is a scalar, inference

about Q can be based on the approximation

T−1/2(Q− Q̄) ∼ tv (2.5)

and a 100(1−α)% confidence interval for Q is Q̄±tv,1−α/2

√
T . Inference for multidimensional

Q involves matrix generalizations of these formulas (Rubin 1987). Rubin (1987) also shows

that the efficiency based on m imputations is approximately (1 + λ
m

)−1, where λ is the

fraction of missing information for the quantity being estimated. Unless the rate of missing

information is very high, there is little advantage to producing and analyzing more than a

few imputed data sets.

When it comes to producing multiple imputations, one can consider alternative ap-
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proaches which can be grouped under the following three general strategies:

(1) Joint modeling strategy: Develop a joint model for multivariate data and base draws for

missing values on implied conditional distributions, often by using a Markov chain Monte

Carlo (MCMC) procedure (e.g: Gibbs sampler, data augmentation, Metropolis-Hastings) to

draw imputations conditional on drawn parameter values (Robert and Casella 2004). Such

an approach is able to draw MCMC sequences which converge in distribution to draws from

the desired posterior distribution. This strategy can impute values for multiple missing

variables at one time, which saves computation time, especially for high-dimensional data.

(2) Sequential regression strategy (e.g: ICE/MICE: Van Buuren et al 1999; IVEWare:

Raghunathan et al 2001): Motivated by analogy with MCMC methods, this idea involves

specifying a set of overlapping conditional distributions, even though the collection of con-

ditional distributions might not correspond to a well-defined joint model. As such, this

method embraces an approximation at the modeling stage for the sake of flexibility and sim-

plicity. It avoids specifying the covariance structure among variables and can handle mixed

type incomplete data. Successful applications of the idea serve as motivating examples since

MCMC theory does not apply directly.

(3) Implicit-model strategy (eg: hot-deck imputation (Rubin 1987)): This strategy involves

borrowing imputed values from values observed on other cases within the same cell of a

contingency table (“hot-deck cells”), which might be based on agreement among key observed

characteristics (e.g: borrowing income from individuals in the same geographic area who have

the same gender and education level) or based on close agreement among predicted values

in a regression (e.g: predict income from multiple covariates, define hot-deck cells based on

predicted values from the model, and borrow a value from a case with an observed income

whose predicted income placed it in the same hot-deck cell (Schenker and Taylor, 1996)).

Like sequential regression imputation, building up an implicit-model approach for an entire

multivariate data set tends to proceed one variable at a time. Siddique and Belin (2008)

describe a distance-based donor selection approach with an approximate Bayesian Bootstrap

(ABB) where donors are selected with probability inversely proportional to their distance

from the donee. A SAS macro called MIDAS is available for multiple imputation using

6



distance-aided selection of donors by Siddique and Harel (2009). This strategy guarantees

the imputed values are reasonable since the imputations are from those observed real values.

The above three strategies all have their own criticisms. For the joint modeling strategy,

it is not always easy to find a joint model for a mixture of continuous, categorical, semi-

continuous and Poisson count variables. For the sequential regression strategy, the order

of imputed variables (e.g: Which variable is imputed first?) sometimes affect the output

Also there is no good theory to support this method. For hot-deck methods, sometimes

it is impossible to impute some missing values. For example, the weight of a patient may

be missing because his weight is above the upper-limit of the scale. However, the imputed

value using hot-deck method is always below the upper-limit. Thus the imputed value is

not realistic. Generally speaking, which multiple imputation strategy to use always depends

upon the data set itself and the reason of missingness.

2.3 Data augmentation

Tanner and Wong (1987) proposed the data augmentation approach to estimate parameters

when joint distribution of the data is not analytically tractable and is hard to simulate. As-

sume z = (x, y), and it is difficult to sample (x,y) from the joint distribution p(z). Sampling

from the conditional distributions p(x|y) and h(y|x), however may be relatively simple. Let

(x
(t)
1 , ..., x

(t)
m , y

(t)
1 , ..., y

(t)
m ) be a random sample with size m at the tth iteration. Then the

(t+1)th step is made up of two steps:

(1). First draw x
(t+1)
i , i = 1, ...,m from p(x|y(t)

i ).

(2). Define h̄(y|x(t+1)) = 1
m

m∑
i=1

h(y|x(t+1)
i ) to be the equally weighted mixture of the h(y|x(t+1)

i ),

and then draw y
(t+1)
i , i = 1, ...,m from h̄. Tanner and Wong (1987) proved that the distrib-

ution of (x
(t)
1 , ..., x

(t)
m , y

(t)
1 , ..., y

(t)
m ) converges to p(z) when t → ∞. Notice that when m = 1,

the data augmentation algorithm reduces to the Gibbs sampler.

To apply the data augmentation algorithm to generate imputations, assume that y =

(ymis, yobs), where ymis and yobs are the missing and observed part of y respectively. If the
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observed-data posterior p(θ|yobs) is hard to simulate, then data augmentation can be used.

In the (t+1)th iteration, first draw y
(t+1)
mis from p(ymis|yobs, θ

(t)), and then draw θ(t+1) from

p(θ|yobs, y
(t+1)
mis ). Then one can repeatedly draw values until the sequence is satisfactorily

close to a stationary distribution (Gelman and Rubin 1992).

2.4 Factor analysis

Factor analysis was first suggested by Galton (1888) and came into wider use when Spearman

(1904) with Pearson applied a single factor idea to intelligence test scores. This simple model

was extended later to include multiple common factors. Bartholomew(1987) motivates factor

analysis by pointing out that our ability to visualize relationships is often limited to two or

three dimensions. Factor analysis has generally been used to explain the relationships among

variables with a small number of factors which contain as much information as possible. In

multivariate studies with large number of variables, even simple models for the data may

contain inestimable or poorly estimated parameters, so that dimension reduction techniques

such as factor analysis have the potential to be very useful.

In the linear factor model, observed values of variables can be expressed as a linear

function of a smaller number of composites, or factors, which explain the inter relationships

among variables, along with a residual, or uniqueness, which reflects characteristics specific

to that variable. The model is as follows:

Y = α + Zβ + ε (2.6)

where Y is an n × p observed data matrix, Z is an n × k unobserved factor-score matrix

where k ≤ p, α is a 1× p mean vector, β is a k × p factor-loading matrix, ε ∼ (0, τ 2), where

τ 2 = diag(τ 2
1 , ..., τ 2

p ), and Z and ε are independent. Usually, a normal distribution for ε is

assumed to simplify the estimation process.

It is worth noting that β cannot be determined uniquely. Actually, it is only uniquely

determined up to an orthogonal transformation. In the linear factor model, the variance of
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Y , V ar(Y ), can be expressed as V ar(Y ) = β′β + τ 2. Assuming that an orthogonal matrix

T exists, then, since TT ′ = I, we have:

V ar(Y ) = β′β + τ 2 = β′TT ′β + τ 2 = (T ′β)′(T ′β) + τ 2 (2.7)

That is, β∗ = T ′β implies the same variance-covariance structure. Therefore, many rotation

methods have been developed for the better interpretation of the factor loadings; for example,

varimax rotation favors factor loadings near 0 or 1 in absolute value over intermediate values.

Another difficulty comes from the uniqueness terms, τ 2. By definition, τ 2 should be

positive, but some methods may yield zero or negative estimates of τ 2 in some cases. In these

so-called Heywood cases, the parameter estimates are on the boundary when τ 2 becomes zero.

Several methods have been suggested for dealing with this problem. First, one can use a

Bayesian approach with a prior distribution for τ 2 (Martin and McDonald 1975). Second,

one may stop the iterate process for estimating parameters when any element of τ 2 becomes

zero. Third, one can add some small positive number to τ 2, so it becomes positive.

There are controversies about the appropriate sample size needed for factor analysis. In

earlier years, it was thought the number of observations should be related to the number of

variables, and very large numbers of observations were recommended. However, Aleamoni

(1976) argued that the underlying number of factors rather than the number of variables

should primarily determine the number of observations needed. Still, large numbers of

observations help stabilize estimates of the parameters in factor analysis.

Sometimes it is necessary to find the maximum likelihood estimator (MLE) of the factor

loadings. Rubin and Thayer (1982) discuss how the EM algorithm can be used to perform

maximum likelihood factor analysis by viewing factor scores as missing data. However, since

missing data is a common problem in many data sets, Rubin and Thayer’s method needed to

be extended to the case where there are missing observations, as well as factors. Jamshidian

(1997) introduced EM algorithm for maximum likelihood factor analysis with missing data.

Song and Belin (2008) use Jamshidian’s method to find the appropriate number of factors

for a factor model with incomplete data.
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2.5 Multivariate probit model

We now review the multivariate probit model as described in Chib and Greenberg (1998).

This modeling technique allows modeling of longitudinal or clustered binary data, ordinal

data, which may be useful to multiple impute incomplete binary or ordinal variables.

Suppose we have n subjects measured at each of p occasions or each of p attributes. Let

Y1, ..., Yn be multivariate binary outcome variables with Yi = (Yi1, ..., Yip)
T for i = 1, ..., N

and Xij = (Xij1, ..., Xijt)
T is a t × 1 vector of observed covariates for each subject i and

each measurement occasion j = 1, ..., p. We assume the following model structure. Each

Yij is distributed Bernoulli with probability of success πij which is assumed to follow a

probit model, i.e. πij = Φ(XT
ijβ), where Φ(.) is the cumulative standard normal distribution

function and β is a t× 1 vector of unknown regression parameters.

Let Xi = (Xi1, ..., Xip)
T be the design matrix for the i-th subject. We introduce n latent

variables Z1, ..., Zn, where the Zi = (Zi1, ..., Zip)
T are independent Np(Xiβ, R), and R is

sometimes called the tetrachoric or polychoric correlation of the Yi (Drasgow, 1986). By

defining Yij = 1 if Zij > 0 and Yij = 0 otherwise, it can be easily shown that, marginally,

the Yij are Bernoulli random variables with πij = P (Yij = 1) = Φ(XT
ijβ).

When Y1, ..., Yn are multivariate ordinal variables, the element Yij takes values on the

discrete set 0, 1, ..., Jj − 1, we can still use the above set-up except define Yij = l if and only

if the latent variable Zij is in the range (γj,l−1, γj,l] where γj,l are the set of cut-points, for

j = 1, ..., p and l = 0, ..., Jj − 1. Usually, we set γj,0 = −∞,γj,Jj−1 = +∞ and γj,1 = 0 for

identifiability of the cut-points. Thus we extend the multivariate probit model to ordinal

variable case.

Multivariate probit model is difficult to fit because of constraints of covariance matrix

(covariance matrix has to be a correlation matrix). It is hard to put a reasonable and

convenient prior distribution on correlation matrix. Moreover, in general the full conditional

distribution of correlation matrix is not directly available. Zhang, Boscardin and Belin (2004)

proposed a parameter-extended Metropolis-Hastings algorithm (PX-MH) for sampling R in

Bayesian models with correlated latent variables. The idea in their method is that instead
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of a marginal prior for R, they specified a joint prior for R and D (unidentified marginal

variances) derived from some inverse Wishart distribution of Σ = DRD in model estimation.

Then sampling (R;D) jointly was accomplished through a Metropolis Hastings algorithm

by first drawing Σ from a pre-specified Wishart distribution with degrees of freedom being

the sample size and the scale matrix being the current value of Σ. Using this method, all

components of R are drawn at one time. The details of the PX-MH algorithm will be given

in Section 5.1.

2.6 Multivariate multinomial probit model

The multinomial probit (MNP) model provides a framework for representing association

between levels of a multinomial outcome. Letting i = 1, ..., n index subjects and g = 1, ..., G

index levels of a multinomial outcome having G levels. When subject i has outcome g, we

define yig = 1, otherwise define yig = 0, thus yi = (yi1, ..., yiG), i = 1, ..., n, becomes a

multinomial 1 × G vector. Then we define d = (d1, ..., dn), let di = g, if yig = 1. ui =

(ui1, ..., uiG) is corresponding latent vector. Due to two identification problems (additive

redundance and multiplicative redundance (Zhang et al 2008)), we define the MNP model

as follows:

zi = Xiβ + εi (2.8)

where εi ∼ N(0, Σ) independently, we restrict the first diagonal element of Σ, σ11, to be

equal to 1. zij = uij − uiG. The model can be described as:

di =

 0 if max(1≤l≤G−1)zil < 0

g if max(1≤l≤G−1)zil = zig > 0

We can extend the MNP model to multivariate nominal measures in straightforward

fashion. Assume we have p nominal measures for each subject i,the first measure has G1

levels, the second has G2 levels, and so on up to the last, which has Gp levels. Assume
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each of the p nominal measures follows a MNP model, and define di = (di1, ..., dip) to be the

values of those p measures of the i-th subject. Then we can define the MVMNP model for

the p measures as follows:

zi = Xiβ + εi (2.9)

where zT
i = (zi1, ..., zip) with ziq = (ziq1, ..., ziq(Gq−1)), εi ∼ N(0, Σ) with σqq = 1, where

q = 1, G1, (G1 +G2−1), (G1 +G2 +G3−2)..., (G1 +G2 + ...+Gp−1−p+2). We then specify:

di =

 0 if max(1≤l≤Gq−1)ziql < 0

g if max(1≤l≤pq−1)ziql = ziqg > 0
(2.10)

for i = 1, ..., n and q = 1, .., p

Zhang, Boscardin and Belin (2008) describe an MCMC procedure for fitting such a

model, where a key step is drawing a correlation matrix for the latent continuous variables

that reflects association between nominal categorical variables. For example, correlation

among latent continuous variables can induce association between responses to a question

about ethnicity and a question about primary language spoken at home (which is apt to be

disproportionately Spanish among people who report Hispanic ethnicity).

2.7 Modeling technique for the covariance matrix of high-dimensional

longitudinal data

Structured covariance matrices have become extremely popular in recent years for modeling

high-dimensional longitudinal data. This approach is appealing as it offers a substantial

reduction in the dimensionality of the parameter space leading to more precisely estimated

parameters. However, the structured covariance matrices make strong assumptions about the

data variances and correlations. When the number of time points is large, the assumptions

of a parsimonious covariance model will be untenable. Moreover, if the structured covariance

matrix does not fit the data well, this will adversely affect the standard errors of the mean
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function and predictions.

The alternative is to use unstructured covariance matrices. Two major problems exist

with unstructured covariance models: (i) they involve too many parameters and some of them

may be inestimated or poorly estimated, contributing to estimation and prediction variance,

and (ii) it can be impossible to estimate a covariance matrix at all unless observations are

taken at a small set of times specified by design.

Now the question is: Are we able to find a new Bayesian model that can combine the

strengths of structured and unstructured matrices? The framework I plan to pursue in this

dissertation is to make use of an idea described by Boscardin and Weiss (2001), who proposed

a hierarchical prior distribution for covariance matrix Σ that is centered around a parametric

family. This offers a substantial reduction in the dimension of the parameter space, offering

the prospect of more precisely estimated parameters. But it also allows flexibility for the

data to depart from a tightly structured covariance matrix. Briefly, the idea is to choose a

parametric family Ω(θ) that reflects anticipated features of Σ. Basic examples would include

a first-order autoregressive, or AR(1), process, where correlation between observations at

different times goes down geometrically based on the time-lag between them in a manner

governed by a parameter left to be estimated or a compound symmetry model where all

pairs of the observations have the same correlation. After defining the hierarchical prior

distribution, we can carry out an MCMC algorithm, as described in further detail in Section

5.2.

2.8 Summary

After reviewing the related knowledge, we are trying to find a way to multiple impute high-

dimensional mixed incomplete data. The central idea in the present work is to introduce

continuous latent variables linked to binary, ordinal or nominal variables based upon a mul-

tivariate probit model or a multivariate multinomial probit model. Then we can fit a joint

model of continuous variables and continuous latent variables for multiple imputation. Ideas

of making the covariance matrix of the joint multivariate normal model to be centered around

13



a restricted parametric family or using a factor model can be applied for reducing the dimen-

sion of parameter space of high-dimensional missing data. Under the joint modeling strategy,

a Markov Chain Monte Carlo (MCMC) algorithm can be applied to get the parameter esti-

mates and multiple imputation. That is, based on the assumed model structure, the model

parameters and missing items can be drawn randomly from conditional distributions with

other parameters fixed. The details are described in Section 5.2 and Section 5.3.
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CHAPTER 3

Existing multiple imputation approaches for

high-dimensional continuous incomplete data

In practice, it is very common to have strongly related variables in the data sets with

large numbers of variables. In such cases, the sample variance-covariance matrix becomes

singular or almost singular. Thus imputation analysis based on non-informative priors is

often impossible. One alternative is to use an informative prior such as a ridge prior (Schafer

1997). The ridge prior is a limiting case of a joint normal inverted-Wishart prior. Another

alternative is to use a factor model to reduce the dimension of the paramter space (Song and

Belin 2004).

3.1 Ridge prior method

We denote the complete data by Y = (Yobs, Ymis), where Yobs and Ymis are the observed and

missing portion of the data matrix, let yij denote an individual element of Y, i = 1, ..., n,j =

1, ..., p. The i-th row of Y is expressed as a column vector yi = (yi1, ..., yip)
T , we assume:

y1, y2, ..., yn|θ ∼ iidN(µ, Σ) (3.1)

where θ = (µ, Σ) is the unknown parameter. Let us apply the following distribution. Suppose

that, given Σ, µ is assumed to be conditionally multivariate normal,

µ|Σ ∼ N(µ0, τ
−1Σ) (3.2)
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where µ0 ∈ Rp and τ > 0 are fixed and known. Moreover, suppose that Σ is inverted-Wishart,

Σ ∼ W−1(m, Λ) (3.3)

for fixed hyperparameters m ≥ p and Λ > 0.

Suppose that we adopt the limiting form of the normal inverted-Wishart prior as τ → 0

for some m and Λ. The posterior becomes:

µ|Σ, Y ∼ N(ȳ, n−1Σ) (3.4)

Σ|Y ∼ W−1(m + n, [Λ−1 + nS]−1) (3.5)

which is proper provided that m + n ≥ p and Λ−1 + nS > 0. It is called ridge prior by

analogy with ridge regression where the strategy to avoid variance inflation in regression

coefficient estimates is to add a small positive quantity to the sum-of-squares-and-cross-

products matrix, thereby inducing slight bias in the estimated regression coefficients but also

inducing a reduction in the variance of those estimates that can improve overall precision.

Notice that now the covariance matrix Σ has been smoothed toward a matrix proportional

to Λ−1.

The idea of the ridge prior is related to the ridge regression estimator (Hoerl and Kennard

1970). It adds small amount of the variance term to a nearly singular variance-covariance

matrix to facilitate taking the inverse of the variance-covariance matrix.
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3.2 Song and Belin’s factor analysis method

Song and Belin (2004) raised a method to impute incomplete high-dimensional multivariate

normal data using common factor analysis model. Let Yi, i = 1, ..., n, denote the i-th obser-

vation of Y representing an i.i.d random draw from an underlying sampling distribution, let

yij, j = 1, ..., p, denote the j-th variable on the i-th observation of Y. Let Y = (Yobs, Ymis).

The factor model with k underlying factors can be defined as:

Yi = α + Ziβ + εi (3.6)

where α is a 1 × p mean vector, Zi is 1 × k factor score vector,β is a k × p factor loading

matrix, εi ∼ N(0, τ 2), τ 2 = diag(τ 2
1 , ..., τ 2

p ), and Zi and εi are independent.

One can assume an inverse Gamma distribution IG(vj/2, bj/2) as prior distribution for

each τ 2
j ,j = 1, ...p, which is a conjugate prior. We also can assign conjugate priors for αj

and βj, namely:

αj|τ 2
j ∼ N(α0j,

1

nα

τ 2
j ) for j = 1, ..., p (3.7)

βj|τ 2
j ∼ N(β0j,

1

nβ

τ 2
j Ik) for j = 1, ..., p (3.8)

We can carry out the following Gibbs sampler to impute missing values as well as to estimate

parameters:

(1). Yi(mis)|Yi(obs), α, β, τ 2 ∼ N(amis,obs + Yi(obs)bmis,obs, Σmis,obs), i = 1, ..., n Where amis,obs

is a 1 × (p − p1) intercept vector of the regression of Ymis on Yobs when p1 variables are

observed and p − p1 variables are not observed, bmis,obs is the regression coefficients matrix

with dimension p1 × (p− p1), Σmis,obs is the residual matrix.

(2). Zi|Yi(obs), Yi(mis), α, β, τ 2 ∼ N((Yi − α)(ββ′ + τ 2)−1β′, Ik − β(β′β + τ 2)−1β′), i = 1, ..., n

Then, transform α to α∗ = α + Z̄β
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(3). τ 2
j |Yobs, Ymis, Z ∼ IG(

n+vj

2
,

b′j
2
) j = 1, ..., p where the explicit form of b′j is not given here

due to its complexity, but you can find it from Song and Belin (2004).

(4). α∗
j |τ 2

j , Yobs, Ymis, Z ∼ N(
nȳj+nαα∗0j

n+nα
,

τ2
j

n+nα
), j = 1, ..., p

(5). βj|τ 2
j , Yobs, Ymis, Z ∼ N((

n∑
i=1

(Zi−Z̄)′(Zi−Z̄)+nβIk)
−1(

n∑
i=1

(Zi−Z̄)′(Yij−Ȳj)+nββ0j), (
n∑

i=1

(Zi−

Z̄)′(Zi − Z̄) + nβIk)
−1τ 2

j Then transform α∗ to α by α = α∗ − Z̄β

This algorithm is actually an application of data augmentation, and we can apply multiple

imputation after imputing Ymis. The dimension of parameter space is reduced by introducing

the common factor model. The simulation results of Song and Belin (2004) show that this

algorithm tend s to have less bias compared to Schafer’s ridge prior method when we can

find the correct number of factors for the factor model. However, this algorithm only works

for high-dimensional continuous incomplete data. Modification is needed to extend this

algorithm to accommodate mixed incomplete data.
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CHAPTER 4

Existing multiple imputation approaches for

incomplete data with mixed data types

4.1 General location model

Little and Schluchter (1985) used a general location model to analyze mixed missing data.

Assume there are p1 continuous variables (X) and p2 categorical variables (Y). The j-th cat-

egorical variable has Ij levels. Thus we can define the categorical variables as a contingency

table with C =
p2∑

j=1

Ij cells. For subject i, let xi be the 1× p1 vector of continuous variables

and yi be the 1× p2 vector of categorical variables. Also from yi we define 1× C vector wi,

which equals Dc if subject i falls into cell c. Dc is a 1 × C vector with 1 as the c-th entry

and 0 elsewhere. The general location model (Olkin and Tate 1961) is as follows:

P (wi = Dc) = πc, c = 1, ..., C,
∑

πc = 1 (4.1)

xi|wi = Dc ∼ NK(µc, Ω) (4.2)

the unknown parameters are (π1, ..., πC , µc, Ω). Once we have the model, Little used an

EM algorithm to calculate the estimators for those unknown parameters. See Little and

Schluchter (1985) for details. In practice, the covariance matrix of the continuous variables is

usually assumed to be constant across cells. However, this assumption is not always realistic

in real-life applications. Also, the general location model does not perform well when there

are sparse cells in the contingency table of the categorical data. If some cells are sparse or

even empty, the corresponding parameters are poorly estimated or even inestimated.
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4.2 Sequential regression method

To analyze mixed missing data, Raghunathan et al (2001) raised an approach named sequen-

tial regression multiple imputation (SRMI). Assume we have k variables Y = (Y1, ..., Yk) with

missing values, ordered by the amount of missing values, from least to most. Let X be the

matrix containing all the variables without missing values. Both X and Y can include con-

tinuous,binary, ordinal or mixed variables. The imputation steps are as follows:

(1). Regress the most observed variable Y1 on X, imputing the missing values under the

appropriate regression model, then regress Y2 on X and Y1,...., regress Yk on Y1, ...Yk−1 and

X, then we have a complete data set (X,Y).

(2). Then regress Y1 on X and Y2, ..., Yk, update the imputed missing values by this regression

model, regress Y2 on X and Y1, Y3, ..., Yk and so on. Repeat the steps until stable imputed

values occur.

This method avoids joint modeling strategy and it does not require specifying the co-

variance structure. Also it’s easy to carry out since this method is already embedded in

several statistical softwares such as Stata and R. However, all above approaches are either

complicated or not applicable when we encounter high-dimensional situation.
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4.3 Boscardin, Zhang and Belin’s method

Boscardin, Zhang and Belin (2006) develop a modeling technique for data that are a mixture

of ordinal and continuous components. They also plug the missing data imputation step in

their MCMC algorithm so their model can also be used to impute missing values of mixed

continuous and ordinal variables. Their idea is:

1. Treat the ordinal data in the multivariate probit model framework, assuming there is

an underlying normal latent variable for each ordinal variable.

2. Use a multivariate normal distribution for latent continuous variables (corresponding

to the ordinal measures) and the continuous variables.

3. Assign prior distributions to sample parameters, randomly draw sample parameters

from their full conditional distributions (conditional on other parameters, observed

values and missing values). Since there are constraints for the variance-covariance

matrix of multivariate probit model (the part of the covariance matrix corresponding to

ordinal variables has to be a correlation matrix), the Parameter-extended Metropolis-

Hastings (PX-MH) algorithm is used to generate the variance-covariance matrix.

4. Randomly draw the missing values from its full conditional distribution (conditional

on all the model parameters and observed values)

5. Repeat step 3 and step 4 until convergence is obtained.

This approach does not work well when the dimension of the data set is large. Some of the

parameters may be inestimable or poorly estimated. Modification of this approach is given

in Section 5.2.
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CHAPTER 5

Newly Proposed Methods of Imputation of

High-dimensional Mixed Incomplete Data

In this section, we propose two new methods for handling a high-dimensional data set with

both continuous and categorical variables. We build the first method on the Parameter-

extended Metropolis-Hastings algorithm outlined by Zhang et al (2006) and adapt it to

settings with multiple types of variables. The second method is based upon a factor analysis

model adapted with a mixture of continuous and binary variables.

5.1 Parameter-extended Metropolis-Hastings (PX-MH) algorithm

As discussed earlier, the multivariate probit model is a useful tool to analyze binary or

ordinal data. The covariance matrix of the multivariate probit model is in fact a correlation

matrix. However, there are not many well-known families of density functions for correlation

matrices, which motivated Zhang et al (2006) developed a flexible solution for placing a

prior density on the correlation matrix using a separation strategy. If R is the corresponding

correlation matrix, we define W = D
1
2 RD

1
2 , where W is a positive definite covariance matrix,

and D
1
2 means a diagonal matrix of the standard deviations. That is:

W =


w11 ...w1p

... ......

wp1 ...wpp

 (5.1)
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R =


1 r12 ... r1p

r21 1 ... r2p

... ... ... ...

rp1 rp2 ... 1

 (5.2)

D =


w11 0 ... 0

0 w22 ... 0

... ... ... ...

0 0 ... wpp

 (5.3)

where wij =
√

wii
√

wjjrij, for i 6= j. Thus we expand the parameter space with a new

parameter D. The Jacobian transformation of (W → R,D) is equal to:

(

p∏
i=1

wii)
p−1
2 (5.4)

We can assume a prior distribution p(W) for W, then we have p(R,D) = Jacobian(W →

R,D)× p(W ), assume p(R,D|Y ) is the posterior distribution of (R,D). Sampling (R,D) is

accomplished through a Metropolis-Hastings algorithm by sampling W. Zhang et al(2006)

named it as parameter extended Metropolis-Hastings algorithm (PX-MH). There are two

generic priors for (R,D). If we assume W follows Wishartp(m, Σ), then we say (R,D) have

a PXW prior, if W follows Wishart−1
p (m, Σ), we say (R,D) have a PXIW prior. The steps

of PX-MH algorithm are listed as follows:

(1). set initial value of (R0, D0) through setting W 0 = D01/2
R0D01/2

to an initial covariance

matrix. For i = 1, ...,M :

(2). generate W ∗ = D∗1/2
R∗D∗1/2 ∼ Wishartp(m,W i)., thus we have (R∗, D∗).
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(3).

(Ri+1, Di+1) =

 (R∗, D∗) with probability α

(Ri, Di) otherwise
(5.5)

where α = min(p(R∗,D∗|Y )×q(W i|W ∗)
p(Ri,Di|Y )×q(W ∗|W i)

, 1). q(.|W i), the proposal density, is the product of Ja-

cobian term given in (5.24) and the Wishart density with m degrees of freedom and scale

matrix equal to W i.

5.2 Modeling high-dimensional mixed incomplete data using a

parametric family for the covariance matrix

In this section, we borrow the idea of PX-MH algorithm and modeling covariance matrix

techniques in Section 2.7 to come up with a new algorithm that can handle high-dimensional

mixed incomplete data problems. For the high-dimensional problems we aim to address, we

can assume Σ|ν, θ ∼Inv-Wishart(ν, (νΩ(θ))−1), where ν is the degree of freedom parameter.

The Inverse Wishart distribution is a conjugate family for modeling covariances in a Bayesian

framework. In the setting here, there is only partial conjugacy given the complexities outlined

by Zhang et al (2006) for converting a drawn covariance matrix into a drawn correlation

matrix. Actually, ν can be treated as a tuning parameter for the amount of smoothing

performed. When ν value is large, Σ is constrained to the parametric family Ω(θ), the

deviation will be very small. When ν → ∞, Σ exactly belongs to Ω(θ). When the ν

value is small, then Σ can deviate a lot from the parametric family Ω(θ), when ν is close

to 0, Σ can have an arbitrary structure. However, our data setting here is cross-sectional,

not longitudinal. In this case, commonly used structured matrices, such as autoregressive

structures or compound symmetry structure, may not be appropriate to be used as a centered

parametric family. But compound symmetry (CS) structure is still a reasonable option.

For the purpose of fixing ideas, we assume here a scenario with only continuous and

binary data, although the intention is to expand the idea to incorporate ordinal and nominal
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categorical data using multivariate probit and multivariate multinomial probit modeling tech-

niques. Let T T
i = (vT

i , cT
i ), i = 1, ..., n consists of a continuous proportion vT

i = (vi1, ..., vip1)

with length p1 and a binary portion cT
i = (ci1, ..., cip2) with length p2, p1 + p2 = p. Assume

vi ∼ Np1(X
(1)
i β, Σvv), where X

(1)
i is a p1 × t predictor matrix and β is a t × 1 regression

parameter, Σvv is a p1 × p1 covariance matrix.

We treat the binary variables in the multivariate probit model framework in section 1.4.

Let zi is the corresponding latent vector for ci, zi is a p2× 1 vector. zi follows a multivariate

normal distribution Np2(X
(2)
i β, Rzz), where X

(2)
i is a p2 × t predictor matrix for the linear

model, Rzz is a p2× p2 correlation matrix. Note that the use of a correlation matrix Rzz for

the latent normal variables addresses the identifiability problem for the multivariate probit

model but presents challenges for an MCMC estimation procedure given the difficulty of

drawing correlation matrices. In the present development, we will assume X
(1)
i and X

(2)
i are

completely observed, relaxing this assumption would involve an extension. Let Λ denote the

covariance matrix of the yT
i = (vT

i , zT
i ):

Λ =

 Σvv Σvz

ΣT
vz Rzz

 =

 D
1/2
vv RvvD

1/2
vv D

1/2
vv Rvz

RT
vzD

1/2
vv Rzz


where Rvv is the corresponding correlation matrix for Σzz, and Dvv is the diagonal matrix

of variances of Σvv.

Given the latent variable zi, yT
i = (vT

i , zT
i ) ∼ Np(Xiβ, Λ), where Xi = (X

(1)
i , X

(2)
i ). From

a Bayesian perspective, we need to define the joint prior distribution p(β, Λ) for (β, Λ). For

simplicity, we assume p(β, Λ) = p(β)× p(Λ). Let β ∼ Nk(b0, B), where b0 and B are known

mean and covariance matrix. Let Z = (z1, ..., zn)T ,V = (v1, ..., vn)T ,C = (c1, ..., cn)T , also let

vT
i = (vT

i,obs, v
T
i,mis), vi,obs is the observed part of vi, vi,mis is the missing part of vi. Similarly,

cT
i = (cT

i,obs, c
T
i,mis). Corresponding to ci, I write zT

i = (zT
i,obs, z

T
i,mis) although zi are all not

observed. zi,obs is corresponding to ci,obs, while zi,mis is corresponding to ci,mis. The following

MCMC algorithm can be used to impute missing values and estimate unknown parameters:
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• β|Λ, Z, V, C ∼ N(β̂, Vβ) where

Vβ = ((
n∑

i=1

(XT
i Λ−1Xi)) + B−1)−1 (5.6)

β̂ = Vβ(
n∑

i=1

(XT
i Λ−1yi) + B−1b0) (5.7)

• For the missing continuous variables vi,mis, we have:

vij,mis|β, Λ, zi, vi,obs, vik,mis, k 6= j ∼ N(v̂ij, sij) (5.8)

Where v̂ij and sij are usual conditional mean and variance. To give explicit formulas

for these, recall that yT
i = (vT

i , zT
i ). Without loss of generality, we assume in vi, the first

p1i variables are observed and the rest are missing. Thus vij,mis is the (j′ = p1i + j)th

element of yi. Let Xij′ be the t×1 covariate vector for the ith subject’s j′th continuous

variable. We have:

v̂ij = XT
ij′β + Λj′,−j′Λ

−1
−j′,−j′(yi,−j′ −Xi,−j′β) (5.9)

sij = Λj′,j′ − Λj′,−j′Λ
−1
−j′,−j′Λ−j′,j′ (5.10)

where Λj′,−j′ means the vector of the j′th row of Λ without its j′th column element,

Λ−j′,j′ is the transpose of Λj′,−j′ , Λ−j′,−j′ is the Λ matrix without its j′th row and j′th

column, Xi,−j′ is the matrix Xi without the j′th row, and yi,−j′ is the vector yi without

its j′th element.

• For the latent variable Zi,

zij,obs|β, Λ, vi,mis, vi,obs, zi,mis, zik,obs, j 6= k ∝ Iij ×N(ẑij, tij) (5.11)

where Iij = 1(cij=1)1(zij>0) + 1(cij=0)1(zij≤0), ẑij,tij are conditional mean and variance of
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zij,obs given vi,zi,mis,zik,obs,k 6= j. So this is actually a truncated normal distribution.

zij,mis|β, Λ, vi,mis, vi,obs, zi,obs, zik,mis, j 6= k ∼ N(z̃ij, t̃ij) (5.12)

It is just the normal univariate conditional distribution without truncation. I assume

the length of the vector zi,obs is p2i, then zij,obs is the (j′′ = p1 +j)th element of yi, while

zij,mis is the (j′′′ = p1 + p2i + j)th element of yi. Thus ẑij, tij, z̃ij, t̃ij have the similar

forms of v̂ij, sij in step (2), we only need to change the corresponding subscripts.

•

p(Λ|β, Z, Y, C) ∝ p(Λ)×
n∏

i=1

N(yi|Xiβ, Λ) (5.13)

This is the most difficult part of the algorithm, since Λ is a covariance matrix with the

lower diagonal part to be a correlation matrix. Thus we cannot use either approaches for

sampling an unrestricted covariance matrix nor approaches for sampling a true correlation

matrix. Here we use the generalized parameter-extended Metropolis-Hastings algorithm

(Boscardin et al 2008) to sample Λ.

First we expand Λ to Σ which include a diagonal scale matrix Dzz for zi.

Σ =

 Σvv ΣvzD
1/2
zz

D
1/2
zz ΣT

vz D
1/2
zz RzzD

1/2
zz

 =

 D
1/2
vv RvvD

1/2
vv D

1/2
vv RvzD

1/2
zz

D
1/2
zz RT

vzD
1/2
vv D

1/2
zz RzzD

1/2
zz


Then we can write Σ = D1/2RD1/2, where

D =

 Dvv 0

0 Dzz

 and R =

 Rvv Rvz

RT
vz Rzz


In order to reduce the high dimension of the parameter space, we then place a Wishart

prior distribution on Σ with ν degree of freedom and scale matrix Ω(θ)/ν, so that Σ has

prior mean Ω(θ). For this cross-sectional data setting, usually we use compound symmetry
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(CS) matrix as a possible option for Ω(θ), the diagonal elements of the CS matrix can be

considered as the average variance across the p variables, while the off-diagonal elements can

be considered as the average covariance across the p variables. To gain more flexibility, the

degree of freedom parameter ν should be treated as unknown, although we have concerns

about the estimation procedure if we were to assign ν a noninformative prior. So we plan

to start by using a gamma prior left truncated at p with known hyperparameters αν and

βν . The reason of the truncation at p is to make sure the Wishart prior distribution is

well defined. Now we know the prior distribution for (R,D) is p(R,D) = Jacobian(Σ →

R,D)×Wishartν(Σ|Ω(θ)/ν). The conjugacy that is gained in the covariance matrix situation

from using the inverse-Wishart distribution is unfortunately lost because of this Jacobian

term. We will use the Wishart distribution in what follows for simplicity. Define Ỹ = Y −Xβ,

then we have:

p(R,D, θ, ν|Y ) ∝ (2vp/2Γp(ν/2))−1|R|−n/2exp(−1

2
tr(R−1Ỹ T Ỹ )) (5.14)

(

p∏
j=1

Djj)
(p−1)/2|Ω(θ)/ν|−ν/2|D1/2RD1/2|(ν−p−1)/2 (5.15)

exp(−1

2
tr(D1/2RD1/2(Ω(θ)/ν)−1))p(θ)p(ν) (5.16)

where Γp(ν/2) =
p∏

j=1

Γ((ν + 1− j)/2). However, when the value of p goes large,Γp(ν/2) may

be a huge number which cannot be stored in modern statistical softwares. For example,

Γp(ν/2) = ∞ in Matlab software when p = 100 although the real value is not infinity,

which may cause computational problem. It’s because the real value of Γp(ν/2) is a way big

number which can not be saved by the software. So for large p, I use a Sterling formula to

approximate Γp(ν/2).

We need to add the following steps in the MCMC algorithm by using the PX-MH algo-

rithm described in Section 5.1:

• generate Σ∗ = (D∗)1/2R∗(D∗)1/2 ∼ Wishartν0(Σ
(m)/ν0), we accept (R(m+1), D(m+1)) =
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(R∗, D∗) with probability α, where

α = min(
p(R∗, D∗, ν(m), θ(m)|Ỹ )× q(Σm|Σ∗)

p(Rm, Dm, ν(m), θ(m)|Ỹ )× q(Σ∗|Σm)
, 1). (5.17)

q(Σ∗|Σm) = Jacobian(Σ∗ → R∗, D∗)Wishartν0(Σ
∗|Σm/ν0) is the jumping kernel. Once

we get Σ(m+1), we can have Λ(m+1).

• sample θ from p(θ|Σm+1, νm+1, β, Z, C, V ), this probability may not have analytical

form. We can use a Metropolis-Hastings algorithm here.

• sample ν from p(ν|Σ(m+1), θm+1, β, Z, C, V ) also using a Metropolis-Hastings algorithm.

So now we have an entire MCMC algorithm, repeating the steps until convergence is obtained.

We anticipate that it will be straightforward to extend this algorithm to ordinal cases by

adding the cutoff points and that we can apply this approach to nominal variables as well

using multivariate multinomial probit model.

Now we extend our algorithm to the ordinal variable case. Besides the continuous and

binary variables, assume we also have p2 ordinal variables sT
i = (si1, ..., sip2),i = 1, ..., n. The

element sij takes values on the discrete set 0, 1, ..., Ji − 1, the corresponding latent variables

are ωT
i = (ωi1, ..., ωip2). According to the multivariate probit model, sij = l if and only

if ωij is in the range (γj,l−1, γj,l] where γj,l are the set of cut-points, for j = 1, ..., p2 and

l = 0, ..., Jj − 1. As mentioned in previous chapter, we set γj,0 = −∞, γj,Jj−1 = ∞, γj,1 = 0

for notation simplicity and identifiability. Let’s assume ωi ∼ X
(3)
i β. Given the latent vari-

able zi, ωi, now yT
i = (vT

i , zT
i , ωT

i ) ∼ Np(Xiβ, Λ), where Xnewi = (X
(1)
i , X

(2)
i , X

(3)
i ). Then we

can copy the above MCMC steps while using Xnewi instead of Xi, also we need plug in three

more steps:

(a). generate wi,mis ∼ P (wi,mis|vi, zi, wi,obs, β, Γ), which is a multivariate normal distribution

with regular conditional mean and variance

(b). generate wij,obs ∼ P (wi,obs|vi, zi, wi,obs, β, Γ), which is a multivariate normal distribu-
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tion truncated by interval (γj,k−1, γj,k] if sij = k

(c). generate γj,l from p(γj,l|β, Xi, ωi, zi, Γ, γj,k, k 6= l)

∝ U(γj,l|max{max{ωij : sij = l}, γj,l−1}, min{min{ωij : sij = l + 1}, γj,l+1})
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5.3 Modeling high-dimensional mixed continuous and binary data

using a factor analysis strategy for the covariance matrix

In Section 3.2, I introduced Song and Belin’s factor analysis approach for high-dimensional

continuous data. It is natural to extend this method to high-dimensional mixed type data

situation. However, standard factor analysis models are not designed to accommodate mixed

data. So here normal latent variables are used to accommodate binary or categorical data.

Some constraints are also added to the model to make sure the model is identifiable. For

simplicity, here I only consider the mixture of continuous and binary variables.

Let’s use the settings in the last section. But I extend the assumption that the data set

also includes binary variables. T T
i = (vT

i , cT
i ), i = 1, ..., n include both continuous and binary

variables. zi is the latent vector corresponding to the binary part ci. Let yT
i = (vT

i , zT
i ) with

length p. Assume we have p1 continuous variables and p2 binary variables. Then p = p1 +p2.

We divide vi into two parts. vi = (vi,obs, vi,mis), where vi,obs denotes the observed part of

vi, vi,mis denotes the missing part of vi. Similarly, we can define zi = (zi,obs, zi,mis) and

ci = (ci,obs, ci,mis). The factor model is:

yi = α + φiΛ + εi (5.18)

where α is a 1 × p intercept vector, Λ is a k × p factor loading matrix. φi is a 1 × k factor

score and φi ∼ N(0, I), εi ∼iid N(0, τ), τ = diag(τ 2
1 , ..., τ 2

p ). The diagonal elements of τ

that correspond to binary and ordinal response variables are constrained to be equal to 1 for

identification purpose. That is, τ 2
j = 1,j = p1 + 1, ..., p. Now the question is: How can we

assign proper prior information for the unknown parameters?

For the prior distribution of the j-th diagonal unconstrained element of τ , denoted τ 2
j ,

we assume an inverse gamma distribution IG(νj/2, bj/2),

j = 1, ..., p1. We start with this prior distribution due to its convenience as a conjugate form.
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Meanwhile, conjugate prior distributions can be assigned for αj and βj, namely:

αj|τ 2
j ∼ N(α0j,

1

nα

τ 2
j ) for j = 1, 2, ..., p1 (5.19)

αj|τ 2
j ∼ N(α0j,

1

nα

) for j = p1 + 1, ..., p (5.20)

Λj|τ 2
j ∼ N(Λ0j,

1

nΛ

τ 2
j Ik) for j = 1, 2, ..., p1 (5.21)

Λj|τ 2
j ∼ N(Λ0j,

1

nΛ

Ik) for j = p1 + 1, ..., p (5.22)

where α0j and Λ0j are prior means, nα and nΛ can be viewed as additional prior degrees of

freedom for inference about α and Γ respectively, and Ik is a k × k identity matrix. With

these specifications, we can derive the following MCMC algorithm:

• Simulate the missing values of continuous variables from

vij,mis|vi,obs, zi, α, Λ, φi, τ
2 ∼ N(aj, τ

2
j ), j ∈ zv(i) (5.23)

where zv(i) denotes the missingness position index set for vi,mis. For example, if v22, v25

are missing, then zv(2) = 2, 5. Note that each vij,mis is independent to other v′ij,miss

and zi when conditional on the factor score φi.

• Simulate the latent variables corresponding to the missing part of binary variables from

zij,mis|vi, zi,obs, α, Λ, φi, τ
2 ∼ N(aj, τ

2
j ), j ∈ zz1(i) (5.24)

where zz1(i) denotes the index set for zi,mis.

• Simulate the latent variables corresponding to the observed part of binary variables
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from

zij,obs|vi, zi,mis, ziL,obs, L 6= j, α, Λ, φi, τ
2 ∼ [I(zij,obs>0)I(cij=1)+

I(zij,obs<=0)I(cij=0)]×N(aj, τ
2
j ), j ∈ zz2(i) (5.25)

which are truncated univariate normal distributions. zz2(i) denotes the index set for

zi,obs. z′ij,obss are all independent to each other when conditional on the factor score φi.

• Simulate factor scores from

φi|yi, zi, α, Λ, τ 2 ∼ N((yi − α)(Λ′Λ + τ 2)−1Λ′, Ik − (Λ′Λ + τ 2)−1Λ′) (5.26)

(5.27)

Then, transform α to α∗ = α + φ̄Λ, where φ̄ = 1
n

n∑
i=1

φi. The reason for making this

transformation is to reduce the high autocorrelation between α and other parameters.

• Simulate uniqueness terms from

τ 2
j |yi, zi, φ, α, Λ ∼ IG(

n + νj

2
,
b′j
2

), j = 1, ..., p1 (5.28)

• Simulate mean estimates from

α∗
j |τ 2

j , Yobs, Ymis, Z ∼ N(
nȳj + nαα∗

0j

n + nα

,
τ 2
j

n + nα

), j = 1, ..., p (5.29)

where the the explicit formula for term ’
¯j can be found from Song and Belin (2004), I

won’t give the details here due to its complicated form.

• Simulate the factor loading from

Λj|τ 2
j , Yi, Zi, φi, α ∼ N((

n∑
i=1

(φi − φ̄)′(φi − φ̄) + nβIk)
−1(

n∑
i=1

(φi − φ̄)′(Yij − Ȳj)

+nββ0j),(
n∑

i=1

(φi − φ̄)′(φi − φ̄) + nβIk)
−1τ 2

j ) (5.30)
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Then transform α∗ to α by α = α∗ − Z̄β, and transform z1i,mis, z2i,mis to c1i,mis, c2i,mis using

multivariate logit model.

This algorithm is actually an application of Gibbs sampler. The transformation we made

in step (4) is designed to avoid the slow convergence due to high correlation between α and

Λ (Song and Belin 2004). The convergence of our MCMC algorithm can be monitored by

the time-series plots of all parameters or Gelman-Rubin statistics.

When there are more than one mode of the likelihood, the Gibbs sampler may not

mix values across separate regions of appreciable posterior density. In this case, we can

draw values from multiple chains based on multiple starting values from a over-dispersed

distribution.

It is possible that sometimes the generated uniqueness term in the iteration of Gibbs

sampler is close to zero, resulting in a so-called Heywood case. We can use a proper prior

distribution for τ 2
j to avoid the Heywood case.

The factor model proposed here has much fewer parameters than a multivariate normal

model in high-dimensional setting. In the factor model, we assume the number of factors, k,

is already known in advance. The effect of various choices of k is considered in our simulation

study. Song and Belin (2008) discussed the possible approaches for choosing an appropriate

k value for high-dimensional continuous case. We may extend their idea to mixed data

situation. We can incorporate ordinal and nominal variables each has different levels in our

model using the multivariate logit and multinomial logit model in Chapter 2.5, 2.6.
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CHAPTER 6

Simulation Studies

In this chapter, we carry out two sets of simulation studies to evaluate the validity of the

two proposed approaches. The goal will be to recover parameter values used to generate

the data based on inference from the incomplete data sets where a missingness pattern has

been introduced. In Section 6.1, a simulation study is based on two data sets generated from

a multivariate normal structure with the covariance matrix either to be an unstructured

or a compound symmetry matrix. After choosing missing items from different missing data

mechanisms, we apply our parametric-family method centered around a compound symmetry

matrix to impute missing items. In Section 6.2 , a simulation study is based on data generated

from a simple factor structure. Also after choosing missing items from a MCAR or MAR

missing data mechanism with different missing rates, we apply factor models either with a

correct number of factors or with an incorrect number of factors to impute missing items.

After establishing the validity of the approaches, we plan to compare the proposed meth-

ods developed for a mixed of variable types with potential competitor methods. For example,

the multivariate normal model approach of Schafer (1997) could be applied to binary data,

with imputed values rounded to the nearer of 0 or 1, in line with the approach considered

by Bernaards, Belin and Schafer (2007). Bernaards et al (2007) found that rounding normal

imputations to produce binary imputations tended to work better with underlying propor-

tions close to 0.5 than with underlying proportions close to 0 or 1 to produce close-to normal

coverage. Accordingly, we plan to vary underlying proportions for binary variables in the

simulations, with some assumed to be 0.7 and some assumed to be 0.1, by making the mean

of the latent variables not to be 0.

Five multiply imputed data sets are generated from each of the parametric family model
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and factor model. To reflect the broader concerns with a large number of variables, we

propose to start with p = 50 variables. This is a realistic number to measure in applied

investigations. Specifically, we plan to generate 25 continuous variables and 25 binary vari-

ables. Let y1, ..., y25 be continuous variables and y26, ..., y50 be binary variables. Comparisons

are based on the inferences about the means of y25 and y50, where the underlying values are

known in both cases. In addition to results from both the factor method and the paramet-

ric family model and the rounding method, we also present the results from available-case

analysis. We can compare the standard deviations, the lengths of confidence intervals and

the coverage probabilities.

6.1 Simulation Studies for Parametric Family Approach

In section 5.3, I proposed a new method for handling high-dimensional mixed missing data.

Here I use all the definitions defined there. Because the prior distribution of augmented

covariance matrix Σ is centered around a parametric family Ω(θ), it is natural to consider

how the choice of the parametric family will affect the inference.

Suppose Σ is truly an compound symmetry (CS) covariance matrix. As I discussed in

section 5.3, using an CS hierarchical center for the prior distribution of Σ with large v value

will be well-supported by the data. In contrast, if Σ is truly an unstructured covariance

matrix, then a compound symmetry hierarchical center with small v value may have good

behavior.

I choose the sample size n = 100 or n = 300 which denote moderate and relatively larger

sample size situations respectively. Specifically, we plan to generate 25 continuous variables

and 25 binary variables based on the augmented covariance matrix Σ1, where Σ1 is a 50×50

CS matrix. In the CS covariance structure, let Σ1,ij = σ2ρ1(i6=j) with ρ = 0.1,ρ = 0.5,ρ = 0.8

and σ2 = 3. They represent small correlation, moderate correlation and strong correlation,

respectively. The mean model is Eyij = β0,i = 1, ..., n, j = 1, ..., p. For simplicity, here I

choose β0 = 0. In another setting, we define Σ1 to be a 50 × 50 unstructured covariance

matrix. The algorithm we use to generate such an unstructured Σ1 is as follows:
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(1). generate a 50× 50 matrix A whose elements are random numbers with uniform distri-

bution U(−1000, 1000)

(2).do a singular value decomposition to A, that is A = S ∗V ∗D, where S and D are 50×50

orthogonal matrices, V is a 50× 50 diagonal matrix

(3). generate a 50 × 50 diagonal matrix V ∗ whose diagonal elements V ∗
ii , i = 1, ..., 50 are

random numbers with uniform distribution U(0.1, 1000)

(4). Let B = S ∗V ∗ ∗D, then B is a positive definite matrix with eigenvalues V ∗
ii , i = 1, ..., 50

(5). Let Σ1 = B+B′

2
, this guarantees Σ1 is a symmetric positive definite matrix

I specified the CS hierarchical center prior distributions for Σ. Prior information for the

unknown parameters are given as follows:

β0 ∼ N(0, 1000) (6.1)

p(σ2) ∼ Inv − gamma(1, 1) (6.2)

p(ρ) ∝ 1 (6.3)

v ∼ I(v>100)Γ(1000, 10000) (6.4)

p(β0, σ
2, ρ, v) ∝ p(β0)p(σ2, ρ)p(v) (6.5)

Then we explore two missing data mechanisms. In the first mechanism M1, the first 24

continuous variables y1, y2, ..., y24 and the first 24 categorical variables y26, ..., y49 are missing

25% of the time completely at random, while y25 and y50 are missing according to a logistic
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regression model. Specifically, I assume:

p(y1 = missing) = 0.25

p(y2 = missing) = 0.25

...

p(y24 = missing) = 0.25

logit[p(y25 missing)] = l0 + l1y1 + ... + l24y24 (6.6)

among observed y′is, i = 1, ...24

p(y26 = missing) = 0.25

...

p(y49 = missing) = 0.25

logit[p(y.50 missing)] = r0 + r1y25 + ... + r24y49 (6.7)

among observed y′is, i = 1, ...49

where li, ri,i = 1, ..., 24 are drawn from N(0,1) and then fixed throughout the simulation. l0

and r0 are constants that can be used to adjust the missing rates of y25 and y50. Here we

choose l0 and r0 to assure that the missing rates of y25 and y50 are around 25%. Since the

role of l0 and r0 is to manage total missing percentage while keeping the order of plausibility

of missingness, the following ad-hoc method can be used. Let’s take l for example, If we

know all the values of l′s, we can calculate p(y25 = missing) for each y’s. Therefore, we can

get the mean of p(y25 = missing) = 0.5 by choosing l0 = log( 0.5
1−0.5

) = 0.

However, choosing l0 = log( p(y25=missing)
1−p(y25=missing)

) may not be appropriate for the case that

p(y25 = missing) 6= 0.5. It is because the distribution of y25 = missing is not symmetric

but right-skewed considering p(y25 = missing) < 0.5. So the mean of p(y25 = missing)

tends to be larger than the median of p(y25 = missing). On the other hand, the distribution

of y25 = missing is left-skewed if p(y25 = missing) < 0.5. So the mean of p(y25 = missing)

tends to be smaller than the median of p(y25 = missing). Therefore, we should consider the

gap between the mean and median of p(y25 = missing) to adjust the value of l0. We define

38



the adjusting value ω = Zω.σω, where σω is the standard deviation of l0 + l1y1 + ... + l24y24.

Zω is multiplied by σω to standardize the unit of l0 + l1y1 + ... + l24y24. Then l0 can be

taken from l0 = log( p(y25=missing)
1−p(y25=missing)

) + ω. Please note that we may need to take several

ad-hoc trials to make the adjustment since the real percentage of missing items can vary

randomly across different data sets. However, this adjustment approach is useful because it

can handle any choice of l′s. For the r’s, we can also apply the above approach to choose the

value of r0. Technically, M1 is an Missing At Random (MAR) mechanism. However,since

the correlations between y’s are all positive and the coefficients of the logistic regression

are distributed symmetrically around zero, prediction errors in one direction tended to be

canceled by prediction errors in the other direction, thus the missing data mechanism M1

is actually close to MCAR. We need to consider an ignorable missing data mechanism that

departs more substantially from MCAR. Section 6.1.2 illustrates this fact according to the

simulation output. The second mechanism, M2, is similar to M1 except we use absolute

values of normal random numbers to be the logistic regression coefficients, that is:

p(y1 = missing) = 0.25

p(y2 = missing) = 0.25

...

p(y24 = missing) = 0.25

logit[p(y25 missing)] = l0 + |l1|y1 + ... + |l24|y24 (6.8)

among observed y′is, i = 1, ...24

p(y26 = missing) = 0.25

...

p(y49 = missing) = 0.25

logit[p(y50 missing)] = r0 + |r1|y25 + ... + |r24|y49 (6.9)

among observed y′is, i = 1, ...49

where li, ri,i = 1, ..., 24 are drawn from N(0,0.5) and then fixed throughout the simulation.
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We take the absolute values of l′is and r′is to avoid a canceling effect across variables. As

before, l0 and r0 are constants that can be used to adjust the missing rates of y25 and y50 to

be around 25%. All l′is and r′is are fixed throughout the simulation process.

The following table shows the combinations used in the simulation study.

6.1: Combinations of the simulation

# of # of centered missingness
observations variables var-cov matrix mechanisms

(n) (p) (CS,UN) (M1,M2)
100 50 CS(ρ = 0.1, 0.5, 0.8),UN M1,M2
300 50 CS(ρ = 0.1, 0.5, 0.8),UN M1,M2

According to the above table, we may need to carry out 4× 2× 2 = 16 combinations of

simulation, which will induce high computation burden to our simulation process. Due to

the cost of computation time, we plan to perform only 75 replications, which can be expected

to produce a margin of error of 1.96×
√

0.95×(1−0.95)
75

≈ 4.9% for 95% coverage statistics. For

each of the simulated data sets, 90000 iterations of the Metropolis-Hastings algorithm are

generated with the maximum likelihood estimate as a start point. The first 30000 iterations

is used as the ”burn-in” period. We can use Gelman-Rubin statistic and time-series plot

to monitor the convergence of the MCMC algorithm. To ”thin” the chain, we take every 3

iterations in order to reduce the sample autocorrelations, which leaves us 20001 iterations.

Five imputed data values are taken at iterations 18000,18500,19000,19500 and 20000 of the

Metropolis-Hastings algorithm after earlier exploration revealed the autocorrelation between

the Metropolis-Hastings algorithm draws of lag 500.

Since the percentage of missing items is chosen to be 25% for all variables, the number of

complete cases is very small. When n = 100, around 2/3 of the seventy-five data sets do not

include any complete cases. Even when n = 300, less than half of the seventy-five data sets

have complete cases. So it’s not possible to apply complete-case analysis in the data sets if

we want to include all the variables in the analysis.

Then we can use the inferences about the mean of y25, the proportion of 1’s of y50 to
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check the efficiency of our multiple imputation algorithm. In addition to results from both

our parametric family approach and the rounding method (Bernaards et al 2007), we also

present results from available-case analysis. The result based on complete-case analysis is

not included because of very small sample size. Moreover, it is common that the imputation

model is larger than the analysis model, so available-case analysis can also be considered as

complete-case analysis from the analyst’s viewpoint.

6.1.1 Simulation findings with moderate sample size

Figure 6.1 and 6.2 show the time-series plots of parameters related to y25 and y50 with

n = 300, p = 50, compound symmetry (CS) generating structure with ρ = 0.1 and missing

data mechanism M1. Since we have more than 50 parameters in our parametric family model,

it is burdensome to list the plots of all parameters, but all other parameters display similar

patterns as seen in these plots. Plots from other data generated under different covariance

structure or different missing data mechanisms show similar patterns.

6.1: Time-series plots of parameters related to y25 and y50 with n = 300, p = 50,CS structure
with ρ = 0.1, and missing data mechanism M1
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6.2: Time-series plots of parameters related to y25 and y50 with n = 300, p = 50,CS structure
with ρ = 0.1, and missing data mechanism M1
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Table 6.2 shows results of inference on the mean of y25 and y50 while data are generated

based on an unstructured covariance matrix under missing data mechanisms M1. The first

and second columns represent the Monte Carlo mean and standard error. The Monte Carlo

mean and standard error for both the parametric family approach and rounding approach are

calculated based on multiple imputation inference (Rubin 1987). The third column displays

an actual 95% coverage rate measured by the number of data sets whose 95% confidence

interval covers a true parameter value. For missing data mechanism M1, mean estimates from

the available-case analysis are more biased than those from the two imputation methods,

resulting in lower 95% coverage rates for both mean of y25 and mean of y50. Imputations based
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on the rounding method and our parametric family method centered around a compound

symmetry structure show little bias in mean estimates with good 95% coverage probabilities.

However, the results of our method are slightly better. For the inference on the mean of

y50, the rounding method tends to have larger bias and lower coverage rate than those of

parametric family method.

6.2: The means of y25 and y50 with n=300,p=50, missing data mechanism M1 and data are
generated based on an unstructured covariance matrix

y25 y50

M.C. M. C. Act 95% M. C. M. C. Act 95%
Mean S.E Coverage Mean S.E Coverage

True 0.0000 0.7
All data 0.0079 0.0545 0.93 0.73 0.0556 0.94
Available

Cases 0.0888 0.0587 0.77 0.80 0.0688 0.83
Rounding 0.0108 0.0701 0.92 0.78 0.0685 0.88
Parametric

Family 0.0142 0.0689 0.94 0.74 0.0504 0.94

Table 6.3, 6.4 and 6.5 list the results of inference on the mean of y25 and y50 while

data are generated based on an compound symmetry (CS)covariance matrix with correlation

parameter ρ values to be 0.1,0.5 and 0.8 under missing data mechanism M1. For the inference

of y25, we can find that the available-case approach tends to induce larger bias and lower 95%

coverage rate compared with other two approaches. Our parametric family method performs

a little better than the rounding method although the difference is not big. However, when

it comes to the inference of y50, the binary variable, our parametric family approach results

in much less bias for mean estimates and closer to 95% coverage probability than other

two methods. The Monte Carlo standard deviations of the three approaches are not quite

different.

Table 6.6, 6.7, 6.8 and Table 6.9 list the results of inference on the mean of y25 and y50

under missing data mechanism M2. They have similar trend to those in Table 6.2, 6.3, 6.4

and Table 6.5 but the available-case approach create larger bias and worse 95% coverage
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6.3: The means of y25 and y50 with n=300,p=50, missing data mechanism M1 and data are
generated based on an CS covariance matrix with ρ = 0.1

y25 y50

M.C. M. C. Act 95% M. C. M. C. Act 95%
Mean S.E Coverage Mean S.E Coverage

True 0.0000 0.7
All data 0.0016 0.0554 0.94 0.68 0.0585 0.94
Available

Cases 0.0778 0.0601 0.81 0.56 0.0707 0.74
Rounding 0.0132 0.0652 0.91 0.60 0.0669 0.81
Parametric

Family 0.0093 0.0636 0.94 0.67 0.0684 0.93

6.4: The means of y25 and y50 with n=300,p=50, missing data mechanism M1 and data are
generated based on an CS covariance matrix with ρ = 0.5

y25 y50

M.C. M. C. Act 95% M. C. M. C. Act 95%
Mean S.E Coverage Mean S.E Coverage

True 0.0000 0.7
All data 0.0033 0.0571 0.94 0.71 0.0498 0.93
Available

Cases 0.0864 0.0612 0.79 0.68 0.0716 0.95
Rounding 0.0065 0.0627 0.94 0.62 0.0682 0.88
Parametric

Family 0.0048 0.0584 0.93 0.69 0.0613 0.94
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6.5: The means of y25 and y50 with n=300,p=50, missing data mechanism M1 and data are
generated based on an CS covariance matrix with ρ = 0.8

y25 y50

M.C. M. C. Act 95% M. C. M. C. Act 95%
Mean S.E Coverage Mean S.E Coverage

True 0.0000 0.7
All data 0.0062 0.0664 0.95 0.73 0.0715 0.96
Available

Cases 0.0759 0.0769 0.83 0.56 0.0717 0.85
Rounding 0.0125 0.0652 0.91 0.60 0.0589 0.81
Parametric

Family 0.0094 0.0621 0.94 0.67 0.0784 0.93

probability than those under mechanism M1.

6.6: The means of y25 and y50 with n=300,p=50, missing data mechanism M2 and data are
generated based on an unstructured covariance matrix

y25 y50

M.C. M. C. Act 95% M. C. M. C. Act 95%
Mean S.E Coverage Mean S.E Coverage

True 0.0000 0.7
All data 0.0048 0.0504 0.96 0.69 0.0613 0.94
Available

Cases 0.1697 0.0669 0.70 0.60 0.0672 0.73
Rounding 0.0218 0.0825 0.93 0.62 0.0851 0.83
Parametric

Family 0.0125 0.0797 0.93 0.68 0.0719 0.94

6.1.2 Simulation findings with small sample size

It is often the case that some model parameters can be inestimable or almost inestimable

when the number of observations is small compared to the number of variables. When we

study scenarios with 100 observations and 50 variables, our MCMC algorithm may fail to

converge or converge slowly with non-informative priors. Therefore, we need to apply a more
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6.7: The means of y25 and y50 with n=300,p=50, missing data mechanism M2 and data are
generated based on a CS covariance matrix with ρ = 0.1

y25 y50

M.C. M. C. Act 95% M. C. M. C. Act 95%
Mean S.E Coverage Mean S.E Coverage

True 0.0000 0.7
All data 0.0034 0.0664 0.95 0.73 0.0715 0.96
Available

Cases 0.1844 0.0669 0.71 0.59 0.0738 0.74
Rounding 0.0150 0.0652 0.91 0.63 0.0796 0.87
Parametric

Family 0.0125 0.0721 0.93 0.69 0.0721 0.95

6.8: The means of y25 and y50 with n=300,p=50, missing data mechanism M2 and data are
generated based on a CS covariance matrix with ρ = 0.5

y25 y50

M.C. M. C. Act 95% M. C. M. C. Act 95%
Mean S.E Coverage Mean S.E Coverage

True 0.0000 0.7
All data 0.0010 0.0693 0.95 0.68 0.0642 0.94
Available

Cases 0.1771 0.0979 0.79 0.58 0.0799 0.76
Rounding 0.0085 0.0656 0.92 0.66 0.0772 0.89
Parametric

Family 0.0123 0.0784 0.94 0.66 0.0831 0.92
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6.9: The means of y25 and y50 with n=300,p=50, missing data mechanism M2 and data are
generated based on a CS covariance matrix with ρ = 0.8

y25 y50

M.C. M. C. Act 95% M. C. M. C. Act 95%
Mean S.E Coverage Mean S.E Coverage

True 0.0000 0.7
All data 0.0058 0.0586 0.94 0.72 0.0552 0.94
Available

Cases 0.2565 0.0795 0.65 0.51 0.0753 0.70
Rounding 0.0154 0.0736 0.92 0.59 0.0689 0.83
Parametric

Family 0.0068 0.0725 0.93 0.68 0.0726 0.96

informative prior to the parametric family model. The new priors are chosen as follows:

β0 ∼ N(0, 100) (6.10)

p(σ2) ∼ Inv − gamma(2, 2.5) (6.11)

p(ρ) ∝ 1 (6.12)

v ∼ I(v>100)Γ(50, 50) (6.13)

p(β0, σ
2, ρ, v) ∝ p(β0)p(σ2, ρ)p(v) (6.14)

We also tried several other different informative priors and find the results are similar.

Figure 6.3 and 6.4 show time series plots of parameters related to y25 and y50 with

n = 100, p = 50, compound symmetry (CS) generating structure with ρ = 0.1 and missing

data mechanism M1. All time-series plots show that the parameters all converge after 90000

iterations. Autocorrelation plots also show fast disappearing dependence. Plots from other

simulation settings display similar patterns.
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6.3: Time-series plots of parameters related to y25 and y50 with n = 100, p = 50,CS structure
with ρ = 0.1, and missing data mechanism M1
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Table 6.10, 6.11, 6.12 and Table 6.13 show inference about the means of y25 and y50

with n=100,p=50 and missing data mechanisms M1. The M.C. standard errors are about

more than twice wide as those from data with 300 observations due to smaller sample size.

As for the inference about the mean of y25, even available-case method shows good 95%

coverage probability. However, available-case method gives better 95% coverage probability

than rounding method for the inference about the mean of y50 in some tables. This may be

due to the skewed distribution of the binary variable y50.

The results for available-case analysis suggest that the missing data mechanism M1 ap-

plied to these data sets is “close” to MCAR in the sense that a procedure (available-case
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6.10: The means of y25 and y50 with n=100,p=50, missing data mechanism M1 and data
are generated based on an unstructured covariance matrix

y25 y50

M.C. M. C. Act 95% M. C. M. C. Act 95%
Mean S.E Coverage Mean S.E Coverage

True 0.0000 0.7
All data 0.0146 0.1112 0.96 0.68 0.0682 0.95
Available
Cases -0.0116 0.1385 0.93 0.62 0.0797 0.89
Rounding -0.0095 0.1356 0.92 0.57 0.0813 0.87
Parametric
Family 0.0138 0.1291 0.94 0.71 0.0711 0.96

6.11: The means of y25 and y50 with n=100,p=50, missing data mechanism M1 and data
are generated based on a CS covariance matrix with ρ = 0.1

y25 y50

M.C. M. C. Act 95% M. C. M. C. Act 95%
Mean S.E Coverage Mean S.E Coverage

True 0.0000 0.7
All data 0.0090 0.1011 0.96 0.73 0.0673 0.93
Available
Cases 0.0148 0.1765 0.95 0.59 0.0855 0.87
Rounding 0.0115 0.1284 0.92 0.55 0.0772 0.85
Parametric
Family 0.0064 0.1445 0.94 0.72 0.0733 0.92
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6.12: The means of y25 and y50 with n=100,p=50, missing data mechanism M1 and data
are generated based on a CS covariance matrix with ρ = 0.5

y25 y50

M.C. M. C. Act 95% M. C. M. C. Act 95%
Mean S.E Coverage Mean S.E Coverage

True 0.0000 0.7
All data 0.0025 0.0978 0.96 0.68 0.0562 0.93
Available
Cases 0.1459 0.2857 0.91 0.55 0.0997 0.91
Rounding 0.0191 0.1636 0.93 0.55 0.0772 0.88
Parametric
Family 0.0113 0.1492 0.94 0.71 0.0711 0.96

6.13: The means of y25 and y50 with n=100,p=50, missing data mechanism M1 and data
are generated based on a CS covariance matrix with ρ = 0.8

y25 y50

M.C. M. C. Act 95% M. C. M. C. Act 95%
Mean S.E Coverage Mean S.E Coverage

True 0.0000 0.7
All data 0.0068 0.1394 0.96 0.68 0.0682 0.94
Available
Cases 0.0771 0.1999 0.91 0.58 0.0799 0.76
Rounding 0.0265 0.1756 0.94 0.62 0.0754 0.89
Parametric
Family 0.0151 0.1593 0.95 0.68 0.0692 0.95
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6.4: Time-series plots of parameters related to y25 and y50 with n = 100, p = 50,CS structure
with ρ = 0.1, and missing data mechanism M1
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analysis) designed to work under MCAR mechanism actually works well with this missing

data mechanism M1. Missing values on y1, ..., y24, y26, ..., y50 are generated from an MCAR

mechanism. In addition, the randomly generated l′s and r′s describing the missingness on

y25 and y50 are allowed to be either positive or negative, so that these coefficients could have

a canceling effect on another in this case where all variables are positively related according

to the covariance structure being explored. Therefore we need to consider the missing data

mechanism M2.
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6.14: The means of y25 and y50 with n=100,p=50, missing data mechanism M2 and data
are generated based on an unstructured covariance matrix

y25 y50

M.C. M. C. Act 95% M. C. M. C. Act 95%
Mean S.E Coverage Mean S.E Coverage

True 0.0000 0.7
All data 0.0081 0.0904 0.96 0.69 0.0723 0.94
Available
Cases 0.2287 0.1169 0.55 0.60 0.0829 0.76
Rounding 0.0508 0.1565 0.93 0.62 0.0851 0.83
Parametric
Family 0.0452 0.1787 0.95 0.68 0.0819 0.94

6.15: The means of y25 and y50 with n=100,p=50, missing data mechanism M2 and data
are generated based on a CS covariance matrix with ρ = 0.1

y25 y50

M.C. M. C. Act 95% M. C. M. C. Act 95%
Mean S.E Coverage Mean S.E Coverage

True 0.0000 0.7
All data 0.0103 0.1167 0.94 0.67 0.0706 0.93
Available
Cases 0.2022 0.1377 0.71 0.57 0.0788 0.74
Rounding 0.0262 0.1575 0.91 0.60 0.0738 0.85
Parametric
Family 0.0271 0.1290 0.93 0.69 0.0774 0.94
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6.16: The means of y25 and y50 with n=100,p=50, missing data mechanism M2 and data
are generated based on a CS covariance matrix with ρ = 0.5

y25 y50

M.C. M. C. Act 95% M. C. M. C. Act 95%
Mean S.E Coverage Mean S.E Coverage

True 0.0000 0.7
All data -0.0021 0.0993 0.95 0.71 0.0692 0.94
Available
Cases 0.2971 0.1439 0.75 0.46 0.0814 0.69
Rounding 0.0365 0.1556 0.93 0.57 0.0838 0.81
Parametric
Family -0.0283 0.1394 0.94 0.66 0.0859 0.92

6.17: The means of y25 and y50 with n=100,p=50, missing data mechanism M2 and data
are generated based on a CS covariance matrix with ρ = 0.8

y25 y50

M.C. M. C. Act 95% M. C. M. C. Act 95%
Mean S.E Coverage Mean S.E Coverage

True 0.0000 0.7
All data 0.0064 0.1147 0.94 0.68 0.0722 0.95
Available
Cases 0.2563 0.1191 0.61 0.48 0.0885 0.65
Rounding 0.0373 0.1342 0.93 0.54 0.0753 0.80
Parametric
Family 0.0344 0.1266 0.92 0.70 0.0811 0.95
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Table 6.14, 6.15, 6.16 and Table 6.17 show the results of inference about the means of

y25 and y50 under the missing data mechanism M2. According to these tables, available-case

analysis are more biased in the mean estimates than other methods. The available-case

analysis also has lower coverage rates. The mean estimates of y25 from the parametric

family method and the rounding method show little bias and good coverage rates. But

for the inference about the mean of y50, the rounding method gives larger bias and worse

coverage probability than those from our parametric family approach. No matter what the

correlation is in the compound symmetry structure, the parametric family approach has a

good behavior. Even if the real covariance matrix is unstructured, the parametric family

approach using a compound symmetry center can still work well.

6.2 Simulation studies for the factor model

In this section, we carry out a simulation study based on data generated from a simple

factor structure. After choosing missing items from an ignorable or nonignorable missing

data mechanism, we applied factor models both with a correct number of factors and with an

incorrect number of factors to impute missing items. The results are then compared with the

results from available-case analysis and multiple imputation based on a multivariate normal

model using rounding strategy.

For the simulation we choose a simple factor structure for data and check how the factor

model works if we correctly specify the number of factors or if we incorrectly specify the

number of factors. Because data are generated to be consistent with the model underlying

the proposed imputation method, this case should be especially favorable for the proposed

method when the number of factors assumed is also correct.

To represent this situation, we choose a simple factor structure only with high loadings

(0.8) and zero loadings (0). For example, if we assume a five-factor structure, we divide the

number of variables (p) by the number of factors (k). Then we make the first p/k variables

have high loadings on the first factor, the second p/k variables have high loadings on the
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second factor, and so on. So the factor loading matrix is as follows:

Λ =


0.8 ... 0.8 0 ... 0 0 ... 0

0 ... 0 0.8 ... 0.8 0 ... 0

... ... ... ... ... ... ... ... ...

0 ... ... ... ... 0 0.8 ... 0.8

 (6.15)

In addition, we generate the data by a multivariate normal distribution with the mean 0 and

variance-covariance matrix Λ′Λ + τ . Here I choose the diagonal elements of τ to be 1.

To represent a moderate or large sample size, we assumed that the sample size to be 100

or 300. Following the routine of section 6.1, we assume p = 50 variables are measured. The

50 variables are made up of 25 continuous and 25 binary variables. We also assume that true

underlying factor structure includes 5 or 10 factors. In a real application, we usually don’t

know the correct number of factors, so it is possible to use an incorrect number of factors in

the model. Therefore, we can explore the performance of the factor model based on 10 factors

applied to data generated by 5 true factors as well as the performance of the factor model

based on 5 factors applied to data based on 10 true factors. These represent the case that our

imputation model is underparameterized or overparameterized, respectively. Meanwhile, we

can explore the performance of the factor model based on correct factor numbers as well. We

explore the performance of the factor model approach under two missingness patterns: M1

and M2. M1 and M2 are defined in section 6.1. The following table shows the combinations

used in the simulation study.

6.18: Combinations of the simulation

# of # of # of # of missingness
observations variables true assumed mechanisms

(n) (p) factors factors (M1,M2)
100 50 5 5,10 M1,M2

10 5,10 M1,M2
300 50 5 5,10 M1,M2

10 5,10 M1,M2
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For simplicity, we just follow the simulation settings listed in section 6.1, 75 replications

are generated due to the computation burden. 75 data sets are expected to have an error

standard deviation of 4.9% for 95% coverage of true parameters. For each of simulated data

sets, 12000 iterations of Gibbs sampler are generated with the maximum likelihood estimate

as a starting point. The first 2000 iterations is treated as a “burn-in” period. Five imputed

data values are taken at iterations 11000,11250,11500,11750 and 12000 of the Gibbs sampler

after earlier exploration revealed little autocorrelation between Gibbs sampler draws of lag

250. The inferences about the mean of y25, the proportion of 1’s of y50 is used to check

the validity of the factor analysis approach. The result is compared with those of rounding

method or available-case analysis. If n = 300, it is possible to apply the factor model with

noninformative priors. However, when n = 100, more informative priors are necessary for

the Gibbs sampler to work.

6.2.1 Simulation findings with moderate sample size

Figure 6.5 shows time-series plots of parameters related to y25 and y50 under the factor

model with ten factors for a data set with five factors. Since there are so many simulation

combinations and parameters in this model, it is not possible to show all parameters here, but

all other parameters displayed similar patterns as seen in these plots. In the factor model,

there is not a unique maximum likelihood estimate for φ, the factor score matrix, because φ

multiplies any orthogonal matrix will produce the same variance-covariance matrix. It means

that generated φ′s are only stable up to multiplication of an orthogonal matrix. Instead of

checking the convergence of φ directly, we check φφ′ which is unique. Plots from other data

generated under either five or ten factors and plots from factor models assuming the incorrect

number of factors showed similar patterns.

Table 6.19 and Table 6.20 show results of inferences on the means of y25 and y50 under

the factor model with n=300, p=50, k=5. The first and second columns represent the Monte

Carlo mean and standard error. The Monte Carlo means and standard errors for both the

factor model and the rounding method are calculated based on the multiple imputation
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inference (Rubin 1987). The third column denotes an actual 95% coverage rate measured by

the number of data sets whose 95% confidence interval covers a true parameter value. Under

missing data mechanism M2, mean estimates from the available-case analysis are biased

more than those from imputation methods and the standard errors are not much different,

resulting lower 95% coverage rates. However, the available-case analysis has small bias and

acceptable coverage rate under missing data mechanism M1. It’s probably due to M1’s “close

to MCAR” property. The rounding method gives small bias and good 95% coverage rate

on the inference about the mean of y25 under both missing data mechanisms. but not on

that of y50. However, we can find imputations based on the factor model with the correct

number of factors show less bias in mean estimate of y50 and better 95% coverage than all

other scenarios.
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6.5: Time-series plots of parameters related to y25 and y50 under the factor model with
n=300, p=50, k=10, and missing data mechanism M1
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Table 6.21 and Table 6.22 show results of inferences on the means of y25 and y50 under the

factor model with n=300, p=50, k=10. Compared with Table 6.19 and Table 6.20, we can

find an overparameterized model (Table 6.19,6.20) results in little bias for mean estimates

of y25 and y50 but an underparameterized model (Table 6.21,6.22) results in more biased

mean estimates with lower than the nominal 95% coverage rate when we apply the incorrect

number of factors in our model. But the underparameterized factor model still has better

behaviors than the rounding method on the inference of y50.
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6.19: The means of y25 and y50 under the factor model with n=300, p=50, k=5, and missing
data mechanism M1

y25 y50

M.C. M. C. Act 95% M. C. M. C. Act 95%
Mean S.E Coverage Mean S.E Coverage

True 0.0000 0.7
All data 0.0073 0.0495 0.93 0.68 0.0601 0.93
Available
Cases 0.0222 0.0519 0.89 0.65 0.0653 0.91
Rounding 0.0106 0.0530 0.92 0.60 0.0647 0.88
Factor
True (k=5) 0.0035 0.0516 0.93 0.66 0.0701 0.92
False (k=10) 0.0089 0.0582 0.91 0.65 0.0656 0.91

6.20: The means of y25 and y50 under the factor model with n=300, p=50, k=5, and missing
data mechanism M2

y25 y50

M.C. M. C. Act 95% M. C. M. C. Act 95%
Mean S.E Coverage Mean S.E Coverage

True 0.0000 0.7
All data -0.0052 0.0506 0.95 0.72 0.0586 0.93
Available
Cases -0.2678 0.0627 0.63 0.49 0.0676 0.71
Rounding 0.0066 0.0633 0.94 0.57 0.0628 0.83
Factor
True (k=5) -0.0049 0.0704 0.94 0.69 0.0633 0.94
False (k=10) 0.0036 0.0688 0.92 0.66 0.0645 0.92
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6.21: The means of y25 and y50 under the factor model with n=300, p=50, k=10, and
missing data mechanism M1

y25 y50

M.C. M. C. Act 95% M. C. M. C. Act 95%
Mean S.E Coverage Mean S.E Coverage

True 0.0000 0.7
All data 0.0018 0.0580 0.96 0.69 0.0595 0.93
Available
Cases 0.0567 0.0591 0.84 0.56 0.0613 0.78
Rounding 0.0147 0.0649 0.92 0.58 0.0659 0.86
Factor
False (k=5) 0.0389 0.0646 0.88 0.65 0.0624 0.91
True (k=10) 0.0112 0.0611 0.92 0.67 0.0677 0.93

6.22: The means of y25 and y50 under the factor model with n=300, p=50, k=10, and
missing data mechanism M2

y25 y50

M.C. M. C. Act 95% M. C. M. C. Act 95%
Mean S.E Coverage Mean S.E Coverage

True 0.0000 0.7
All data 0.0029 0.0547 0.94 0.71 0.0574 0.95
Available
Cases 0.2271 0.0684 0.55 0.50 0.0613 0.67
Rounding 0.0125 0.0609 0.96 0.54 0.0676 0.80
Factor
False (k=5) 0.0539 0.0576 0.78 0.62 0.0654 0.89
True (k=10) 0.0090 0.0594 0.93 0.69 0.0622 0.93
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6.2.2 Simulation findings with small sample size

As we describe in Section 6.1.2, some parameters can be inestimable or almost inestimable

when the sample size is relatively small compared to the number of variables. When we study

scenarios with 100 observations, our MCMC algorithm may fail to converge or converge very

slowly. To make our MCMC algorithm converge faster, we use an informative prior for the

factor model. Priors are chosen as follows:

τ 2
j ∼ Inverse−Gamma(

3

2
,
0.3

2
) (6.16)

Λj|τ 2
j ∼ N(Λ0,

1

3
τ 2
j I) (6.17)

αj|τ 2
j ∼ N(0,

1

3
τ 2
j ) (6.18)

where Λ0 is from the first k principal components. We also have tried several different for

τ 2
j and find that the results are similar, since these priors are quite weak compared to the

total number of observations.

Figure 6.6 shows time series plots of parameters related to y25 and y50 under the five-factor

model for a data set with 10 true factors and missing data mechanism M1. All time-series

plots show that the parameters converged within 20000 iterations. Autocorrelation plots

also show fast disappearing dependence. Plots from data generated from ten true factors

and plots from other overparameterized or underparameterized factor model display similar

patterns.

Table 6.23 and Table 6.24 show inferences about the means of y25 and y50 under the factor

model with n=100, p=50, k=5. The standard errors are about two times of those with sample

size 300. Under the missing data mechanism M1, all methods even available-case analysis

show small biases and good 95% coverage probabilities on the inference about the mean of

y25. That again reveals the “close to MCAR” property of the missing data mechanism M1.

But for the inference of y50, both available-case analysis and rounding method give smaller

nominal 95% coverage rates. The tables also show that the factor model creates little bias

and good 95% coverage rate even under overparameterized scenarios. However, the factor
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model with correct number of factors performs best among all the models we apply here.

6.6: Time-series plots of parameters related to y25 and y50 under the factor model with
n=100, p=50, k=10, and missing data mechanism M1
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6.23: The means of y25 and y50 under the factor model with n=100, p=50, k=5, and missing
data mechanism M1

y25 y50

M.C. M. C. Act 95% M. C. M. C. Act 95%
Mean S.E Coverage Mean S.E Coverage

True 0.0000 0.7
All data 0.0070 0.1018 0.96 0.72 0.0766 0.94
Available
Cases 0.0321 0.1245 0.92 0.59 0.0802 0.86
Rounding 0.0110 0.1296 0.95 0.62 0.0791 0.90
Factor
True (k=5) 0.0085 0.1318 0.94 0.72 0.0821 0.94
False (k=10) 0.0134 0.1255 0.93 0.67 0.0815 0.93

6.24: The means of y25 and y50 under the factor model with n=100, p=50, k=5, and missing
data mechanism M2

y25 y50

M.C. M. C. Act 95% M. C. M. C. Act 95%
Mean S.E Coverage Mean S.E Coverage

True 0.0000 0.7
All data -0.0068 0.1174 0.93 0.69 0.0775 0.94
Available
Cases -0.5963 0.1248 0.47 0.53 0.0813 0.71
Rounding -0.0137 0.1339 0.94 0.58 0.0826 0.83
Factor
True (k=5) 0.0025 0.1276 0.94 0.67 0.0825 0.93
False (k=10) -0.0190 0.1313 0.93 0.66 0.0792 0.92

Table 6.25 and Table 6.26 show inferences about the means of y25 and y50 under the factor

model with n=100, p=50, k=10. The results are similar to those from Table 6.23 and Table

6.24. But we can find the underparameterized case tends to have large bias and worse 95%

coverage rate than those from the overparameterized case. The factor model with correct

factor number tends to have the best performance.
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6.25: The means of y25 and y50 under the factor model with n=100, p=50, k=10, and
missing data mechanism M1

y25 y50

M.C. M. C. Act 95% M. C. M. C. Act 95%
Mean S.E Coverage Mean S.E Coverage

True 0.0000 0.7
All data 0.0045 0.1107 0.95 0.68 0.0783 0.94
Available
Cases 0.0247 0.1191 0.92 0.62 0.0822 0.89
Rounding 0.0193 0.1235 0.93 0.60 0.0817 0.87
Factor
False (k=5) 0.0684 0.1288 0.90 0.70 0.0855 0.93
True (k=10) 0.0074 0.1249 0.94 0.66 0.0849 0.96

6.26: The means of y25 and y50 under the factor model with n=100, p=50, k=10, and
missing data mechanism M2

y25 y50

M.C. M. C. Act 95% M. C. M. C. Act 95%
Mean S.E Coverage Mean S.E Coverage

True 0.0000 0.7
All data 0.0118 0.1189 0.94 0.67 0.0775 0.93
Available
Cases 0.6177 0.1256 0.59 0.51 0.0816 0.66
Rounding 0.0233 0.1248 0.92 0.56 0.0834 0.85
Factor
False (k=5) 0.0761 0.1263 0.90 0.63 0.0822 0.91
True (k=10) 0.0195 0.1291 0.94 0.66 0.0883 0.93
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6.2.3 Regression analysis for simulation output

To further investigate the statistical properties of the procedure (e.g., bias in estimates of

the mean of y25, bias in estimates of the mean of y50, 95% coverage rate of the mean of y25,

95% coverage rate of the mean of y50, etc.), we build a regression model for the analysis.

The following tables list the response variables and possible covariates for the parametric

approach.

6.27: Response variables

Response variables Description
bias y25 The absolute value of the bias of

the mean estimator for y25

bias y50 The absolute value of the bias of
the mean estimator for y50

cp y25 The 95% coverage probability of
the mean estimator for y25

cp y50 The 95% coverage probability of
the mean estimator for y50

6.28: Regression covariates for parametric family approach

Regression covariates Description
method 1 =all data (reference group)

2 =available-case method
3 =rounding method
4 =parametric family

samplesize 1 =sample size 300
0 =sample size 100

covmatrix 1=unstructured
0 = compound symmetry

missingmech 1 = missingness mechanism M2
0 = missingness mechanism M1

For each response variable, there is a corresponding regression model. The simulation

outputs in Table 6.2-Table 6.17 are used to build the regression models. Before fitting the

model, we need to check all the possible 2-way interaction effects. So we can decide whether
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to include them in the model or not. For the model simplicity, we don’t include any 3-way

interaction terms in our model. Figure 6.5, 6.6 and Figure 6.7 show the interaction plots

for the regression model of biasy25. Interaction plots for other regression models have sim-

ilar patterns. From these interaction plots, we can find there may be strong interaction

between method and missingness patterns. So we include this interaction term in our re-

gression models. Since “method” is a categorical variable, we introduce dummy variables

“method2”,“method3” and ”method4”, denoting available-case method, rounding method

and parametric family method, respectively. Table 6.20,6.21,6.22 and Table 6.23 show the

estimates of coefficients and corresponding p-values for the regression models. These tables

display that the available-case method tend to have large biases and bad 95% coverage rates

for the means of both continuous variable y25 and binary variable y50. And all tables show

that the available-case method has significant interaction with missing data mechanisms.

The rounding method works well for the inference on mean of y25, but the rounding method

introduces more bias and worse 95% coverage rate on the mean of the binary variable y50.

Moreover, the parametric family approach is as efficient as all-case method for the means

of both continuous variable y25 and binary variable y50. We also find that the sample size

factor has a somehow significant effect(p-values are a bit larger than 0.05) on the biases and

95% coverage rates of y25 and y50. Larger sample size is more likely to obtain smaller bias

and better 95% coverage rate. All above conclusions tally with the simulation output we

have in Section 6.1.1 and Section 6.1.2.
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6.7: Interaction plot between method and samplesize & Interaction plot between method
and missingmech
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6.8: Interaction plot between method and covmatrix & Interaction plot between samplesize
and missingmech
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For factor model approach, we use the same definitions for response variables, but the

covariates are a little bit different. Table 6.33 shows the regression covariates. Figure 6.8 and
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6.9: Interaction plot between covmatrix and samplesize & Interaction plot between covma-
trix and missingmech
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6.29: Results of the regression model for bias y25 (parametric family)

parameter estimate p-value
Intercept 0.0129 0.1458
aval-case 0.0658 < 0.0001∗

rounding 0.0072 0.5337
para-family 0.0041 0.7264
samplesize -0.0111 0.0583
missingmech -0.0013 0.9140
covmatrix -0.0037 0.5806
aval-case*missingmech 0.1505 < 0.0001
rounding*missingmech 0.0140 0.3942
para-family*missingmech 0.0131 0.4247

* the highlighted and underscore type signifies a variable that is significant at α = 0.05

Figure 6.9 show the interaction plots for the regression model of biasy25. From the figures we

can find strong interaction between method and missingmech. Also there exists interaction

between method and samplesize. We should include the two 2-way interaction terms in our

regression models. Interaction plots for other response variables display similar patterns.

Table 6.34, 6.35, 6.36 and Table 6.37 show the estimates of coefficients and corresponding

p-values for the regression models. For simplicity, I don’t list the insignificant interactions in
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6.30: Results of the regression model for bias y50 (parametric family)

parameter estimate p-value
Intercept 0.0336 0.0048
aval-case 0.0850 < 0.0001∗

rounding 0.0863 < 0.0001
para-family -0.0013 0.9336
samplesize -0.0147 0.0544
missingmech -0.0038 0.8027
covmatrix -0.0152 0.0835
aval-case*missingmech 0.0475 < 0.0287
rounding*missingmech -0.0088 0.6804
para-family*missingmech 0.0025 0.9062

* the highlighted and underscore type signifies a variable that is significant at α = 0.05

6.31: Results of the regression model for cp y25 (parametric family)

parameter estimate p-value
Intercept 0.0001 0.9276
aval-case 0.0775 < 0.0001∗

rounding 0.0288 0.1446
para-family 0.0001 0.9896
samplesize 0.0014 0.1625
missingmech -0.0003 0.8476
covmatrix 0.0018 0.1159
aval-case*missingmech 0.1825 < 0.0001
rounding*missingmech -0.0008 0.7858
para-family*missingmech 0.01 0.7172

* the highlighted and underscore type signifies a variable that is significant at α = 0.05

these tables. The tables show that the available-case method tend to have large biases and

bad 95% coverage rates for the means of both continuous variable y25 and binary variable y50.

And all tables show that the available-case method has significant interaction with missing

data mechanisms. The rounding method works well for the inference on mean of y25, but

the rounding method introduces more bias and worse 95% coverage rate on the mean of the

binary variable y50. Moreover, the factor model approach is as good as all-case method for

the means of both continuous variable y25 and binary variable y50. Both overparameterized

and underparameterized models create small bias and good 95% coverage rate. We also find
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6.32: Results of the regression model for cp y50 (parametric family)

parameter estimate p-value
Intercept 0.0158 0.2240
aval-case 0.0937 < 0.0001∗

rounding 0.0750 < 0.0001
para-family 0.0013 0.9410
samplesize -0.0019 0.8250
missingmech -0.0025 0.8830
covmatrix -0.0096 0.3290
aval-case*missingmech 0.1250 < 0.0001
rounding*missingmech 0.0263 0.2760
para-family*missingmech 0.0013 0.9580

that the sample size and the missing data mechanism are not significant. However, further

analysis may be necessary to investigate how underparameterized model can affect bias and

95% coverage probability.

6.33: Regression covariates for factor model approach

Regression covariates Description
aval-case 1 =available-case method

0 =all other methods
rounding 1 =rounding method

0 =all other methods
correct-factor 1 =factor model with correct factor number

0 =all other methods
overparameterized 1 =overparameterized factor model

0 =all other methods
underparameterized 1 =underparameterized factor model

0 =all other methods
samplesize 1 =sample size 300

0 =sample size 100
missingmech 1 = missingness mechanism M2

0 = missingness mechanism M1
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6.10: Interaction plot between method and samplesize & Interaction plot between method
and missingmech
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6.11: Interaction plot between missingmech and samplesize
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6.34: Results of the regression model for biasy25 (factor model)

parameter estimate p-value
Intercept 0.0083 0.8211
aval-case 0.5060 < 0.0001∗

rounding 0.0086 0.8682
correct-factor 0.0329 0.5279
overparameterized 0.0080 0.8998
underparameterized 0.0076 0.9042
samplesize -0.0032 0.9392
missingmech -0.0015 0.9712
aval-case*missingmech -0.3917 < 0.0001
aval-case*samplesize -0.1710 0.0084
... ...

6.35: Results of the regression model for biasy50 (factor model)

parameter estimate p-value
Intercept 0.02 0.8211
aval-case 0.1662 < 0.0001∗

rounding 0.1087 < 0.0001
correct-factor 0.02 0.3113
overparameterized 0.015 0.5322
underparameterized 0.016 0.5319
samplesize -0.0005 0.7539
missingmech 0.0001 0.9926
aval-case*missingmech -0.0975 0.0002
...*...

6.36: Results of the regression model for cpy25 (factor model)

parameter estimate p-value
Intercept 0.0088 0.728
aval-case 0.3825 < 0.0001∗

rounding 0.0038 0.916
correct-factor 0.0325 0.365
overparameterized 0.0087 0.841
underparameterized -0.0012 0.977
samplesize 0.0025 0.931
missingmech -0.0025 0.931
aval-case*missingmech -0.33 < 0.0001
...*...
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6.37: Results of the regression model for cpy50 (factor model)

parameter estimate p-value
Intercept 0.0112 0.4910
aval-case 0.2450 < 0.0001∗

rounding 0.1012 0.0002
correct-factor 0.015 0.5159
overparameterized 0.0137 0.626
underparameterized 0.0037 0.894
samplesize 0.0025 0.894
missingmech 0.0025 0.893
aval-case*missingmech -0.1750 < 0.0001
...*...
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CHAPTER 7

Application

When data include moderate number of observations and large number of mixed variables,

complete-case analysis is very inefficient or sometimes impossible even if the missingness

mechanism is MCAR. Meanwhile, multiple imputation based on the multivariate normal

model may fail without appropriate restrictions and prior information. To handle this diffi-

culty, in Chapter 5 we propose two multiple imputation algorithms. In this chapter, the two

algorithms are applied to a real data set.

7.1 CHIS 2009 data

The California Health Interview Survey (CHIS) is a population-based telephone survey of

Californias population conducted every other year since 2001. CHIS is the largest health

survey conducted in any state and one of the largest health surveys in the nation. CHIS is

conducted by the UCLA Center for Health Policy Research (UCLA-CHPR) in collaboration

with the California Department of Public Health, the Department of Health Care Serivces,

California Department of Mental Health, First 5 California, The California Endowment,

the National Cancer Institute, and Kaiser Permanente. CHIS collects information for all

age groups on health status, health conditions, health-related behaviors, health insurance

coverage, access to health care services, and other health and health related issues. Within

each household, separate interviews are conducted with a randomly selected adult (age 18

and over), adolescents (ages 12-17), and parents of children (ages 0 to 11). CHIS 2009 is the

fifth CHIS data collection cycle and was conducted between September 2009 and April 2010.

CHIS 2009 has 47614 observations and 518 variables based on sample survey questions.
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Diabetes is a lifelong (chronic) disease in which there are high levels of sugar in the blood.

Diabetes can be caused by too little insulin, resistance to insulin, or both. After many years,

diabetes can lead to other serious problems:

• You could have eye problems,including trouble seeing (especially at night) and light

sensitivity.

• Your feet and skin can develop sores and infections. After a long time, your foot or

leg may need to be removed. Infection can also cause pain and itching in other parts

of the body.

• High blood sugar and other problems can lead to kidney damage.

It is well known that diabetes may be correlated with some health behaviors such as fruit

taken or vegetable taken. But we are not aware of the exact relationship. Meanwhile, the

health condition related to diabetes among some specific ethnic groups is also interesting.

The main goal of our research is to investigate the relationship between diabetes and 18

predictors among Filipinos in Southern California. Since the CHIS 2009 data include hun-

dreds of variables and different ethnic groups, we only use a subset of the data. The 18

predictors are made up of demographic variables and variables related to health behaviors.

Part of them are continuous variables while part of them are binary variables. Including the

response variable, most of 19 variables have missing items due to the non-response of the

corresponding survey questions. Among 47614 observations, 430 of them are Filipinos. So

the sample size we use is 430. Table 7.1 gives the brief description of the data set we use.

”mis-rate” denotes the missing rate of each variable. Only 283 out of 430 observations are

fully observed. Since some of the variables such as “fruit” and “fry” are not really continuous

and normally distributed, we need to do the log transformation to make them accommodate

the imputation models.
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7.1: Data set description

variables description mis-rate
diabetes whether this observation has diabetes 0%
age age (in years) 0%
gender gender of the observation 0%

1 if female, 0 if male
weight body weight (in pounds) 0%
employed working status of the observation 0%

1 if employed, 0 if unemployed
bsorabove educational attainment 0%

1 if bachelor degree or above, 0 elsewhere
walk whether walked at least 10 min in the past 7 days 3%

1 if yes, 0 if no
fruit # of times ate fruit in the past month 5%
fry # of times ate French fries in the past month 2%
vegetable # of times ate vegetable in the past month 2%
soda # of times drank soda in the past month 3%
juice # of times drank fruit juice in the past month 2%
cakeorcookie # of times ate cake or cookies in the past month 1%
icecream # of times ate ice cream in the past month 1%
coffeeortea # of times drank sweetened coffee or tea in the past month 5%
energy # of times drank energy drink in the past month 1%
alcohol whether this observation had alcohol in the past 12 month 8%

1 if yes, 0 if no
smoke whether this observation smoked 100 or more cigarettes in his life 1%

1 if yes, 0 if no
sunburn # of times had sunburned in the past 12 months 3%

7.2 Analysis of the data set

This data set example highlights several advantages of our parametric family modeling strat-

egy. Following the definition of Section 5.3, the unrestricted variance-covariance matrix Λ

contains 19 ∗ (19 + 1)/2 = 190 parameters which is a relatively large number to estimate

accurately with 283 complete realizations of y. On the other hand, the structured variance-

covariance matrix Ω(θ) has only a few parameters and the data are sufficient to estimate

them, but the parametric model might not be appropriate. A compromise is arrived at in
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which the unrestricted matrix is pulled towards the parametric structure, yet the data are

free to help determine important characteristics such as heteroscedasticity.

To apply the parametric family model to the data set, we choose the initial values of the

parameters to be their maximum likelihood estimators obtained by the EM algorithm. This

will accelerate the convergence. We make Ω(θ) to be a 19× 19 compound symmetry matrix.

For the data set, since the sample size is relatively larger compared with the number of the

variables, and the missing rates for all the variables are lower than 10%, we can apply less

informative priors to the parameters. The following priors are used for the imputation:

β0 ∼ N(0, 1000) (7.1)

p(σ2) ∼ Inv − gamma(2.1, 5) (7.2)

p(ρ) ∝ 1 (7.3)

v ∼ I(v>19)Γ(6, 100) (7.4)

p(β0, σ
2, ρ, v) ∝ p(β0)p(σ2, ρ)p(v) (7.5)

We generate 31000 iterations from the MCMC algorithm with the first 1000 iterations treated

as a burn-in period. Time series plots can be used here to check the convergence of the algo-

rithm. The 10 imputations are taken from every 50th iterations since the 30550th iteration

due to the auto-correlation plots. After the Multiple Imputation step, a logistic regression

model will be applied to each imputed data set. Then we use Rubin’s rule to combine the

results of different imputed data sets. The combined results are listed in the following table:

To apply factor model to the data, it is very important to find an appropriate number

of factors. Checking the eigenvalues of the estimated covariance matrix may not work since

some of the variables are not continuous but binary. However, simulations in Section 6.2

show that overparameterization of factor model still gives small bias and good 95% coverage

rate. So here I use a 18-factor model. For simplicity, we use the prior distributions defined

in Section 5.4. 31000 iterations are generated and the first 1000 iterations are treated as a

burn-in period. The 10 imputations are taken from every 20th iterations since the 30820th
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7.2: Results of the logistic regression

parameter estimate p-value parameter estimate p-value
Intercept −8.4908 < 0.0001∗ soda −0.0343 0.0799
age 0.0530 0.0003 energy −0.0482 0.3188
gender 0.2840 0.5147 juice 0.0038 0.8132
weight 0.0289 < 0.0001 coffeandtea −0.0248 0.0139
employed 0.3170 0.3914 cakeorcookie 0.0088 0.6607
bsorabove 0.1884 0.5983 icecream −0.0717 0.1193
walk −0.1399 0.6492 sunburn −0.7277 0.0632
fruit −0.0041 0.4411 smoke 0.8856 0.0236
fry −0.0144 0.4276 alcohol −0.8014 0.0304
vegetable 0.0073 0.3050

* the highlighted and underscore type signifies a variable that is significant at α = 0.05

iteration due to the auto-correlation plots. After generating multiple complete data sets,

Rubin’s rule is used to combine the logistic regression estimates. Table shows the combined

results. The two approaches show similar results. From Table 7.2 and Table 7.3, we find

7.3: Results of the logistic regression

parameter estimate p-value parameter estimate p-value
Intercept −7.6277 < 0.0001∗ soda −0.0343 0.0790
age 0.0505 0.0004 energy −0.0508 0.2399
gender 0.2877 0.5030 juice 0.0051 0.6999
weight 0.0269 < 0.0001 coffeandtea −0.0256 0.0108
employed 0.2982 0.5819 cakeorcookie 0.0072 0.8865
bsorabove 0.1870 0.8030 icecream −0.0720 0.1060
walk −0.0942 0.7508 sunburn −0.7303 0.0667
fruit −0.0062 0.2473 smoke 0.8326 0.0307
fry −0.0136 0.4639 alcohol −0.7913 0.0270
vegetable 0.0074 0.2965

* the highlighted and underscore type signifies a variable that is significant at α = 0.05

that older Filipinos are more likely to have diabetes than younger people. The risk of getting

diabetes is higher among heavier Filipinos. Drinking coffee or tea can help Filipinos reduce

the risk of getting diabetes. Moreover,smoking has a significant effect on increasing the

likelihood of diabetes. All above conclusions are in accord with our common sense. It is

interesting that the logistic regression outputs indicate that drinking alcohol will be beneficial
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to reducing the risk of diabetes. One possible reason is there may exist quadratic effect of

alcohol use. Another reason may be we should categorize alcohol use to be moderate use

and heavy use. Thus this point is worth further research.
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CHAPTER 8

Discussion and Future Research

In the analysis of incomplete data with large number of variables, the modest number of

cases and mixed variable types, the complete-case analysis is inefficient and may result in

biased estimates. Since we have large number of variables in hand, it may be reasonable to

view the missing data mechanism for the data as MAR and to use the multiple imputation

technique to obtain estimates that make use of all observed data. We introduce the latent

variables for binary, ordinal or nominal variables so we can use a multivariate normal joint

modeling to multiple impute the missing data. However, it is very common that some data

sets include count variables or semi-continuous variables. To incorporate these variables in

a joint modeling is challenging. Dunson (2005) proposed a latent variable model for mixed

count, binary and ordinal data by using Poisson underlying latent variables. We may be

able to tailor this Poisson latent variable model to handle the mixed continuous, count and

categorical variables.

From Section 6.2 we know underparameterization of factor model can result in biased

estimates, it seems better to choose enough number of factors to assure inclusion of all

important variations. On the other hand, it is generally desirable to have a parsimonious

model so that fewer parameters need to be estimated. Since the application of the factor

model depend upon the number of factors in use, it would be of interest to develop an

adaptive procedure to find an appropriate number of factors.

Choosing the appropriate number of factors is always a subjective matter, not to mention

there are missing items and mixed variable types in the data. Since the number of variables is

large and the number of observations is moderate, a large-sample test statistic for choosing

the number of factors may not be appropriate. A common way to choose the number of
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factors is using the scree plot. However, when there are many variables, it is sometimes

hard to find a suitable choice from the scree plot. Moreover, it has been known the criterion

to choose the number of factors as the number of eigenvalues equals to or greater than

one sometimes can lead to the overestimation of the number of factors when there are large

number of variables in the model. Song and Belin (2008) developed a new method of choosing

the number of factors. First they apply EM algorithm to estimate the parameters in the

factor model. Then they use AIC or BIC to choose the appropriate number of factors. But

their approach need to be extended to handle the mixed variables scenario. A reversible-

jump MCMC algorithm was proposed by Lopes and West (2004) to find the correct number

of factors. It is possible to modify their algorithm (e.g., adding one step of missing data

imputation) to accommodate the mixed incomplete data situation.

It would also be interesting to extend our parametric family approach in longitudinal

data setting. Then we can have more candidates to use as the centered parametric family.

Besides compound symmetry (CS), AR(1) can be another option. However, a lot of work

need to be done if the longitudinal data is unbalanced.

It is natural to treat the design of simulation set ups as an example of experimental design.

So a lot of experimental design techniques can be applied to our simulation procedure to

modify the simulation. We have 16 simulation combinations for parametric family method

and 16 combinations for factor model as well. The entire computation is burdensome. In

Section 6.1.3, we find most of the two-way interaction terms of the simulation factors are not

significant. We can then use orthogonal arrays design to reduce the number of simulation

combinations. Other than this, the response surface modeling strategy can be used to find

the best simulation set ups that can achieve minimal bias and best 95% coverage rate.

The simulation results in Section 6.1 and Section 6.2 indicate that our two approaches

work well assuming the missing data mechanism is missing at random (MAR). However,

although MAR is a helpful working assumption, sometimes data are not missing at random

(NMAR) in practice. When data are NMAR, that is, the probability that a value is missing

does depend on unobserved information, the model for generating imputations must not only

depend on unobserved data but it must also take into account the process that gave rise to
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the missing data. Carpenter, Kenward and White (2007) develop a reweighting approach to

investigate the influence of departures from the MAR assumption on parameter estimates.

Siddique , Harel and Crespi (2012) proposed an approach using several imputation models

instead of unique model to reflect the imputation model uncertainty. Then they transform

imputed ignorable variables to create nonignorable values. We may borrow the ideas and

modify our models to make them accommodate the NMAR mechanism.

82



References

[1] Bartholomew, D. J. (1987). Latent Variable Models and Factor analysis. New York:
Oxford University Press.

[2] Bernaards, C. A., Belin, T. R and Schafer, J. L (2007). Robustness of a multivariate
normal approximation for imputation of incomplete binary data. Statistics in Medcine
26. 1368-1382.

[3] Boscardin, W. J. and Weiss, R (2001).Models for the covariance matrix of multivariate
longitudinal and repeated measures data. Proceedings of American Statistical Associ-
ation, Section on Bayesian Statistical Science.

[4] Boscardin, W. J.,Zhang, X., Belin, T. R (2008). Modeling a mixture of ordinal and con-
tinuous repeated measures. Journal of Statistical Computation and Simulation Vol.78,
873-886.

[5] Carpenter, J., Kenward, M. and White, I. (2007). Sensitivity analysis after multiple
imputation under missing at random: a weighting approach. Statistical Methods in
Medical Research 2007, 16, 259-275.

[6] Chib, S. and Greenberg, E. (1998). Analysis of multivariate probit models. Biometrika,
85, 347-361.

[7] Dunson, D. (2005). Bayesian latent variable models for mixed discrete outcomes. Bio-
statistics, 6, 1, 11-25.

[8] Galton, F. (1888). Co-relations and their measurement, chiefly from anthropometric
data. Proceedings of the Royal Society, 45, 135-140.

[9] Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-based approaches to calculating
marginal densities. Journal of American Statistical Association, 85, 398-409.

[10] Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple
sequences. Statistical Science, 7, 457-511.

[11] Geman, D. and Geman, S. (1984). Stochastic relaxation, Gibbs distributions, and
the Bayesian reconstruction of images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 6, 721-741.

[12] Horel, R. W. and Kennard, R. W. (1970). Ridge regression: biased estimationfor
nonorthogonal problems. Technometrics, 12, 55-67.

[13] Jamshidian, M. (1997) An EM algorithm for ML factor analysis with missing data,
In Berkane, M, (ED.). Latent Variable Modeling and Applications to Causality, New
York: Springer 247-258.

[14] Little, R. J. and Rubin, D. B. (2002). Statistical Analysis with Missing Data, 2nd
edition, New York: John Wiley series

83



[15] Little, R. J. and Schluchter, M. D. (1985). Maximum likelihood estimation for mixed
continuous and categorical data with missing values. Biometrika 72, 497-512.

[16] Lopes, H. and West, M. (2004). Bayesian model assessment in factor analysis. Statistica
Sinica, 14, 41-67

[17] Martin, J. K. and McDonald, R. P. (1975). Bayesian estimation in unrestricted factor
analysis: a treatment for Heywood cases. Psychometrika, 40, 505-517.

[18] Olkin, I. and Tate, R.F. (1961). Multivariate correlation models with mixed discrete
and continuous variables. Ann. Math. Statist. 32, 448-465.

[19] Quinn, M. K. (2004). Bayesian factor analysis for mixed ordinal and continuous re-
sponses. Political Analysis 12, 338-353.

[20] Raghunathan et al. (2001). A multivariate technique for multiply imputing missing
values using a sequence of regression models. Survey Methodology Vol.27, 85-95.

[21] Robert, C. P. and Casella, G. (2004). Monte Carlo Statistical Methods. 2nd edition
Springer.

[22] Rubin, D. B. (1976). Inference and missing data. Biometrica 63, 581-592.

[23] Rubin, D. B. and Thayer, D. T. (1982). EM algorithm for ML factor analysis. Psy-
chometrika, 47, 69-76.

[24] Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. New York: John
Wiley.

[25] Rubin, D. B. (1996). Multiple imputation after 18+ years. Journal of American Sta-
tistical Association 91, 473-489.

[26] Schafer, J. (1997). Analysis of Incomplete Multivariate Data. London: Chapman &
Hall

[27] Schenker, N. and Taylor, J. M. (1996). Partially parametric techniques for multiple
imputation. Computational Statistics and Data Analysis 22 (4), 425-446.

[28] Siddique, J. and Belin, T. R.(2008). Multiple imputation using an iterative hot-deck
with distance-based donor selection. Statistics in Medicine 27 (1), 83-102.

[29] Siddique, J. and Harel, O. (2009). A SAS macro for Multiple Imputation using distance-
Aided selection of donors. Journal of Statistical Software 2009 Feb; 29(9).

[30] Siddique, J., Harel, O. and Crespi, K. (2012). Generating multiple imputations from
multiple models to incorporate model uncertainty in nonignorable missing data prob-
lems. Unpublished technical report

[31] Song, J. and Belin, T. R. (2004). Imputation for incomplete high-dimensional multi-
variate normal data using a common factor model. Statistics in Medicine 23, 2827-2843.

84



[32] Song, J. and Belin, T. R. (2008). Choosing an appropriate number of factors in factor
analysis with incomplete data. Computational Statistics and Data Analysis 52, 3560-
3569.

[33] Spearman, C. (1904). General intelligence objectively determined and measured. Amer-
ican Journal of Psychology, 15,201-293.

[34] Tanner, M. A. and Wong, W. H. (1987). The calculation of posterior distributions by
data augmentation. Journal of American Statistical Association 82, 528-550.

[35] Van Buuren, S., Boshuizen, H. C. and Knook, D. L. (1999) Multiple imputation of
missing blood pressure covariates in survival analysis. Statistics in Medcine, 18, 681-
694.

[36] Zhang, X., Boscardin, W. J., Belin, T. R. (2006). Sampling correlation matrices in
Bayesian models with correlated latent variables. Journal of Computational Graphics
and Statistics 15, 880-896.

[37] Zhang, X., Boscardin, W. J. and Belin, T. R. (2008). Bayesian analysis of multivari-

ate nominal measures using multivariate multinomial probit models. Computational

Statistics and Data Analysis 52, 3697-3708.

85


