
UC Berkeley
UC Berkeley Previously Published Works

Title

miRNAs differentially expressed by next-generation sequencing in cord blood buffy coat 
samples of boys and girls

Permalink

https://escholarship.org/uc/item/6k42t92t

Journal

Epigenomics, 8(12)

ISSN

1750-1911

Authors

Lizarraga, Daneida
Huen, Karen
Combs, Mary
et al.

Publication Date

2016-12-01

DOI

10.2217/epi-2016-0031
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6k42t92t
https://escholarship.org/uc/item/6k42t92t#author
https://escholarship.org
http://www.cdlib.org/


1619Epigenomics (2016) 8(12), 1619–1635 ISSN 1750-1911

part of

Research Article

10.2217/epi-2016-0031 © 2016 Future Medicine Ltd

Epigenomics

Research Article 2016/11/30
8

12

2016

Aim: Differences in children’s development and susceptibility to diseases and exposures 
have been observed by sex, yet human studies of sex differences in miRNAs are 
limited. Materials & methods: The genome-wide miRNA expression was characterized 
by sequencing-based EdgeSeq assay in cord blood buffy coats from 89 newborns, and 
564 miRNAs were further analyzed. Results: Differential expression of most miRNAs 
was higher in boys. Neurodevelopment, RNA metabolism and metabolic ontology 
terms were enriched among miRNA targets. The majority of upregulated miRNAs 
(86%) validated by nCounter maintained positive-fold change values; however, only 
21% reached statistical significance by false discovery rate. Conclusion: Accounting 
for host factors like sex may improve the sensitivity of epigenetic analyses for 
epidemiological studies in early childhood.

First draft submitted: 16 March 2016; Accepted for publication: 7 October 2016; 
Published online: 24 November 2016

Keywords:  cord blood • early life • epigenetics • filtering • miRNA • miRNAome • newborns 
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Epigenetic mechanisms influence gene expres-
sion without changes in DNA sequences. 
Unlike genetic mutations, which lead to per-
manent changes of gene structure, epigenetic 
modifications are reversible and responsive 
to different environmental factors includ-
ing lifestyle, diet and exposure to chemicals. 
The most widely studied epigenetic marks 
are DNA methylation and histone modifica-
tions. Less is known about noncoding RNAs, 
often considered the third type of epigenetic 
marks  [1–3]. Increasing evidence has shown 
that epigenetic modifications, including non-
coding RNA, alter or control DNA expression 
and the degree in which DNA is transcribed 
as an adaptive response [4–6].

There is a growing interest in analyzing 
the role of miRNAs that represent an impor-
tant group of noncoding RNAs. miRNAs 
are about 18–22 nucleotides in length and 
play an active role in the epigenetic regula-
tion of gene expression in all living organ-

isms with eukaryotic nuclear DNA  [6–8]. 
Biogenesis of miRNAs begins in the nucleus, 
and they are transcribed mainly by RNA 
polymerase II [7]. Transcription of intergenic 
miRNAs occurs via independent promoters, 
whereas miRNAs in the introns of protein-
encoding genes may use the same promoter 
as the proximal gene. Accumulated evidence 
has demonstrated that most of the known 
miRNAs participate in normal develop-
ment, as well as disease pathology, and 
that miRNAs may be potential biomarkers 
for classifying tumors and identifying tis-
sue injury  [8–13]. miRNA profiles may also 
change in response to chemical exposures [14]. 
Recent studies have reported associations of 
miRNA expression with exposure to ciga-
rette smoke, arsenic and air pollution [15–17]. 
miRNA regulation represents a mechanism 
through which genes involved in different 
biological processes can be regulated simul-
taneously  [18]. Furthermore, miRNAs regu-
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late genes that participate in several pathways ranging 
from the regulation of biosynthetic process to nervous 
system development [19–21].

Growing evidence has shown that host factors such 
as sex are associated with interindividual differences 
in gene expression in human and animal models. 
Mele  et  al. identified 92 protein-coding genes differ-
entially expressed in males and females across multiple 
human tissues  [22]. In agreement with human stud-
ies, Yang et al. identified 2871 genes from the mouse 
genome with differential expression by sex in multiple 
somatic tissues  [23,24], while another study identified 
25 of 376 miRNAs in fetal mouse lung that were also 
differentially expressed by sex  [25]. Sex-specific differ-
ences were also shown for DNA methylation and his-
tone acetylation. For example, Tsai et al. reported sex 
differences in histone acetylation in neonatal mouse 
brain  [26]. Similarly, Xu  et  al. have demonstrated 
sex bias in the methylome and transcriptome of the 
human prefrontal cortex [27]. We recently reported on 
sex differences in genome-wide DNA methylation in 
newborns [28].

miRNA expression may also differ by sex but 
data are limited. In animal models, the majority of 
the reported studies have used brain samples  [2,29]. 
For example, 149 miRNAs were described as dif-
ferentially expressed in neonatal mouse brain, with 
almost one third regulated by sex-chromosome-
mediated mechanisms, and approximately 72 identi-
fied miRNAs were potentially under estrogen regula-
tion [29–31]. Another study has shown that sex-specific 
miRNA expression was induced in mouse brain after 
radiation, suggesting inherent sex-biased control of 
miRNA expression  [32]. In that study, miR-29a and 
miR-29c were detected as significantly downregu-
lated in the female brain when compared with male 
mice. As a consequence, DNA methyltransferases 
DNMT3a and DNMT3b, that are miR-29 family 
target genes, were reported as significantly upregu-
lated in the female mice [32]. In addition, two studies 
conducted using rodent brain have reported estrogen 
regulation in DNA methylation and predicted regula-
tion in miR-29a cluster [33,34]. Murphy et al. detected 
that miR-200 family was differentially expressed by 
sex in the brain of rat pups. They discovered that the 
miR-200 gene targets are linked to gonadotropin-
releasing hormone receptor pathway suggesting that 
there is a relationship between gonadal hormone 
release-function and miRNAs  [35]. To date, limited 
data are available on sex difference in miRNA expres-
sion in humans. One small study (n = 18) reported 40 
miRNAs that were differentially expressed by sex in 
the human prefrontal cortex  [20]. A few studies have 
examined sex-related differences in profiles of circu-

lating plasma miRNAs in adults but were limited 
either by small sample size or low number of miRNAs 
assessed [36–39]. For example, one study found no dif-
ferences by sex in miRNA expression of 108 miRNAs 
characterized in 20 adults  [39]. In another human 
study, (n = 18) four miRNAs (out of 534 miRNAs) 
were significantly upregulated in women  [38], while 
yet another study reported seven out of 179 candidate 
miRNAs to be differentially expressed by sex  [36]. 
To our knowledge, no data are available on genome-
wide miRNA expression (miRNAome) differences 
by sex in children. The aim of this study was to use 
targeted next-generation sequencing to investigate 
miRNA expression in cord blood and characterize the 
differences among newborn boys and girls.

Materials & methods
Samples
A random subset of term singletons (45 boys and 44 
girls) with sufficient blood specimens available for 
miRNA analysis was selected from the CHAMACOS 
study, a well-characterized birth cohort followed by 
the Center for Environmental Research on Children’s 
Health  [40,41]. Study protocols were approved by the 
University of California, Berkeley Committee for Pro-
tection of Human Subjects. Written informed consent 
was obtained from all mothers.

RNA was purified from 20 μl of buffy coat sepa-
rated by centrifugation from the cord blood and 
banked at -80°C the School of Public Health Bio-
repository. Cells were lysed in a guanidinium-based 
solution, followed by an acid–phenol:chloroform 
extraction and addition of the miRNA homogenate 
following manufacturer’s instructions. Initial pilot 
studies performed in our laboratory indicated that 
the buffy coat fraction of blood that contains all 
white blood cells provides the highest RNA yields 
compared with clot and serum (data not shown). 
This data, together with a number of published stud-
ies demonstrating the utility of miRNA expression 
data from buffy coat fraction in human population 
studies  [42–46] informed our decision to use RNA 
from buffy coats as starting material for the analysis 
of miRNA expression in cord blood of CHAMACOS 
newborns. Isolated RNA was purified by solid-phase 
extraction on glass-fiber filter columns provided in 
the mirVana™ miRNA isolation kit. Concentration 
and quality of RNA was measured using the Nano-
Drop 2000 Spectrophotometer (Thermo Scientific, 
MA, USA). Only samples with 260/280 ratio greater 
than 1.9 were retained for the analyses. RNA qual-
ity was assessed using the 2100 Bioanalyzer (Agilent, 
CA, USA). Purified RNA was stored at -80°C until 
analysis.
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Analysis of miRNA expression by targeted 
sequencing
Isolated RNA from the 89 newborns was used for 
miRNA profiling experiments. After addition of three 
randomly selected replicates, we assayed a total of 
92 samples. The EdgeSeq miRNA Whole Transcrip-
tome Assay from HTG Molecular Diagnostics, Inc. 
(AZ, USA) was used to measure miRNA expression. 
This novel platform provides a hybrid system combin-
ing a nuclease-free library preparation for specific tran-
scripts followed by next-generation sequencing (NGS) 
for quantitation of the transcripts  [47]. It exhibits sev-
eral key advantages including relatively simple sample 
preparation that does not require reverse transcription, 
adenylation or ligation, all steps that can potentially 
introduce bias. It also has a broad dynamic range with 
relatively high reproducibility as well as good sensitiv-
ity and specificity [48,49]. The assay version used in this 
study included a total of 2280 transcripts made up 
of 2256 mature miRNAs (referenced from miRBase 
v20), 13 housekeeping (HK) mRNAs, six positive 
controls (synthetic spike-ins and their complements), 
and five negative controls (plant genes)  [50]. 100 ng 
of RNA was used per reaction to measure miRNA 
expression. Sample processing and library preparation 
of the samples were conducted following the protocol 
of the HTG EdgeSeq miRNA Sample Prep Pack and 
the Sequencing Tag Pack (HTG Molecular Diagnos-
tics, Inc.). The positive control PhiX from Illumina 
was used in this experiment (Illumina, CA, USA). 
Concentration of the prepared dual-indexed libraries 
was measured on Qubit 3.0 and Bioanalyzer was used 
to assess the purity and size of the fragments of inter-
est. Prior to pooling, Kapa qPCR (Kapa Biosystems, 
Inc., MA, USA) was used to quantify the NGS librar-
ies. Libraries from the 92 samples were then pooled in 
equal amounts and clustered with a concentration of 
5 pmol in one lane each of a single-read flow cell using 
the cBot (Illumina). 5% PhiX was also included, as 
per the loading guidelines for HTG EdgeSeq libraries. 
50 cycles were sequenced on a HiSeq 2000 (Illumina) 
using high-output mode, with FASTQ-only output. 
Sequence analysis was carried out according to manu-
facturer instructions using EdgeSeq Parser software 
(HTG Molecular Diagnostics, Inc.).

Validation of differentially expressed miRNAs 
using nCounter miRNA expression assays
To validate our findings in another platform, we 
measured miRNA expression in a subset of miRNAs 
(n = 30) that were found to be upregulated (hsa-
miR-1304-3p, hsa-miR-127-5p, hsa-miR-127-3p, 
hsa-miR-1469, hsa-miR-6724-5p, hsa-miR-4488, 
hsa-miR-4443, hsa-miR-4787-5p, hsa-miR-638, hsa-

miR-3928-3p, hsa-miR-4448, hsa-miR-663a, hsa-
miR-4516, hsa-miR-452-5p), downregulated (hsa-
miR-374b-5p, hsa-miR-301a-3p, hsa-miR-30b-5p, 
hsa-let-7d-5p, hsa-miR-30e-3p, hsa-let-7e-5p, hsa-let-
7f-5p, hsa-miR-331-3p, hsa-miR-30c-5p, hsa-let-7a-5p) 
or unchanged (hsa-miR-181a-5p, hsa-miR-148a-3p, 
hsa-miR-340-5p, hsa-miR-30e-5p, hsa-miR-30a-5p, 
hsa-miR-30d-5p) in boys compared with girls using a 
custom designed nCounter miRNA expression assay 
(NanoString Technologies, WA, USA). miRNAs cho-
sen for validation were based on availability of the 
assay and fold change levels. Isolated RNAs from 142 
CHAMACOS boys and girls (100 ng per sample) were 
used for the expression assay per the manufacturer’s 
recommended protocol.

Statistical analysis
Development of miRNA-filtering steps
The count data from the 92 RNA samples (including 
three replicates) were generated and exported from 
the EdgeSeq assay for further filtering and processing 
steps. The data from three newborns were randomly 
selected and assayed as intra-assay technical replicates. 
After excluding probes for HK mRNAs, positive and 
negative controls and miRNAs with expression counts 
of 0 across all samples (n = 2), 2254 miRNAs remained 
in the analysis (Figure 1).

We tested three methods of miRNA filtering: 
1) mean/median filters; 2) expression percentile 
threshold filtering and 3) variance percentile thresh-
old filtering. The mean and median filtering method 
included only miRNAs that have: a mean read count 
over all 89 samples greater than one, and at least 25% 
of read counts across all samples that were non zero. 
The expression and variance percentile threshold filter 
included the 25% of miRNAs with the largest aver-
age read count and read count variance, respectively. 
To evaluate and compare the ability of each filter to 
exclude less informative miRNAs, we tested the ability 
of each filtered miRNA group to match intrasample 
replicates. We ran a multinomial logistic regression 
for each of the 2254 miRNAs, training on the first 
set of replicate samples. The outcome was the sample 
ID, and raw read counts were the explanatory variable. 
This classification algorithm was applied to the second 
set of replicate samples, rendering a set of predicted 
sample classifications for samples with known sample 
ID. We generated a confusion matrix for a multilevel 
variable and calculated three diagnostic criteria: area 
under the curve, sensitivity and specificity. The expres-
sion 25th percentile threshold filter was selected based 
on the high values observed using the diagnostic cri-
teria. Figure 2 shows that diagnostic criteria tend to be 
higher for more aggressive filters 2 and 3. For example, 
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Figure 1. miRNA filtering and diagnostics.
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for the mean/median filter, specificity was relatively 
low (0.54), and sensitivity was also less than desirable 
(0.74). Even at the 50th expression percentile, sensitiv-
ity was still only 0.79. This is why we applied the 25th 
percentile filter, and miRNAs with sensitivity above 
0.84 were retained. In addition, the best observed 
average specificity was achieved in miRNA group 
with the highest expression. Furthermore, after the 
25th expression percentile filter was applied, average 
area under the curve ranged from 0.89 to 0.93. Simi-
lar diagnostics were observed for the 25th percentile 
variance filter (data not shown). Since mean/median 
filtering was not quite adequate, we chose to proceed 
using more aggressive expression and variance thresh-
old filtering at the 25th percentile yielding two groups 
of miRNAs: firstly, the highest expressing 25% of the 

miRNAs (n = 564) and secondly, the highest 25% of 
the miRNAs by variation in expression (n = 564).

We also compared methods of filtering by looking at 
overall counts per method and the overlap in retained 
miRNAs after each filtering procedure. There were 
1128, 564 and 338 miRNAs after percentile threshold 
filtering at 50th, 25th and 15th expression thresholds, 
respectively. Firstly, the mean/median filter method 
retained a total of 1502 miRNAs. The expression and 
variance filters retained the same number of miRNAs 
(n = 564) because they both were set for the top 25th 
percentile. Overall, the most highly variable miRNAs 
also had the highest expression values. In fact, the over-
lap between the two groups was quite substantial. Of 
the two groups of top 25% highest expressors and top 
25% of highest varying miRNAs, 544 miRNAs belong 
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Figure 2. Classification diagnostics by increasing miRNA expression. The best sensitivity and specificity were 
obtained when using the expression 25% filter. The mean/median filter was not adequate and achieved very low 
specificity.
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to both groups. Additionally, 20 miRNAs were unique 
to each of the two groups. Since the two groups were 
so similar, we chose to report all subsequent analyses 
using the results for the highest expressors group.

Normalization of HTG miRNA expression data
After applying the top 25% high expression filter, 564 
miRNAs from 89 newborns were assessed for differ-
ential expression. We considered five normalization 
techniques: median house-keeping, upper quartile, 
trimmed mean, removed unwanted variance (RUV) 
and full quantile normalization  [51,52]. We examined 
plots of the first and second principal components 
across samples and box plots of the normalized expres-
sion values to evaluate normalization procedures. Box 
plots revealed that full quantile normalization best 
centered and standardized expression distributions 
across samples. To further decrease technical varia-
tion, we applied RUV normalization after full quantile 
normalization. We found that full quantile with RUV 
best decreased overall variation among reads while 
maintaining separation in the first principal compo-
nent by sex and this normalization procedure was used 
for subsequent analysis. Figure 3 shows box plots of 
relative log

2
 miRNA expression in boys and girls across 

86 samples before and after normalization (full quan-
tile and RUV). We calculated a mean SD of miRNA 
expression and found that overall variance was similar 
in boys and girls (average SD of log

2
 miRNA expres-

sion 2.879 and 2.878, respectively). However, using 
the Brown–Forsythe test for equality of variance, we 
found that 94 out of 564 miRNAs (top 25% highest 
expression) had unequal variances between boys and 
girls.

Analysis of differential expression between boys 
& girls
With the EdgeR package  [53], we used the Cox–Reid 
profile-adjusted likelihood to estimate the common 
and miRNA-specific dispersion using the full-quantile 
normalized expression values, taking into account 
sex and the factor of unwanted variation estimated 
by RUV  [54]. We then performed a generalized linear 
model (GLM) likelihood ratio test to fit negative bino-
mial GLMs with the Cox–Reid dispersion estimates 
using the EdgeR package. Results were very similar 
when we ran the analysis using the R package LIMMA. 
p-values were adjusted using the Bonferroni procedure.

Normalization & differential expression of 
nCounter miRNA expression data
miRNA counts were background corrected using 
the geometric mean of the negative control probes 
included in the nCounter assay. To account for sources 
of variation related to the nCounter platform, counts 
were first normalized relative to ligation controls. This 
was followed by a second normalization step using the 
geometric mean of three normalizers included in the 
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Figure 3. Comparative variability of miRNA expression in newborn boys 
and girls. Box plots of (A) raw and (B) full quantile normalization with 
removed unwanted variance (k = 1) normalized to relative log2 expression. 
RUV: Removed unwanted variance.
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custom panel that had low variance (hsa-miR-30d-5p, 
has-miR-181a-5p and hsa-miR-340-5p). Background 
correction and normalization were performed in 
nSolver 3.0 software (NanoString Technologies). Dif-
ferential expression analysis was performed using the 
EdgeR package to fit a negative binomial GLM.

Coordinates of sex-associated miRNAs in the 
human genome & miRNA clusters
miRBase v.20 [55], the central publicly available reposi-
tory for miRNA research data was used to retrieve infor-
mation about miRNA genome coordinates and miRNA 
clusters [56]. Manhattan plots were used to show the dis-

tribution of the differentially expressed miRNAs by sex 
genome-wide. The R package qqman  [57] was used to 
generate the plots. Chi-square tests were used to deter-
mine whether differentially expressed miRNAs were 
overrepresented in certain chromosomes compared 
with the overall distribution of all mature miRNAs 
across chromosomes in miRBase v20.

In silico miRNA target prediction & miRNA 
pathway analysis
The 94 miRNAs that were different by sex were used 
as input information for target predictions using 
ComiR [58] and Tarbase v6.0 [59]. ComiR [60] works as 
prediction tool that uses miRNA expression to improve 
and combine multiple miRNA targets for each of the 
four widely used prediction algorithms: MiRanda  [61], 
TargetScan  [62], PITA  [63] and mirSVR  [64]. The com-
posite scores of the four algorithms are created using 
a support vector machine trained on Drosophila Ago1 
immunoprecipitation data. The composite score thresh-
old used in ComiR analysis was 0.75. Tarbase v.6.0 was 
used to identify experimentally validated targets from 
the 94 miRNAs hits using BiomaRt [65]. Two out of the 
94 differentially expressed miRNAs (hsa-miR-15a-5p 
and hsa-miR-33a-5p) have experimentally validated 
mRNA targets in Tarbase v.6.0. Additionally, we found 
validated targets for all 94 miRNAs on a more recent 
version of miRTarBase  [66], although the support for 
most of these was not very strong. However, 18 of the 
miRNAs had targets that had more than suggestive evi-
dence. This provides additional support to the hits we 
report in this study.

A final list of miRNAs was generated by the union of 
predicted and validated mRNA targets and used as the 
input data for functional annotation analysis. It was con-
ducted employing ConsensusPathDB [67,68], a pathway 
tool of the Max Planck Institute for Molecular Genetics. 
Using the Web interface of the database, an over-rep-
resentation analysis was conducted. Raw p-values were 
calculated using the whole-human genome as a back-
ground list. It determines the size set of each gene ontol-
ogy term (biological process gene ontology [GO] terms, 
level 4), and accounts for the number of genes present 
in our input list. Adjustment of p-values was performed 
using the default parameters together with the Ben-
jamini–Hochberg false discovery rate (FDR), shown as 
q-values (q < 0.05). Visualization and categorization of 
GO terms by semantic similarity dimension reduction 
was performed by reduce + visualize gene ontologies 
(REVIGO) [69].

Results
Among the high-expression group of miRNAs, we iden-
tified 94 miRNAs that were differentially expressed in 
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cord blood buffy coat samples between boys and girls 
after Bonferroni correction for multiple testing. Table 1 
shows log

2
 expression from a total of 94 miRNAs that 

were differentially expressed in the EdgeSeq experiment. 
Furthermore, mean miRNA expression was higher in 
boys compared with girls for the majority of differentially 
expressed miRNAs (85 out of the 94 miRNAs).

Sex-associated miRNAs & their distribution by 
chromosomes & participation in clusters
The majority of the miRNA hits were found on auto-
somes (96%), with only a small fraction (4%) identi-
fied on the X chromosome and none on the Y chromo-
some (Supplementary Table 1 & Figure 4). This does not 
differ significantly from the distribution of all-mature 
miRNAs located in autosomes and sex chromosomes 
(∼7%) according to miRBase v20. Similarly, many of 
the chromosomes with the most sex-associated hits were 
those that also have the most miRNAs in them (Chr 
1, 9, 11, 14 and 19), representing 39% of the hits. Two 
chromosomes, Chr 3 and 22, were significantly enriched 
for miRNAs differentially expressed in boys and girls. 
For instance, we found that 10.5% of the sex-biased hits 
were in Chr 3, whereas only 4.8% of all-mature miRNAs 
(miRBase v20) are located in Chr 3 (Chi-square 
p = 0.008). While about 2.6% of all-mature miRNAs 
are located in Chr 22, we observed 7.4% of sex-associated 
hits in this chromosome (Chi-square p = 0.003).

To evaluate the participation of the miRNAs differ-
entially expressed by sex in our newborns in miRNA-
clusters, we used the miRBase database, with the clus-
ter criteria that included miRNA genes located within 
10 Kb of distance on the same chromosome and some-
times functionally connected across different chromo-
somes  [70,71]. Among 94 sex-associated miRNAs, 17 
belong to 16 well-known miRBase clusters distributed 
across 11 different chromosomes (chr 9, 12, 13, 14, 16, 
17, 19, 20, 21, 22; Supplementary Table 1 & Figure 4). 
Among those 11 chromosomes, the number of miRNA 
clusters linked to sex-biased miRNAs ranged from 1 to 
3. On chromosome 14 and X, three sex-biased miR-
NAs belonged to miRBase miRNA clusters. However, 
at closer examination, two of the clusters on Chr14, per 
miRBase, in fact belong to the same large cluster that 
was previously described as C14MC  [72,73]. There is 
currently no uniform nomenclature for miRNA clus-
ters, for example, C14MC has also been referred to the 
miR-379/miR656 cluster  [74], the Mirg cluster  [75] or 
the miR 379/miR-410 cluster [76].

Pathway analysis of differentially expressed 
miRNAs
A total of 571 predicted mRNA targets was identified 
by in silico analysis for the 94 miRNAs differentially 

expressed by sex. According to Tarbase (v 6.0), only 
2 of the 94 hits had experimentally validated tar-
gets (hsa-miR-15a-5p and hsa-miR-33a-5p had 188 
and 98 mRNA targets, respectively). Examining the 
union of predicted and validated miRNA target genes 
(n = 771) for enrichment of particular GO terms, 
we identified 100 pathways that were significantly 
enriched after controlling for FDR (FDR p < 0.05; 
Supplementary Table 2). The miRNA-related GO 
terms showed that the most prominent sex associations 
in newborns fell into nine broad categories including: 
nervous system development, synaptic transmission, 
regulation of primary metabolism, post-transcriptional 
gene silencing, intracellular transport, nucleic acid 
metabolism, RNA metabolism, protein methylation, 
and chromatin organization (Figure 5).

Validation of differentially expressed miRNAs 
by nCounter miRNA expression assay
To validate our findings from the EdgeSeq miRNA 
Whole Transcriptome Assay, we selected 30 miRNAs 
that were either unchanged, upregulated or downregu-
lated between boys and girls to run in the nCounter 
miRNA expression array (Supplementary Table 3). 
The unchanged miRNAs (determined by EdgeSeq) 
remained unchanged between boys and girls when 
assayed by nCounter. Of the miRNAs selected for 
validation that were upregulated in the EdgeSeq assay, 
12 of the 14 (86%) also had positive log

2
-fold change 

values by nCounter. Of those, three miRNAs were 
significant (FDR-adjusted p < 0.05; hsa-miR-1469, 
hsa-miR-4488, hsa-miR-663a) and several (n = 5) 
were borderline significant (FDR-adjusted p < 0.10). 
The set of downregulated miRNAs did not validate in 
the nCounter assay, however, it is important to note 
that the downregulated miRNAs from the EdgeSeq 
assay were not as strongly associated with sex (larger 
p-values) compared with the upregulated miRNAs 
and that the majority of hits were upregulated.

Discussion
In the current study, we assessed miRNAome in cord 
blood buffy coat samples of 89 newborns, and identi-
fied 94 miRNAs differentially expressed between boys 
and girls. For most of these miRNAs, expression levels 
were higher in boys than in girls. We were able to vali-
date some, but not all of the upregulated miRNAs using 
another assay platform (nCounter). Sex-associated hits 
were distributed unevenly among chromosomes and 
were linked with 16 miRNA clusters according to the 
miRBase registry. Among 100 identified pathways for 
predicted in silico gene targets, categories for nervous 
system development, RNA metabolic processes and 
post-transcriptional gene silencing were significantly 
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Table 1. Differentially expressed miRNAs by sex in newborns.

miRNA MIMAT ID Boys Girls Overall LFC1   FC2   p-value

hsa-miR-  log2 mean 
expression

Variance log2 mean 
expression

Variance log2 mean 
expression

Variance      

6753-5p  0027406 7.8 10.04 5.73 0.65 6.78 6.42 2.07 4.20 1.03 × 10-19

602 0003270 5.68 6.37 3.97 2.45 4.84 5.12 1.71 3.27 4.15 × 10-6

4417 0018929 6.58 5.75 4.99 2.21 5.79 4.6 1.59 3.01 3.85 × 10-6

452-5p 0001635 6.08 4.37 4.52 1.08 5.31 3.33 1.56 2.95 2.42 × 10-11

4792 0019964 11.8 3.11 10.25 1.57 11.03 2.94 1.55 2.93 1.03 × 10-7

4739 0019868 7.96 6 6.41 0.44 7.2 3.82 1.55 2.93 1.18 × 10-15

4271 0016901 7.09 6.06 5.6 0.23 6.35 3.71 1.49 2.81 9.44 × 10-18

8071 0030998 6.55 1.67 5.11 0.63 5.84 1.67 1.44 2.71 2.30 × 10-16

3197 0015082 7.6 6.31 6.27 0.98 6.94 4.08 1.33 2.51 6.33 × 10-13

6799-5p 0027498 8.09 3.03 6.76 0.79 7.43 2.35 1.33 2.51 7.08 × 10-11

6741-5p 0027383 9.07 1.92 7.8 0.85 8.45 1.78 1.27 2.41 7.32 × 10-10

6875-5p 0027650 5.18 3.14 3.91 0.54 4.55 2.24 1.27 2.41 3.17 × 10-11

8078 0031005 7.19 5.29 5.93 0.95 6.57 3.52 1.26 2.39 1.45 × 10-12

1292-3p 0022948 8.24 2.34 7.03 1.91 7.64 2.47 1.21 2.31 2.11 × 10-4

6780b-5p 0027572 7.19 5.08 6.04 0.32 6.62 3.03 1.15 2.22 1.74 × 10-12

3178 0015055 10.26 5.45 9.11 0.3 9.69 3.21 1.15 2.22 2.45 × 10-13

6126 0024599 10.72 3.44 9.6 0.25 10.16 2.16 1.12 2.17 6.15 × 10-12

6877-5p 0027654 5.68 1.34 4.56 0.52 5.13 1.24 1.12 2.17 6.64 × 10-9

4449 0018968 6.16 2.09 5.06 0.52 5.62 1.6 1.1 2.14 6.36 × 10-9

4281 0016907 12.32 2.52 11.22 1.22 11.77 2.16 1.1 2.14 1.90 × 10-4

4478 0019006 6.09 1.45 5.06 0.69 5.58 1.34 1.03 2.04 1.84 × 10-6

1914-5p 0007889 4.36 1.41 3.33 0.53 3.85 1.24 1.03 2.04 1.96 × 10-7

4516 0019053 13.87 1.71 12.87 1.54 13.37 1.86 1 2.00 1.93 × 10-3

3142 0015011 7.22 1.62 6.22 0.31 6.73 1.21 1 2.00 2.82 × 10-9

663a 0003326 9.84 2.52 8.85 0.54 9.35 1.77 0.99 1.99 1.30 × 10-7

663b 0005867 5.95 2.87 4.97 0.76 5.46 2.05 0.98 1.97 2.13 × 10-6

8069 0030996 6.1 1.29 5.14 0.45 5.62 1.1 0.96 1.95 3.73 × 10-8

4505 0019041 6.68 0.87 5.73 0.79 6.21 1.05 0.95 1.93 9.84 × 10-5

6729-5p 0027359 6.96 2.43 6.02 0.3 6.5 1.59 0.94 1.92 2.36 × 10-10

3940-5p 0019229 6.09 2.49 5.16 0.41 5.63 1.67 0.93 1.91 2.84 × 10-8

6798-5p 0027496 6.07 1.15 5.15 0.58 5.62 1.07 0.92 1.89 2.37 × 10-5

3652 0018072 5.13 1.88 4.24 0.29 4.69 1.28 0.89 1.85 1.13 × 10-8

6829-5p 0027558 4.85 0.75 3.97 0.5 4.41 0.82 0.88 1.84 3.60 × 10-6

6786-5p 0027472 9.05 2.86 8.18 0.26 8.62 1.75 0.87 1.83 4.08 × 10-9

4651 0019715 7.41 1.05 6.56 0.74 6.99 1.08 0.85 1.80 9.75 × 10-4

6124 0024597 6.31 1.05 5.46 0.45 5.89 0.92 0.85 1.80 7.96 × 10-6

4448 0018967 12.1 1.03 11.26 0.83 11.69 1.1 0.84 1.79 1.17 × 10-2

3928-3p 0018205 4.08 2.18 3.25 1.08 3.67 1.79 0.83 1.78 1.51 × 10-2

149-3p 0004609 8.91 1.41 8.08 0.35 8.5 1.05 0.83 1.78 1.85 × 10-7

FC2: Fold change; LFC1: Log
2
-fold change; MIMAT: Mature miRNA miRBase accession.
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miRNA MIMAT ID Boys Girls Overall LFC1   FC2   p-value

hsa-miR-  log2 mean 
expression

Variance log2 mean 
expression

Variance log2 mean 
expression

Variance      

638 0003308 8.77 2.42 7.94 0.44 8.36 1.6 0.83 1.78 1.10 × 10-8

4787-5p 0019956 10.49 1.33 9.73 0.62 10.11 1.11 0.76 1.69 3.14 × 10-5

3656 0018076 11.38 2.84 10.64 0.75 11.02 1.93 0.74 1.67 1.58 × 10-5

3648 0018068 4.03 2.16 3.3 0.62 3.67 1.52 0.73 1.66 1.97 × 10-6

127-3p 0000446 6.41 0.52 5.68 0.57 6.05 0.67 0.73 1.66 1.30 × 10-3

4443 0018961 9.61 1.46 8.9 0.35 9.26 1.03 0.71 1.64 6.48 × 10-6

6088 0023713 7.44 0.67 6.76 0.54 7.1 0.71 0.68 1.60 1.89 × 10-3

4488 0019022 13.06 1.97 12.39 0.86 12.73 1.52 0.67 1.59 1.91 × 10-3

4463 0018987 7.42 0.85 6.75 0.3 7.09 0.69 0.67 1.59 2.82 × 10-5

6724-5p 0025856 5.96 1.5 5.3 0.25 5.63 0.98 0.66 1.58 6.06 × 10-6

616-5p 0003284 6.35 0.7 5.69 0.48 6.02 0.69 0.66 1.58 1.26 × 10-3

4419b 0019034 4.64 0.64 3.99 0.53 4.32 0.69 0.65 1.57 1.70 × 10-2

4534 0019073 5.03 0.49 4.39 0.49 4.71 0.59 0.64 1.56 1.26 × 10-3

6086 0023711 5.37 0.39 4.74 0.28 5.06 0.43 0.63 1.55 4.62 × 10-5

4442 0018960 4.8 0.75 4.18 0.6 4.49 0.76 0.62 1.54 4.67 × 10-2

2861 0013802 10.22 1.76 9.63 0.31 9.93 1.12 0.59 1.51 3.12 × 10-5

7845-5p 0030420 4.46 1.26 3.88 0.48 4.17 0.95 0.58 1.49 3.72 × 10-3

1469 0007347 4.45 1.96 3.87 0.43 4.16 1.27 0.58 1.49 1.06 × 10-5

1207-5p 0005871 6.51 0.59 5.93 0.38 6.22 0.57 0.58 1.49 1.70 × 10-3

6085 0023710 6.08 0.46 5.5 0.37 5.79 0.5 0.58 1.49 2.53 × 10-3

6851-5p 0027602 4.29 0.74 3.71 0.35 4 0.62 0.58 1.49 1.40 × 10-3

6727-5p 0027355 6.7 1.89 6.13 0.68 6.42 1.36 0.57 1.48 2.31 × 10-3

6894-5p 0027688 5.59 0.48 5.02 0.43 5.31 0.53 0.57 1.48 1.67 × 10-2

762 0010313 9.03 1.53 8.47 0.13 8.75 0.91 0.56 1.47 1.06 × 10-6

4481 0019015 4.5 0.61 4 0.31 4.25 0.52 0.5 1.41 2.58 × 10-2

5787 0023252 10.29 1.76 9.8 0.54 10.05 1.2 0.49 1.40 2.80 × 10-2

4763-3p 0019913 6.32 0.45 5.84 0.36 6.08 0.46 0.48 1.39 5.47 × 10-3

4674 0019756 4.66 2.61 4.19 0.65 4.43 1.68 0.47 1.39 2.23 × 10-4

6764-3p 0027429 6.02 0.41 5.55 0.27 5.79 0.39 0.47 1.39 1.05 × 10-2

127-5p 0004604 7.59 0.72 7.12 0.22 7.36 0.52 0.47 1.39 8.90 × 10-3

4497 0019032 14.53 0.84 14.06 0.39 14.3 0.67 0.47 1.39 1.52 × 10-2

566 0003230 5.93 0.42 5.47 0.36 5.7 0.44 0.46 1.38 2.23 × 10-2

6781-5p 0027462 4.4 1.29 3.95 0.43 4.18 0.91 0.45 1.37 1.12 × 10-2

1268b 0018925 8.86 0.49 8.41 0.4 8.64 0.49 0.45 1.37 1.44 × 10-2

6791-5p 0027482 4.83 0.32 4.39 0.22 4.61 0.32 0.44 1.36 1.75 × 10-2

6090 0023715 10.55 1.77 10.12 0.32 10.34 1.09 0.43 1.35 9.37 × 10-5

6756-5p 0027412 5.87 0.55 5.44 0.16 5.66 0.4 0.43 1.35 1.42 × 10-3

4690-5p 0019779 4.45 0.55 4.03 0.22 4.24 0.42 0.42 1.34 1.12 × 10-2

1227-5p 0022941 9.57 0.53 9.16 0.23 9.37 0.42 0.41 1.33 6.75 × 10-4

FC2: Fold change; LFC1: Log
2
-fold change; MIMAT: Mature miRNA miRBase accession.

Table 1. Differentially expressed miRNAs by sex in newborns (cont.).
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enriched for sex-biased miRNAs. To our knowledge, 
there are no previous publications on sex-related 
differences in the miRNAome of newborn children.

Although some methods and pipelines for prepro-
cessing of miRNA data have been published [52,77,78], 
there is no clear consensus on which filtering and 
normalization steps are the most effective for analy-
sis of miRNAome datasets. To achieve detailed char-
acterization of the miRNAome by next-generation 
sequencing, we first explored three different data fil-
tering approaches to minimize technical variability. 
Using diagnostic criteria of specificity and sensitiv-
ity to select the most appropriate filtering methods, 
we found that the highest levels of sensitivity and 
specificity were best achieved when we applied a filter 
using the top 25% expression or variance threshold. 
Following filtering steps, the most commonly used 
normalization technique for miRNA sequencing 
data in other studies is quantile normalization [53,57]. 
We tested quantile normalization in addition to four 
other common normalization techniques and found 
that full quantile normalization followed by RUV 
normalization produced the most optimal results. 
RUV has been successfully applied in the analysis of 
large datasets derived from RNA-seq [79] and metabo-
lomic [80] experiments [54]. Our filtering and normal-
ization pipeline resulted in minimization of technical 
variability, and enabled us to identify biological vari-

ability of miRNA expression in boys and girls. This 
newly developed pipeline may be useful for analy-
sis of miRNA sequencing data generated in future 
population studies.

In our study, the majority of miRNA hits differen-
tially expressed between boys and girls (96%) were in 
autosomes. This preliminary finding points to possible 
regional differences in miRNA regulation and impact. 
Based on chromosomal distribution of the sex-biased 
miRNAs, we detected that 54% of our hits were located 
on seven chromosomes. Those with the highest num-
ber of locations ranging between six and ten included 
chromosomes of three main size groups of human 
karyotype including large Chr3 and X, medium-sized 
Chr 9, 11 and 14, and the small Chr 19 and 22. Some 
other chromosomes have fewer hits (1–5). In addition, 
we identified two miRNAs that belong to C14MC 
cluster (hsa-miR-127-3p and hsa-127-5p) that may act 
in concert since they also belong to a common precur-
sor (mature miRNA start 101349372 and 101349338, 
respectively). Our data show similar expression levels 
for these two miRNAs. In our study, we did not find 
a significant enrichment of differentially expressed 
miRNAs in sex chromosomes. There are at least 113 
miRNAs, representing approximately 7% of total 
human miRNAs, located on the X chromosome, and 
only two miRNAs on the Y chromosome  [81]. In our 
study, miR-424-3p was differentially expressed in the 

miRNA MIMAT ID Boys Girls Overall LFC1   FC2   p-value

hsa-miR-  log2 mean 
expression

Variance log2 mean 
expression

Variance log2 mean 
expression

Variance      

4758-5p 0019903 4.4 0.39 4 0.29 4.2 0.38 0.4 1.32 5.54 × 10-3

6821-5p 0027542 5.52 0.8 5.13 0.32 5.32 0.6 0.39 1.31 1.72 × 10-2

4466 0018993 11.64 1.27 11.26 0.26 11.45 0.8 0.38 1.30 4.46 × 10-4

6803-5p 0027506 7.48 2.1 7.1 0.25 7.29 1.21 0.38 1.30 2.12 × 10-5

7109-3p 0028116 5.84 0.48 5.48 0.13 5.66 0.34 0.36 1.28 1.61 × 10-2

708-5p 0004926 4.79 0.25 5.16 0.31 4.97 0.31 -0.37 -1.29 9.31 × 10-3

590-5p 0003258 7.05 0.47 7.46 0.35 7.26 0.45 -0.41 -1.33 1.76 × 10-2

1537-3p 0007399 4.78 0.45 5.21 0.31 4.99 0.42 -0.43 -1.35 1.94 × 10-2

15a-5p 0000068 13.13 0.63 13.65 0.43 13.39 0.59 -0.52 -1.43 7.45 × 10-3

424-3p 0004749 3.99 0.43 4.54 0.35 4.26 0.46 -0.55 -1.46 9.19 × 10-4

33a-3p 0004506 3.93 0.66 4.5 0.57 4.21 0.69 -0.57 -1.48 7.56 × 10-3

33b-5p 0003301 5.2 0.76 5.78 0.85 5.49 0.88 -0.58 -1.49 2.29 × 10-2

33a-5p 0000091 5.86 0.79 6.46 0.48 6.16 0.72 -0.6 -1.52 3.83 × 10-2

4454 0018976 11.37 1.14 12.44 0.71 11.9 1.21 -1.07 -2.10 1.08 × 10-2

20a-3p 0004493 4.28 2.12 5.42 0.56 4.85 1.66 -1.14 -2.20 6.73 × 10-3

7975 0031178 8.63 4.19 10.46 1.65 9.53 3.76 -1.83 -3.56 1.88 × 10-2

FC2: Fold change; LFC1: Log
2
-fold change; MIMAT: Mature miRNA miRBase accession.

Table 1. Differentially expressed miRNAs by sex in newborns (cont.).
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Figure 4. Manhattan plot of -log10 Bonferroni-adjusted p-values for the group of miRNAs filtered by their expression in different 
chromosomes. The dashed red line indicates the Bonferroni cut-off set at 8 × 10-5 that was calculated by dividing an alpha = 0.05 by 
564 tests. Blue triangles represent miRNAs that were differentially expressed between boys and girls after Bonferroni correction.
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initial EdgeSeq experiment. This miRNA and sev-
eral other X chromosome-linked miRNAs (e.g., miR-
221/222 cluster, miR-98, miR-106a, miR-424 and 
miR-18b) have been implicated in immune regula-
tion [82]. It is possible that the number of differentially 
expressed miRNAs in boys and girls may change as 
they get older since previous studies have shown that 
sex hormones can affect regulation of miRNAs [83,84].

Previous miRNA studies [36,85], as well as our find-
ings reported here, indicate the importance of account-
ing for sex differences when analyzing miRNA data. 
Similar observations have been reported for other 
epigenetic marks including DNA methylation and 
histone acetylation [28,86–87]. Recent publications have 
provided strong evidence that sex influences genome-
wide DNA methylation in human biofluids including 
blood and saliva  [88,89]. Furthermore, Cordero  et  al. 
identified 117 miRNAs present in buffy coat samples, 
which were differentially methylated between men and 
women [90], some of which overlap with the cord blood 
miRNAs identified in our study. It is possible that dif-
ferences in oxidative stress, inflammation, growth and 
birth outcomes observed between newborn boys and 
girls [91–93] could be controlled, at least in part, by dif-
ferentially expressed miRNAs. Age is another host fac-
tor that can bias epigenetic markers  [94,95]. However, 

miRNAome has not yet been analyzed by age in infants 
or children, an important area for future research.

Additionally, the statistically significant miRNAs 
confirmed in the validation analysis (hsa-miR-4488, 
hsa-miR-663a, hsa-miR-1469) are biologically rele-
vant. For example, miR-4488 expression levels in white 
blood cells were lower in Behcet patients who experi-
ence systemic inflammation and high levels of IL-6, 
demonstrating a potential role in inflammation  [96]. 
Recent studies have demonstrated differences in IL-6 
levels between newborn boys and girls, with lower lev-
els reported in girls  [91], consistent with our miRNA 
findings. Serum expression of miR-663a has been 
associated with autism spectrum disorder  [97], which 
corroborates with our pathway analysis identifying 
many neurodevelopmental ontology terms that were 
strongly enriched among miRNA targets observed in 
CHAMACOS newborns. Neurodevelopmental ontol-
ogy terms have also been identified in epigenetic stud-
ies of sex differences in animals [2]. Our data also cor-
roborate some of the other sex-biased GO terms found 
in animal studies. For example, Murphy et al. reported 
synapsis-related ontologies in rat cortex tissue, and 
Shao et al. identified developmental processes, growth, 
cellular, RNA processes and metabolic processes as sex-
biased ontology terms in a nonhuman model [35,98]. In 
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Figure 5. Visualization of enriched gene ontology terms. Gene ontology terms significantly enriched (q ≤ 0.05) in 
miRNAs differentially expressed by sex.
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addition, our findings are in agreement with a study in 
children that reported sex differences in brain devel-
opment and maturation rates assessed by magnetic 
resonance imaging in older children (6–17 years of 
age)  [99]. This suggests that our miRNA expression 
data may contribute to better understanding of sex dif-
ferences in cognitive mechanisms in early life. miRNA 
expression analysis in animal models and human sur-
rogate tissues such as blood may also add a new layer 
in the complex and still not well-understood epigenetic 
processes that take place in human brain neurodevel-
opment.

Although there was a substantial overlap between 
the sex-associated pathways reported in animals and 
our results in human cord blood, some of the sex-
biased ontology terms may be newborn specific or tis-
sue specific. Many human population studies of epi-
genetic marks use blood as a surrogate for other target 
tissues because it is more readily available and does 
not require invasive procedures like biopsies. Many 
well-characterized birth cohorts and other longitudi-
nal studies with banked blood samples rely on them 
for analysis of DNA methylation and gene expression. 
Epigenetic changes in blood are relevant even if they 

do not capture all changes observed in organ-specific 
tissue [100]. An increasing number of studies have dem-
onstrated that levels of circulating miRNAs released 
by cells into the bloodstream are correlated with tis-
sue miRNA levels  [101,102]. Another limitation with 
use of blood specimens is that cell-type heterogeneity 
can act as a source of bias if cell-type proportions are 
associated both with miRNA expression levels and sex. 
Other studies have demonstrated that miRNA expres-
sion can be affected by cell composition [103]. However, 
in our study, blood cell proportions were not differ-
ent in cord blood samples of CHAMACOS boys and 
girls [104]. While use of cord blood is a potential limita-
tion in our study, the growing consensus is that blood 
can serve as an appropriate and informative model for 
studies of epigenetic mechanisms in birth cohorts. The 
effects of host factors in blood need further investiga-
tion and this data may contribute to identifying sensi-
tive windows [105] that can be used as opportunities for 
therapy [106].

Our study also focused solely on newborns, which 
may not be generalizable to other ages. Furthermore, 
although only three of the upregulated miRNAs were 
validated with high significance, additional miRNAs 
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were also more highly expressed in boys than girls 
by nCounter consistent with EdgeSeq – that adds up 
to more than 78% of tested upregulated miRNAs. 
Additionally, all six miRNAs that were not differ-
ent in boys and girls by EdgeSeq had the same result 
by nCounter. The discordance between different 
miRNA expression platforms is well known. In fact, 
the miRNA quality control study compared 12 dif-
ferent platforms and reported the average validation 
rate of any two platforms was 55%  [107], indicating 
that miRNAs that were not significant may still be 
biologically relevant. Additional replication on miR-
NAome sex differences in a larger number of sam-
ples, various age groups, as well as other populations 
is warranted. Finally, the main focus of our analysis 
was limited to the top 25% highly expressed miR-
NAs that produced the most reliable results. With 
the increase in the number of publicly available and 
better characterized miRNA data from population 
and mechanistic studies, the role of sex on miRNA 
expression and clustering can be explored in more 
depth.

Conclusion
Our study described the differential expression of 
the miRNAome in newborns boys and girls, which 
provides novel resources for better understanding 
of epigenetic regulation in early life stages. Using 
pathway analysis, we found that neurodevelopment, 
RNA metabolism and metabolic ontology terms 
were enriched among the targets from sex-associated 
miRNA. To our knowledge, this is one of the first 
studies to characterize the miRNAome in children 
using next-generation sequencing with a focus on 
differences by sex.

Future perspective
Understanding of molecular mechanisms that can 
explain the basis for sex differences in susceptibility 
to diseases and environmental exposures is of critical 
importance, and miRNA expression has an excellent 
potential to produce critical insights. Given that very 
limited data so far are available for miRNAome in 

human tissues, more studies in different age groups 
and populations, in healthy subjects and patients 
with various health conditions are warranted. Addi-
tional interesting angle of future research will be on 
longitudinal studies of sex differences for epigenetic 
marks, and whether sex can modify the relationship 
of environmental exposures with these modifications.
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Executive summary

•	 Among more than 2200 miRNAs characterized by next-generation sequencing in cord blood from 89 newborn 
children, we identified 94 miRNAs differentially expressed by sex. In our validation experiments, most 
upregulated miRNAs remained more highly expressed in boys but only a few were statistically significant by FDR.

•	 A majority (96%) of these miRNAs were located on autosomes, and their expression was higher in boys than in 
girls.

•	 The sex-associated miRNA gene targets were mainly involved in nervous system development, nucleic acid 
metabolism and transcription control.

•	 Accounting for host factors like sex in miRNA expression and other epigenomic analyses is essential for human 
studies and may increase sensitivity of an assessment of their relation with health and environmental exposures.



1632 Epigenomics (2016) 8(12) future science group

Research Article    Lizarraga, Huen, Combs, Escudero-Fung, Eskenazi & Holland

References
1	 Chuang JC, Jones PA. Epigenetics and microRNAs. Pediatr. 

Res. 61(5 Pt 2), R24–R29 (2007).

2	 McCarthy MM, Nugent BM. At the frontier of epigenetics of 
brain sex differences. Front. Behav. Neurosci. 9, 221 (2015).

3	 Maccani MA, Marsit CJ. Epigenetics in the placenta. Am. J. 
Reprod. Immunol. 62(2), 78–89 (2009).

4	 Javierre BM, Hernando H, Ballestar E. Environmental 
triggers and epigenetic deregulation in autoimmune disease. 
Discov. Med. 12(67), 535–545 (2011).

5	 Galea S, Uddin M, Koenen K. The urban environment and 
mental disorders: epigenetic links. Epigenetics 6(4), 400–404 
(2011).

6	 Feil R, Fraga MF. Epigenetics and the environment: 
emerging patterns and implications. Nat. Rev. Genet. 13(2), 
97–109 (2011).

7	 Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, 
and function. Cell 116(2), 281–297 (2004).

8	 Al-Kafaji G, Al-Mahroos G, Alsayed NA, Hasan ZA, 
Nawaz S, Bakhiet M. Peripheral blood microRNA-15a is a 
potential biomarker for type 2 diabetes mellitus and pre-
diabetes. Mol. Med. Rep. 12(5), 7485–7490 (2015).

9	 Dhayat SA, Husing A, Senninger N et al. Circulating 
microRNA-200 family as diagnostic marker in hepatocellular 
carcinoma. PLoS ONE 10(10), e0140066 (2015).

10	 Bottoni A, Calin GA. MicroRNAs as main players in the 
pathogenesis of chronic lymphocytic leukemia. Microrna 
2(3), 158–164 (2014).

11	 Seifoleslami M, Khameneie MK, Mashayekhi F et al. 
Identification of microRNAs (miR-203/miR-7) as potential 
markers for the early detection of lymph node metastases 
in patients with cervical cancer. Tumour Biol. doi:10.1007/
s13277-015-4265-6 (2015) (Epub ahead of print).

12	 Tomaszewski D. Biomarkers of brain damage and 
postoperative cognitive disorders in orthopedic patients: an 
update. Biomed. Res. Int. 2015, 402959 (2015).

13	 Zhang L, Xu Y, Jin X et al. A circulating miRNA signature 
as a diagnostic biomarker for non-invasive early detection 
of breast cancer. Breast Cancer Res. Treat. 154(2), 423–434 
(2015).

14	 Taylor EL, Gant TW. Emerging fundamental roles for 
non-coding RNA species in toxicology. Toxicology 246(1), 
34–39 (2008).

15	 Hou L, Barupal J, Zhang W et al. Particulate air pollution 
exposure and expression of viral and human microRNAs in 
blood: the Beijing truck driver air pollution study. Environ. 
Health Perspect. 124(3), 344–350 (2016).

16	 Rager JE, Bailey KA, Smeester L et al. Prenatal arsenic 
exposure and the epigenome: altered microRNAs associated 
with innate and adaptive immune signaling in newborn 
cord blood. Environ. Mol. Mutagen. 55(3), 196–208 
(2014).

17	 Wang G, Wang R, Strulovici-Barel Y et al. Persistence of 
smoking-induced dysregulation of miRNA expression in 
the small airway epithelium despite smoking cessation. 
PLoS ONE 10(4), e0120824 (2015).

18	 Zamore PD, Haley B. Ribo-gnome: the big world of small 
RNAs. Science 309(5740), 1519–1524 (2005).

19	 Hatziapostolou M, Polytarchou C, Iliopoulos D. miRNAs 
link metabolic reprogramming to oncogenesis. Trends 
Endocrinol. Metab. 24(7), 361–373 (2013).

20	 Ziats MN, Rennert OM. Identification of differentially 
expressed microRNAs across the developing human brain. 
Mol. Psychiatry 19(7), 848–852 (2014).

21	 Sun E, Shi Y. MicroRNAs: small molecules with big roles 
in neurodevelopment and diseases. Exp. Neurol. 268, 46–53 
(2015).

22	 Mele M, Ferreira PG, Reverter F et al. Human genomics. 
The human transcriptome across tissues and individuals. 
Science 348(6235), 660–665 (2015).

23	 De Coster S, van Leeuwen DM, Jennen DG et al. Gender-
specific transcriptomic response to environmental exposure 
in Flemish adults. Environ. Mol. Mutagen. 54(7), 574–588 
(2013).

24	 Yang X, Schadt EE, Wang S et al. Tissue-specific expression 
and regulation of sexually dimorphic genes in mice. Genome 
Res. 16(8), 995–1004 (2006).

25	 Mujahid S, Logvinenko T, Volpe MV, Nielsen HC. miRNA 
regulated pathways in late stage murine lung development. 
BMC Dev. Biol. 13, 13 (2013).

26	 Tsai HW, Grant PA, Rissman EF. Sex differences in histone 
modifications in the neonatal mouse brain. Epigenetics 4(1), 
47–53 (2009).

27	 Xu H, Wang F, Liu Y, Yu Y, Gelernter J, Zhang H. Sex-
biased methylome and transcriptome in human prefrontal 
cortex. Hum. Mol. Genet. 23(5), 1260–1270 (2014).

28	 Yousefi P, Huen K, Dave V, Barcellos L, Eskenazi B, 
Holland N. Sex differences in DNA methylation assessed 
by 450 K BeadChip in newborns. BMC Genomics 16, 911 
(2015).

29	 Pak TR, Rao YS, Prins SA, Mott NN. An emerging role for 
microRNAs in sexually dimorphic neurobiological systems. 
Pflugers Arch. 465(5), 655–667 (2013).

30	 Morgan CP, Bale TL. Sex differences in microRNA 
regulation of gene expression: no smoke, just miRs. Biol. Sex 
Differ. 3(1), 22 (2012).

31	 Morgan CP, Bale TL. Early prenatal stress epigenetically 
programs dysmasculinization in second-generation offspring 
via the paternal lineage. J. Neurosci. 31(33), 11748–11755 
(2011).

32	 Koturbash I, Zemp F, Kolb B, Kovalchuk O. Sex-specific 
radiation-induced microRNAome responses in the 
hippocampus, cerebellum and frontal cortex in a mouse 
model. Mutat. Res. 722(2), 114–118 (2011).

33	 Raiche J, Rodriguez-Juarez R, Pogribny I, Kovalchuk O. Sex- 
and tissue-specific expression of maintenance and de novo 
DNA methyltransferases upon low dose X-irradiation in 
mice. Biochem. Biophys. Res. Commun. 325(1), 39–47 
(2004).

34	 Mani ST, Thakur MK. In the cerebral cortex of female 
and male mice, amyloid precursor protein (APP) promoter 
methylation is higher in females and differentially regulated 
by sex steroids. Brain Res. 1067(1), 43–47 (2006).



www.futuremedicine.com 1633future science group

Sex-biased miRNAs in newborns    Research Article

35	 Murphy SJ, Lusardi TA, Phillips JI, Saugstad JA. Sex 
differences in microRNA expression during development in 
rat cortex. Neurochem. Int. 77, 24–32 (2014).

36	 Ameling S, Kacprowski T, Chilukoti RK et al. Associations of 
circulating plasma microRNAs with age, body mass index and 
sex in a population-based study. BMC Med. Genomics 8(1), 
61 (2015).

37	 Chen X, Ba Y, Ma L et al. Characterization of microRNAs in 
serum: a novel class of biomarkers for diagnosis of cancer and 
other diseases. Cell Res. 18(10), 997–1006 (2008).

38	 Duttagupta R, Jiang R, Gollub J, Getts RC, Jones KW. 
Impact of cellular miRNAs on circulating miRNA biomarker 
signatures. PLoS ONE 6(6), e20769 (2011).

39	 Mooney C, Raoof R, El-Naggar H, Sanz-Rodriguez A, 
Jimenez-Mateos EM, Henshall DC. High throughput 
qPCR expression profiling of circulating microRNAs reveals 
minimal sex- and sample timing-related variation in plasma of 
healthy volunteers. PLoS ONE 10(12), e0145316 (2015).

40	 Eskenazi B, Gladstone EA, Berkowitz GS et al. Methodologic 
and logistic issues in conducting longitudinal birth cohort 
studies: lessons learned from the Centers for Children’s 
Environmental Health and Disease Prevention Research. 
Environ. Health Perspect. 113(10), 1419–1429 (2005).

41	 Eskenazi B, Harley K, Bradman A et al. Association of in 
utero organophosphate pesticide exposure and fetal growth 
and length of gestation in an agricultural population. Environ. 
Health Perspect. 112(10), 1116–1124 (2004).

42	 Bollati V, Marinelli B, Apostoli P et al. Exposure to metal-
rich particulate matter modifies the expression of candidate 
microRNAs in peripheral blood leukocytes. Environ. Health 
Perspect. 118(6), 763–768 (2010).

43	 Donzelli S, Blandino G, Muti P. Use of buffy coat miRNA 
profiling for breast cancer prediction in healthy women. 
Methods Mol. Biol. 1379, 13–19 (2016).

44	 Georgiadis P, Hebels DG, Valavanis I et al. Omics for 
prediction of environmental health effects: blood leukocyte-
based cross-omic profiling reliably predicts diseases associated 
with tobacco smoking. Sci. Rep. 6, 20544 (2016).

45	 Hebels DG, Georgiadis P, Keun HC et al. Performance 
in omics analyses of blood samples in long-term storage: 
opportunities for the exploitation of existing biobanks in 
environmental health research. Environ. Health Perspect. 
121(4), 480–487 (2013).

46	 Voellenkle C, van Rooij J, Cappuzzello C et al. MicroRNA 
signatures in peripheral blood mononuclear cells of chronic 
heart failure patients. Physiol. Genomics 42(3), 420–426 
(2010).

47	 Girard L, Rodriguez-Canales J, Behrens C et al. An expression 
signature as an aid to the histologic classification of non-small 
cell lung cancer. Clin. Cancer Res. 22(19), 4880–4889 (2016).

48	 Reinholz M, Liu Q, Schwartz M, Luecke J, Roberts C, 
LaFleur B. Verification of miRNA expression using nuclease 
protection and targeted next-generation sequencing (NGS). 
Presented at: European Society of Human Genetics. Barcelona, 
Spain, 21–24 May 2016.

49	 Thompson D, Botros I, Harrison H, Modur V. Automated 
high fidelity miRNA expression profiling using nuclease 

protection coupled with next generation sequencing. 
Presented at: Merck Technology Symposium. Long Branch, NJ, 
6 May 2014.

50	 HTG Molecular. HTG EdgeSeq miRNA whole 
transcriptome assay (2016).  
www.htgmolecular.com/sites

51	 Garmire LX, Subramaniam S. Evaluation of normalization 
methods in mammalian microRNA-Seq data. RNA 18(6), 
1279–1288 (2012).

52	 Tam S, Tsao MS, McPherson JD. Optimization of miRNA-
seq data preprocessing. Brief. Bioinform. 16(6), 950–963 
(2015).

53	 Robinson MD, McCarthy DJ, Smyth GK. edgeR: a 
bioconductor package for differential expression analysis of 
digital gene expression data. Bioinformatics 26(1), 139–140 
(2010).

54	 Jacob L, Gagnon-Bartsch JA, Speed TP. Correcting gene 
expression data when neither the unwanted variation nor 
the factor of interest are observed. Biostatistics 17(1), 16–28 
(2016).

55	 Kozomara A, Griffiths-Jones S. miRBase: annotating high 
confidence microRNAs using deep sequencing data. Nucleic 
Acids Res. 42, D68–D73 (2014).

56	 miRBase.  
www.mirbase.org 

57	 Turner SD. qqman: an R package for visualizing GWAS 
results using Q-Q and Manhattan plots. biorXiv (2014). 
http://dx.doi.org/10.1101/005165 

58	 Coronnello C, Benos PV. ComiR: combinatorial microRNA 
target prediction tool. Nucleic Acids Res. 41, W159–W164 
(2013).

59	 Vergoulis T, Vlachos IS, Alexiou P et al. TarBase 6.0: 
capturing the exponential growth of miRNA targets with 
experimental support. Nucleic Acids Res. 40, D222–D229 
(2012).

60	 ComiR: Combinatorial miRNA target prediction tool. 
www.benoslab.pitt.edu/comir/

61	 Betel D, Wilson M, Gabow A, Marks DS, Sander C. The 
microRNA.org resource: targets and expression. Nucleic 
Acids Res. 36, D149–D153 (2008).

62	 Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting 
effective microRNA target sites in mammalian mRNAs. Elife 
4, doi:10.7554/eLife.05005 (2015) (Epub ahead of print).

63	 Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E. The 
role of site accessibility in microRNA target recognition. Nat. 
Genet. 39(10), 1278–1284 (2007).

64	 Betel D, Koppal A, Agius P, Sander C, Leslie C. 
Comprehensive modeling of microRNA targets predicts 
functional non-conserved and non-canonical sites. Genome 
Biol. 11(8), R90 (2010).

65	 Durinck S, Spellman PT, Birney E, Huber W. Mapping 
identifiers for the integration of genomic datasets with 
the R/Bioconductor package biomaRt. Nat. Protoc. 4(8), 
1184–1191 (2009).

66	 miRTarBase.  
http://mirtarbase.mbc.nctu.edu.tw/ 

www.htgmolecular.com/sites/default/files/HTG%20EdgeSeq%20miRNA%20WTA%20sales%20sheet.pdf
www.mirbase.org/
www.benoslab.pitt.edu/comir/
http://mirtarbase.mbc.nctu.edu.tw/


1634 Epigenomics (2016) 8(12) future science group

Research Article    Lizarraga, Huen, Combs, Escudero-Fung, Eskenazi & Holland

67	 ConsensusPathDB.  
http://consensuspathdb.org/ 

68	 Kamburov A, Stelzl U, Lehrach H, Herwig R. The 
ConsensusPathDB interaction database: 2013 update. 
Nucleic Acids Res. 41, D793–D800 (2013).

69	 Supek F, Bosnjak M, Skunca N, Smuc T. REVIGO 
summarizes and visualizes long lists of gene ontology terms. 
PLoS ONE 6(7), e21800 (2011).

70	 Guo L, Lu Z. Global expression analysis of miRNA gene 
cluster and family based on isomiRs from deep sequencing 
data. Comput. Biol. Chem. 34(3), 165–171 (2010).

71	 Guo L, Yang S, Zhao Y, Zhang H, Wu Q, Chen F. Global 
analysis of miRNA gene clusters and gene families reveals 
dynamic and coordinated expression. Biomed. Res. Int. 2014, 
782490 (2014).

72	 Seitz H, Royo H, Bortolin ML, Lin SP, Ferguson-Smith AC, 
Cavaille J. A large imprinted microRNA gene cluster at the 
mouse Dlk1–Gtl2 domain. Genome Res. 14(9), 1741–1748 
(2004).

73	 Morales-Prieto DM, Chaiwangyen W, Ospina-Prieto S 
et al. MicroRNA expression profiles of trophoblastic cells. 
Placenta 33(9), 725–734 (2012).

74	 Glazov EA, McWilliam S, Barris WC, Dalrymple BP. 
Origin, evolution, and biological role of miRNA cluster in 
DLK–DIO3 genomic region in placental mammals. Mol. 
Biol. Evol. 25(5), 939–948 (2008).

75	 Bortolin-Cavaille ML, Dance M, Weber M, Cavaille J. 
C19MC microRNAs are processed from introns of large 
Pol-II, non-protein-coding transcripts. Nucleic Acids Res. 
37(10), 3464–3473 (2009).

76	 Noguer-Dance M, Abu-Amero S, Al-Khtib M et al. 
The primate-specific microRNA gene cluster (C19MC) 
is imprinted in the placenta. Hum. Mol. Genet. 19(18), 
3566–3582 (2010).

77	 Sarver AL. Toward understanding the informatics and 
statistical aspects of micro-RNA profiling. J. Cardiovasc. 
Transl. Res. 3(3), 204–211 (2010).

78	 Meyer SU, Pfaffl MW, Ulbrich SE. Normalization strategies 
for microRNA profiling experiments: a ‘normal’ way to 
a hidden layer of complexity? Biotechnol. Lett. 32(12), 
1777–1788 (2010).

79	 Bernard E, Jacob L, Mairal J, Vert JP. Efficient RNA isoform 
identification and quantification from RNA-Seq data with 
network flows. Bioinformatics 30(17), 2447–2455 (2014).

80	 De Livera AM, Sysi-Aho M, Jacob L et al. Statistical methods 
for handling unwanted variation in metabolomics data. Anal. 
Chem. 87(7), 3606–3615 (2015).

81	 Pinheiro I, Dejager L, Libert C. X-chromosome-located 
microRNAs in immunity: might they explain male/female 
differences? The X chromosome-genomic context may affect 
X-located miRNAs and downstream signaling, thereby 
contributing to the enhanced immune response of females. 
Bioessays 33(11), 791–802 (2011).

82	 Dai R, Ahmed SA. Sexual dimorphism of miRNA 
expression: a new perspective in understanding the sex bias of 
autoimmune diseases. Ther. Clin. Risk. Manag. 10, 151–163 
(2014).

83	 Morgan CP, Bale TL. Sex differences in microRNA 
regulation of gene expression: no smoke, just miRs. Biol. Sex 
Differ. 3(1), 22 (2012).

84	 Yang Z, Wang L. Regulation of microRNA expression and 
function by nuclear receptor signaling. Cell Biosci. 1(1), 31 
(2011).

85	 Sharma S, Eghbali M. Influence of sex differences on 
microRNA gene regulation in disease. Biol. Sex Differ. 5(1), 
3 (2014).

86	 Huen K, Yousefi P, Bradman A et al. Effects of age, sex, 
and persistent organic pollutants on DNA methylation in 
children. Environ. Mol. Mutagen. 55(3), 209–222 (2014).

87	 McCarthy MM, Auger AP, Bale TL et al. The epigenetics 
of sex differences in the brain. J. Neurosci. 29(41), 
12815–12823 (2009).

88	 El-Maarri O, Becker T, Junen J et al. Gender specific 
differences in levels of DNA methylation at selected 
loci from human total blood: a tendency toward higher 
methylation levels in males. Hum. Genet. 122(5), 505–514 
(2007).

89	 Liu J, Morgan M, Hutchison K, Calhoun VD. A study of 
the influence of sex on genome wide methylation. PLoS ONE 
5(4), e10028 (2010).

90	 Cordero F, Ferrero G, Polidoro S et al. Differentially 
methylated microRNAs in prediagnostic samples of subjects 
who developed breast cancer in the European Prospective 
Investigation into Nutrition and Cancer (EPIC-Italy) cohort. 
Carcinogenesis 36(10), 1144–1153 (2015).

91	 Diaz-Castro J, Pulido-Moran M, Moreno-Fernandez J 
et al. Gender specific differences in oxidative stress and 
inflammatory signaling in healthy term neonates and their 
mothers. Pediatr. Res. 80(4), 595–601 (2016).

92	 Nagy E, Loveland KA, Orvos H, Molnar P. Gender-related 
physiologic differences in human neonates and the greater 
vulnerability of males to developmental brain disorders. 
J. Gend. Specif. Med. 4(1), 41–49 (2001).

93	 Verburg PE, Tucker G, Scheil W, Erwich JJ, Dekker GA, 
Roberts CT. Sexual dimorphism in adverse pregnancy 
outcomes – a retrospective Australian Population Study 
1981–2011. PLoS ONE 11(7), e0158807 (2016).

94	 Almen MS, Nilsson EK, Jacobsson JA et al. Genome-wide 
analysis reveals DNA methylation markers that vary with 
both age and obesity. Gene 548(1), 61–67 (2014).

95	 Simons RL, Lei MK, Beach SR et al. Economic hardship 
and biological weathering: the epigenetics of aging in a U.S. 
sample of black women. Soc. Sci. Med. 150, 192–200 (2016).

96	 Woo MY, Yun SJ, Cho O, Kim K, Lee ES, Park S. 
MicroRNAs differentially expressed in Behcet disease are 
involved in interleukin-6 production. J. Inflamm. (Lond.) 13, 
22 (2016).

97	 Mundalil Vasu M, Anitha A, Thanseem I et al. Serum 
microRNA profiles in children with autism. Mol. Autism 5, 
40 (2014).

98	 Shao CC, Xu MJ, Chen YZ, Tao JP, Zhu XQ. Comparative 
profiling of microRNAs in male and female Rhipicephalus 
sanguineus. Appl. Biochem. Biotechnol. 176(7), 1928–1936 
(2015).

http://consensuspathdb.org/


www.futuremedicine.com 1635future science group

Sex-biased miRNAs in newborns    Research Article

99	 De Bellis MD, Keshavan MS, Beers SR et al. Sex differences 
in brain maturation during childhood and adolescence. 
Cereb. Cortex 11(6), 552–557 (2001).

100	 Houseman EA, Kim S, Kelsey KT, Wiencke JK. DNA 
methylation in whole blood: uses and challenges. Curr. 
Environ. Health Rep. 2(2), 145–154 (2015).

101	 Grasso M, Piscopo P, Confaloni A, Denti MA. Circulating 
miRNAs as biomarkers for neurodegenerative disorders. 
Molecules 19(5), 6891–6910 (2014).

102	 Zen K, Zhang CY. Circulating microRNAs: a novel class of 
biomarkers to diagnose and monitor human cancers. Med. 
Res. Rev. 32(2), 326–348 (2012).

103	 Pritchard CC, Kroh E, Wood B et al. Blood cell origin 
of circulating microRNAs: a cautionary note for cancer 
biomarker studies. Cancer Prev. Res. 5(3), 492–497 (2012).

104	 Yousefi P, Huen K, Quach H et al. Estimation of blood 
cellular heterogeneity in newborns and children for 
epigenome-wide association studies. Environ. Mol. Mutagen. 
56(9), 751–758 (2015).

105	 Chiu YH, Hsu HH, Coull BA et al. Prenatal particulate 
air pollution and neurodevelopment in urban children: 
examining sensitive windows and sex-specific associations. 
Environ. Int. 87, 56–65 (2016).

106	 Bardin J. Neurodevelopment: unlocking the brain. Nature 
487(7405), 24–26 (2012).

107	 Mestdagh P, Hartmann N, Baeriswyl L et al. Evaluation of 
quantitative miRNA expression platforms in the microRNA 
quality control (miRQC) study. Nat. Methods 11(8), 
809–815 (2014).




