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A B S T R A C T

Severe acute respiratory syndrome coronavirus 2 (SARS CoV 2) induced cytokine storm is the major cause of
COVID‐19 related deaths. Patients have been treated with drugs that work by inhibiting a specific protein
partly responsible for the cytokines production. This approach provided very limited success, since there are
multiple proteins involved in the complex cell signaling disease mechanisms. We targeted five proteins:
Angiotensin II receptor type 1 (AT1R), A disintegrin and metalloprotease 17 (ADAM17), Nuclear
Factor Kappa B (NF κB), Janus kinase 1 (JAK1) and Signal Transducer and Activator of Transcription 3
(STAT3), which are involved in the SARS CoV 2 induced cytokine storm pathway. We developed machine‐
learning (ML) models for these five proteins, using known active inhibitors. After developing the model for
each of these proteins, FDA‐approved drugs were screened to find novel therapeutics for COVID 19. We iden-
tified twenty drugs that are active for four proteins with predicted scores greater than 0.8 and eight drugs
active for all five proteins with predicted scores over 0.85. Mitomycin C is the most active drug across all five
proteins with an average prediction score of 0.886. For further validation of these results, we used the PyRx
software to conduct protein–ligand docking experiments and calculated the binding affinity. The docking
results support findings by the ML model. This research study predicted that several drugs can target multiple
proteins simultaneously in cytokine storm‐related pathway. These may be useful drugs to treat patients because
these therapies can fight cytokine storm caused by the virus at multiple points of inhibition, leading to syner-
gistically effective treatments.
1. Introduction

The COVID‐19 pandemic caused by the severe acute respiratory
syndrome coronavirus 2 (SARS‐CoV‐2) resulted in millions of infected
patients and deaths worldwide [1,2]. Patients frequently encountered
complications with significant mortality, particularly by acute respira-
tory distress syndrome (ARDS) with a broad spectrum of issues such as
multiple‐organ failure, and blood clots [3,4]. There has been tremen-
dous amount of research going on towards discovering therapeutics
for the COVID‐19, and few drugs have been approved by FDA such
as remdesivir, Paxlovid and molnupiravir, and all of them mainly tar-
get viral proteins [5,6].

Mounting research data reveals that the severity of COVID‐19 is
mainly associated with an increased level of inflammatory mediators
including cytokines and chemokines such as interleukin IL-2, IL-7,
IL-8, IL-9, IL-10, IL-17, tumor necrosis factor alpha (TNFα), monocyte
chemoattractant protein 1 (MCP1), macrophage inflammatory pro-
tein 1 alpha (MIP1α), granulocyte colony stimulating factor (G-CSF),
receptor
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CXC‐chemokine ligand 10 (CXCL10), C‐reactive protein, ferritin, and

D-dimers in blood upon SARS-Co-V 2 infection [7–13]. More specifi-
cally, patients in intensive care unit (ICU) showed higher levels of
plasma inflammatory cytokines compared to non‐ICU patients [14],
and therefore fatal COVID‐19 is characterized as a cytokine release
syndrome (CRS) that is caused by a cytokine storm. Thus, targeting
proteins responsible for cytokine storm serves as a possible mechanism
of treatment for severe COVID‐19 patients [15–17].

The SARS‐CoV‐2 induced cytokine storm pathway [18] shows that
there are multiple proteins involved in the disease signaling mecha-
nisms. Cytokines are cell signaling, small protein molecules that aid
cell to cell communication in immune responses and stimulate the
movement of cells towards sites of inflammation, infection, and
trauma [19]. Cytokine Storm is essentially an unregulated immune
response characterized by an excessive release of multiple pro‐
inflammatory cytokines [20,21].

It has been identified that proteins such as Angiotensin II receptor
type 1 (AT1R), A disintegrin and metalloprotease 17 (ADAM17),
Nuclear Factor‐Kappa B (NF‐κB), Janus kinase 1 (JAK1) and Signal
transducer and activator of transcription 3 (STAT3) are implicated in
the production of proinflammatory cytokines and are considered as a
promising COVID‐19 therapeutic targets [15]. Therefore, discovering
a drug that can interfere with function of either all of the proteins or
most of them synergistically would become an effective therapeutic.
Based on literature search, as of now there are no such therapeutics
exist. Discovery of novel effective drugs and therapies for COVID‐19
is critical for tackling the disease. However, discovery and develop-
ment of effective therapies can be costly and time‐consuming. For this
reason, it would be ideal to repurpose already existing FDA‐approved
drugs given the proven safety, if they can also interfere effectively with
proteins responsible for cytokine storm.

In this pathway, we have investigated five proteins: AT1R,
ADAM17, NF‐κB1, JAK1, STAT3. AT1R signaling axis activates
ADAM17, which results in the production of cytokines TNFα and IL‐
6. The IL‐6 amplifier plays a critical role in chronic inflammatory dis-
eases. Activation of NF‐κB, JAK1 and STAT3 triggers the IL‐6 ampli-
fier, which causes the cytokine storm and leads to the ARDS and
multiple‐organ failure. Targeting these five proteins would prevent
cytokine storm to yield the best potent COVID‐19 drug.

Conventional methods of drug discovery are very expensive, com-
plex processes that takes several years to bring drugs to the clinic.
We used machine learning to expedite the drug discovery process by
screening FDA drugs, so that the treatment for COVID‐19 is available
sooner.

Recently, machine learning (ML) has emerged as an important
computational technique and has been applied to various tasks in drug
discovery, such as molecular property prediction and drug–target
interaction prediction. Given the great advantage of this computa-
tional tool in terms of the cost and time, in this project we have used
ML classification model with a random forest algorithm in WEKA soft-
ware [22] for repurposing of some FDA‐approved drugs for use as
COVID‐19 therapeutics. These predictions can then be confirmed
through structure‐based virtual screening, specifically using docking
simulators PyRX. The docking provides the binding energy for each
conformer and helps validate the accuracy of prediction.
2. Materials and methods

All research was completed in silico. The programs, tools, and web-
sites used: PubChem, ZINC database subsection covering FDA‐
approved drugs, Protein Data Bank (PDB), Pharmaceutical Data Explo-
ration Laboratory (PaDEL)‐Descriptor, Waikato Environment for
Knowledge Analysis (WEKA), PyRx, Discovery Studio Visualizer. A
flowchart of methods is presented in Fig. 1.
2

2.1. Data collection

Data for known active inhibitors and a control set of random com-
pounds obtained from PubChem are listed in Table 1. Data for FDA‐
approved drugs obtained from the ZINC database. Activity values
and SMILES (Simplified Molecular‐Input Line‐Entry System) [23] files
for compounds tested with the proteins AT1R, ADAM17, NF‐κB, JAK1,
STAT3 were retrieved from PubChem. To limit the tested compounds
to the strongest inhibitors, compounds with top 100 IC50 values were
chosen for training the model. One‐thousand‐six‐hundred‐fifteen FDA‐
approved drugs and their SMILES were retrieved from ZINC database.

The chemical structures are obtained in SMILES format. These files
are 1D ASCII strings that represent 3D molecular structure. An exam-
ple of top ten inhibitors for AT1R are shown in Table 2.

2.2. Molecular descriptor calculation

PaDEL‐Descriptor software [24] is used to calculate the molecular
descriptors for the compounds. These descriptors are the characteris-
tics of the compound that are used for training of the ML model. For
example, number of aromatic rings, number of pi bonds, molecular
weight, atom count, etc. The software currently calculates 1875
descriptors (1444 1D and 2D descriptors and 431 3D descriptors)
and 12 types of fingerprints. For our model building we have used
1444 1D and 2D descriptors.

2.3. InfoGain filtering in WEKA to select top 100 descriptors

To narrow down the calculated 1D and 2D descriptors from 1444 to
only the most significant ones, we utilized attribute selection from
WEKA [25], an open‐source ML software. The descriptors were ranked
by the Information Gain Attribute Evaluation (InfoGain) function, an
unsupervised machine‐learning algorithm, that measures how impor-
tant each descriptor is in determining whether a given molecule is
an inhibitor or not. InfoGain measures how each feature contributes
to decreasing the overall computational entropy. Only the most signif-
icant descriptors were selected to be used by the ML model to reduce
noise.

2.4. Building a machine-learning model

Machine‐learning model for each protein was built using WEKA
[22]. WEKA provides both standard and extensive ML functionality,
integrated within classification, regression, clustering and other pat-
tern recognition capabilities. Data for the model is prepared by taking
top 100 descriptors of top 100 inhibitors for each of the proteins and
100 control set of random molecules.

First, we submitted the prepared inhibitor file containing selected
and random compounds with their molecular descriptors into WEKA.
Then used the Random Forest algorithm 10‐folds cross validation to
build the model. Also, we used Random Forest algorithm with an
80/20% training–testing split to evaluate the performance of the
model. Such the training–testing split ensures that there is no overfit-
ting as 20% of the data. It was not used to build the model but used for
testing. Then we analyzed the model accuracy and elucidated the ROC
curves. Saved model was used in the next step to screen FDA‐ approved
drugs. The Receiver Operating Characteristic (ROC) curves were calcu-
lated to measure the effectiveness of the model. ROC curve summa-
rizes the prediction performance of a classification model at all
classification thresholds. Fig. 2a–2e present the ROC graphs for
machine‐learning models of proteins AT1R, ADAM17, NF‐κB, JAK1,
and STAT3. Model accuracy is 91.5–99.0% range and Area Under
the Receiver‐Operating Characteristic curve (AUROC) is 0.97–1.00.
That values confirm the accuracy of the models. Receiver‐Operating
Characteristic (ROC) curves for five proteins are shown in Fig. 2.



Fig. 1. Flowchart of the methods.

Table 1
Known inhibitors obtained from PubChem.

Protein Number of Known Inhibitors IC50 values range (μM)

AT1R 1192 0.00005–19.98
ADAM17 1813 0.000026–44.0
NF-κB 348 0.003–49.6
JAK1 4596 0.0000013–39.81
STAT3 588 0.0084–48.0

Table 2
The top ten inhibitors for AT1R.

Compound IC50 (nM)

BDBM50049199 0.05
Saralasin 0.06
2Botbmip 0.08
CHEMBL42775 0.01
CHEMBL158809 0.01
CHEMBL298417 0.01
BDBM50283219 0.01
BDBM50283237 0.01
BDBM50283194 0.01
BDBM50283245 0.01
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2.5. Screening of FDA-approved drugs using the model

FDA approved drugs are downloaded from ZINC database [26].
Using PaDEL‐Descriptor software, the molecular descriptors were cal-
culated for all the downloaded 1665 FDA‐approved drugs. Out of 1444
descriptors, the same 100 descriptors were selected as the training set
of the corresponding protein inhibitors. These were then screened with
the ML model built using WEKA. The output was analyzed for the pre-
3

diction scores and the predicted drugs were ranked based on the ML
predicted score. The predicted drugs were ranked for each protein
and averaged the score among all five proteins listed in Table S1 (Sup-
plementary information).



Fig. 2. Accuracies and AUROC of the predictions of inhibitors for five proteins related to cytokine storm in COVID-19: (a) AT1R Accuracy 98.5% and AUROC 99%;
(b) ADAM17 Accuracy 98.5% and AUROC 99%; (c) NF-κB Accuracy 96%, AUROC 99%; (d) JAK1 Accuracy 98.5%, AUROC 100%; (e) STAT3 Accuracy 91.5%,
AUROC 97.8%.

M.R. Gantla et al. Medicine in Drug Discovery 17 (2023) 100148

4



M.R. Gantla et al. Medicine in Drug Discovery 17 (2023) 100148
2.6. Docking of predicted FDA-approved drugs to selected proteins

To confirm the activity and binding to the protein, docking of pre-
dicted FDA‐approves drugs was performed using PyRx tool [27] with
Discovery Studio software [28] to visualize the results. For docking
the selected compounds, the crystal structure of the protein was down-
loaded from PDB [29,30] for each of the five proteins. PDB IDs for
selected proteins are AT1R−4ZUD, ADAM17–2FV5, NF‐κB–1SVC,
JAK1–4EI4, and STAT3–6NUQ. A binding active site is defined for
each protein based on the reported ligand interactions with protein.

To validate the specificity of the docked compounds, docking of
random compounds was also conducted. A random number generator
without repetition was used to obtain 100 random compound IDs and
to select entries from the PubChem database that correspond to the
random numbers obtained.

Each of the five proteins’ 3D structure with a known ligand was
downloaded from the PDB database. Each predicted FDA‐approved
drug’s 3D structure was downloaded from PubChem. From each down-
loaded protein–ligand complex, the ligand was removed in Discovery
Studio and remained protein was loaded into PyRx. The active sites
of each protein were defined as a box that encompasses residues of
the binding site. Then we ran the AutoDock Wizard for the top 12 pre-
dicted compounds, 12 best‐activity known compounds, and 12 random
compounds with each protein. For each compound nine conformers
were generated and docked. In total there were generated 324 con-
formers, which were docked to each protein. The docked protein–li-
gand complexes were analyzed to elucidate the interactions of
compounds with amino‐acid residues. Binding Free Energy values
are listed in Table 8.
3. Results

3.1. Machine-learning prediction results

The results of the ML models’ predictions were evaluated using
confusion matrices and their derivatives: the accuracy (ACC), precision
(PREC), Matthews correlation coefficient (MCC), true‐positive rate
(TPR) or recall (REC), false‐positive rate (FPR), as well as the area
under the receiver operating characteristic (ROC) curve (AUROC),
and the area under the precision–recall curve (PRC area).

The weighted averages for each of these metrics are listed in
Table 3. The ROC curve compares the sensitivity and specificity across
a range of values. Thus, the vertical axis is the TPR, that is, the sensi-
tivity or recall; and the horizontal axis is the FPR or (1 − specificity).
The FPR is the probability of falsely classifying a positive class. The
model’s low FPR of 0.015 to 0.040 demonstrates a low probability of
wrongly classifying an inactive compound to active one. The TPR (sen-
sitivity) is the probability of correctly classifying a positive class. The
model’s high TPR of 0.915 to 0.985 indicates a high probability of cor-
rectly classifying an active compound. The large average AUROC value
0.978 to 1.0 indicates that the classification is accurate. Another way
to evaluate the performance of the proposed method is the PRC area,
which shows precision values for the corresponding sensitivity (recall,
Table 3
Performance of the developed ML models for the five proteins related to cytokine st

Protein ACC TPR FPR

AT1R 98.5 % 0.985 0.015
ADAM17 98.5 % 0.985 0.015
NF–κB 96.0 % 0.960 0.040
JAK1 98.5 % 0.985 0.015
STAT3 91.5 % 0.915 0.085

Note: ACC, accuracy; TPR, true-positive rate; FPR, false-positive rate; PREC, precis
operating characteristic curve; PRC area, area under the precision–recall curve.
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i.e., TPR) values. The model’s large PRC area value of 0.979 to 1.0
again shows the good performance of our method for all the five
proteins.

The predicted drugs were ranked for each protein and averaged the
score among all five proteins listed in Table S1 (Supplementary infor-
mation). Total 45 compounds found to be active inhibiting all five pro-
teins AT1R, ADAM17, NF‐κB, STAT3, JAK1. Forty‐five active
compounds with the greater than 0.6 average predictive score is
shown in Table S1.

Top eight FDA‐approved drugs predicted active for all five proteins
AT1R, ADAM17, NF‐κB, STAT3, and JAK1 are shown in Table 4.

Top 20 FDA‐approved drugs predicted active for four proteins
(AT1R, ADAM17, NF‐κB, STAT3) showed an average score of greater
than 0.83 are shown in Table 5.

Thirteen drugs (Table 5) showed average scores of greater than 0.9.
Abacavir and raltegravir (Table 5) showed top average scores of 0.96.
Chemical structures of top active compounds are shown in Fig. 3.

Current use of predicted active drugs is shown in Table S2 (Supple-
mentary information).
3.2. Docking results

Docking of the top three predicted FDA‐approved drugs mitomycin
C, abacavir and raltegravir with the proteins' binding sites are shown
in Fig. 4 and Fig. 5.

Mitomycin C docked with all five proteins showed binding affinity
ranging from −6.0 to −7.5 kcal/mol. (Table 6).

Abacavir docked with four proteins showed binding free energy
ranging from −6.1 to −8.6 kcal/mol (Table 7). Raltegravir docked
with four proteins showed binding energy ranging from −7.4
to −9.6 kcal/mol (Table 7) which is considered as reasonable binding
affinity.

Binding affinities calculated using PyRx docking for the top 12
compounds. Table 8 lists the top predicted active compounds docked
for all five proteins.

The box plots (Fig. 6) demonstrated that the predicted inhibitors
had the better binding affinities than known and random compounds.
They were constructed using binding affinities obtained from docking
for predicted compounds, known inhibitors and control random com-
pounds and are shown in Fig. 6. Docking free energies are listed in
Table S3 (Supplementary information).

The box plots (Fig. 6) demonstrates that the predicted
inhibitors had an average binding affinity of −6.40 kcal/mol
(NF‐κB) to −8.37 kcal/mol for AT1R (Fig. 6a), which was better than
that of known inhibitors, which had an average of −6.0 kcal/mol for
STAT3 (Fig. 6e) to −7.63 kcal/mol for AT1R (Fig. 6). The control
group of random molecules had an average binding affinity of
−4.78 kcal/mol for NF‐κB (Fig. 6c) to −7.0 kcal/mol for ADAM17
(Fig. 6b). This confirms that the predicted inhibitors performed statis-
tically better than the control group.

In this study, five crucial proteins—AT1R, ADAM17, NF‐κB, JaK1,
STAT3—playing the important roles in cytokine production pathway
are targeted to predict the best potential drug for treatment of
orm in COVID–19.

PREC MCC AUROC PRC Area

0.985 0.970 0.999 0.999
0.985 0.970 0.999 0.999
0.961 0.921 0.993 0.993
0.985 0.970 0.999 0.999
0.915 0.830 0.978 0.979

ion; MCC, Matthews correlation coefficient; AUROC, area under the receiver-



Table 4
Eight compounds active for five proteins with greater than 0.85 average predictive score.

Name of Predicted Inhibitor Prediction score Average score ML Rank

AT1R ADAM17 NF-κB JAK1 STAT3

Mitomycin C 0.99 0.76 0.90 0.78 1.00 0.886 1
Valrubicin 0.97 0.73 1.00 0.71 1.00 0.882 2–3
Pomalidomide 1.00 0.76 0.92 0.73 1.00 0.882 2–3
Fludarabine 1.00 0.73 0.94 0.73 1.00 0.880 4
Clarithromycin 0.99 0.70 0.95 0.72 1.00 0.872 5–6
Trabectedin 0.99 0.75 0.91 0.71 1.00 0.872 5–6
Capreomycin 1.00 0.70 0.89 0.75 1.00 0.868 7
Sonidegib 0.91 0.72 0.94 0.71 0.98 0.852 8

Mitomycin C (Table 4) is top ranked FDA drug across all five proteins with average prediction score of 0.886.

Table 5
Twenty compounds active for four proteins with greater than 0.83 average predictive score.

Name of Predicted Inhibitor Prediction score Average score ML Rank

AT1R ADAM17 NF-κB STAT3

Abacavir 0.93 0.73 1.00 1.00 0.9600 1–2
Raltegravir 0.73 0.74 0.98 0.89 0.9600 1–2
Saxagliptin 0.99 0.88 0.97 1.00 0.9250 3–4
Valrubicin 0.97 0.73 1.00 1.00 0.9250 3–4
Pomalidomide 1.00 0.76 0.92 1.00 0.9200 5
Nimodipine 0.97 0.72 0.95 1.00 0.9175 6–7
Fludarabine 1.00 0.73 0.94 1.00 0.9175 6–7
Suvorexant 0.95 0.72 1.00 1.00 0.9150 8
Boceprevir* 0.72 0.72 0.99 0.97 0.9125 9–11
Mitomycin C 0.99 0.76 0.90 1.00 0.9125 9–11
Trabectedin 0.99 0.75 0.91 1.00 0.9125 9–11
Saquinavir 0.99 0.88 0.97 1.00 0.9100 12–13
Clarithromycin** 0.99 0.70 0.95 1.00 0.9100 12–13
Capreomycin 1.00 0.70 0.89 1.00 0.8975 14–16
Balsalazide 0.93 0.71 0.96 0.94 0.8875 14–16
Sonidegib 0.91 0.72 0.94 0.98 0.8875 14–16
Minocycline 0.73 0.74 0.98 0.89 0.8850 17
Eribulin 0.92 0.71 0.86 1.00 0.8500 18
Isradipine 0.98 0.72 0.94 1.00 0.8350 19–20
Cangrelor 0.96 0.70 0.95 1.00 0.8350 19–20

*Boceprevir [31] showed in-vitro activity for COVID-19.
**Clarithromycin [32,33] is in clinical trials to treat COVID-19.

Fig. 3. Chemical structures of the top predicted active for treatment of cytokine storm FDA-approved drugs: (a) mitomycin C; (b) abacavir; (c) raltegravir.
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COVID‐19 cytokine storm. Number of known inhibitors with reported
IC50 values for each protein obtained from PubChem were 1192, 1813,
348, 4596, and 588 respectively. Machine‐learning models developed
exhibited an accuracy ranging from 91.5 to 99.0%, with their AUROC
values ranging from 0.98 to 1.0, which is considered as excellent pre-
dictive performance of the models.

The box plots (Fig. 6) show that the predicted active compounds
have better binding energies than the already known inhibitors and
control set of random compounds. One can see that the predicted inhi-
bitors had an average binding affinity of −6.40 kcal/mol (NF‐κB)
to −8.37 kcal/mol (AT1R), which was better than that of known inhi-
6

bitors, which had an average of −6.0 kcal/mol (STAT3) to
−7.63 kcal/mol (AT1R). The control group of random molecules
had an average binding affinity of −4.78 kcal/mol (NF‐κB)
to −7.0 kcal/mol (ADAM17). This confirms the predicted inhibitors
performed statistically better than the control group.

From the docking results, binding free energy values ranging
from −6.0 to −9.6 kcal/mole targeted for five and four proteins
confirms that the predicted compounds bind at the active site of the
proteins. The amino acids that showed interaction in the docking
experiments for the top three drugs mitomycin C, abacavir and
raltegravir are listed in Table 9.



Fig. 4. Docking of mitomycin C with proteins: (a) AT1R; (b) ADAM17; (c) NF-κB; (d) JAK1; (e) STAT3.

M.R. Gantla et al. Medicine in Drug Discovery 17 (2023) 100148
From Table 9 one can see that AT1R’s binding residues—Tyr35,
Trp84, Val108, Arg167, and Ile288—are common for mitomycin C,
abacavir and raltegravir; ADAM170s binding residues—Glu406,
His405, Ile438, and Ala439—are common for abacavir and raltegravir;
7

NF‐κB’s binding residues—Lys52, Ala73, and Glu341—are for abacavir
and raltegravir; JAK10s binding residues—Asp1042, Gly884, and
His885—are common for abacavir and raltegravir; STAT30s binding
residue—Ser381—is for abacavir and raltegravir binding to STAT3.



Fig. 5. Docking of abacavir and raltegravir with proteins: (a) AT1R–abacavir; (b) ADAM17–abacavir; (c) NF-κB–abacavir; (d) JAK1–abacavir; (e) STAT3–abacavir;
(f) AT1R–raltegravir; (g) ADAM17–raltegravir; (h) NF κB–raltegravir; (i) JAK1–raltegravir; (j) STAT3–raltegravir.

M.R. Gantla et al. Medicine in Drug Discovery 17 (2023) 100148
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Fig. 5 (continued)

Table 6
Binding free energy for mitomycin C.

Protein Binding free energy (kcal/mol)

AT1R −7.5
ADAM17 −7.0
NF-κB −6.0
JAK1 −7.2
STAT3 −6.5

Table 7
Binding free energy for abacavir and raltegravir.

Protein Binding Free energy with
abacavir (kcal/mol)

Binding Free energy with
raltegravir (kcal/mol)

AT1R −7.8 −9.4
ADAM17 −8.6 −9.6
NF-κB −6.1 −7.4
STAT3 −7.2 −8.3

Table 8
Binding free energies of the top 12 ML-predicted FDA-approved drugs docked
using PyRx software.

Compound Binding free energy to

AT1R ADAM17 NF-κB JAK1 STAT3

Mitomycin C −9.2 −7.9 −6.1 −7.4 −6.7
Pomalidomide −8.5 −7.1 −5.9 −8.3 −7.2
Fludarabine −8.1 −9.1 −6.2 −8.1 −7.5
Sonidegib −10.1 −10.1 −7.3 −9.1 −8.5
Abacavir −9.6 −8.5 −7.8 −10.1 −7.9
Raltegravir −7.8 −7.3 −6.1 −7.7 −7.2
Saxagliptin −7.3 −8.6 −5.3 −6.9 −5.9
Nimodipine −7.9 −6.2 −6.4 −8.4 −7.5
Suvorexant −9.4 −8.9 −7.4 −9.7 −8.3
Boceprevir −8.6 −9.6 −6.8 −7.4 −7.8
Balsalazide −7.5 −7.1 −6.0 −7.2 −6.5
Minocycline −6.5 −7.0 −5.6 −7.2 −6.1
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Fig. 6. Free energies of docking interactions—docking scores—of predicted, known, and random compounds: (a) AT1R; (b) ADAM17; (c) NF-κB; (d) JAK1; and
(e) STAT3.
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These results support the idea that the compounds are binding at
the active site of protein and not at the non‐bonding sites, thus proving
that these compounds could act specifically on the protein makes them
some of the most promising candidates to treat COVID‐19.
10
4. Discussion

The main goal of this study was to predict the drugs that can target
as many as possible cytokine‐related genes. We know that there is a



Table 9
Summary of binding residues involved for each protein with top predicted
drugs. Bold are residues that are involved in binding to more than one
compound.

Protein
binding
residues

Mitomycin C Abacavir Raltegravir

AT1R Tyr35, Trp84,
Thr88,
Arg167,
Ile288

Tyr35, Trp84, Tyr87,
Tyr92, Ile288, Val108

Trp84, Val108, Arg167,
Lys199, Ile288

ADAM17 Gly354,
Ser355,
Ser360,
Gly362,
Thr461,
Ser457

Leu348, Glu398,
Val402, Glu406,
His405, Leu401, Try436,
Ile438, Ala439, Val440

Gly346, Thr347,
Leu348, Gly349,
Val402, Glu406,
His405, His415, Ile438,
Ala439

NF-κB Ser243,
Ser249,
Asp250,
Asp274,
Lys275,
Lys244

Arg54, Lys52, Ala73,
Lys252, Leu251, Glu341

Lys52, Gln53, Arg54,
Ala73, Glu341, Thr342

JAK1 Asp1003,
Gly884,
Asp1042

Gly887, Leu910, Leu922,
Leu1024, Gly884,
His885, Asp1042

Asp1039, His918,
Asp921, Lys1026,
Lys908, Leu1024,
Arg1002, His885

STAT3 Lys383,
Ser381,
Leu436,
His437

Gln247, Cys251, Ile252,
Pro256, Glu324, Arg325,
Asp334, Pro336

Asp371, Ser381, Leu430,
Leu438, Lys488, Val490
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number of such genes that are activated in response on SARS‐CoV‐2
viral proteins. Here we have a problem that is eternal for medicine.
We cannot prescribe more drugs than a set that would be tolerated
by the organism. Here we selected five genes that have to be targets
of inhibiting agent to prevent the cytokine storm or just decrease the
immune response to viral agents. Our model predicted drugs that
can simultaneously target at least four of such cytokine‐related genes.
Based on model's average prediction scores over 0.6, 45 FDA‐approved
drugs were predicted active, with 20 drugs having predicted scores
greater than 0.8 for 4 proteins (AT1R, ADAM17, NF‐κB, STAT3). Eight
FDA‐approved drugs had predicted scores over 0.85 for all five pro-
teins involved in the mechanism of the cytokine storm (AT1R,
ADAM17, NF‐κB, JAK1, STAT3). Mitomycin C is the most active drug
across all five proteins with an average prediction score of 0.886. Aba-
cavir and raltegravir are the top active compounds for four proteins
with average scores of 0.96.

We predicted several drugs that can target simultaneously several
proteins in cytokine storm related pathway. These may be useful drugs
to treat patients because these therapies can fight cytokine storm
caused by the virus at multiple points of inhibiting, leading to synergis-
tically effective treatments.

Mitomycin C ranked top with highest average scores for all five
proteins suggesting that it possesses all required chemical functional
groups with desired spatial arrangements, so that it can interact and
bind well with all proteins. Mitomycin C is approved drug for cancer
but has several side effects such as bone marrow suppression and sep-
ticemia because of leukopenia and needs to be further evaluated in
clinical experiments. We need to note that despite of clinical usage
in multiple cancers, mitomycin C has been reported with several
side‐effects and listed as potent DNA crosslinker. Furthermore, mito-
mycin C is a probable human carcinogen, classified as weight‐of‐
evidence Group B2 under the EPA Guidelines for Carcinogen Risk.
Abacavir and raltegravir with excellent predictive scores for four pro-
teins (except JAK1), suggesting that changes in chemical structure of
the drugs made the difference in biological activity.

Two of predicted drugs—boceprevir [31] and clarithromycin
[32,33] are already tested for COVID‐19 treatment.
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5. Conclusions

Our hypothesis that it is possible to develop a valid predicting
machine‐learning model to select the drugs that would target multi-
protein pathways for treatment of the COVID‐19 cytokine storm is con-
firmed and gave the model accuracy ranging from 91.5 to 99%, with
AUROC ranging from 0.978 to 1.0, considered as excellent predictive
performance of the models.

This study not only provides drug candidates that could treat
COVID‐19, but it also demonstrates the application of predictive mod-
els for multitarget drug discovery approach with machine learning.

Future steps for this project would be to confirm the inhibitory
activity of the predicted drugs against the target proteins in animal
models. We need to note that there are differences between the binders
(identified by computational screening) and the therapeutic active
drugs for specific diseases. The formers have to be further tested in
pharmacology experiments to know their actual action modes (ago-
nism, antagonism, inhibitory effect or so on). These drugs definitely
need to be tested in pharmacological experiments to establish the
mechanism of action before a clinical use. The methods of this study
could be extended to predictive models for discovering therapeutics
for other disease areas, such as chronic inflammatory diseases.
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