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Abstract

Resource allocation in massive MIMO for the next generation wireless

communications

by

I. Zakir Ahmed

Massive Multiple-Input Multiple-Output (MaMIMO) antenna framework is one

of the disruptive technologies that is shaping the current and future generations

of wireless communication standards. The requirements of 5G and 6G wireless

standards constitute significant improvements in spectral efficiency, throughput,

and network densification compared to the previous generations of wireless

standards. It would be impossible to attain such aggressive goals without

leveraging the advantages of the MaMIMO architectures. However, the

ramifications associated with MaMIMO architectures that comprise of a large

number of antennas and other components in its radio frequency (RF) chains are

decreased network energy efficiency (NEE) and increased hardware cost. At the

same time, the 5G and the 6G standards also mandate improvements in the

overall NEE by many orders of magnitude. As an example, the 5G standard

necessitates a 100x improvement in the overall NEE compared to the 4G

standard like LTE. Hence the design of the MaMIMO framework along with

baseband algorithms for optimal resource utilization to optimize performance

and power consumption is of paramount importance.

In this thesis, we focus on circumventing the challenges of power

consumption (or energy efficiency) of the MaMIMO transceiver systems by (a)

allocation of resources like ADC bit-resolution in each of the RF chains for

varying channel conditions and (b) by identifying phase shifts of the reflecting

xii



elements associated with the reconfigurable intelligent surfaces (RIS) in the

RIS-assisted MaMIMO systems to enable non-line-of-sight (NLOS)

communication between the transmitter and receiver of interest under

interference. Such MaMIMO frameworks are envisioned to be at the heart of the

next-generation wireless backhaul links in both vehicular and cellular networks.

The proposed resource allocation algorithms ensure optimal performance (energy

efficiency, throughput, and MSE) of the system under power constraints. The

MaMIMO components like hybrid precoder and combiner are also designed

jointly with resource allocation. The resource allocation algorithms are designed

to ensure reduced computational complexity! In addition, this thesis poses the

problem of constrained resource allocation in MaMIMO as a class of constrained

combinatorial problems and develops two information-theoretic algorithms,

namely Information-assisted dynamic programming (IADP) and

Information-directed branch-and-prune algorithm (IADP) to solve them. This

thesis expounds on the mathematical framework developed that forms the basis

of these algorithms and shows that the proposed algorithms guarantee

near-optimal performance with huge computational savings. The proposed

algorithms are used to solve resource allocation problems (a) and (b). Using

simulations it is shown that the proposed algorithms outperform the

state-of-the-art algorithms with significant computational savings! The proposed

algorithms also find applications in solving large-sized problems in other

domains like DNA sequencing, which is also examined briefly in this thesis.
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Chapter 1

Introduction

Mobile phones and the internet have revolutionized the way we interact,

communicate, learn, teach, entertain, work, and do business. The advancements

in wireless technology have a significant role in leading this revolution. As per

the estimates from "statistica", the number of mobile devices is expected to

reach 18 billion by 2025, an increase of 4 billion devices compared to 2020

levels [9]. This increase in the mobile-device users seeking data-intensive

applications calls for high throughput, spectrally efficient, low latency, and

energy savings requirements from the future cellular and connectivity standards.

The limitation of the wireless network will be always at the physical layer owing

to data transmission over the harsh wireless channel limited by the availability

of spectrum, the laws of the electromagnetic spectrum, and principles of

information theory [3]. The Multiple-Input Multiple-Output (MIMO)

technology and massive MIMO (MaMIMO) have shown great promise in both

research and practice to cater to the demands of future wireless standards.
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1.1 From MIMO to massive MIMO to mmWave

massive MIMO

In this section, we glimpse through an evolutionary path of MIMO

technology, discussing alongside its architectures, advantages, and limitation.

MIMO is a radio technology that utilizes multiple antennas at the transmitter

and the receiver to improve the throughput gains, reliability, spectral-, and

power efficiency compared to the traditional SISO systems. The traditional

small-scale MIMO systems initially were used to improve spatial diversity,

wherein the same data stream is transmitted through multiple antennas to

improve the bit-error rate performance and range of operation. Later, during the

early 90’s, the works by [10–12] gave way to spatial multiplexing of several data

streams. Interestingly, it was shown that significant capacity gains could be

obtained in a rich scattering environment. The multi-path wireless channel,

which impeded further improvements with spatial diversity framework was put

to advantage with spatial multiplexing. The two modes of operations of the

MIMO system are depicted in Fig. 1.1.

The demand for higher throughput and spectral efficiency is ever-increasing.

Spatial diversity (improves reliability) Spatial multiplexing (improves throughput)

Figure 1.1: Spatial diversity vs. spatial multiplexing [1, 2]
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This is a consequence of a large number of users being added to the cellular

network and using data-intensive applications. Also, not to mention the limited

spectrum availability. As a result, the future cellular and connectivity standards

propose aggressive requirements for throughput, reliability, and spectral

efficiency. Massive MIMO is a promising technology that has the potential to

cater to these demands. The seminal paper by Marzetta [13] is considered to be

the genesis of the Massive MIMO frameworks. The MaMIMO uses ten to

hundreds, sometimes thousands of antennas at its transceivers. This large array

of antennas offers more degrees of freedom in the spatial domain, which helps in

further increasing the throughput and reliability of the communication without

increasing bandwidth and transmit power.

A few common MaMIMO architectures are shown in Fig. 1.2. In the

point-to-point framework, a communication link between two transceivers

equipped with multiple antennas is considered. The common use-case scenario is

the communicating base stations (BS) in a wireless backhaul network. In a

multi-user architecture, a base station equipped with a very large number of

antennas communicates in the downlink to cater to multiple single antenna user

equipment (UE) simultaneously over the same frequency. Similarly, in the

uplink, a multiplicity of UE’s communicate simultaneously with the MaMIMO

BS over the same frequency, thus improving the throughput significantly. A

specific signal processing technique called precoding/combing is applied at the

base station to ensure the spatially multiplexed signals from several users are

recovered from the mutual interference among the several UE signals.

Since the congested sub-6Ghz band offers limited scope for large-bandwidth

operations with MaMIMO, the exploration of using MaMIMO at millimeter

wave (mmWave) bands (e.g., 28, 38, 60, and 73 Ghz) led to the inception
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Point-to-point MaMIMO

MU-MaMIMO downlink

MU-MaMIMO uplink

Figure 1.2: Massive MIMO architectures [3]
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mmWave MaMIMO [14]. The larger bandwidth translates to increased capacity

and data rate. Additionally, the millimeter wave bands offer the advantage of

antenna compactness owing to smaller wavelengths. The smaller wavelengths

and large antenna arrays enable adaptive beamforming techniques. However, the

challenges with mmWave MaMIMO are higher path loss, higher penetration loss,

significant atmospheric absorption, attenuation due to rain, and vulnerability to

blockages by objects compared to the sub-6Ghz bands. With directional

beamforming, the propagation losses can be alleviated. The beamforming also

helps in mitigating interference from other users and helps provide increased

throughput and energy efficiency [4]. A detailed survey of the mmWave MIMO

benefits, challenges, proposed solutions, open problems, and research directions

are discussed at length in [4]. A candidate 5G network architecture based on the

mmWave MaMIMO is shown in Fig. 1.3 [4].

Figure 1.3: A candidate 5G network architecture based on the mmWave MaMIMO [4]
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1.2 6G - Ultra MaMIMO, RIS-assisted

MaMIMO

The systems requirements for the 6th Generation of cellular standards (6G)

have been recently documented in ITU-T (Network 2030) [15–17]. These

requirements encompass very low-latency, extremely high-speed wireless

connectivity, throughput enhancements by multiple folds, and increased network

energy efficiency as compared to the 5G requirements. Some of the use cases

considered by 6G are Holographic communications, tactile and haptic internet,

extremely high rate access points up to 1Tb/s data rates, chip-chip

communication, and space-terrestrial integrated networks, to name a few. A

multiplicity of modifications to the existing physical layer attributes like

waveforms, modulation schemes, and coding schemes are required to cater to the

use cases discussed above. The use of Thz bands is envisioned for the 6G

standard. The massive MIMO will continue to evolve operating in Thz

frequencies thereby shrinking the antenna array sizes further and increasing the

number of antennas by an order of magnitude called ultra-massive MIMO

(uMaMIMO). Another technology that is being considered for 6G is

reconfigurable intelligent surfaces (RIS). Also referred to as large intelligent

surfaces (LIS) or holographic beamforming [18–20], The inception of LISs led to

the development of RIS [20–22]. They are designed to quasi-passively reflect the

incoming signals to a set of predefined outgoing directions programmatically.

This is achieved through tunable phase shifters without any active

downconversion/upconversion. The topics related to real-time steering of

reflected signals, control of reflections, interference minimization, and energy

consumption optimization are some of the actively perceived areas of research in
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this area.

A typical mmWave/THz point-to-point MaMIMO transceiver block diagram is

shown in Fig. 1.4. Traditionally with small-scale MIMOs, digital precoding at

the transmitter is used in combination with the digital combiner at the receiver.

They both are designed based on the wireless channel characteristics in between.

This effectively combats the interference among the various data streams being

transmitted over multiple antennas. However, with a large number of antennas

in MaMIMO systems, having the number of RF chains equal to the number of

antennas becomes formidable. Hence a combination of digital and analog

precoding and combining is used with a negligible loss [4]. This helps in having

the number of RF chains much smaller than the antennas. This method of

precoding and combing is called hybrid precoding and combining respectively.

This is illustrated in Fig. 1.4. The term analog precoding refers to a set of phase

shifters in the RF front end that controls the phase of the outgoing signal.

Hybrid precoding and combining is a key component of the mmWave/Thz

MaMIMO system to reduce the RF chains and reduce the cost and power

consumption in the MaMIMO transceiver considerably.

Figure 1.4: A typical mmWave MaMIMO transceiver with hybrid precoding and combing [5]
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1.3 Cell-free MaMIMO

Cell-Free Massive MIMO (CF-MaMIMO) system encompasses a large

number of low-power access points distributed over a large geographical area

that coherently serves a large number of UEs using the same time and frequency

resource [23]. The concept of a given BS serving a geographical area (cell) does

not exist in such systems. The main motivation behind cell-free architectures is

the poor performance of the cellular systems to handle a large number of

connections at the cell boundaries as they suffer from high interference. This

becomes crucial because of network densification and future standards seeking

larger throughputs for a large number of users with high reliability. The

CF-MaMIMO is a scalable version of MaMIMO that incorporates cooperative

multipoint joint processing [24, 25]. The signal processing for such systems is

discussed in detail in [26]. To some extent, Massive MIMO technology based on

the favorable propagation and channel hardening properties is used in Cell-Free

Massive MIMO [23]. It is also to be noted that the CF-MIMO is very different

compared to distributed MaMIMO, in which each cell is serviced by multiple

BS [27]. CF-MaMIMO for 6G wireless networks with a special focus on the

signal processing perspective is presented in [28]. A typical CF-MaMIMO

architecture is shown in Fig. 1.5.

1.4 Motivations and contributions

As seen from the previous sections, MaMIMO is one of the key technologies

that form the backbone for the next generation of wireless communication,

namely advanced 5G-NR 3GPP Rel.18 and evolutions beyond Rel.18 [29] into
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Figure 1.5: Cell-free MaMIMO architecture

6G standards [15, 30]. With the adoption of Ma-MIMO, the capacity of the

communication system is increased by many folds, either through spatial

multiplexing or multi-beamforming, or a combination of both. The MaMIMO

framework using mmWave and THz bands enables the use of large signal

bandwidths to push larger data through the wireless channel. However, the price

to pay for this- is the increased hardware complexity, cost, and poor energy

efficiency. With a large number of antennas and RF chains, the MaMIMO

system complexity and hence the resource contention becomes more apparent,

especially given the constraints. The examples of resources under consideration

could be power allocation to different users, ADC bit-resolution in a

variable-resolution ADC receivers on different RF chains, RIS phase-shift

settings in RIS-assisted MaMIMO systems, pilot assignment to neighboring

access points, beam steering, and many more. A non-optimal resource allocation

is MaMIMO systems imparts degraded system performance with poor EE,
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throughput loss, and unfavorable spectral efficiency. Hence there is a need for

optimal resource allocation algorithms that work in tandem with the constraints

to deliver optimal performance.

1.5 Thesis contribution

This section details the contributions of this thesis. It provides a brief

overview of the contents of each chapter. This thesis is presented in two parts.

In the first part, we solve two resource allocation problems in MaMIMO that are

of paramount interest in 6G-and-beyond standards. The second part of the

thesis details the mathematical foundations of the algorithms developed to solve

the problems in the first part. It also explores the resource-allocation problems

in MaMIMO as a general class of constrained combinatorial problems, which is

the basis of the development of the proposed information-theoretic algorithms

that ensure near-optimality guarantees.

1.5.1 PART-I : Constrained resource allocation in massive

MIMO

The first part of this thesis consists of three chapters that address two

important problems of constrained resource allocation in MaMIMO systems,

namely (a) variable-resolution ADC bit allocation and (b) RIS phase-shift

identification problem in RIS-assisted MaMIMO systems.
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Chapter 3 : Variable-resolution ADC bit allocation in massive MIMO

In traditional transceivers, the Power Amplifier (PA) is one of the most power-

hungry components on the transmitter side. However, with the massive MIMO

having a large number of RF paths and adopting larger signal bandwidths, the

high resolution (12bit or 16bit) Analog to Digital Converters (ADCs) take over

the PAs as the most power-hungry components of the transceiver. The power

consumed by an ADC is linearly proportional to its operating signal bandwidth

and exponentially proportional to its operating bit-resolution [31]. Thus, one of

the natural ways of mitigating the large power demand of the ADCs is by choosing

to use low-resolution ADCs like 1-bit-resolution ADCs or a few-bit-resolution (2−4

bits) ADCs on all the RF paths. However, this lends itself to performance trade-

offs with power consumption. It is shown in [6, 32–35] that to have an efficient

power vs. performance trade-off, the bit resolution on the ADCs needs to be

adapted to the changing channel conditions. Hence having variable resolution

ADCs that adapt resolution based on the channel conditions yields optimal power

vs. performance benefits.

In the previous works [35–37], a VR ADC bit-allocation (BA) algorithm has

been proposed. However, the criteria used for the BA don’t factor in the design

of the MaMIMO components like the hybrid precoder and combiner. Also, the

BA algorithms in the previous works don’t guarantee optimal performance. The

optimality is guaranteed if the bit allocation for any given channel matches the

exhaustive search (ES) algorithm under the same power constraint.

In this chapter, we elucidate a novel algorithm for VR ADC BA in Ma-MIMO

receivers that can improve performance with Mean Squared Error (MSE) and

throughput while providing better EE. An optimal BA condition is derived by

maximizing EE under a power constraint. Using simulations it is shown that
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the optimal BA thus obtained is exactly the same as that obtained using the

ES method with a significant reduction in computational complexity [32]. This

chapter is based on the papers [J1], [C1], [C2], and [C3] given in the "List of

publications".

Chapter 4 : ML-based VR ADC bit allocation in massive MIMO

Many of the VR ADC BA algorithms proposed earlier including the optimal

solution proposed in the chapter 3 rely on the assumption that a perfect channel

state information (CSI) is available both at the transmitter and the receiver.

However, the effect of imperfect CSI on BA algorithms would lead to a degradation

in performance and power consumption. Channel estimation (CE) in MaMIMO

and especially RIS-assisted MaMIMO is a challenging problem and has always

been an active area of research. The most common reasons for CE errors are (i) due

to correlated antennas in fading environments, (ii) channel reciprocity errors due

to asymmetric RF hardware transfer functions at transmitter and receiver in time-

division-duplex (TDD) systems, and (ii) estimation errors at low-SNR operating

points, to name a few [38–40]. Arriving at a mathematical formulation that works

best in both perfect and imperfect CSI operating conditions has always been a

challenge. This is true with the BA formalism as well. On the other hand, with

the widespread developments in computing speeds and machine-learning-based

approaches, one can derive relationships between stimulus and response to an

unknown system. Hence ML-based techniques have gained widespread popularity

in solving large-scale optimization problems that extract approximate solutions

close to ES by tuning the ML parameters appropriately. In this chapter, we use

a well-known and popular ML technique called deep neural networks (DNN) to

study the relationship between observed channels (including the ones with errors)

12



and the bit allocation. We propose a novel DNN-based algorithm to solve the BA

problem in mmWave MaMIMO backhaul receivers with and without perfect CSI.

The proposed method extracts solutions close to the ES method and demonstrates

a computational complexity advantage compared to ES after sufficient learning

of the channels presented to the system. This chapter is based on the paper [C5]

given in the "List of publications".

Chapter 5 : Discrete phase-shift identification of RIS in RIS-assisted

massive MIMO

Reconfigurable intelligent surfaces (RIS) are envisioned as a key enabler of

the 6th Generation of wireless communication standards [41]. The RIS consists

of a large number of low-cost passive elements whose phase shifts can be

controlled programmatically to smartly change the wireless channel between the

intended transmitter and the receiver to enhance the performance of the link

many folds [42]. This finds applications in enhancing the performance of the

wireless links in the non-line-of-sight (nLOS) channel conditions, especially when

used with MaMIMO transceivers in Terahertz bands [43–45]. However, RIS has

limited signal processing capability and cannot perform active transmitting or

receiving in general, which leads to new challenges in the physical layer design of

RIS wireless systems with massive MIMO [41]. However, Identifying the optimal

RIS phase shift is a non-convex NP-Hard combinatorial optimization

problem [46]. All the earlier works in the literature make convex approximations

of the objective function under consideration and solve the same using various

well-established algorithms, for example, Branch-and-Bound (BnB). None of the

existing works show theoretical guarantees for either optimality or

near-optimality, considering the original non-convex problem [47–55].
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In this chapter, we present a novel Information-Directed Branch-and-Prune

(IDBP) algorithm, in which, we, for the first time in the literature use an

information-theoretic measure to decide on the pruning rules in a tree-search

algorithm to arrive at the RIS phase-setting solution, which is vastly different

compared to the traditional branch-and-bound algorithm that uses bounds of

the cost function to define the pruning rules. We establish theoretical guarantees

for near-optimality, and the claims are substantiated using simulations [46]. This

chapter is based on the papers [J3] and [C8] given in the "List of publications".

1.5.2 PART-II : Constrained resource allocation in

massive MIMO as a class of constrained

combinatorial problems

The second part of the thesis comprises two chapters that focus on the

constrained resource allocation problem in its general form and propose two

novel information-theoretic frameworks to solve them optimally (in probability)

and in a computationally efficient way. They are (a) Information-assisted

dynamic programming (IADP) and (b) Information-directed branch-and-prune

algorithm.

Chapter 6 : Information-assisted dynamic programming (IADP)

The constrained discrete optimization (CDO) problems pose an immense

challenge to solve with provable accuracy and computational efficiency. These

problems, in general, are NP-Hard [56]. The resource allocation problems in

MaMIMO, including many other problems in wireless communication, signal
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processing, and machine learning (ML) fall into this category. Examples include

the ADC BA problem in MaMIMO receivers under power constraint [32, 57],

optimal resource selection for parameter estimation in MIMO radar [58],

multiple relay selection in cooperative communication [59], Image restoration

and segmentation [60, 61], DNA fragment assembly problem [57, 62], graph

fragmentation problems in the pandemic analysis [63], resource allocation

problems in visible light communication systems [64], and resource allocation in

OFDM systems [65] to name a few.

There are many techniques proposed in the literature to solve this class of

problems. However, there is no known computationally efficient algorithm that

establishes provable optimality or near-optimality guarantees. Most of the

techniques proposed are either heuristics or the methods that relax the problem

to an approximate convex case and use the well-known existing algorithms to

solve them [66–69]. In this chapter, we recast the resource allocation problems in

MaMIMO as a multi-objective optimization problem (MOOP), [70,71], to satisfy

the constraints and at the same time maximize the objective function. A novel

Information-assisted dynamic programming is proposed to solve such problems.

The thesis provides extensive analysis to establish strong near-optimality

guarantees with reduced computational complexity. The VR ADC BA problem

is solved using IADP and the results are substantiated using simulations [72].

This chapter is based on the papers [J2], [C4], and [C6] given in the "List of

publications".
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Chapter 7 : Theoretical foundations of the information-directed

branch-and-prune algorithm

A theoretical framework for the IDBP algorithm introduced in Chapter 5 is

developed and discussed in detail in this chapter. In addition, this chapter

describes and proves a set of theorems that establishes guarantees for

near-optimality using AEP for a general class of CDO problems. This chapter is

based on the paper [J3] given in the "List of publications".
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Chapter 2

Preliminaries

In this chapter, we will briefly discuss some of the basic concepts that is needed

to understand this thesis.

2.1 Estimation Theory

The Estimation theory deals with the estimation of an unknown parameter x

from a certain observation y. As an example, one could think of estimating the

symbol vector x that could have been transmitted from a MIMO transmitter

given the observations y of the received symbol vector at the receiver. The joint

probability distribution function, p(y,x) represents the complete statistical

description of the parameter and the observation.

The posterior probability distribution function (PDF) p(y|x) is a quantity of

interest in many of the estimation problems. Using Bayes rule, it can be written

as

P (x|y) = P (y|x)P (x)
p(y) . (2.1)
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In the above formulation, x is assumed random. However, in some estimation

problems x can be deterministic, in which case the conditional PDF p(y|x) can

be used to effectively model the observation y.

2.1.1 Cramer Rao Lower Bound

An estimator mathematically maps the observation space to the parameter

space Sy → Sx. One would like to have an error ε = (f(y) − x) as small as

possible. Mean Square Error is one parameter of interest, which is defined below

MSE(x) = E[(f(y)− x)(f(y)− x)H ],

δ , tr
(
MSE(x)

)
.

(2.2)

If the parameter x is unknown random, the optimal estimator is the one with the

conditional mean µx|y = Ex|y[y] in a Bayesian framework. For such an estimator

the variance is given by the conditional covariance Cx|y.

However if the parameter of interest is of an unknown but deterministic, an

estimator having a mean of x is called an unbiased estimator and is the preferred

one. That is

E[f(y)] = E[x̂] = x. (2.3)

It can be shown that the variance of such an unbiased estimator is lower bounded

by the inverse of the Fisher Information defined as
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I(x̂) = −E
[
∂2p(y|x)
∂x2

]
,

MSE(x)i,i >=
[
I−1(x̂)

]
i,i
.

(2.4)

This lower bound is called Cramer-Rao lower bound (CRLB). If an unbiased

estimator achieves the CRLB, i.e., MSE(x)i,i =
[
I−1(x̂)

]
i,i

for all i, then such an

estimator is called "efficient" [73].

2.1.2 CRLB for uncorrelated linear system models

If the data observed can be modeled as

y = Hx + n, (2.5)

where y is a N×1 vector of observations, H is a known N×P observation matrix

of rank P , and x is a P × 1 vector of parameters to be estimated, and n is N × 1

noise vector with PDF N (0,C). Then (2.5) represents a Linear Model. If the

statistics of the noise vector n is N (0,C), where C is not a diagonal matrix,

however is positive definite, then the system depicts an uncorrelated linear model.

For such a model, the CRLB cab be derived as shown below

I−1(x̂) = H−1CH−H . (2.6)
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2.2 Information theory

2.2.1 Mutual Information and channel capacity

The amount of Information that one random variable X has about the other

Y is defined as

I(X;Y ) = h(y)− h(y|x), (2.7)

where h(x) is the differential entropy of the random variable X and h(y|x) is the

conditional entropy of random variable Y given X.

The channel capacity is defined as the maximum mutual information that is

attained for all possible transmitter statistical distribution p(x). That is

C = {max︸ ︷︷ ︸
p(x)

I(x; y)}. (2.8)

The Ergodic channel capacity is defined as the maximum mutual information that

is attained for all possible transmitter statistical distribution p(x), averaged over

infinite number of independent realizations of the channel H. That is

C = EH
[
{max︸ ︷︷ ︸
p(x)

I(x; y)}
]
, (2.9)

where EH[.] denote the expectation over all channel realizations.
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2.2.2 KL Divergence

The KL divergence also known as "relative entropy" is a measure of distance

between two probability mass functions p and q and is defined as

DKL(p||q) =
∑
x

p(x) log p(x)
q(x) . (2.10)

The KL divergence is always non negative and zero iff p = q.

2.2.3 Entropy rate

The entropy rate of a stochastic process {φi} is defined as

H(Φ) = lim
n→∞

1
n
H(φ1, φ2, · · · , φn), (2.11)

if the limit exists. For a homogenous Markov process, the entropy rate can be

written as

H(Φ) = lim
n→∞

1
n
H(φn|φn−1, · · · , φ1) = lim

n→∞

1
n
H(φn|φn−1),

= H(X2|X1).
(2.12)

2.2.4 Chain rule for entropy

The chain rule for entropy can be written as

H(φ1, φ2, · · · , φn) =
n∑
i=1

H(φi|φi−1 · · ·φ1). (2.13)

Hence for Markov process we have

H(φ1, φ2, · · · , φn) =
n∑
i=1

H(φi|φi−1) = H(φ1) +
n∑
i=2

H(φi|φi−1). (2.14)
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2.2.5 Asymptotic Equipartition Property

The AEP formally states that if φ1, φ2, · · · , φn are i.i.d random variables with

probability mass function p(φi), then

− 1
n

log p(φ1, φ2, · · · , φn)→ H(Φ) in probability. (2.15)

This implies that the probability of observing the sequence {φ1, φ2, · · · , φn} is close

to 2−nH(Φ). It can also be shown that p(φ1, φ2, · · · , φn) is close to 2−nH(Φ) with

high probability. This enables us to divide the set of all sequences into two sets,

the typical set, where the sample entropy is close to the true entropy, and the

nontypical set, which contains the other sequences [74]. Thus a typical set A(n)
ε

w.r.t the distribution p(φ) is the set of sequences in {Φ}n with the property

2−n(H(Φ)+ε) ≤ p(φ1, φ2, · · · , φn) ≤ 2−n(H(Φ)−ε), (2.16)

where ε is an arbitrary small number close to zero. The typical set A(n)
ε has the

following properties.

If the sequence {φ1, φ2, · · · , φn} ∈ A(n)
ε , then

(i) H(Φ)− ε ≤ − 1
n

log p(φ1, φ2, · · · , φn) ≤ H(Φ) + ε

(ii) P{A(n)
ε } > 1− ε, for n sufficiently large.

(iii) |A(n)
ε |≤ 2−nH(Φ)+ε

(iv) |A(n)
ε |≥ (1− ε)2−nH(Φ)−ε

An illustration of the AEP and typical set is shown in Fig. 2.1.
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Figure 2.1: AEP and typical set illustration

2.3 Optimization

2.3.1 Convex optimization

A set S ∈ Rn is a convex set if the straight line segment connecting any two

points in S lies entirely inside S. That is, any for any two points x1,x2 ∈ S, the

convexity implies αx1 + (1− α)x2 ∈ S for all α ∈ [0, 1].

The function f(x) is a convex function if its domain S is a convex set and if for

any two points x1,x2 ∈ S, the following property is satisfied [75]

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2), for all α ∈ [0, 1]. (2.17)

A convex optimization problem in its general form can be written as

min
x
f(x),

such that ci(x) ≤ αi; for 1 ≤ i ≤ QI ,

hj(x) = βj; for 1 ≤ j ≤ QE,

(2.18)

where the objective function f is a convex function, the constraint functions ci’s

are convex, and the equality constraint functions hi’s are affine transformations
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of the form ai.x + bi, where ai ∈ Rn and bi being a scalar. The terms QI and QE

represent the number of inequality and equality constraints, respectively.

Many of the optimization problems arising in engineering have the convexity

property. Convex optimization problems are often easier to solve. They can be

solved in a computationally efficient manner to find the optimal solutions using

well-established methods [75]. Often, the non-convex counterparts are

approximated to convex cases to extract approximate solutions to trade

computational advantages.

2.3.2 Linear Independent Constraint Qualification (LICQ)

A nonlinear constrained optimization problem in its general form can be stated

as

min
x
f(x),

such that ci(x) ≤ αi; for 1 ≤ i ≤ QI ,

hj(x) = βj; for 1 ≤ j ≤ QE,

(2.19)

There are no assumptions of convexity or linearity on the functions f, ci, hi. This

constrained problem can be recast as an unconstrained one by defining a dual to

the above problem as

max
u,y

min
x
f(x) +

QI∑
i=1

uici(x) +
QE∑
i=1

vihi(x). (2.20)

If x∗ and u∗,v∗ are the primal and dual solutions respectively with zero duality

gap, it can be shown that x∗,u∗,v∗ satisfy a set of conditions called

Karush–Kuhn–Tucker (KKT) conditions. It is also worth noting that a zero

duality gap assumption is made. However, if the primal problem (2.19) is
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convex, a strong duality is consequential if the Slater’s conditions holds true for

(2.19). The KKT conditions are defined as

(i) 0 ∈ ∂
(
f(x) +

QI∑
i=1

uici(x) +
QE∑
i=1

vihi(x)
)
,

(ii) uici(x) = 0, for 1 ≤ i ≤ QI ,

(iii) ci(x) ≤ 0, for 1 ≤ i ≤ QI ;hj(x) = 0; for 1 ≤ j ≤ QE,

(iv) ui ≥ 0, for 1 ≤ i ≤ QI .

(2.21)

For any optimization problem if the solution x∗,u∗,v∗ satisfies the KKT condition,

then it is sufficient to say that x∗,u∗,v∗ are the optimal solutions to (2.19) and

(2.20) (both the primal and its dual). This is true provided that an additional

regularity conditions are satisfied. One of the frequently used regularity condition

is the LICQ which requires that the derivaties of the active inequality constraints

and the derivaties of the equality constraints are linearly independent at x∗.

2.3.3 Multi-objective optimization problem

A multi-objective optimization problem (MOOP) involves optimizing multiple

objective functions, which formally can be stated as

min
x

(
f1(x), f1(x), · · · , fk(x)

)
, where x ∈ Rn. (2.22)

In MOOP, there doesn’t exist a single feasible solution that can minimize (or

maximize) all the objective functions simultaneously. In a single objective

optimization problem, the superiority of the solution is easily determined by

comparing the objective values. However, in MOOP the goodness of the solution

is determined by dominance. For a MOOP minimization problem, a solution x1
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is said to dominate another solution x2 if it satisfies the below two conditions

(i) fi(x1) ≤ fi(x2), for 1 ≤ i ≤ k,

(ii) fi(x1) < fi(x2), for any one i.
(2.23)

Given a set of solutions, the non-dominated solution set is a set of all the solutions

that are not dominated by any member of the solution set. The non-dominated

set of the entire feasible decision space is called the Pareto-optimal (PaO) set. The

boundary defined by the set of all points mapped from the Pareto optimal set is

called the Pareto-optimal (PaO) front [70]. The typical PaO fronts for the two-

objective optimization problem for various minimization/maximization scenarios

are shown in Fig. 2.2.

Figure 2.2: A typical Pareto-optimal fronts for various Min/Max scenarios of a bi-objective
optimization problem
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2.3.4 Constrained discrete optimization

The constrained discrete optimization problem (also called constrained

combinatorial problems) in its general form is stated as below, where x∗ is the

optimal solution to (2.24) if it exists.

min
x
f(x),

such that ci(x) ≤ αi; for 1 ≤ i ≤ QI ,

hj(x) = βj; for 1 ≤ j ≤ QE,

(2.24)

where x = [x1, x2, · · · , xN ]T . Here xi ∈ X can only take values from the set X

whose cardinality is M . The set X ⊂ R. The terms QI and QE represent the

number of inequality and equality constraints, respectively.

Some of the well-known problems belong to this class. The examples include the

Integer programming, 0/1 knapsack problem, the traveling salesman (TSP), the

graph-coloring problem, Hamiltonian-cycle problem, the sum-subset problem, to

name a few.

2.4 Computational complexity theory

Computational complexity theory is a branch of theoretical computer science

and mathematics that deals with classifying computational problems based on

their resource usage (eg. time and space). It also deals with quantifying the

resources required to solve them. A computational problem (CP) is defined as

one that can be solved by a computer using a sequence of steps. The CP considered

are decision problems whose output is either “True” or ‘False”. Formally, the
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CP can be represented as a function

f : Input→ [True, False] (2.25)

Any optimization problem can be reduced to its equivalent decision

problem [76]. We use the term "CP" and "problem" interchangeably. An

algorithm or a computer program is a sequence of steps that comprise of

mathematical operations that solves the problem under consideration. An

algorithm or a computer program can be represented using a binary string

(binary executable) or its equivalent integer value. Hence the algorithm space is

in N. It can be shown that the problem space is in R. A deterministic

algorithm can be run on a real computer which is often referred to as a

“Turing machine”. A non-deterministic algorithm can be executed on an

imaginary computer system that turns out a solution to the problem being

solved [76].

2.4.1 Problem classes

In complexity theory, computable problems are classified based on the level of

difficulty required to solve them. The definition of some of the problem classes

are as follows

1. P : The set of problems that are solvable in polynomial time. Example-

Determination of a negative weight cycle in a weighted graph.

2. EXP : The set of problems that are solvable in exponential time. Example-

N ×N chess

3. R : The set of problems that are solvable in finite time.
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4. NP : The set of problems that are solvable in polynomial time using a non-

deterministic algorithm, alternatively the set of problems whose solutions

can be verified in polynomial time. Examples include the Hamilton cycle,

graph coloring, and the traveling-salesman problem.

5. NP-hard : The set of problems that are hardest to solve in NP .

Examples include the Hamilton cycle, graph coloring, and the

traveling-salesman problem.

6. EXP-hard : The set of problems that are hardest to solve in EXP .

7. NP-complete : The set of problems that are NP-hard, however, their

solution can be verifiable in polynomial time. This makes them exist both

in NP-hard as well as in NP . Formally, NP-complete = NP-hard ∩

NP . Examples include the Hamilton cycle, graph coloring, and the

traveling-salesman problem.

8. U : The set of unsolvable problems. Example- Halting problem.

The relationships between the classes can be formally written as P ⊆ NP ⊂

EXP ⊆ R ⊂ U . The relationship is pictorially represented as shown in Fig. 2.3

below [77].

Since the algorithms space is in N and the problem space in R as noted above;

we have |R|� |N| from set theory. This implies that most decision problems are

uncomputable !!

2.4.2 Runtime algorithm analysis (Big-O Notation)

To evaluate and compare the time complexity of algorithms from a practical

standpoint, often the worst-case number of operations (steps) involved in the
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Figure 2.3: Relationship among the complexity classes

execution of the given algorithm and for a given problem size N are evaluated

analytically. This is represented using the Big-O Notation, also called the order

of magnitude. Suppose an algorithm "A" takes 5N3 + 2N2 + 4N + 7 arithmetic

operations to perform a given task, then the Big-O notation identifies the term

that increases fastest relative to the size of the problem. In this case, the

complexity of "A" will be written as O(N3). A figure comparing the time taken

for different problem sizes for various orders of magnitudes is indicated in Fig.

2.4.
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Part I

Resource allocation in MaMIMOs
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Chapter 3

Variable-resolution ADC bit

allocation in massive MIMO

Fixed low-resolution Analog to Digital Converters (ADC) help reduce the

power consumption in millimeter-wave Massive Multiple-Input Multiple-Output

(Ma-MIMO) receivers operating at large bandwidths. However, they do not

guarantee optimal Energy Efficiency (EE). It has been shown that adopting

variable-resolution (VR) ADCs in Ma-MIMO receivers can improve performance

with Mean Squared Error (MSE) and throughput while providing better EE. In

this chapter, we present an optimal energy-efficient bit allocation (BA)

algorithm for Ma-MIMO receivers equipped with VR ADCs under a power

constraint. We derive an expression for EE as a function of the Cramer-Rao

Lower Bound on the MSE of the received, combined, and quantized signal. An

optimal BA condition is derived by maximizing EE under a power constraint.

We show that the optimal BA thus obtained is exactly the same as that

obtained using the exhaustive search (ES) with a significant reduction in

computational complexity. We also study the EE performance and

computational complexity of a heuristic algorithm that yields a near-optimal
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solution.

3.1 Background

Today’s telecommunication networks contribute to 2% of the total carbon

dioxide emissions [78, 79]. The radio access network contributes about 92% of

the total power consumption [80,81]. Studies show that 5G base stations require

about three times the power of 4G base stations [80]. One of the 5G standards’

goals is to improve the overall network energy efficiency (EE). The 5G standards

have set a goal of 100x improvement in network EE compared to the existing

4G-LTE networks [82]. A snapshot of the evolution of the requirements of the

future wireless standards is shown in Fig. 3.1.

Massive Multiple-Input Multiple-Output (Ma-MIMO) technology is considered

5G goals against existing 4G performance
parameters

6G requirements against the 5G standard
defined goals

Figure 3.1: A snapshot of the evolution of the requirements of the future wireless standards [6]

both at sub-6Ghz and millimeter wave (mmWave) frequencies. In both

scenarios, a large number of antennas help to increase the capacity of the

system. Millimeter-wave Ma-MIMO is considered for the back-haul wireless
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interconnects between the Base Stations (BS), to achieve high throughput and

spectral efficiency. However, this comes at the cost of increased power

consumption, resulting in poor EE [83,84].

As envisioned by the 5G standards, network densification ramifications are a

complex heterogeneous network (HetNet) consisting of many small- and

medium-sized cells, and macrocells. The Single-User (SU) Ma-MIMO framework

forms the backbone of communication links between the back-haul HetNet

elements [85]. By splitting the precoding and combining between analog and

digital domains (hybrid precoding and combining), the number of RF paths can

be reduced considerably as compared to the number of transmit and receive

antennas [5, 86]. Despite adopting hybrid combing at the receiver, the system’s

overall energy efficiency is poor because the analog to digital converters (ADC)

operating at such large bandwidths and high bit-resolution consume a large

amount of power [5, 31, 83]. The ADC power consumption for a 8 and 12 RF

chain MaMIMO operating at a sampling frequency of 1Ghz at various bit

resolutions is shown in Fig. 3.2. In addition to power consumption,

high-resolution ADCs operating at high sampling frequencies produce huge

amounts of data that are difficult to handle. Using fixed low-resolution ADCs is

a popular approach adopted in Ma-MIMO receiver architectures to mitigate

large power demands [87]. However, an optimal EE performance is necessary to

meet the stringent demands set out by the 5G standards [80, 82]. Adopting

variable-resolution (VR) ADCs in Ma-MIMO settings yields such

benefits [6, 33–35].

Low-resolution ADC MIMO receiver architectures using 1-bit and fixed

n-bit frameworks have been studied extensively over the last few years [87–91].

Overall, the 1-bit ADC receiver architecture in MIMO receivers has been shown
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Figure 3.2: ADC power consumption as a function its bit resolution operating at 1Ghz sampling
rate

to improve EE; however, at the cost of performance at medium to high SNR

regimes for a broad set of system parameters like the number of transmit or

receive antennas, the order of modulation used, and the channel distribution.

For example, it has been shown that despite improved deployment cost, there is

considerable rate loss in the medium to high SNR regimes with 1-bit ADC

architectures [87]. It has also been shown that by a small increase in the

resolution of ADCs (eg., with 3 bits) on all RF paths, significant performance

gains can be achieved for a broad range of system parameters [92]. Also, there is

performance degradation due to channel estimation using low-resolution

ADCs [93]. A practical channel estimation approach under the impact of ADC

quantization is considered in [94,95] (in addition to the data transmission stage).

The uplink performance evaluation of a multiuser Ma-MIMO system with

spatially correlated channels using low-resolution ADCs at the base station is

presented in [96].
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All the literature above use fixed-bit-resolution ADCs on the receiver’s RF

paths. Since the resolutions of ADCs are fixed and low, an optimal EE

performance is not guaranteed for a given channel. From the simulations

in [6, 33–35], it can be seen that by varying the ADC resolutions on each RF

path for a given channel condition and receiver power budget, optimal

performance is obtained. Thus, employing VR ADCs on the receiver’s RF paths

can be advantageous. The VR ADCs employed should have the ability to change

bit resolutions across coherence time. Here, the novel VR ADC architectures

and mixed-ADC-bank hardware structures proposed in previous works can be

considered [97,98]. An ADC Bit Allocation (BA) mechanism that decides on the

bit resolution to be used on a given RF path and coherence duration is

consequential in achieving optimal EE. Another advantage of employing VR

ADCs along with an optimal BA scheme is that a high-resolution ADC can be

brought into the signal path during the pilot signal acquisition, thereby

removing the ill effects of low-resolution ADCs on channel estimation. A

candidate VR-ADC architecture and its operational description is provided in

subsection 3.1.1. Also, the absence of doppler due to the communication

between fixed network elements in a wireless backhaul ensures longer coherence

durations even at mmWave frequencies [99, 100]. This relaxes the requirement

for faster switching of ADC bit resolutions between coherence frames and makes

the adoption of VR ADCs in the mmWave wireless backhaul more

amicable [98].On the other hand, the hardware cost of the novel VR ADC

architectures may be higher. However, the energy saving and the long term

positive environmental benefits of achieving optimal EE underscores the initial

higher cost disadvantage.

A BA mechanism based on minimizing the Mean Square Quantization Error
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(MSQE) under the receiver power constraint is presented in [35]. A BA

mechanism based on the mean squared error (MSE) minimization under a power

constraint using a Genetic Algorithm was proposed in [6]. An optimal BA based

on MSE minimization for a SU mmWave Ma-MIMO channel under a power

constraint was derived in [33]. A similar Algorithm based on channel capacity

maximization was derived in [34]. In a paper by Kaushik et al., a joint BA and

hybrid beamforming strategy is proposed [101]. In this work, the BA is jointly

designed for both digital to analog converts (DAC) and ADCs, along with

hybrid precoder and combiner, thus effectively improving the overall EE. It is

also shown that the DAC/ADC BA is dynamic during operation and achieves

higher EE when compared with existing benchmark techniques that use fixed

DAC and ADC bit resolutions [101]. The authors in [101] propose a novel

alternating direction method of multipliers to optimize hybrid precoder,

combiner, and BA matrices jointly for both ADC/DAC, thus achieving lower

computational complexity. In the proposed work, we focus mainly on the

optimal ADC BA for EE, and hence the computational complexity of our

proposed algorithm may not be as good as that of [101].

The main topic of discussion in this chapter are highlighted below:

• We propose an ADC BA scheme whose solution is precisely the same as

that obtained using the ES BA with an order of magnitude reduction in

multiplication complexity. This provides for optimal EE performance under

a power constraint for a SU Ma-MIMO wireless back-haul framework.

• For the first time in the literature, we derive an analytical expression for

EE as a function of the Cramer-Rao Lower Bound (CRLB) on MSE of the

received, quantized, and combined signal. Using this expression, we derive

the proposed ADC BA algorithm.
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• We also propose a heuristic algorithm using simulated annealing (SA) that

is near-optimal. The parameters of the SA algorithm can be tuned to trade

off the EE optimality and computational complexity.

The rest of this chapter is organized as follows. Section 5.2 describes the system

model and parameters. In Section 3.3, The optimal BA conditions for EE are

derived. Section 3.4 describes the two proposed Algorithms based on the optimal

condition derived in Section 3.3. In Section 4.7, we present the simulation results,

and in Section 3.5, we study and compare the computational complexities, followed

by the conclusions in Section 4.8. Theorems and their proofs are presented in the

Appendices.

3.1.1 VR-ADC architecture and operation: A practical

consideration

In this section, we describe one candidate hardware architecture that can be

used with VR-ADCs and how the proposed BA algorithms can be used from a

practical standpoint. We consider an example hardware architecture

encompassing mixed-ADC bank to explain how the proposed algorithm adjusts

the ADC resolution on each RF path based on the changing channel

conditions [97, 98, 102]. Such an architecture on a given receiver RF path is

illustrated in Fig. 3.3.

The switch "A" is controlled by hardware to put a 8-bit ADC on the

incoming signal’s path. The switch "B" is controlled by the proposed BA

algorithm to put either a 1, 2, 3, · · · , Nb- bit ADC in the signal path. The switch

ON and OFF also indicate that the ADC’s power is switched ON and OFF,

respectively. For this example, we will consider a protocol frame structure, as
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Figure 3.3: An example architecture of a VR-ADC MaMIMO receiver

Figure 3.4: Illustration of a BA at three different coherence duration of a 4−RF chain MIMO
receiver

indicated in Fig. 3.4. The pilot symbols are indicated in yellow and the data

frames associated with the preceding pilot are in blue. The time duration

between the two successive pilot symbols is appropriately designed to ensure
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that it is less than or equal to the worst-case coherence duration. The coherence

duration for a given frequency of operation and Doppler between the receiver

and transmitter is studied in [99]. The advantage of using the VR-ADCs is that

a high-resolution ADC can be brought into the signal path when a pilot signal is

acquired, thereby removing the detrimental effects of low-resolution ADCs on

channel estimation [93–95]. In this example, we consider an 8-bit ADC for pilot

acquisition. This is indicated by the switch positions of A in Fig. 3.4. The pilot

symbol durations factors in the time required for channel estimation and BA so

that the assigned ADCs are in the incoming signal path right at the start of the

data frames in the given coherence duration instance. The proposed BA

algorithm uses channel estimation and comes up with an optimal bit allocation.

Fig. 3.4 illustrates a bit-allocation on each of the RF chains at three different

coherence duration of a Ns = 4 path MIMO receiver.

3.2 Signal Model and system considerations

The signal model for a typical SU Ma-MIMO transceiver with hybrid precoding

and combining is shown in Fig. 3.5. This signal model forms an underlying

framework for wireless backhaul communication link between basestations in a

HetNet [83,84]. In Fig. 3.5, FD and FA denote the digital and analog precoders,

respectively. Similarly, WH
D and WH

A represent the digital and analog combiners,

respectively. The vector x is an Ns×1 transmitted signal vector with unit average

power. Let Nrt and Nrs denote the number of RF chains at the transmitter and

receiver, respectively. Also, Nt and Nr represent the number of transmit and

receive antennas, respectively. The channel matrix H = [hij] is an (Nr × Nt)

matrix representing the line of sight mmWave Ma-MIMO channel with properties

defined in [100] (chapter 3, pages 99-125).
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Figure 3.5: Signal Model.

The transmitted signal x̃ and the received signal r are thus known as x̃ =

FAFDx and r = Hx̃ + n. Here, n is an Nr × 1 noise vector of independent

and identically distributed (i.i.d.) complex Gaussian random variables such that

n ∼ CN (0, σ2
nINr). The received symbol vector r is analog-combined with WH

A

to get z = WH
A r and later digitized using a variable-bit quantizer to produce

ỹ = Qb(z) = Wα(b)z+nq [35]. This signal is combined using the digital combiner

WH
D to produce the output signal y = WH

D ỹ. The quantizer is modeled as an

Additive Quantization Noise Model (AQNM) [31,103]. Here b = [b1b2b3....bN ]T is

a vector whose entries bi indicate the number of bits (on both I and Q channels)

that are allocated to the ADC on RF path i. The bits bi ∈ I take values between

1 and Nb. The vector nq has a distribution of CN (0,D2
q) and is uncorrelated with

z [31, 103].

Hence, the relationship between the transmitted signal vector x and the

received symbol vector y at the receiver is given by

y = WH
DWα(b)WH

AHFAFDx + WH
DWα(b)WH

An + WH
Dnq, (3.1)

where the dimensions of matrices are FD ∈ CNrt×Ns , FA ∈ CNt×Nrt , H ∈ CNr×Nt ,

WH
A ∈ CNrs×Nr , WH

D ∈ CNs×Nrs , and Wα(b) ∈ RNrs×Nrs .

With the diagonal BA matrix Wα(b), we intend to design the precoders FD,
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FA, and Combiners WH
D , WH

A , along with the ADC BA Wα(b) for a given channel

realization H. We assume perfect CSI at the transmitter. We further assume that

Nrs = Ns and the extension to the case Nrs 6= Ns is straightforward.

3.3 Energy-Efficient Bit-Allocation Design

We first present an expression for the CRLB on the MSE that can be achieved

on the received, combined, and quantized signal y in (3.1). We then derive the

expression for the information rate as a function of the CRLB. The CRLB is a

function of the hybrid precoder, hybrid combiner, and the BA matrix. We derive

the expression for EE using the information rate. An optimal BA condition is

arrived by maximizing the EE under a power constraint.

3.3.1 CRLB on MSE as a function of BA

Having designed the precoders such that Fopt ≈ FAFD with the constraints

described in [33], we can rewrite (3.1) as

y = WH
DWα(b)WH

AUΣx + WH
DWα(b)WH

An + WH
Dnq, (3.2)

with the SVD of the channel matrix as H = UΣFH
opt. Using (3.2), we derive the

expression for MSE δ as

δ , tr (E[(y− x)2])

MSE(x) = E[(y− x)2] = p(K− INs)2 + σ2
nGGH + WH

DD2
qWD,

(3.3)

where K = WH
DWαWH

AUΣ, E[xxH ] = pINs , G = WH
DWαWH

A ,

E[nnH ] = σ2
nINr , E[nqnHq ] = D2

q. Note that p is the average power of symbol x,
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D2
q = WαW1−αdiag[WH

AH(WH
AH)H + INrs ], and E[nnHq ] = 0. For simplicity of

notation, we refer to Wα(b) as Wα. The expression for the MSE(x) in (3.3) can

be shown as [33]

MSE(x) = σ2
nΣ−2 + WH

DD2
qWD. (3.4)

The CRLB for (3.4) is derived as [33]

I−1(x̂) = σ2
nΣ−2 + K−1WH

DD2
qWD(KH)−1. (3.5)

An optimal BA condition based on the CRLB minimization is derived in [33] by

minimizing (3.5) with respect to the BA matrix Wα under a power constraint

PADC.

b∗ = argmin︸ ︷︷ ︸
b∈INs×1;

PTOT≤PADC

{
Σ−2

[
σ2
nINs + W−2

α D2
q

]}
. (3.6)

PTOT is the total power consumed by the ADCs with bit allocation b and is shown

to equal 2∑N
i=1 cfs2bi , where c is the power consumed per conversion step and fs

is the sampling rate in Hz [91].

3.3.2 Energy efficiency as a function of bit allocation

In this section, we first derive the expression for the information rate of the

SU mmWave Ma-MIMO channel encompassing the channel matrix H, the hybrid

precoders FD, FA, and the hybrid combiners WH
D , WH

A along with the BA matrix

Wα. We then use the information rate to arrive at an expression for EE. Equation

(3.1) can be simplified as

y = Kx + n1, (3.7)
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where n1 = WH
DWαWH

An + WH
Dnq. Here n is an additive noise vector that is

multivariate Gaussian distributed as n ∼ CN (0, σ2
nINr). Inspired

by [31, 91, 103, 104], we assume that nq has Gaussian distribution such that

nq ∼ N (0,D2
q). This results in n1 having the distribution N (0,Φ) where

Φ = σ2
nGGH + WH

DD2
qWD [33]. We assume that x and n1 are independent, and

is a valid assumption because of the following reasons. The input symbol vector

can be modeled as x ∼ CN (0, pINs) [31, 35]. This can be achieved using efficient

Gaussian scramblers [105]. It is straightforward to see that n1 and x are

independent, given that n1 and x are multivariate Gaussian vectors that are

uncorrelated. The information rate for the given Ma-MIMO channel can be

written as

R(b) = I(x; y) = h(y)− h(y|x) = h(y)− h(Kx + n1|x) (a)= h(y)− h(n1), (3.8)

where I(x; y) is the mutual information of random variables x and y, and K is

a function of BA vector b. (a) holds if and only if both nq and x are Gaussian.

Hence, ensures y is Gaussian. However, under the assumption that either nq or x

being non Gaussian, finding a closed form expression of the considered information

rate (3.8) is an open problem. Now, if y ∈ CNs , then the differential entropy h(y)

is less than or equal to log2 det(πeQ) with equality if and only if y is circularly

symmetric complex Gaussian with E[yyH ] = Q [106]. As such,

Q = E
[
(Kx+n1)(Kx+n1)H

]
= pKKH +Φ, where Φ = σ2

nGGH + WH
DD2

qWD.

(3.9)
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Thus, the differential entropies h(y) and h(n1) satisfy

h(y) ≤ log2 det(πeQ) = log2 det
(
πe
(
pKKH + Φ

))
,

h(n1) ≤ log2 det(πeΦ).
(3.10)

We show that n1 is a circularly symmetric jointly Complex Gaussian vector using

Theorem 3.1 in the Appendix. Hence, we can write

h(n1) = log2 det(πeΦ). (3.11)

Thus, the information rate I(x; y) achieved can be written as

R(b) = h(y)− h(n1) (b)= log2 det(πeQ)− log2 det(πeΦ) = log2 det
(
pKKHΦ−1 + INs

)
,

(3.12)

where (b) follows from the assumption that the input symbol vector x is circular

symmetric Gaussian vector that could be modeled as x ∼ CN (0, pINs) [31,35]. It

is straightforward to see that (3.12) is a general case of (17) in [5] when the BA

is infinite-bits on all ADCs. We simplify (3.12) to write the information rate as

R(b) = log2 det
(
pKKHΦ−1KK−1 + KK−1

)
= log2 p

Ns det
(
KHΦ−1K + 1

p
INs

)
= Ns log2 p+ log2 det

(
(I−1(x̂))−1 + 1

p
INs

)
.

(3.13)

Note that I−1(x̂) is the CRLB (15) in [33] achieved by the MSE δ in (3.3). Now,
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we define EE as a function of BA as [107]

ηEE(b) = R(b)
p(b) =

Ns log2 p+ log2 det
(
(I−1(x̂))−1 + 1

p
INs

)
PT + PR + 2∑N

i=1 cfs2bi
(bits/Hz/Joule)

(3.14)

where p(b) is the total power consumed. Here PT , PR are the power consumed

at the transmitter and receiver respectively. The net ADC power consumption is

( 2∑N
i=1 cfs2bi) . The expression for p(b) can be effectively written as

p(b) = 2cfs × (PT + PR
2cfs

+
N∑
i=1

2bi). (3.15)

The transmitter power can be modeled as PT = Pout
ηPA

+ PCIR [78, 79]. The terms

Pout, ηPA, and PCIR represent the transmit power, efficiency of the power

amplifier, and base station circuit power respectively. The receiver power is

modeled as PR = NrNsPPS + NrPLNA + NsPVCO. The terms PPS, PLNA, and

PVCO correspond to the power consumed by a single device phase shifter, Low

Noise Amplifier and local oscillator respectively [5].

It is to be noted that the power consumption attributed towards the BA

algorithm itself is highly hardware and implementation dependent. To this

effect, we consider the computational analysis of the proposed algorithm in

terms of number of multiplications and additions, which is discussed in Section

3.5.

3.3.3 Hybrid combiner structure

Phase shifters or splitters impose constraints on the design of the analog

combiner WH
A [5]. We express the constrained analog combiner as W̃H

A . The

digital combiner compensates the imperfections in the analog combiner, that is
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WH
A = WDW̃H

A (20) in [33]. We design the constrained analog combiner W̃H
A

and the digital combiner WD, such that WH
A = UH = WDW̃H

A . This is

obtained by solving the optimization problem using method described in [108].

(W̃opt
A ,Wopt

D ) = argmin︸ ︷︷ ︸
W̃A,WD

‖U− W̃AWH
D‖F ,

such that W̃A ∈ WRF , ‖WH
DW̃A‖

2
F = Ns

(3.16)

WRF is the set of all possible analog combiners architecture based on phase

shifters. This includes all possible Nr × Ns matrices with constant magnitude

entries.

3.3.4 Maximizing the EE

Let b∗ be the optimal BA that maximizes the EE in (3.14), where

ηEE(b) = max︸ ︷︷ ︸
b∗,PTOT≤PADC

{
Ns log2 p+ log2 det

(
(I−1(x̂))−1 + 1

p
INs

)
p(b)

}
. (3.17)

Thus b∗ is derived as

b∗ = argmax︸ ︷︷ ︸
b∈INs×1,

PTOT≤PADC

{
1

p(b) log2 det
(
(I−1(x̂))−1 + 1

p
INs

)}
. (3.18)

By substituting K into (3.5) and by designing the structure of the hybrid combiner

as described earlier, we can simplify the expression for CRLB as

I−1(x̂) = σ2
nΣ−2 + Σ−1UH(WH

A )−1W−1
α D2

qW−1
α W−1

A UΣ−1 = σ2
nΣ−2 + Σ−2W−2

α D2
q.

(3.19)
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We now compute the Inverse of CRLB
(
I−1(x̂)

)−1
as

(
I−1(x̂)

)−1
=
(
σ2
nΣ−2 + Σ−2W−2

α D2
q

)−1
= diag

(
σ2

1
σ2
n + g(b1)l1

, · · · ,
σ2
Ns

σ2
n + g(bNs)lNs

)
,

(3.20)

Substituting
(
I−1(x̂)

)−1
in (3.18), we have

b∗ = argmax︸ ︷︷ ︸
b∈INs×1,

PTOT≤PADC

1
p(b)

Ns∑
i=1

{
log2

(
q(bi) + 1

)}
, (3.21)

where q(bi) = pσ2
i

σ2
n+g(bi)li . The term log2

(
q(bi) + 1

)
can be expanded for two

scenarios given below.

Case 1: For the case of 0 ≤ q(bi) < 1, we have log2

(
q(bi) + 1

)
' q(bi)

ln 2 . For proof

refer to Lemma 5.1 in the Appendix Thus, the maximization in (3.21) can be

written as

b∗ = argmax︸ ︷︷ ︸
b∈INs×1,

PTOT≤PADC

1
p(b)

Ns∑
i=1

pσ2
i

σ2
n + g(bi)li

. (3.22)

Case 2: For the case 1 ≤ q(bi) <∞, we show that log2

(
q(bi)+1

)
=
(

1− 1
q(bi)

)
P+

L(p, σ2
i , σ

2
n). For proof refer to Lemma 3.2 in the Appendix. P and L(p, σ2

i , σ
2
n)

are independent of bi. Hence, the maximization in (3.21) can be simplified to

b∗ = argmax︸ ︷︷ ︸
b∈INs×1,

PTOT≤PADC

1
p(b)

Ns∑
i=1

(
1− 1

q(bi)

)
(3.23)
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Combining the two scenarios, the b∗ that guarantees optimal EE performance

under a power constraint p(b∗) ≤ PADC can be written as

b∗ = argmax︸ ︷︷ ︸
b∈INs×1,

PTOT≤PADC

1
p(b)

{ ∑
bi∈X

q(bi) +
∑
bi∈Y

(
1− 1

q(bi)

)}
,

(3.24)

where X =
{
bi | q(bi) < 1

}
, Y =

{
bi | q(bi) ≥ 1

}
, and |X |+|Y|= Ns.

3.4 Algorithms

We propose two algorithms to solve the optimal EE condition derived in

(3.24): (i) An algorithm that ensures optimal BA (ii) A simulated annealing

based heuristic technique yielding near-optimal solution. We described the

algorithms below.
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3.4.1 Algorithm for optimal solution (Q-search)

Algorithm 1 Q-search Algorithm
1: procedure Q-search(Bset,Ns,Q(Nb, Ns),Ptot(sizeof(Bset)))
2: Bset ← Solution Space
3: Ns ← Number of RF paths
4: Q(Nb, Ns)← Table precomputed using (3.24).
5: Ptot(sizeof(Bset))← Table of − log2 (p(bj))∀bj ∈ Bset.
6: for j=0;j++;until j<sizeof(Bset) do
7: m←

∑Ns
i=1 Q(bj(i), i)

8: p← Ptot(bj) . p = − log2(2cfs)− log2 (PT+PR
2cfs +

∑Ns
i=1 2bi)

9: Kf (bj)← ShiftLeft(1, (log2(m) + p)). log2() is indexed using table [109]
10: end for
11: index← max(Kf )
12: b∗ ← Bset at index
13: return b∗ . Optimal Bit Allocation Vector
14: end procedure

procedure ComputeQ(p,σ2
n,S(Ns),g(Nb),l(Ns),Nb,Ns)

2: p← Received Signal Power
σ2
n ← Noise Power

4: S(Ns)← Table of the square of the singular Values of H.
g(Nb)← Table of quantization Errors . Refer [33,91]

6: l(Ns)← Table containing diag(INs + WH
DΣ2WD)

Nb ← ADC bit range
8: Ns ← Number of RF paths

for i=1;i++;until i≤ Ns do
10: for bi=1;bi++;until bi ≤ Nb do

q ← pσ2
i

σ2
n+g(bi)l(i)

12: Q(bi, i)← q if q < 1

Q(bi, i)←
(

1− 1
q

)
if q ≥ 1

14: end for
end for

16: return Q(Nb, Ns)
end procedure

The term q(bi) = pσ2
i

σ2
n+g(bi)li is evaluated and stored. Here, σi is the diagonal

element of Σ, σ2
n is the noise power, g(bi) = f(bi)

1−f(bi) where f(bi) depends on the

quantization error on the ith RF path [35]. The values for f(bi) are indicated

in [91] and li is the ith element of diag(INs + WH
DΣ2WD). For a given Ns and Nb,
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we form a set Bset of all possible bj’s that satisfy the ADC power budget PADC.

Bset ,
{
bj = [bj1, bj2, . . . , bjNs ]

T for 0 ≤ j < NNs
b | 1 ≤ bji ≤ Nb and

Ns∑
i=1

cfs2bji ≤ PADC
}
.

(3.25)

We call this the Q-search method as described in Algorithm 1.

3.4.2 Simulated annealing

The SA is a metaheuristic technique used to solve global optimization

problems. While it does not guarantee an optimal solution, tuning its

parameters such as the cooling factor can ensure near-optimal solutions [110].

The SA algorithm has a reduced complexity compared to the Q-search method

and is discussed in Section 3.5. The details of the Algorithm 2 presented below

can be found in [110].

Algorithm 2 Simulated Annealing
1: procedure SA(Bset,Ns,Q(Nb, Ns),P(sizeof(Bset)),T0,r,m)
2: Ns ← Number of spatial-multiplexed paths
3: Bset ← Solution Space
4: Q(Nb, Ns)← Table precomputed using (3.24).
5: P(sizeof(Bset))← Precomputed total power ∀bj ∈ Bset.
6: T0 ← Initial Temperature
7: r ← Cooling factor
8: m← Number of searches at a given temperature t
9: t← T0 Initialize Temperature
10: btest ← Select a initial solution from Bset
11: cost← 1

P(btest)
∑Ns
i=1 Q(btest(i), i)

12: (copt,b∗)← (cost,btest)
13: while t > 1.0 do
14: for m times do
15: bnew ← SearchNeighbour(btest, Bset)
16: cnew ← 1

P(btest)
∑Ns
i=1 Q(bnew(i), i)

17: δ ← cnew − cost
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18: Pa ← 1
1+e−

δ
t

19: if rand() ≤ Pa then . rand() ∼ U(0, 1)
20: (cost,btest)← (cnew,bnew)
21: if cnew > copt then
22: (copt,b∗)← (cnew,bnew)
23: end if
24: end if
25: end for
26: t← rT
27: end while
28: return b∗ . Optimal bit allocation vector
29: end procedure

procedure SearchNeighbour(btest,Bset)
2: btest ← Current solution

Bset ← Solution space
4: bnew ← LookupNewSolution(randn(),btest)

return bnew . Return new solution
6: end procedure

3.5 Computational Complexity Analysis

In this section, we evaluate the computational complexity in terms of the

number of multiplications and additions for the following Algorithms (i) ES BA

(ii) proposed Q-search method (iii) proposed SA Algorithm with two cooling

factors.

(i) ES Bit-Allocation: It can be seen that ES BA requires γ(N2
s + 2Ns)

complex multiplications, 3N2
s real multiplications, and γ(Ns(Ns − 1) + Ns)

complex additions. Here γ is the number of EE (ηEE) evaluations and is

approximately the cardinality of Bset, which is NNs
b . Thus ES BA has a

multiplicative and additive complexity of O(NNs
b ) and thus is NP-Hard.

(ii) Q-search Method: The term q(bi) in (3.24) is precomputed for given Nb

and Ns. This consists of a table of Nb ×Ns real values Q(Nb, Ns). This requires

the computation of li = diag[WH
DΣ2WD + INs ] that require in 3N2

s real

multiplications and 2N2
s + Ns(Ns − 1) real additions. To compute Kf (bj) and

52



Ptot() as described in Algorithm 1 for all BA’s in Bset we require 2µ(Ns + 1) real

additions. Thus, a total of 3N2
s + 3NsNb real multiplications and

3N2
s + NsNb + µ(Ns − 1) real additions are required. Here µ is the number of

evaluations of Kf (bj), which is approximately the cardinality of Bset, which is

NNs
b .

The table consisting of the term − log2(2cfs) − log2(PT+PR
2cfs + ∑Ns

i=1 2bi) is

precomputed and stored as Ptot() for all BA’s in Bset. This only requires

additions and no multiplications. The term PT+PR
2cfs is independent of BA. The

term ∑Ns
i=1 2bi is effectively computed as ∑Ns

i=1 ShiftLeft(1, bi) 1. The log2() can

be performed using shift operation and a lookup table [109]. The ratio R(b)
p(b) is

computed without multiplication as illustrated on the line-9 of Algorithm 1.

Thus Q-search method suffers from considerable additive complexity of O(NNs
b ).

However, it has an order of magnitude reduction in multiplicative complexity,

which is O(N2
s ) compared to ES BA. Besides, the Q-search method requires only

real multiplications.

(iii) SA Algorithm: The terms Q(Nb, Ns) and Ptot() is precomputed and

stored similar to the Q-search method. Thus resulting in 3N2
s real

multiplications and 2N2
s +Ns(Ns− 1) real additions. However, in SA the Kf (bj)

is not evaluated for all b′sj ∈ Bset as in Q-search method. The number of

evaluations (µ) of Kf (bj) depends on the initial temperature T0 and the cooling

factor r. From Algorithm 2, it can be seen that µ =
⌈

log 1
T

log r

⌉
and this results in

m
{⌈ log 1

T

log r

⌉
+ 1

}
(2Ns + 5) real additions. Here m is the number of search at a

given temperature t. Hence, the additive complexity of SA can be tuned to

O(ND
s ) using the parameters T and r. The complexity degree of Ns is D and

can be derived using the relationship T , r−N
D−1
s . In our simulations, we fix T

1ShiftLeft(a, n) implements an arithmetic left shift of the number a by n bits, that is
a << n, which is equivalent to a2n
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Number of complex multiplications

Ns Exhaustive
Search O(NNs

b )
High

Q-search method
O(N2

s )
Low

Sim. Annealing
(r=0.9) O(N2

s )
Low

Sim. Annealing
(r=0.5) O(N2

s )
Low

8 1,502,400 288§ 288§ 288§
192§

12 223,865,040 576§ 576§ 576§
432§

Number of complex additions

Ns Exhaustive
Search O(NNs

b )
High

Q-search method
O(NNs

b )
Medium

Sim. Annealing
(r=0.9) O(N3

s )
Medium

Sim. Annealing
(r=0.5) O(N2

s )
Low

8 1,218,822 30,272† 2,916† 396†

12 193,616,609 3,198,552† 6,516† 780†
§ Real multiplications.† Real additions

Table 3.1: ADC bit-allocation algorithm computational complexity in terms of total number of
multiplications and additions.

and set r = 0.9 and r = 0.5 that correspond to additive complexity of O(N3
s )

and O(N2
s ), respectively. The generation of random numbers is carefully

designed and has O(1) complexity. The computation of the acceptance

probability Pa, which is a sigmoid function is a lookup table with O(1). In

conclusion, the SA Algorithm has a real-multiplication complexity of O(N2
b ) and

an additive complexity that depends on the initial temperature T and cooling

factor r.

3.6 Simulations and Results

We simulate the mmWave channel using the NYUSIM channel simulator for

two channel scenarios. In one, we consider two dominant scatters, and in other

we have one dominant scatter [8]. The parameter configurations for the
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Parameters Value/Type
Frequency 28 Ghz
Environment Line of sight
T-R seperation 100m
TX/RX array type ULA
Num of TX/RX elements Nt/Nr 64/128
TX/RX antenna spacing λ/2
ηPA 40%
PCIR 10W
PPS 50mW
PLNA 70mW
PVCO 15mW
c 1432fJ/conversion step [111]
Sampling Frequency 400Mhz

Table 3.2: Channel parameters for NYUSIM model [8].

simulations is given in Table 3.2. We consider Nb = 4, Ns = 8, and Ns = 12 in

our simulations. We run the simulations to evaluate the EE (ηEE) derived in

(3.14) (Figures 3.6-3.9), and the information rate R derived in (3.13) (Figures

3.10-3.13) at various SNRs for Ns = 8 and Ns = 12. Monte-Carlo simulations are

run with 1-bit ADCs (represented using lines-(a)) and 2-Bit ADCs (line-(b))

across all RF paths. The simulations are also run using the proposed Q-Search

(line-(d)), SA (lines-(e) and (f)), and ES (line-(c)) method.

The Q-search Algorithm always yields the optimal BA. That is, the BA

solution evaluated using the proposed Q-search method is exactly the same as

that of the ES method. The performance of the SA Algorithm with cooling

factors 0.9 and 0.5 are indicated using the lines (e) and (f), respectively. We

observe that the BA solution evaluated using SA is near-optimal with

significantly reduced computational complexity compared to the Q-search

method. The computational complexity analysis for these methods are discussed

in Section 3.5 and summarized in Table 3.1.
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Figure 3.13: Information rate vs. SNR for Ns = 12
with a single dominant scatterer.
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3.7 Conclusion

In this chapter, we laid out the motivation for EE-optimal MaMIMO

receivers and how crucial such optimal architectures contribute to achieving the

goals set by future wireless standards like 5G and beyond. At the same time,

meet the performance requirements like spectral efficiency, MSE, and

throughput for 5G and beyond. We discussed how the high-resolution ADCs

operating at large signal bandwidths are power-hungry and contribute

significantly towards the degradation of EE in MaMIMO receivers. The

motivation behind the use of VR ADCs over fixed-bit-resolution and

low-resolution ADC usage in MaMIMO receivers was discussed. By changing the

ADC bit resolution on each RF chain of the MaMIMO receiver based on the

channel condition an optimal MSE and throughput performance can be achieved

for a given power budget. This calls for a resource allocation (bit allocation of

VR ADC) algorithm to be implemented at the receiver for a given channel

realization. Since the coherence duration of the wireless channels is short, the

BA algorithm has to be computationally efficient and yield optimal performance.

We showed that there is no known algorithm to the best of our knowledge apart

from the ES method that can identify the optimal BA for ADCs. However, the

time complexity of the ES algorithm is exponential in the number of RF chains

and is NP-Hard. The chapter revisited various recent and state-of-the-art

algorithms proposed in the literature and discussed their limitations in terms of

performance or computational challenges. We propose a novel EE-optimal BA

algorithm whose solution is precisely the same as the ES method however with

an order of magnitude improvement in multiplicative complexity. In addition,

we propose and discussed a heuristic algorithm using simulated annealing, whose

parameters can be tuned to trade off EE optimality with computational
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complexity. Both algorithms are based on our optimal EE conditions expressed

as a function of BA under a power constraint. We analyze the computational

complexities of the proposed methods against ES. The computational

complexity of SA is significantly lower than the Q-search method. However, this

comes at the cost of no optimality guarantees.

3.8 Appendix

Theorem 3.1. If n1 = WH
DWαWH

An+WH
Dnq, where n is n ∼ CN (0, σ2

nINs) and

nq ∼ N (0,D2
q) with D2

q = WαW1−αdiag[WH
AH(WH

AH)H + INs ], then it can be

shown that n1 is a circularly symmetric complex Gaussian (CSCG) vector. That

is, n1 ∼ CN (0,Φ).

Proof. The condition for the random vector n1 to be CSCG is [112]

E[n1] = E[n1nT1 ] = 0. (3.26)

Here, E[n1nT1 ] is the pseudo-covariance. We first prove that nq is CSCG

distributed as nq ∼ N (0,D2
q). Given

D2
q = E[nqnHq ] = WαW1−αdiag[WH

AH(WH
AH)H + INs ]; with Wα, W1−α and

diag[WH
AH(WH

AH)H + INs ] being positive real diagonal matrices, effectively

results in the covariance matrix D2
q being positive real diagonal.

A necessary and sufficient condition for a random vector nq to be a CSCG

random vector is that it has the form nq = Aw where w is iid complex

Gaussian, that is w ∼ CN (0, INs) and A is an arbitrary complex matrix [2, 112].

Since D2
q is a positive real diagonal matrix, we can express

nq = Dqw, (3.27)
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where w ∼ CN (0, INs). This leads to E[nq] = DqE[w] = 0 and E[nqnTq ] =

DqE[wwT ]Dq = 0. Hence nq is circularly symmetric jointly Gaussian random

vector. nq ∼ CN (0,D2
q).

Using (3.27), we can express n1 as

n1 = WH
DWαWH

An + WH
DDqw (3.28)

Since we have n and w as i.i.d complex Gaussian vectors, we can write

E[nnT ] = E[wnT ] = E[nwH ] = E[wnH ] = 0, E[nnH ] = σ2
nINs , E[wwH ] = INs .

(3.29)

Thus, we arrive at

E[n1] = WH
DWαWH

AE[n] + WH
DDqE[w] = 0.

E[n1nT1 ] = GE[nnT ]GT + GE[nwT ]DqWD + WT
DDqE[wnT ]GT

+ WT
DDqE[wwT ]DqWD = 0.

(3.30)

Also,

E[n1nH1 ] = Φ = GE[nnH ]GH + GE[nwH ]DqWD + WH
DDqE[wnH ]GH

+ WH
DDqE[wwH ]DqWD,

= σ2
nGGH + WH

DD2
qWD.

(3.31)

Thus, n1 ∼ CN (0,Φ) is a CSCG vector.

Lemma 3.1. The term log2

(
q(bi) + 1

)
for 0 ≤ q(bi) < 1, can be approximated as

log2

(
q(bi) + 1

)
' q(bi)

ln 2 .

Proof. We can write:
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log2

(
pσ2
i

σ2
n+g(bi)li + 1

)
= 1

ln 2 ln
(

pσ2
i

σ2
n+g(bi)li + 1

)
.

We can approximate g(bi) as c2−dbi , where d = 2.0765, c = 2.40667. For the sake

of simplicity, we will replace the variable b ∈ INs×1 with x ∈ RNs×1.

We will now define f(p(xi)) = ln
(

pσ2
i

σ2
n+c2dxi li

+ 1
)
, where p(xi) = pσ2

i

σ2
n+c2dxi li

. For

a geometric series below, with a common ratio of −p(xi), where 0 ≤ p(xi) < 1,

we can write

1− p(xi) + p(xi)2 − p(xi)3 + .. = 1
1 + p(xi)

. (3.32)

ln(1 + p(xi)) =
∫ 1

1 + p(xi)
d(p(xi)), (3.33)

substituting for 1
1+p(xi) into the integral in 3.33 from 3.32, we have

ln(1 + p(xi)) = p(xi)−
p(xi)2

2 + p(xi)3

3 − p(xi)4

4 + ... (3.34)

Given that 0 ≤ p(xi) < 1, the higher powers of p(xi) are negligible and thus the

above series can be approximated as

f(p(xi)) ' p(xi). (3.35)

By re-substituting variable x ∈ RNs×1 with b ∈ INs×1, we can effectively write

log2

( pσ2
i

σ2
n + g(bi)li

+ 1
)
' 1

ln 2
( pσ2

i

σ2
n + g(bi)li

)
. (3.36)

Lemma 3.2. It can be shown that log2

(
q(bi) + 1

)
=
(
1 − 1

q(bi)

)
P + L(p, σ2

i , σ
2
n)

for ∞ > q(bi) ≥ 1, where the terms P and L(p, σ2
i , σ

2
n) are not functions of bi.

Proof. Consider the expansion for f(p(xi)) for ∞ > p(xi) ≥ 1. We can

61



approximate f(p(xi)) as

f((p(xi)) = ln
(
p(xi) + 1

)
' ln

(
p(xi)

)
. (3.37)

Rewriting f((p(xi)) as:

f((p(xi)) = − ln
( 1
p(xi)

)
for 0 < 1

p(xi)
≤ 2;

f((p(xi)) = − ln
(
g(xi)

)
where g(xi) = 1

p(xi)
;

or f((p(xi)) = −h(g(xi)) where h(g(xi)) = ln (g(xi));

(3.38)

Using the Taylor series at g(xi = x0) = 1 = 1
p(xi=x0) with the region of convergence

R :∞ > p(xi) ≥ 1
2 , we have

h(g(xi)) = h(g(x0)) + h′(g(x0))(g(xi)− 1)

+ 1
2h
′′(g(x0))(g(xi)− 1)2 + 1

6h
′′′(g(x0))(g(xi)− 1)3 + ..

(3.39)

Also:

h(g(x0)) = ln(1) = 0; h′(g(xi)) = 1
g(xi)

=⇒ h′(g(x0)) = 1;

h′′(g(xi)) = − 1
[g(xi)]2

;h′′(g(x0)) = −1;h′′′(g(xi)) = 2
[g(xi)]3

, h′′′(g(x0)) = 2; · · ·

(3.40)

substituting 3.40 in 3.39, we have

h(g(xi)) =
( 1
p(xi)

− 1
)
− 1

2
( 1
p(xi)

− 1
)2

+ 1
3
( 1
p(xi)

− 1
)3
− ..

f(p(xi)) =
(
1− 1

p(xi)
)
−
∞∑
n=2

(−1)(n−1)

n

( 1
p(xi)

− 1
)n (3.41)
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Using binomial expansion for
(

1
p(xi) − 1

)n
, we can write

( 1
p(xi)

− 1
)n

=
n∑
k=0

(
n

k

)
−1(n−k)

(p(xi))k
= Kn(p, σ2

i , σ
2
n). (3.42)

It is to be noted that for n ≥ 2 and larger values of k, the term Kn(p, σ2
i , σ

2
n)

becomes less dependent on xi and is convergent for p(xi) ≥ 1. So, we can write

3.42 as

f(p(xi)) =
(
1− 1

p(xi)
)

+G(p, σ2
i , σ

2
n), (3.43)

Where G(p, σ2
i , σ

2
n) = −∑∞n=2

(−1)(n−1)Kn(p,σ2
i ,σ

2
n)

n
and is a converging series. By

re-substituting variable x ∈ RNs×1 with b ∈ INs×1, we can effectively write

log2

(
pσ2

i

σ2
n + g(bi)li

+ 1
)

= P
(

1− 1
pσ2
i

σ2
n+g(bi)li

)
+ L(p, σ2

i , σ
2
n). (3.44)

where P = 1
ln 2 and L(p, σ2

i , σ
2
n) = G(p,σ2

i ,σ
2
n)

ln 2 .
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Chapter 4

ML-based VR ADC bit allocation

in massive MIMO

In the previous chapter, we have seen that adopting VR ADCs in mmWave

MaMIMO receivers improves EE. However, the effect of imperfect channel state

information (CSI) at the receiver is detrimental to achieving optimal EE

performance. None of the previous works have considered imperfect CSI for

designing ADC BA algorithms for MaMIMO receivers. In this chapter, we

propose a deep-learning-based framework that achieves an approximate EE

solution for MaMIMO receivers. This is achieved by training the proposed

framework that encompasses a deep neural network (DNN) for a combination of

perfect and imperfect channels using the conditions derived for capacity

maximization. Using simulations, we demonstrate that the solution obtained

using our proposed approach is very close to the ES, both for perfect and

imperfect channels. Also, through simulations, we claim a computational

complexity advantage using the proposed framework compared to ES after

sufficient learning of the channels presented to the system.

64



4.1 Background

As discussed in the previous chapters, high-resolution ADCs operating at

mmWave frequency with large bandwidths in MaMIMO receivers consume a

significant amount of power [5, 31]. This is ill-disposed in achieving an overall

NEE goal set by the 5G standard [113,114]. The mmWave MaMIMO framework

is envisioned for the wireless 5G backhaul heterogeneous networks to achieve

high throughput and spectral efficiencies. In the previous chapter, we proved

and demonstrated that an optimal BA algorithm controlling the VR ADCs can

achieve optimal EE performance of the MaMIMO receivers.

However, a perfect CSI was assumed at both the transmitter and receiver. None

of the previous literature to the best of our knowledge considers imperfect CSI

for VR-ADC BA schemes. In reality, this assumption can be contested because

of various errors that could result in imperfect channel estimation [115]. The

most common reasons are channel estimation errors due to correlated antennas

in fading environments, channel reciprocity errors due to asymmetric RF

hardware transfer functions at transmitter and receiver in time-division-duplex

(TDD) systems, and estimation errors at low-SNR operating points [38–40].

In this chapter, we propose a deep-learning-based VR-ADC BA algorithm for

MaMIMO receivers to maximize EE [116]. We consider a wireless backhaul link

between two BS as a use-case. Using the condition for maximization of the

throughput derived in the previous chapter, we define a function that returns a

BA based on the channel singular values, quantization noise error on each RF

path, and SNR. This function is both non-linear and non-convex. We propose a

feedforward Neural Network (NN) to be used as a function approximator to

derive the BA [117, 118]. We train the NN with a data set comprising multiple

channel scenarios and desired BA. We run the simulations for both perfect and
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imperfect channel scenarios and compare the results with the ES method.

Through simulations, we show that the EE performance of the proposed

NN-based BA is very close to that of the ES (for both perfect and imperfect

CSI), and with an asymptotically improving computational complexity. The

improvement in complexity over time is a consequence of NN’s learning of new

channels that are presented to the system.

The rest of this chapter is organized as follows. Section 4.2 describes the system

model. In Section 4.3, we formulate the NN framework for the EE BA problem.

In Section 4.4, we describe the proposed Algorithm based on problem

formulation in Section 4.3. We present some of the common sources of channel

imperfections associated with massive MIMO and their models in Section 4.5. In

Section 4.7, we present the simulation results, and in Section 4.6 we discuss the

computational complexity analysis of the proposed method followed by the

conclusions in Section 4.8.

4.2 Signal Model

We consider a signal model amicable for wireless back-haul, typical for base

station interconnects in an HetNet. A transceiver with hybrid precoding and

combining for a Single-User (SU) mmWave MIMO channel H is shown in Fig.

4.1 [33]. The hybrid precoders FA, FD, and the hybrid combiners WH
D , WH

A are

designed as in [33]. Here Q( · ) represents the Additive Quantization Noise Model

(AQNM) [31]. The capacity expression as a function of ADC BA b for a given

channel H is [34]

C(b) = Ns log2 p+
Ns∑
i=1

{
log2

(
pσ2

i

σ2
n + g(bi)li

+ 1
)}

. (4.1)
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Figure 4.1: Signal Model.

The BA b = [b1b2b3....bNs]T is a vector with entries bi that correspond to the ADC

bits (on both I and Q channels) along the RF path i. The total number of RF

paths being Ns. The term g(bi) depends on the mean square quantization error

for a bit resolution of bi on RF path i. The set {σi}i=1,···,Ns are the singular values

of the channel H, and σ2
n is the average received noise power. The term li is the ith

element of diag(INs+WH
DΣ2WD) where Σ2 , diag(σ2

1, σ
2
2, · · · , σ2

Ns). The average

received signal power is denoted as p.

The set Bset consists of all possible BA’s for a given number of RF channels

Ns and for a given number of ADC bit resolution range Nb that meets the ADC

power budget PADC.

Bset , {bj = [bj1, bj2, . . . , bjNs ]
T for 0 ≤ j < NNs

b |

1 ≤ bji ≤ Nb and
N∑
i=1

cfs2bji ≤ PADC}
(4.2)

The total power consumed by the ADCs on all the RF paths is denoted as PTOT. It

is known that PTOT = ∑N
i=1 cfs2bi , where c is the power consumed per conversion

step and fs is the sampling rate in Hz [31].
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4.3 Problem Formulation

We derive EE ηEE(b) (in bits/Hz/Joule) as a function of BA using (4.1) as [107]

ηEE(b) =
Ns log2 p+∑Ns

i=1

{
log2

(
pσ2
i

σ2
n+g(bi)li + 1

)}
PT + 2cfs

∑Ns
i=1 2bi

,
(4.3)

where PT is the total power consumption of all the components in the transmitter

and the receiver. This also encompasses the power consumed because of the

computations due to NN training and implementation.

Given (4.3), an EE optimal BA under a power constraint can be formulated as

b∗ = argmax︸ ︷︷ ︸
b∈INs×1;

PTOT≤PADC

1
p(b)

Ns∑
i=1

{
log2 (r(bi, i) + 1)

}
, where

r(bi, i) = pσ2
i

σ2
n + g(bi)li

, and p(b) = PT + 2cfs
Ns∑
i=1

2bi ,

(4.4)

for a power constraint PTOT ≤ PADC. The combinatorial optimization described

in (4.4) is both a non-linear and non-convex problem and hence presents

significant challenges to solve the same to optimality [119].

We now define a map φ : RNb×Ns → INs×1 such that

b∗ = φ(R), where

R =



r(1, 1) r(1, 2) · · · r(1, Ns)

r(2, 1) r(2, 2) · · · r(2, Ns)
... ... ... ...

r(Nb, 1) r(Nb, 2) · · · r(Nb, Ns)


.

(4.5)
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We propose using a feedforward NN to train the weights such that the NN

approximates the function φ [117]. The training data set (Rd,bd) comprise of

different matrices Rd that correspond to a given channel and SNR scenario that

yields a desired solution bd.

4.4 Proposed Algorithm

A feedforward NN can closely approximate any function by appropriate

tuning of the NN parameters like the number of hidden layers, the number of

neurons per layer, optimization algorithm selection, and activation function

selection [75, 117]. We train the NN using the data set (Rd,bd) as input-output

(IO) pairs. Before the NN is deployed, it is trained with well-known scenarios

obtained from both field and simulations. NN training is computationally costly

as compared to implementing the approximation function. There are various

optimization formulations to train the NN. We consider the

Levenberg-Marquardt (LM) formulation to do so [75]. The LM formulation

approximates φ by solving a non-linear least square which is intended [34]. The

NN training process to obtain an approximation of the function φ (4.5) using

LM formulation can be expressed as

P = argmin︸ ︷︷ ︸
P∈R1×Nb

L∑
t=1

∥∥∥bt −RT
t PT

∥∥∥2

F
, (4.6)

where P is the trained effective weight matrix of size 1×Nb, L being the size of

the training data set which is {Rt,bt}t=1,···,L. We assume that the desired output

BA bt for the given channel and SNR scenario Rt is either known or evaluated

using the ES algorithm as part of training. After the training, the function φ is
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evaluated on a new test data R as

b̂ = φ(R) = RTPT . (4.7)

This NN framework is depicted in Fig. 4.2.

We propose using various MaMIMO channels encompassing both perfect and

Training

Realization

Figure 4.2: NN framework

imperfect CSI to train the above-mentioned NN. One could also use the data

available in the field previously to train the NN. Once the NN is trained and the

best P is computed, it is deployed in the MaMIMO receiver of the base station

that has VR-ADCs.

Once the system is deployed, we propose to re-train the NN when the Mean Square

Error (MSE) δ of the received, quantized and combined pilot symbols goes above a
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predetermined threshold δT . The expression for δ of the M pilot symbols received

within a coherence time is given as [33]

δ =
M∑
i=1

∥∥∥xpi − ypi

∥∥∥2

F
, where ypi = WH

DWα(b)WH
AHFAFDxpi + n̂q. (4.8)

The term xpi indicates the ith pilot symbol within the coherence duration and is

known at the receiver. The ith received, quantized and combined pilot symbol is

represented as ypi. The vector n̂q is the combination of the AWGN and

quantization noise vector that results due to the BA b due to (4.7) [33]. The

Wα(b) is the diagonal BA matrix [34].

The condition δ > δT is an indication of an encounter of an outlier data point

(Rt,bt) that is not well approximated using the NN function φ, and hence calls

for re-training the NN matrix P. The selection of threshold δT requires a

trade-off between performance ηEE and computational complexity. The

proposed algorithm for BA is described in Algorithm 7.

4.5 Imperfect Channel Models

There are many reasons for the channel estimation errors in massive MIMO.

In TDD schemes, channel reciprocity (Hu = HH
d ) is efficiently exploited at the

transmitter for CSI estimation. However, the reciprocity relationship holds if

and only if channel responses due to the RF front ends at the transmitter and

receiver are equivalent, which is usually not the case. As a result, a calibration

procedure is usually run to estimate the responses due to RF front ends at both

transmitter and receiver to compensate for the Hardware RF effects [38]. However,

the inaccuracies in the calibration give rise to channel reciprocity imperfections.
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Algorithm 3 Feedforward NN-based bit allocation
1: procedure NN-Bit-Allocation(H,WD,S(Ns),g(·),p, σ2

n,P,δT ,T ,Nb,Ns,PT )
2: H← Estimated MaMIMO channel
3: WD ← Digital combiner designed as per (21) in [33]
4: S(Ns)← Table containing the σ2

i of the channel H
5: g(·)← Quantization error lookup table. Refer Table in [34]
6: p← Received Signal Power
7: σ2

n ← Noise Power
8: P← NN weights after latest training
9: δT ← Threshold for MSE
10: T ← Time stamp index
11: Nb ← ADC bit range
12: Ns ← Number of RF paths
13: PT ← Total power consumption of Tx-Rx base stations
14: l(·)← diag(INs + WH

DΣ2WD)
15: for i=0;i++ ;until i ≤ Ns do
16: for bi=1;bi++ ;until bi ≤ Nb do
17: R(bi, i)← pS(i)

σ2
n+g(bi)l(i)

18: end for
19: end for
20: T ← T + 1
21: bsol ← RTPT

22: Evaluate δ using (4.8)
23: if δ > δT then
24: T ← 0
25: bd ← ExhaustiveSearch(Bset,R, Nb, Ns, PT ) . Perform ES using (4.4)
26: P← TrainNN(R,bd)
27: bsol ← RTPT

28: end if
29: return bsol . NN based Bit Allocation
30: end procedure

procedure TrainNN(R,bd)
2: R ← New input to train NN . Computed as per (4.5)

bd ← New desired output to train NN for the above input
4: DBset ← Global database (DB) containing a set of all IO pairs

nn← feedforwardnet(L,Nnn). L =Num of NN layers,Nnn =Neurons per layer
6: nn← configure(nn,’trainlm’,’tansig’)

DBset{end} ← (R,bd) . Add new IO pair into DB
8: P← train(nn,DBset) . Evaluate P as described in (4.6)

return P . Updated training weights with new IO pair
10: end procedure
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This is modeled as

Hd = 1√
1− τ 2

(Ĥd − τVT ).H−1
br Hbt, (4.9)

where Hd is the channel under consideration that factors in the RF front ends of

the transmitter Hbt and the receiver Hbr [38]. The matrix V is the channel

estimation error matrix whose entries are i.i.d Gaussian random variables. The

term τ ∈ [0, 1] represent the accuracy of channel estimation, with τ = 0

representing accurate channel estimation and τ = 1 representing completely

uncorrelated channel.

One other common imperfection in the channel estimation in mmWave

MIMO is because of the correlated antennas (sometimes both at the transmitter

and receiver) with a fading profile. One can model the antenna correlations in

MIMO channels as

H = R
1
2
RHωR

1
2
T , (4.10)

where Hω is a spatially white matrix with entries as i.i.d Gaussian random

variables. R
1
2
T and R

1
2
R are the normalized transmit and receive correlation

matrices [120].

One of the simple channel error models that are universal and most

appropriate for consideration in massive MIMO is the errors in the estimation

caused by low SNR. This model is given as [115]

H = Ĥ + ε. (4.11)

Here the channel H has entries as flat fading coefficients with complex Gaussian

distribution with unit variance that can be seen as the sum of given unbiased
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estimate of H as Ĥ and a significant error term ε. The SNR impacts the term ε.

4.6 Computational Complexity

The computational complexity of re-training is quite high scaling with

O(NNs
b ) as it requires an exhaustive search for evaluating the desired output bd

for a given R required to re-train the NN [33]. However, on the other hand, the

evaluation of BA without training requires the computation of R in (4.4),(4.5)

and matrix multiplication in (4.7). It is straightforward to see that the

complexity in this case is O(N3
bN

3
s ). Hence the training of NN comes at a huge

computational cost. We study the rate of re-training using simulations, and we

see that as the NN learns more channel scenarios, the rate of re-training drops

drastically over time.

The simulation is carried out as follows. A channel set {Hm}m=1,...,K is

generated using a combination of perfect channels using NYUSIM channel

simulator and imperfect channels generated using (4.9)-(4.11) for various SNRs.

We consider K = 100000. The NN is initially trained only with a subset of these

channels (128 channels). We assume that the channels from the set

{Hm}m=1,...,K is presented to the system that is represented using a Gaussian

distribution m ∼ N (µ, σ2). The set {Hm} is constructed such that the most

likely channels are placed at m ≈ µ, and the unlikely channels far away from µ.

We consider 2 scenarios with {µ = 50000, σ2 = 50} and {µ = 50000, σ2 = 300}.

The NN training rate per unit time is presented in Fig. 4.3. We consider 100

channel scenarios presented per unit time. It is seen that the NN learning rate

decreases drastically over time. It can be seen that after 50 units of time, the

NN re-training rate drops to less than 7 per unit time. From this point on, there

is a huge computational complexity advantage.
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Figure 4.3: NN re-training rate vs. time.

4.7 Simulations

We use the mmWave MaMIMO channel model obtained using NYUSIM for

modeling the perfect CSI channels [8]. The imperfect channel models due to

channel reciprocity (4.9), antenna correlation (4.10), and AWGN noise (4.10) are

used to train and test the feedforward NN. We use Ns = 8 RF paths with 2

dominant scatters to spatially-multiplex 64 QAM data symbols. The other test

parameters used in our simulation are highlighted in Table 4.1. We train the

NN with 128 different channel scenarios and test the proposed algorithm for two

scenarios, not part of the training set comprising of both perfect and imperfect

CSI. We evaluate the EE as defined in (4.3) at various SNRs for (a) 1-bit ADCs on

all RF paths (b) all 2-bit ADC (c) no quantization (d) Exhaustive search (optimal

solution) (e) Proposed algorithm. The evaluations for the two test scenarios are

summarized in Fig. 4.4.
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Figure 4.4: Simulation results with proposed DNN-based BA algorithm

Parameters Value/Type
Num of NN layers 16

Num of Neurons/layer 10
Optimization Algorithm Levenberg-Marquardt [75]

Activation function tansig(·) [121]
Frequency 28Ghz

Environment Line of sight
Tx-Rx seperation 100m

Antenna array type ULA
Num of TX/RX elements Nt/Nr 64/128

Antenna spacing λ/2
PT 25W1001[5]
c 1432fJ/conversion step [111]

Sampling Frequency 400Mhz
ADC bit resolution range (Nb) 1-4 bits

Table 4.1: Simulation parameters
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4.8 Conclusion

In our previous works, we derived the expression for the throughput of the

mmWave MaMIMO system as a function of bit allocation. We also set up an

optimization problem to derive BA as a function of channel singular values,

SNR, and quantization error due to VR ADCs in each RF chain. The solution

using this expression yields an optimal solution only when a perfect CSI is

considered both at the transmitter and receiver. In this chapter, we proposed an

ML-based VR-ADC BA technique that uses a deep learning NN-based algorithm

for energy-efficient BA that is close to the ES. The NN- (or any other supervised

learning) based method establishes a function approximation between the given

input-output dataset during its training phase. Given that a closed-form

expression for the capacity as a function of bit allocation for an imperfect

channel scenario is not easy to establish, the proposed NN-based algorithm helps

find a relationship between the impaired channel conditions and its associated

bit allocation. We train the NN initially with a limited set of simulation and

field data. Once deployed, the NN is re-trained based on the MSE of the

received, quantized, and combined pilot symbols. The NN training being the

computationally intensive part of the algorithm, the training kicks in only when

the NN realization algorithms see MSE errors beyond a threshold. However, as

more channel scenarios and their associated BA gets learned over time, we

demonstrate a notable computational complexity advantage in the asymptotic

sense. We present simulation results showing the EE performance of the

proposed approach close to the ES with both perfect and imperfect CSI.
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Chapter 5

Discrete phase-shift identification

of RIS in RIS-assisted massive

MIMO

In this chapter, we study the passive RIS-assisted multi-user communication

between wireless nodes to improve the blocked line-of-sight (LOS) link

performance. The wireless nodes are assumed to be equipped with Massive

Multiple-Input Multiple-Output antennas, hybrid precoder, combiner, and

low-resolution analog-to-digital converters (ADCs). We first derive the

expression for the Cramer-Rao lower bound (CRLB) of the Mean Squared Error

(MSE) of the received and combined signal at the intended receiver under

interference. By appropriate design of the hybrid precoder, combiner, and RIS

phase settings, it can be shown that the MSE achieves the CRLB. We further

show that minimizing the MSE w.r.t. the phase settings of the RIS is equivalent

to maximizing the throughput and energy efficiency of the system. We then

propose a novel Information-Directed Branch-and-Prune (IDBP) algorithm to
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derive the phase settings of the RIS. We, for the first time in the literature, use

an information-theoretic measure to decide on the pruning rules in a tree-search

algorithm to arrive at the RIS phase-setting solution, which is vastly different

compared to the traditional branch-and-bound algorithm that uses bounds of

the cost function to define the pruning rules. In addition, we provide the

theoretical guarantees of the near-optimality of the RIS phase-setting solution

thus obtained using the Asymptotic Equipartition property. This also ensures

near-optimal throughput and MSE performance.

5.1 Background

The Reconfigurable Intelligent Surfaces (RIS) are known to mitigate the

harsh effects of wireless channels such as obstruction, shadowing, fading, and

other complex scenarios encountered between the transmitter and receiver of

interest. This is achieved by efficient beamforming and interference management

by the RIS. The RIS comprises an array of large number of reflecting elements,

each of which can be controlled to change the amplitude, delay (phase shift),

and polarization of the incident signal from the transmitter. In the case of

passive RIS structures, only the phase of the incident signal is changed, and the

RIS consumes no power in such a situation. In one of the typical architectures,

the desired phase shift to be induced upon the incident signal can be achieved

by controlling the bias voltage to the positive-intrinsic-negative (PIN) diode

associated with each of the RIS elements [42]. This is illustrated using Fig. 5.1.

The vehicular communication frameworks, namely Vehicle to Everything

(V2X) based on the IEEE 802.11p Wireless Local Area Network (WLAN) and

the Cellular-V2X (C-V2X) defined by the 3GPP and 5G Automotive Association

(5GAA) aim to achieve the goals of the Intelligent Transportation Systems
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Figure 5.1: An illustration of RIS-assisted MaMIMO framework

(ITS) [122, 123]. The objectives of the ITS include collision avoidance, ease road

congestion, accident information, pedestrian safety, emergency vehicle approach

warning, and parking assistance, to name a few. With the adoption of massive

Multiple-Input Multiple-Output (MaMIMO), millimeter-wave (mmWave), and

Terahertz (THz) communications in the next generations of wireless

communication, it is natural that the vehicular communication nodes will

encompass them in the future. A millimeter MaMIMO framework for C-V2X is

proposed and studied in [124]. Vehicular wireless links are prone to significant

challenges due to the highly dynamic nature of the channels due to large

buildings, continuous traffic, and changing landscapes. The integration of the

RIS technology to vehicular communication is being studied in the literature and

has shown promising results. They are shown to maximize the sum V2X link

capacity while guaranteeing the minimum SINR of the vehicle-to-vehicle

links [125–127].

RIS is one of the key enablers for the sixth-generation (6G) mobile

communication networks. This is particularly useful for problems of coverage

extension in mmWave and THz communication systems due to the unfavorable

free-space omnidirectional path loss in these frequency bands [128, 129]. In
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addition to enhancing the wireless link’s performance between the transmitter

and receiver, the RIS has found applications in providing physical layer security.

Advanced signal processing techniques are used to manipulate the wireless

channel using RIS to guarantee the security of the communication content in an

information-theoretic sense. Essentially the RIS ascertains physical-layer

security by configuring the RIS elements in such a fashion to add the wireless

signals constructively to the legitimate receiver but destructively to a potential

eavesdropper [130]. A few other examples of the applications of RIS include

enhancing the link performance of the cell-edge users who suffer high signal

attenuation from the base station (BS), co-channel interference from near

BSs [131, 132], Interference management to support low-power transmission to

enhance individual data links in device-to-device networks [133], In

non-orthogonal multiple-access (NOMA) systems, RIS could be considered to

increase the number of served users and enhance the rate of communication,

which constitutes the major requirement to be accomplished in these

systems [132, 134, 135]. Improve the link performance between the unmanned

aerial vehicle (UAV) network and the ground users for UAV trajectory

optimization and improve overall system performance, including energy

efficiency [136].

The fundamental problem in all of the above applications is configuring the

RIS phase-shift setting to achieve a specific goal. Finding an optimal RIS

configuration for a set of K discrete phase shifts with M element array has an

exponential time complexity O(KM). In addition, the objective function is often

non-convex in the decision parameters (RIS phase shift settings). Identifying the

optimal RIS phase shift is a non-convex NP-Hard combinatorial optimization

problem.
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The proposed algorithm benefits several similar problems related to the

wireless backhaul link in the vehicular network or the roadside unit layer,

vehicle-to-everything framework, and cellular systems, to name a few. A typical

RIS-assisted MaMIMO architecture to enable NLOS links in wireless backhaul

networks and vehicular road-side unit (RSU)-RSU networks are illustrated using

Fig. 5.2 and 5.3.

Figure 5.2: RIS-assisted cellular backhaul
networks [7]

Figure 5.3: RIS-assisted vehicular RSU-RSU
links

Previously, a branch-and-bound (BnB) algorithm was used to solve an

optimization problem involving RIS phase shifts to maximize the spectral

efficiency (SE) [47]. A block-coordinated descent algorithm to maximize the

achievable uplink rate with multiple single-antenna users and multi-antenna base

stations was proposed in [137]. There, resolution-adaptive analog-to-digital

converters (ADCs) operating at millimeter-wave (mmWave) frequencies were

assisted by a passive RIS. A trace-maximization-based optimization framework

was presented in [49] to study the effect of the link capacity in a point-to-point

MIMO link that considers two RIS architectures. A trellis-based joint

optimization of the beamformer and the RIS discrete phase shifts to minimize

the mean squared error (MSE) of the received symbols was proposed in [50].

In [51], a RIS-assisted architecture is proposed to maximize channel power gains

82



between two users in a NOMA framework. A branch-and-bound (BnB)

algorithm is used to solve an optimization problem involving RIS phase shifts to

maximize the spectral efficiency (SE) in [47]. The solution obtained is achieved

by linear approximation of the objective function involving the phase shifts of

the RIS. Also, the SE maximization is accomplished by relaxing it to a convex

problem. RIS-assisted optimal beamforming for a Multiple-Input Single-Output

(MISO) communication system is proposed in [52]. An optimal global solution

using BnB is claimed in it. However, the results obtained are not compared with

the exhaustive search technique. In addition, the bounds for the BnB algorithm

are obtained using convex approximations. The authors in [53] propose a

low-complexity algorithm using alternating optimization (AO) to jointly

optimize transmit-beamforming and RIS phase shift settings to minimize the

transmit power from the multi-antenna access point (AP) to multiple

single-antenna users. A RIS-aided point-to-point multi-data-stream MIMO is

studied in [54]. An AO-based algorithm to jointly optimize the RIS phase shifts

and precoder is investigated in it to minimize the symbol rate error. However,

the combiner design is not considered in this work. Also, the optimality

guarantees of the proposed AO algorithm are not investigated. In [55], a

RIS-aided MIMO simultaneous wireless information and power transfer

(SWIPT) for Internet-of-Things (IoT) networks are investigated. A BnB

algorithm is proposed to maximize the minimum signal-to-interference-plus-noise

ratio (SINR) among all information decoders (IDs) while maintaining the

minimum total harvested energy at all energy receivers (ERs). In it, the authors

relax the quadratic assignment problem to a linear integer problem and use the

BnB method to obtain the solution. A joint multi-UAV

trajectory/communication optimization problem in a network with RISs on
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uneven terrain is proposed in [138]. An effective path-planning algorithm for this

optimization problem is proposed. Although the paper deems that the issue of

RIS control (either phase-shift or amplitude) is beyond its scope, a

mathematically rigorous proof of its asymptotic optimality is given. However,

the problem considered is a continuous optimization problem, and the

computational complexity of the approach is not discussed in it. An asymptotic

analysis for RIS assisted communication between multi-antenna users for

mmWave MaMIMO is studied in [139]. The problem of minimizing the transmit

power subject to the rate constraint is also analyzed for the scenario without

direct paths in the pure LOS propagation.

All the earlier works in literature make convex approximations of the

objective function under consideration and solve the same using various

well-established algorithms, for example, Branch-and-Bound (BnB). However, to

the best of our knowledge, none of the earlier works show theoretical guarantees

for either optimality or near-optimality, considering the original non-convex

problem.

The main topic of discussion In this chapter are summarized below:

• For a RIS-assisted MaMIMO framework, we derive the expression for the

CRLB of the MSE of the received and combined signal as a function of the

phase settings of the RIS for a given hybrid precoder, combiner, and ADC

bits.

• We show that minimizing the MSE by adjusting the RIS phase shifts also

ensures maximization of throughput and energy efficiency.

• We show that the MSE achieves the CRLB with the appropriate design of

the hybrid precoders, and combiners.
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• We present a novel Information-Directed Branch-and-Prune (IDBP)

algorithm, in which, we, to the best of our knowledge, for the first time in

the literature use an information-theoretic measure to decide on the

pruning rules in a tree-search algorithm to arrive at the RIS phase-setting

solution, which is vastly different compared to the traditional

branch-and-bound algorithm that uses bounds of the cost function to

define the pruning rules.

• We establish theoretical guarantees for near-optimality, and substantiate

the claims by comparing the solutions obtained with the ES method for a

smaller number of reflecting elements in the RIS (M).

• We compare the performance and the time complexity of the proposed

algorithm with the state-of-the-art trace-maximization-based approach for

MIMO transceiver structure proposed in [49], and the AO algorithm

proposed in [54], both for larger number of RIS reflecting elements.

The rest of this chapter is organized as follows. Section 5.2 describes the

system model and parameters. In Section 5.4, we describe the hybrid precoder

and combiner design. We discuss the RIS phase shift optimization and derive the

optimization framework in Section 5.5. Section 5.5 also details the design to fine-

tune the digital precoders and combiners. We describe the theoretical framework

of the proposed IDBP algorithm in Chapter 7, including the optimality analysis.

The proposed IDBP algorithm is detailed in Section 5.6. The computational

complexity analysis is described in Section 5.7, followed by simulation results in

Sections 5.8, and conclusions in Section 5.9 respectively. Supporting Theorems

and their proofs are presented in the Appendices.
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5.2 Signal and RIS channel Model

We consider a RIS equipped with M passive reflecting elements each of

which can be set to K discrete phase-shift values to aid the millimeter-wave

(mmWave) Massive Multiple-Input Multiple-Output (MaMIMO) communication

between two roadside units (RSU) in a vehicular wireless backhaul network,

typically called the RSU-to-RSU wireless link. In addition, we consider the

RSUs to be equipped with hybrid precoders, hybrid combiners, and

low-resolution ADCs. The communication is assumed to have a blocked

line-of-sight (LoS) signal to the intended RSU receiver. An example use-case

scenarios is illustrated using Fig.5.4 [124]. This proposed signal model can be

extended to other use-case scenario like V2X, cellular wireless backhaul network

nodes without loss of generality.

The signal model of such a communication system is shown in Fig.5.5. Here,

Figure 5.4: An example of an RSU layer employing a RIS for enhancing the performance of a
blocked LOS link under Interference.

86



Figure 5.5: System model with RIS-assisted channel with interference.

we denote FD and FA to be the digital and analog precoders, respectively.

Similarly, we represent WH
D and WH

A to be the digital and analog combiners,

respectively. The vector x is an N × 1 transmitted signal vector whose average

power is unity. Let Nrt and Nrs denote the number of RF Chains at the

transmitter and receiver, respectively. Also, Nt and Nr represent the number of

transmit and receive antennas, respectively. The effective channel H which is a

Nr × Nt matrix at the intended receiver will be a combination of the RIS

reflected signal from the transmitter and the interference of the signal from the

same transmitter intended for the other multi-antenna users. That is

H = H′ + Hint, (5.1)

where the channel H′ represents the blocked LOS channel between TX and RX

assisted by the RIS in the absence of interference, and can be expressed as H′ =

QΦG. The term G ∈ CM×Nt is the transimtter-to-RIS (TX-RIS) channel, Q ∈

CNr×M being the RIS-to-receiver(RIS-RX) channel [49]. The action of the M

element RIS is represented as Φ = diag(eφ1 , eφ2 , · · · , eφM ). Here φn ∈ Φ, where Φ
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is a finite set phase angles with cardinality K.

The interference channel Hint represents the combination of the RIS reflected

signals from the transmitter to the other users but arriving at the intended receiver

HRISint, and the non-LOS reflected from the transmitter to the receiver not going

through the RIS HDint (See Fig. 5.4). Formally

Hint = HRISint + HDint =
β∑
i=1

QiΦGi + HDint, (5.2)

where the components {Gi}βi=1 represent the transmitter-to-RIS of the

interferers, similarly {Qi}βi=1 are the RIS-to-receiver channels of the interferers,

with β indicating the total number of interferers. Hence the effective channel

between the TX and the RX considering the interferers can be written as

H = H′ + Hint = QΦG +
β∑
i=1

QiΦGi + HDint. (5.3)

Inspired by the channel model adopted in [49, 139], we express the RIS-assisted

channel with interference given in (5.3) as a traditional mmWave MIMO channel

comprising of γ paths (here γ = β + 2, see (5.3))

H = ArDAH
t , (5.4)

where D is a γ × γ diagonal matrix comprising of the complex gains {αi}γi=1, the

matrices Ar and At correspond to the collection of the steering vectors

ar(φr), at(θt) with φir and θit indicating the angles of arrival and departures
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respectively. That is

Ar = [ar(φ1
r), ar(φ2

r), · · · , ar(φγr )],

At = [at(θ1
t ), at(θ2

t ), · · · , at(θ
γ
t )].

(5.5)

Now, when we choose the number of TX antennas Nt and RX antennas Nr to be

very large, the Singular Value Decomposition (SVD) of the matrix H in (5.4) can

be shown as [139–141]

H = UΣVH = [Ar|A⊥r ]Σ[Ãt|Ã⊥t ]H , (5.6)

where Σ is a diagonal matrix comprising of the singular values on its diagonal

[Σ]ii =


|αi|, for 1 ≤ i ≤ γ

0, for i > γ,

(5.7)

and the matrix

Ãt = [ejζ1at(θ1
t ), ejζ2at(θ2

t ), · · · , ejζγat(θ
γ
t )], (5.8)

where ζi is the phase component of the complex gain αi. Taking into account the

action of the RIS phase shifts Φ, we can rewrite (5.6) as

H = UΣVH = [Ar|A⊥r ]Σ[Ãt|Ã⊥t ]H ,

= UΣΦR = PΦR,
(5.9)

where R = diag(ejζ1 , ejζ2 , · · · , ejζ(β+1) · · ·)VH , and P = UΣ. It is to be noted that

P and R are not unitary matrices anymore. Hence we can visualize the effective
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channel H as

H = PΦR. (5.10)

R ∈ CM×Nt is the effective transimtter-to-RIS (TX-RIS) channel, P ∈ CNr×M the

RIS-to-receiver(RIS-RX) channel, both considering the interference.

In this chapter, we focus on minimizing the mean squared error (MSE)

performance of the communication link by optimizing the phase shifts. The

transmitted signal x̃ and the received signal r are represented as

x̃ = FAFDx, r = Hx̃ + n. (5.11)

Here, n is an Nr × 1 noise vector of independent and identically distributed

(i.i.d) complex Gaussian random variables such that n ∼ CN (0, σ2
nINr). The

received symbol vector r is analog-combined with WH
A to get z = WH

A r and

later digitized using a low-resolution ADCs to produce ỹ = Qb(z) = αINrsz +

nq. The quantizer Qb(z) is modeled as an Additive Quantization Noise Model

(AQNM), where α = 1− π
√

3
2 2−2b, and b is the bit resolution of the ADCs employed

across all the RF paths [31, 91] in the receiver. The vector nq is the additive

quantization noise which is uncorrelated with z and has a Gaussian distribution:

nq ∼ CN (0,D2
q) [31,91]. This signal is later combined using the digital combiner

WH
D to produce the output signal y = WH

D ỹ.

The relationship between the transmitted signal vector x and the received

symbol vector y at the receiver is given by

y = αWH
DWH

APΦRFAFDx + αWH
DWH

An + WH
Dnq, (5.12)
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where the dimensions of the hybrid precoder and combiner are as follows: FD ∈

CNrt×N , FA ∈ CNt×Nrt , WH
A ∈ CNrs×Nr , and WH

D ∈ CN×Nrs .

The precoders FD and FA, and combiners WH
D and WH

A are designed for a

given channel realization H. We assume that the perfect channel state information

P and R are known both to the transmitter and the receiver, and the topic of

channel estimation is outside the scope of this work. We further assume that the

number of RF paths Nrs on the receiver is the same as the number of parallel

data streams N . The analysis is easy to extend and similar for the case Nrs 6= N .

5.3 Problem formulation

It can be shown that the expression for the MSE δ of the received, quantized,

and combined signal y using (5.12) as

δ , tr(M(x)), (5.13)

where M(x) is the MSE matrix that can be written as

M(x) = (E[(y− x)(y− x)H ]) = p(K− IN)(K− IN)H + α2σ2
nWWH + WH

DD2
qWD.

(5.14)

Here K = αWH
DWH

APΦRFAFD, E[xxH ] = pIN ,W = WH
DWH

A , E[nnH ] = σ2
nINr ,

E[nqnq
H ] = D2

q,D2
q = α(1− α)diag[WH

AH(WH
AH)H + INrs ], E[nnq

H ] = 0, and p

is the average power of the symbol x.

The design of the precoder, combiner, and the RIS phase-shift settings to

minimize the MSE δ for a given b-bit ADC can be posed as a multi-dimensional
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optimization problem

(Fopt
A ,Fopt

D ,WH
A

opt
,WH

D

opt
,Φopt) = argmin

FA,FD,WH
A ,W

H
D ,Φ

δ. (5.15)

If the precoders, combiners, and the RIS phase settings are chosen such that

K = IN , then the MSE matrix M(x) can be written as

M(x) = α2σ2
nWWH + WH

DD2
qWD. (5.16)

An alternate equivalent problem to (5.15) can be posed as

K = αWH
DWH

APΦRFAFD = IN , such that α2σ2
nWWH + WH

DD2
qWD = 0.

(5.17)

Both (5.15) and (5.17) are challenging to solve given the constraints on the analog

precoder and combiner [32]. We take a multi-step approach to solve the problem

by designing the hybrid precoder and combiner as a first step. In the next step,

we derive the RIS phase setting, followed by fine-tuning the design of the digital

precoder and combiner.

5.4 Precoder and combiner Design

In order to design the precoders and combiners, we factor the digital precoder

and combiner as

FD = F̃DFS, WH
D = WSW̃H

D , (5.18)

where F̃D ∈ CN×M ,FS ∈ CM×N ,W̃H
D ∈ CM×N , and WS ∈ CN×M . This is

illustrated using Fig. 5.5. We first focus on designing the partial digital precoder
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F̃D and partial digital combiner W̃H
D , and the analog precoder FA and analog

combiner WH
A . We will later revisit the design of the other component of the

digital precoder and combiner FS and WS in section 5.5.3.

The hybrid precoding and combing techniques for systems employing phase

shifters in mmWave transceiver architectures impose constraints on them. The

analog precoder FA and combiner WH
A entries need to satisfy unit norm entries

in them [5, 32, 33, 108]. We design the analog precoder FA and the partial digital

precoder F̃D such that RFAF̃D ≈ IM . The hybrid precoders are derived upon

solving the optimization problem [5,108] stated below.

(Fopt
A , F̃opt

D ) = argmin
F̃D,FA

‖R† − FAF̃D‖F , such that FA ∈ FRF , ‖F̃DFA‖
2
F = N.

(5.19)

The set FRF is the set of all possible analog precoders that correspond to a hybrid

precoder architecture based on phase shifters. This includes all possible Nt ×Nrt

matrices with constant magnitude entries. The term R† denotes the right inverse

of R.

Similarly, the analog combiner WH
A and the partial digital combiner W̃H

D are

designed such that W̃H
DWH

AP ≈ IM . The hybrid combiners are derived using [108]

(WH
A

opt
,W̃Hopt

D ) = argmin
W̃H

D,W
H
A

‖P‡ − W̃H
DWH

A‖F ,

such that WH
A ∈ WRF , ‖W̃H

DWH
A‖

2
F = N.

(5.20)

Here again the setWRF is the set of all possible analog combiners that correspond

to hybrid combiner architecture based on phase shifters. This includes all possible

Nrs×Nr matrices with constant magnitude entries. The term P‡ denotes the left

inverse of P.
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5.5 RIS phase shift optimization

In this section, we derive the expression for the CRLB of the MSE of the

received, quantized, and combined signal y for a fixed WH
A , FA, W̃H

D , F̃D, and

ADC bit resolution b on all the RF paths of the receiver, and show that the MSE

achieves the CRLB. We later formulate an optimization problem to minimize the

MSE (or CRLB) for RIS phase-shift setting. Finally, we describe a design to

fine-tune the precoder FS and the combiner WS considering the optimal RIS

phase-shift settings.

5.5.1 CRLB as function of RIS phase-shift settings

Given the analog combiner WH
A , analog precoder FA, the partial digital

combiner W̃H
D , and the partial digital precoder F̃D are derived using (5.19) and

(5.20), we substitute them in (5.12) and rewrite the same as

y = Kx + n1, (5.21)

where K = αWSΦFS, and n1 = αWSW̃H
DWH

An + WSW̃H
Dnq. We know that

n and nq are Gaussian random vectors such that n ∼ N (0, σ2
nINr) and nq ∼

N (0,D2
q) respectively. Hence we have

E[n1] = αWSW̃H
DWH

AE[n] + WSW̃H
DE[nq] = 0, (5.22)

σ2
n1 = E[n1n1

H ] = α2σ2
nWWH + WSW̃H

DD2
qW̃DWH

S . (5.23)

Thus n1 ∼ N (0, (α2σ2
nWWH + WSW̃H

DD2
qW̃DWH

S )). It is noted that W is an

N ×Nr matrix with Nr � N . It is safe to assume that W has a full row rank and

its pseudo-inverse exists. Equation (5.21) can be seen as a linear model, in which
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we intend to estimate x, given the observation y. We can express the conditional

probability distribution of y given x as

p(y|x) ∼ 1
(2πσ2

n1)N2
exp

{
− 1

2σ2
n1

(y−Kx)H(y−Kx)
}
. (5.24)

From (5.21) and (5.24), it is straightforward to see that the “regularity conditions"

are satisfied, and hence for such a linear estimator, we can write the expression

for the CRLB as

I−1(x̂) = (KHC−1K)−1

= F−1
S

[
σ2
nΦ−1W̃Φ + 1

α2 Φ−1W̃H
DD2

qW̃DΦ
]
(FH

S )−1,
(5.25)

where W̃ = W̃H
DWH

AWAW̃D, D2
q = α(1−α) diag

[
(W̃H

D)−1ΦRRHΦ−1W̃−1
D +IN

]
,

and C the noise covariance matrix of n1. The details of the proof are given in

Appendix 5.10.1.

It can also be seen that if the precoders, combiners, and the phase shift settings

are designed such that K = IN , the MSE in (5.16) achieves the CRLB. Formally,

I−1(x̂) = α2σ2
nWWH + WSW̃H

DD2
qW̃DWH

S = α2σ2
nWWH + WH

DD2
qWD = M(x).

(5.26)

5.5.2 Design of the RIS phase shift matrix

Minimizing the CRLB in (5.26) will ensure the minimum MSE (δ) performance

for a given fixed WH
A , FA, W̃H

D , F̃D, and ADC bit resolution b. The CRLB (5.26)

can be minimized when

Φ−1W̃H
D

[
σ2
nWH

AWA + 1
α2 D2

q

]
W̃DΦ = 0. (5.27)
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Thus the design of the RIS phase shift matrix can be posed as

Φopt = argmin
Φ

f(Φ), where

f(Φ) = ‖Φ−1W̃H
D

[
σ2
nWH

AWA + 1
α2 D2

q

]
W̃DΦ‖

2

F
.

(5.28)

It can also be shown further that minimizing (5.26) is equivalent to maximizing the

throughput, and energy-efficiency of the wireless link. Please refer to Appendix

5.10.2 for the proof.

5.5.3 Design of the partial digital precoder and combiner

Now we revisit the design of the other partial digital precoder FS and combiner

WS. By substituting all the designed parameters into (5.17), we have

K = WSΦoptFS = IM . (5.29)

By appropriately selecting a matrix Fopt
S such that its right inverse (Fopt

S )† exists

we can rewrite (5.29) as

Wopt
S = (Fopt

S )†(Φopt)−1. (5.30)

It is to be noted that (Φopt)H = (Φopt)−1 and the inverse (Φopt)−1 always exists.

In the next section we describe an algorithm to solve (5.28).
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5.5.4 RIS phase-shift identification as a stochastic

optimization

In this section, we pose the RIS phase-shift identification problem defined in

(5.28) as a stochastic optimization problem and solve the same using a novel

Information-directed branch-and-prune (IDBP) algorithm. The theoretical

underpinnings of the proposed IDBP algorithm including the optimality analysis

are discussed in Chapter 7. The problem (5.28) can be visualized as a

stochastic-sequential-decision-making (SSDM) problem [142]. The solution Φ at

a given time or for a channel realization can be thought of as a sequence of

decisions to be taken to decide the phase-shifts of the M reflecting elements

considering a probabilistic model. The phase-shift value of the first element is

selected based on the initial probabilities of the phase-shifts. The subsequent

elements’ phase-shifts are arrived based on the previous elements’ phase-shift

using the prior and conditional distributions. Here the solution Φ can be

thought of as a sequence of random variables Φ = {Φ1,Φ2, · · · ,ΦM}, where the

discrete random variable Φi has a probability mass function (PMF) p(Φi). Also,

p(Φi|Φj) represents the transition probabilities across the two reflection elements

i and j. Let the distribution q(Φ1, · · · ,ΦM) denote a prior distribution of the

optimal solution to (5.28). An estimate of q(Φ1, · · · ,ΦM) can be sampled from

the solution space of (5.28) as described in Chapter 7. The sequence in which

the phase-shifts are decided is shown as

Φ1 −→ Φ2 −→ Φ3 −→ · · · −→ ΦM . (5.31)
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Alternatively, (5.31) can be visualized as

Φ1(t) −→ Φ2(t) −→ Φ3(t) −→ · · · −→ ΦM(t), (5.32)

where t is indicative of the coherence time. However for compact representation,

we shall use (5.31) in all further discussions.

Using the measure of information called Information-to-go (Ig), introduced in [143]

and by considering an MDP framework for the SSDM problem (5.31), it can be

shown that the deterministic optimization problem (5.28) can be converted to a

stochastic one as

πopt = argmin
π
{DKL(p(Φ1, · · · ,ΦM)||q(Φ1, · · · ,ΦM))}, (5.33)

where πopt = {Φ1 = φ1,Φ2 = φ2, · · · ,ΦM = φM} is the optimal solution to problem

(5.28) in probability. The details of the proof are discussed in Appendix of Chapter

7. In the next section, we will discuss how the proposed IDBP algorithm is used

to solve (5.33) in a computationally efficient way to obtain an optimal solution in

probability.

5.6 Algorithm Description

Inspired by the well-known Chow-Liu Algorithm (CLA), we develop the

proposed IDBP algorithm to arrive at the solution πopt [144]. The CLA

minimizes the KL divergence between the actual distribution represented using

the conditional priors q and the distribution of πopt. It finds the best

second-order product approximation of the multi-dimensional discrete

probability distribution from a finite set of observed data. The CLA finds the
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optimal tree-structured network T (X1, X2, · · · , Xk) of depth k by minimizing the

KL divergence between the observed (actual) distribution pt(X1, X2, · · · , Xk)

and the tree-structured distribution T (X1, X2, · · · , Xk). That is

min
T
{DKL(pt(X1, · · · , Xk)||T (X1, · · · , Xk))}, (5.34)

where {X1, X2, · · · , Xk} is a sequence of random variables. One of the key

results from [144] is that, for minimizing the KL divergence in (5.34), it is

sufficient to find a tree network T such that we maximize the mutual

information (MI) I(Xi;Xγ(i)) between the tree edges in T . Here Xγ(i) denotes

the parent of Xi in the tree under consideration.

The proposed IDBP algorithm maximizes the MI between the tree edges

(branches) to select the optimal-path edges and prune others. This ensures

optimal solution in probability to (5.28). It is also worth noting that since we

have an MDP model for our solution, it suffices to consider a second-order

Figure 5.6: An illustration of the tree traversal using the proposed IDBP Algorithm.
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approximation for the joint probability distribution. Given the prior statistics q

of the optimal solution, and the transition probabilities p between the phase

settings, we traverse the tree by maintaining the edges that maximize the MI

I(Xi, Xγ(i)). The proposed IDBP algorithm is described using Algorithm 7. The

algorithm yields an optimal solution in probability πopt if the priors q selected is

a close representation of the optimal solution π∗. In such a situation, the

proposed IDBP algorithm requires a single pass tree traversal to get to the

solution πopt. This is the best case. However, in situations when q is not an

accurate representation of π∗, we propose to use a second pass from every node

visited to traverse the tree along with the second-best child. This is described in

Algorithm 7. One can choose to extend the algorithm to explore k-best children.

An illustration of the proposed IDBP tree search is shown in Fig. 5.6. However,

when extended to all the children, the algorithm becomes an exhaustive search.

The process of designing the hybrid precoder, hybrid combiner, and the RIS

phase configuration is outlined as design flow in Algorithm 4.

Algorithm 4 Design flow
1: procedure Design flow
2: {Fopt

A , F̃opt
D } ← using (5.19)

3: {WH
A
opt
,W̃Hopt

D } ← using (5.20)
4: Φopt ← by solving (5.28) using IDBP
5: {(Fopt

S ), (Wopt
S )} ← using (5.29) and (5.30)

6: return {Fopt
A ,Wopt

D ,Φopt,Φopt,Fopt
S ,Wopt

S }
7: end procedure

Algorithm 5 Proposed IDBP
1: function IDBP(Φ,M ,m)
2: Φ← Finite set of phase angles with cardinality K
3: M ← Number of RIS elements
4: m← Number of sequences used to derive the priors q
5: InitializeStack()
6: πopt ← ∅;Copt ←∞
7: q ← Compute the priors as described in Section 7.4.1
8: p← Compute the initial state probabilities
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9: X0 ← Compute using p and q
10: c← Compute initial cost using p and q
11: πopt ← TraverseTree (X0,c,p,q,M ,2,1)
12: return {πopt} . Solution
13: end function

14: function TraverseTree(Xcurr,c,p,q,M ,stage,rec)
15: Xcurr ← Current node in the tree
16: r ← Accumulated cost up till the node Xcurr
17: q ← The conditional priors
18: p← The transition probabilities
19: M ← Number of RIS elements
20: stage ← The current stage(level) in the tree traversal
21: rec ← Indicator to control recursion
22: if stage > M then
23: Get the traversed sequence and its accumulated cost
24: {πp, f(πp)} ← ReadStack() . refer (5.28).
25: if f(πp) ≤ Copt then
26: πopt ← πp

27: Copt ← f(πp)
28: end if
29: pop() and return
30: end if
31: {Xc1, Xc2, Cc1, Cc2} ← findBestChildren(Xcurr, c, p)
32: Push(Xc1, Cc1,stage)
33: TraverseTree(Xc1, Cc1,p,q,M ,stage+1,rec)
34: if rec = 1 then
35: Push(Xc2, Cc2,stage)
36: TraverseTree(Xc2, Cc2,p,q,M ,stage+1,0)
37: end if
38: pop() and return
39: end function

40: function findBestChildren(Xcurr,c,p)
41: Xcurr ← The current node in the tree being processed
42: c← Running cost of the sequence
43: p← The transition statistics
44: for each child Xi of the current node Xcurr do
45: c(i)← c(i) + p(Xi, Xcurr) log2

p(Xi,Xcurr)
p(Xi)p(Xcurr)

46: end for
47: {I1, I2} ← argmax(c)
48: Return two best children and their running cost.
49: return {XI1 , XI2 , c(I1), c(I2)}
50: end function

101



5.7 Computational complexity analysis

The IDBP algorithm yields an optimal solution in probability πopt if the priors q

selected is a close representation of the optimal solution π∗. In such a situation, the

proposed IDBP algorithm requires a single-pass tree traversal to get to the solution

πopt. This is the best case. However, when q is not an accurate representation

of π∗, additional solutions can be explored using a second pass from every node

visited by traversing the tree along the k-best children. A single-pass tree traversal

to get to the solution πopt has a complexity of O(µKM). The term µ is the number

of arithmetic operations required to compute the MI between the current node and

one of its children. It is straightforward to see that a controlled recursion to explore

K-best children from the best path has a computational complexity of O(µK2M2).

A more detailed analysis of the computational complexity is provided in Chapter 7.

The TMH algorithm proposed in [49] requires the computation of the matrix

K, and finding its eigenvector that corresponds to its maximum eigenvalue as

described using (11) and (12) in Section III-A of [49]. The resultant eigenvector

quantized to the nearest possible discrete angles yields the solution. To compute

the matrix K the effective number of multiplications are NtNrM
2. Finding the

required eigenvector has a complexity of O(M3), assuming no structure about the

matrix K, which is a reasonable assumption. This results in the computational

complexity of TMH to be O(M3).

The complexity of the reflecting schemes eMSER and vMSER proposed in [54]

is shown to be ≈ O(L2NM3) and ≈ O(L2NM32) respectively. Here L corresponds

to the L − ary QAM symbols used. The discussion is summarized in the Table

5.1.
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Algorithm Computational complexity Matlab runtime* for M = 12
ES O(KM ) 415.5

Proposed IDBP ≈ O(KM) § 18.3
Proposed IDBP ≈ O(K2M2) † 18.8

TMH♦ ≈ O(M3) 56
AO1♦ (vMSER/eMSER) ≈ O(L2NM2)/O(L2NM3) 228
AO2♦ (vMSER/eMSER) ≈ O(L2NM2)/O(L2NM3) 345

§ conditional priors q is a a close representation of the solution π∗,
† conditional priors q not a close representation of the solution π∗.
♦ refer to Section 5.8 (Simulations).
∗The matlab runtime (in secs.) includes precoder, combiner, RIS evaluations, and prior
evaluation at a given SNR.

Table 5.1: Computational complexity comparison.

5.8 Simulations

In this section, we first compare the following algorithms- (i) the exhaustive

search (ES) method to solve the (5.28), (ii) the proposed IDBP algorithm to

solve (5.28) (IDBP), (iii) the exhaustive search to solve the trace maximization

(TM) framework considering the diagonal RIS architecture proposed in [49] (m-

TMH), and the AO algorithm proposed in [54]. The evaluation of the ES for

RIS elements when M > 12, and with the phase-shift settings K ≥ 3 becomes
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Figure 5.7: MSE and information rate at various SNRs with proposed IDBP, TMH, AO, and
the ES method with the number of RIS elements M = 12 for ADC bits b = 4 on all RF paths.
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impractical. Hence, for this evaluation, we only consider the case where M = 12

with the ADC bit resolution set to b = 4 on all the RF paths of the receiver. The

other configurations parameters used for this evaluation are presented in Table

5.2. The channel model for P and R are derived using the multi-user interference
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Figure 5.8: MSE and information rate at various SNRs with proposed IDBP, TMH, and AO
algorithms with the number of RIS elements M = 64, and for b−bit ADC in all of the receiver
paths.

Parameters Value/Type
Frequency 28Ghz
Environment Non Line of sight (NLOS)
Tx-Rx seperation 100m
Tx-RIS seperation 70m
RIS-Rx seperation 70m
TX/RX array type ULA
Num of TX/RX elements Nt/Nr 48/48
TX/RX antenna spacing λ/2
Number of Passive RIS elements (M) 12,64,128,256
Number of discrete phase settings (K) {25π

36 ,
73π
36 ,

49π
36 }

ADC bit resolution on all RF paths (b) 2,3,4
Number of RF paths at TX and RX (N) 8
Signal bandwidth 100Mhz
Sampling Frequency 400Mhz
Modulation Type 64 QAM
Number of symbols 200
Number of interferer paths (β) 8

Table 5.2: The configuration parameters used for our simulations
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Figure 5.9: MSE and information rate at various SNRs with proposed IDBP, TMH, and the AO
algorithms with the number of RIS elements M = 128, and for b−bit ADC in all of the receiver
paths.
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Figure 5.10: MSE and information rate at various SNRs with proposed IDBP, TMH, and the
AO algorithms with the number of RIS elements M = 256, and for b−bit ADC in all of the
receiver paths.

model discussed in Section 5.2 considering eight (β = 8) strong RIS reflected

interference and one non-RIS reflected interferer. The detailed analysis of such

a multi path propagation environment is described in Section II-B of [49]. The

AO algorithm encompasses the combiner in addition to precoder and RIS that is

discussed in [54]. The algorithm is described in Appendix 5.10.3. The convergence

of the AO algorithm is strongly dependent on the selection of the initial solutions

and hence we consider two scenarios of AO with different initial solutions (AO1
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and AO2). The initial solutions for AO1 and AO2 are chosen empirically. We

run the simulations considering the above parameters to evaluate the MSE, using

which we compute the information rate of the link as

R(Φ) = N log2 p+ log2 det
(
(M(x))−1 + 1

p
IN
)
. (5.35)

The proof of (5.35) is detailed in Appendix 5.10.2. The simulation results

obtained are shown in Fig. 5.7. From Fig. 5.7, it can be observed that the ES

achieves the CRLB for the given (designed) hybrid precoders and combiners.

The proposed IDBP algorithm, which is a computationally efficient method to

solve (5.28), extracts a near-optimal solution that is close to ES and has a

superior performance compared to both the trace-maximization algorithm

(m-TMH) proposed in [49], and AO1 and AO2 based on [54].

Subsequently, we run simulations with M = 64, 128, and 256 to compare the

following algorithms- (i) the proposed IDBP algorithm to solve (5.28) (IDBP),

(ii) optimal trace maximization (TMH) method called the diagonal Φ

(OPT-DIAG) [49], and (iii) alternating optimization (AO1) based on the work

in [54]. The TMH is a computationally efficient algorithm to solve the trace

maximization proposed in [49]. The details of this algorithm are presented in

Section III-A of [49]. We evaluate the MSE and the information rate R for SNRs

in the range [−30, 30] dB in steps of 5dB and for ADC bits b = 2, 3, and 4 on all

the RF paths. The results obtained are shown using Fig.5.8, Fig.5.9, and

Fig.5.10 for M = 64, 128, and 256, respectively. From the results, it can be

observed that the proposed IDBP algorithm outperforms both the TMH and the

AO methods.
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5.9 Conclusion

In this chapter, we studied the discrete phase optimization algorithm for a

passive RIS that assists a multi-user MaMIMO communication system with a

blocked LOS link between the intended transmitter and receiver under

interference. The RIS is a programmable structure that can be placed in a

strategic location to control the wireless channel between the intended

transmitters and receivers. The RIS have received a great deal of attention in

the literature over the last many years. It is considered to be an enabling

technology for 6G and beyond. The RIS alleviates the problems of coverage

extension in THz communication bands, which is envisioned for 6G. The

RIS-assisted MaMIMO frameworks are typical use-case scenarios both in

vehicular and cellular backhaul wireless communication links. A passive RIS is

mainly characterized by the phase-shift setting of each of its reflecting elements

to achieve a desired performance result at the intended receiver. However, the

problem of identifying the RIS phase-shift for optimal performance is an

NP-Hard problem! In this chapter, we discuss the design of the building blocks

of such architectures. We discuss a method to design hybrid precoders and

combiners along with RIS phase-shift identification to minimize the MSE of a

blocked LOS link assisted by a RIS. We consider the MaMIMO receivers to be

equipped with low-resolution ADCs. We also show minimizing the MSE and

maximizing the throughput of a blocked LOS link under interference are

equivalent. We apply a novel information-theoretic tree search algorithm called

IDBP to arrive at the phase-setting of the RIS for optimal MSE. Using

simulation, we compare the proposed algorithm with the ES method and two

other state-of-the-art algorithms and demonstrate that the proposed method

outperforms the state-of-the-art with significant computational savings given an
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appropriate selection of the prior distribution. This makes it more suitable for

the proposed algorithm to be used with RIS having a large number of elements

M and a large number of configurable discrete phase settings K.

5.10 Appendix

5.10.1 Expression for CRLB

We have K = αWSΦFS,K−1 = 1
α
F−1
S Φ−1W−1

S ,

(KH)−1 = 1
α

(WH
S )−1Φ(FH

S )−1,

C = α2σ2
nWWH + WSW̃H

DD2
qW̃DWH

S ,

(5.36)

Substituting the terms in (5.36) for the CRLB expression, we have

I−1(x̂) = (KHC−1K)−1 = K−1C(KH)−1,

= 1
α

F−1
S Φ−1W−1

S

[
α2σ2

nWWH
] 1
α

(WH
S )−1Φ(FH

S )−1+
1
α2 F−1

S Φ−1W−1
S

[
WSW̃H

DD2
qW̃DWH

S

]
(WH

S )−1Φ(FH
S )−1,

= F−1
S

[
σ2
nΦ−1W̃Φ + 1

α2 Φ−1W̃H
DD2

qW̃DΦ
]
(FH

S )−1,

where W̃ = W̃H
DWH

AWAW̃D.

(5.37)
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5.10.2 Expression for the information rate and energy

efficiency

Considering (5.21), we can write the expression for the information-rate of the

MaMIMO channel as function of the RIS phase shift matrix Φ as [32]

R(Φ) = I(x; y) = h(y)− h(y|x)

= h(y)− h(Kx + n1|x) (a)= h(y)− h(n1),
(5.38)

where I(x; y) is the mutual information of random variables x and y, and K is a

function of the RIS phase shift matrix Φ. (a) holds if and only if both nq and x

are Gaussian. Hence, ensures y is Gaussian. Also, if y ∈ CN , then the differential

entropy h(y) is less than or equal to log2 det(πeB) with equality if and only if y

is circularly symmetric complex Gaussian with E[yyH ] = B [106]. That is

B = E
[
(Kx + n1)(Kx + n1)H

]
= E

[
KxxHKH + n1nH1

]
= pKKH + C.

(5.39)

where C = α2σ2
nWWH+WSW̃H

DD2
qW̃DWH

S . The differential entropies h(y) and

h(n1) satisfy

h(y) ≤ log2 det(πeB) = log2 det
(
πe
(
pKKH + C

))
,

h(n1) ≤ log2 det(πeC),
(5.40)

with equality iff y and n1 posses circularly symmetric complex Gaussian statistics.

However, using the Theorem-1 in [32], it is straightforward to see that n1 ∼

CN (0,C). Hence we have

h(n1) = log2 det(πeC). (5.41)

109



Thus the expression for the information rate in (5.38) can be rewritten as

R(Φ) = h(y)− h(n1) (b)= log2 det(πeB)− log2 det(πeC)

= log2 det
(
pKKHC−1 + IN

)
,

(5.42)

where (b) follows from the assumption that the input symbol vector x is circular

symmetric Gaussian vector that could be modeled as x ∼ CN (0, pIN) [31,32,35].

The information rate in (5.42) can be further simplified as [32]

R(Φ) = log2 det
(
pKKHC−1KK−1 + KK−1

)
,

= log2 det
(
pK(KHC−1K + 1

p
IN)K−1

)
,

= log2 det(pK) det
(
KHC−1K + 1

p
IN
)

det(K−1),

= log2 p
N det

(
KHC−1K + 1

p
IN
)
,

= N log2 p+ log2 det
(
(I−1(x̂))−1 + 1

p
IN
)
.

(5.43)

Since the MSE M(x) achieves the CRLB by the design of the precoders and

combiners as seen in (5.16), we can also write the information-rate as follows

R(Φ) = N log2 p+ log2 det
(
(M(x))−1 + 1

p
IN
)
. (5.44)

Similarly, we can define the energy efficiency (EE) as a function of the RIS phase

matrix Φ as

ηEE(Φ) = R(Φ)
p(b) (bits/Hz/Joule)

=
N log2 p+ log2 det

(
(M(x))−1 + 1

p
IN
)

PT + PR + PRIS + 2Ncfs2b
,

(5.45)
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where p(b) is the total power consumed. Here PT , PR, and PRIS are the power

consumed at the transmitter, receiver, and RIS respectively. The net ADC power

consumption is 2Ncfs2b, where b is the ADC bit resolution used in all the N RF

paths, c is the power consumed per conversion step and fs is the sampling rate in

Hz [91].

From (5.44) and (5.45), it can be shown that maximizing the information rate

(throughput) R or maximizing the energy efficiency ηEE for a given (designed)

hybrid precoders and combiners is equivalent to minimizing the CRLB I−1(x̂).

This is shown using the Lemma 5.1 below

Lemma 5.1.

max︸ ︷︷ ︸
Φ

R(Φ)⇔ max︸ ︷︷ ︸
Φ

ηEE(Φ)⇔ min︸︷︷︸
Φ

I−1(x̂). (5.46)

Proof. We can decompose the squared MSE matrix M(x) in (5.13) as M(x) =

BΛB−1, where Λ = diag(λ1, λ2, · · · , λN); such that {λi}Ni=1 are the eigenvalues of

M(x). It is easy to note that M(x) is always a positive semidefinite matrix, and

hence the eigenvalues {λi}Nsi=1 are real and positive [145]. We can further write

(5.13) as

δ(Φ) , tr(M(x)) = tr(Λ). (5.47)

The MSE δ can be minimized when δmin(Φ) = minΦ
∑Ns
i=1 λi. Hence the condition

for (5.47) to be minimized is λi → 0,∀i ∈ [1, Ns].

Now, to maximize R(Φ) in (5.44) we can write

Rmax(Φ) = N log2 p+ max
Φ

log2 det
(
(M(x))−1 + 1

p
IN
)
. (5.48)
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Since the term N log2 p is not dependent on Φ, and we know that the function

log2(·) is monotonically increasing, it suffices to maximize the expression (5.49)

to attain Rmax(Φ)

ΦRmax = argmax
Φ

{
det

(
(M(x))−1 + 1

p
IN
)}
. (5.49)

We can write

det(BΛ−1B−1 + 1
p
IN) = det(B[Λ−1 + 1

p
IN ]B−1),

= det(Λ−1 + 1
p
IN) =

N∏
i=1

( 1
λi

+ 1
p

)
=

N∏
i=1

(p+ λi
λi

)
.

(5.50)

This implies ΦRmax = argmax
Φ

{∏N
i=1

(
p+λi
λi

)}
. Since the eigenvalues are real and

positive, the maximization (5.49) is achieved for a given p, when ∏N
i=1 λi → 0 or

λi → 0,∀i ∈ [1, N ], which is similar to the condition that was required to minimize

the MSE δ.

For energy efficiency ηEE(Φ), maximizing the numerator R(Φ) is sufficient

condition to maximize the same because the denominator does not depend on the

Φ and can be treated as constant.

5.10.3 Alternating optimization

The problem in (5.51) can also be solved by updating just one or a few

blocks of optimization variables (FS,FA, F̃D,Φ,WH
A ,W̃H

D ,WS) using

alternating optimization [54,146].

δ = min
FS ,FA,F̃D,Φ
WH

A ,W̃
H
D ,WS

L(FS,FA, F̃D,Φ,WH
A ,W̃H

D ,WS), (5.51)
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where L(FS,FA, F̃D,Φ,WH
A ,W̃H

D ,WS) = tr(M(x)). The algorithm is described

below

Algorithm 6 Alternating optimization
1: procedure AO(F0

S ,F0
A, F̃0

D,Φ0,WH
A

0
,W̃H0

D ,W0
S , εT )

2: k ← 0

3: δk ← L(Fk
S ,Fk

A, F̃k
D,Φk,WH

A
k
,W̃Hk

D ,Wk
S)

4: do

5: Solve for FA, F̃D using MSER-Precoding in [54]

6: {Fk+1
A , F̃k+1

D } ←

7: argmin
FA,F̃D

L(Fk
S ,FA, F̃D,Φk,WH

A
k
,W̃Hk

D ,Wk
S)

8: Solve for WH
A ,W̃H

D using (5.20)

9: {WH
A
k+1

,W̃Hk+1
D } ←

10: argmin
WH

A ,W̃
H
D

L(Fk
S ,F

k+1
A , F̃k+1

D ,Φk,WH
A ,W̃H

D ,Wk
S)

11: Solve for Φ using eMSER-Reflecting in [54]

12: Φk+1 ←

13: argmin
Φ

L(Fk
S ,F

k+1
A , F̃k+1

D ,Φ,WH
A
k+1

,W̃Hk+1
D ,Wk

S)

14: Solve for FS ,WS using (5.29) and (5.30)

15: {Fk+1
S ,Wk+1

S } ← argmin
FS ,WS

L(FS ,Fk+1
A , F̃k+1

D ,Φk+1,

16: WH
A
k+1

,W̃Hk+1
D ,WS)

17: δk+1 ←

18: L(Fk+1
S ,Fk+1

A , F̃k+1
D ,Φk+1,WH

A
k+1

,W̃Hk+1
D ,Wk+1

S )

19: err ← δk − δk+1

20: k ← k + 1

21: while {err > εT }

22: end procedure
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Part II

Resource allocation as

constrained combinatorial

problems

114



Chapter 6

Information-assisted dynamic

programming

The constrained discrete optimization (CDO) problems pose an immense

challenge to solve with provable accuracy and computational efficiency. In this

chapter, we focus on solving a class of CDO problems, which we call problem

class H, that do not satisfy Bellman’s principle of optimality (BPO) if the

constraint functions are considered. There are no conditions placed on the

constraint functions of H. However, the objective function alone satisfies the

BPO. Such problems are ubiquitous in wireless communication including

resource allocation in MaMIMO, signal processing, and machine learning. These

problems are, in general, NP-Hard. Dynamic programming (DP), a simple and

elegant technique that is used to solve CDO problems that satisfy BPO along

with the constraint functions can not be used to solve the problem class H. This

chapter attempts to unify this class of problems H to be solvable using the DP

framework. We call this algorithm information-assisted dynamic programming

(IADP). Using the theory of multi-objective optimization and assisted by an

information-theoretic measure, we establish provable near-optimality guarantees
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with reduced computational complexity. We describe two variants of IADP to

solve H. We support our claims by solving two problems in H, namely the

power-constrained analog-to-digital converter bit allocation problem in

MaMIMO receivers and the DNA fragment assembly (DFA) problem which is

the most challenging step in DNA sequencing. We study and contrast the

performance and analyze the computational complexity of the proposed IADP

with ES and other state-of-the-art algorithms.

6.1 Background

Discrete or combinatorial optimization (DO) deals with problems where an

optimal solution is chosen from a finite or countably infinite solution space. The

DO problems pose a considerable challenge to solve. These problems, in general,

are NP-Hard [56]. The DO problems are more difficult to solve compared to

their continuous counterparts [147]. The constrained discrete optimization

(CDO) problems are a superset of the DO problems that have additional side

information that the solution needs to satisfy [57].

We define a class of CDO problems H with the objective function (OF)

satisfying the Bellman’s principle of optimality (BPO) without considering the

constraints [148]. The constraint functions are assumed to be neither convex nor

linear in their decision variables. Nor are the constraints required to satisfy the

linear independence constraint qualification (LICQ) [57, 75]. The class of

problem H with its relationship to other DO problem classes is illustrated in

Fig.6.1. Many of the problems in wireless communication, signal processing, and

machine learning (ML) fall into this category. Examples of H include the

Analog to digital converter (ADC) bit allocation (BA) in massive Multiple-Input

Multiple-Output (MaMIMO) receivers with power constraints [32, 57], optimal
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resource selection for parameter estimation in MIMO radar [58], multiple relay

selection in cooperative communication [59], Image restoration and

segmentation [60, 61], DNA fragment assembly problem [62], graph

fragmentation problems in pandemic analysis [63], resource allocation problems

in visible light communication systems [64], and scheduling and resource

allocation in OFDM systems [65] to name a few. Illustration of the problem H

Figure 6.1: An illustration showing the relationship of problem class H with respect to other
DO problems. The class H is a superset that includes H0 and H1.

6.1.1 Previous literature

The class of problems in H is notoriously challenging to solve optimally in a

computationally efficient way. In addition, there is no known computationally

efficient algorithm that establishes provable near-optimality guarantees to

H [147]. This is mainly due to the constraints of H that could be either

non-linear, non-convex, or both. The well-known methods like Dynamic

Programming (DP), Branch and Bound (BB), Integer Programming and their
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variants are proposed to solve H. A detailed study on the extensions of the DP

for combinatorial and data mining problems is presented in [69]. However, they

require the constraint functions to be linear, quadratic, or convex for optimality

or near-optimality [66–69]. Another popular approach to solve H is to relax the

original problem to a continuous one and use Lagrangian multipliers to manage

the constraints. The solution thus obtained is quantized to yield an approximate

discrete solution [149, 150]. However, for such a relaxation method to be applied

to H, the constraints need to satisfy the LICQ [75].

Many heuristic algorithms exist to solve H. However these methods extract a

feasible approximate solution [151–153]. A majority of the algorithms are

customized for the specific problem under consideration [60]. A multi-survivor

DP to solve H was proposed in [57] where it is shown that by maintaining

multiple survivor paths in the Viterbi algorithm (VA), an optimal solution to H

is guaranteed. However, the determination of the number of survivor paths poses

a huge challenge. It is dependent on the constraints, which in the worst case

may lead to a large number of survivor paths, thus increasing the computational

demand. A low-complexity algorithm to maximize the submodular function that

guarantees a near-optimal solution is presented in [147]. However, both the OF

and the constraints need to satisfy the submodularity condition. Exact

algorithms to solve H with linear constraints and submodular OF are proposed

in [154] where two exact BB algorithms whose bounds are computed by either a

cutting plane approach or Lagrangian relaxation are proposed. An approach

based on using the belief propagation in the dual to solve H with reduced

computational complexity was proposed in [155]. However, the near-optimality

guarantees are not well established, as shown by the authors. More recently,

ML-based approaches are gaining widespread popularity in solving these
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problems [156–159]. However, they do not guarantee optimality. Even though

sometimes using these algorithms, a provable near-optimality is established, they

are computationally expensive, with significant training overhead [160,161].

An Algorithm that can solve H either optimally or with provable

near-optimality guarantees with reduced computational complexity is highly

desirable. This chapter elaborates on our previous work in [162] and provides

extensive analysis to establish the near-optimality guarantees.

6.1.2 Contributions in this chapter

To the best of our knowledge, none of the existing methods in literature

guarantee either an optimal or near-optimal solution to the general class of

problem H. The summary of our contributions presented in this chapter are as

follows:

• inspired by the works of Tishby et al., we incorporate an

information-theoretic measure to quantify the constraint satisfaction

criteria for H [143],

• we reformulate the problem H as a multi-objective optimization problem

(MOOP), [70, 71], with a goal to satisfy the constraints and at the same

time maximize the OF, and show that a weighted sum technique to solve

MOOP satisfies BPO under some conditions,

• we propose a dynamic programming framework to solve the general class of

problems H,

• we provide extensive analysis to establish strong near-optimality guarantees,
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• we propose two algorithms that can solve H optimally in probability with

a computational complexity order similar to the Viterbi Algorithm (VA).

An overview of notations used in this chapter, along with their description,

are listed in Table 6.1.

Table 6.1: Overview of the notations used

Notations Definitions
x candidate solution to H expressed as a vector
π candidate solution to H expressed as a sequence

x∗, π∗ optimal solution to H
X discrete set of values the components of solution x( or π) can take
N Length of the solution vector
M cardinality of set X
Bset Exhaustive set of solutions to H
Cset Set of all solutions to H that satisfy the constraints
πi candidate solution to H indexed as i
πm partially observed solution of length m ≤ N
π(k) kth component of solution x( or π)
A(·) constraint satisfaction function
P Pareto optimal set

φp(·) function that is representative of PaO solutions
z prior distribution of the future looking subsequence of

solutions that satisfy the constraints of H
q′ true prior conditional distribution of the future looking

subsequence of solutions that satisfy the constraints of H
q evaluated prior conditional distribution of the future

looking subsequence of solutions that satisfy
the constraints of H

p conditional distribution of the future looking subsequence
of some partially observed solution

πp
∗ optimal solution to H in probability

πp one of the PaO solutions to H (πp ∈ P)

The rest of this chapter is organized as follows. In Section 6.2, we define the
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problem H. In the same section, we describe how the constraint satisfaction of

problem H can be represented using an information-theoretic measure, with the

help of which we recast the problem H as an unconstrained MOOP. In Section

6.3, we establish the theoretical guarantees for an optimal solution in probability.

In Section 6.4, we discuss the evaluation of the conditional and prior distributions

that are required to compute the information measure. The proposed Algorithms

are discussed in Section 6.5. We use the proposed Algorithms to solve the ADC

BA problem in MaMIMO receivers. The problem is described in Section 6.7.

In addition, Section 6.7 details the simulations, results obtained, and associated

illustrations. The computational complexity analysis is discussed in Section 7.5,

followed by the conclusions in Section 6.8.

6.2 Problem setup

The constrained discrete optimization problem in the general form is stated

as below, where x∗ is the optimal solution to (7.1) if it exists.

max
x

f(x),

such that ci(x) ≤ αi; for 1 ≤ i ≤ QI ,

hj(x) = βj; for 1 ≤ j ≤ QE,

(6.1)

where x = [x1, x2, · · · , xN ]T . Here xi ∈ X can only take values from the set X

whose cardinality is M . The set X ⊂ R. The terms QI and QE represent the

number of inequality and equality constraints, respectively.
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6.2.1 Bellman’s principle of optimality

The problem (7.1) satisfies the BPO if it can be expressed as a value function

[148].

J = f(x∗) = J(x1) = max
{xi}Ni=1

{ N∑
i=1

biφi(xi)
}
, then

J(xi) = max
xi

{
biφi(xi) + max

{xj}Nj=i+1

N∑
j=i+1

bjφi(xj)
}
,

J(xi) = max
xi

{
biφi(xi) + J(xi+1)

}
, such that

ci(x∗) ≤ αi; for 1 ≤ i ≤ QI ,

hj(x∗) = βj; for 1 ≤ j ≤ QE,

(6.2)

where bi ∈ R are constants. The functions φi’s need not have a closed form

representation.

6.2.2 The problem class H

The class of problem H is similar to (7.1), however, the constraint functions

ci(x) and hj(x) are not limited to linear mappings in xi, nor are they convex or

need not satisfy LICQ [75]. In addition, the OF f(x) satisfies the BPO without

the constraint functions ci(x) and hj(x), where αi, βj ∈ R,∀i, j [148]. Thus we

have

max
x

f(x),

such that ci(x) ≤ αi; for 1 ≤ i ≤ QI ,

hj(x) = βj; for 1 ≤ j ≤ QE,

where f(x) =
N∑
i=1

biφi(xi).

(6.3)
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The solution to the problem H defined in (6.3) can be visualized as a finite

horizon Markov decision process (MDP) [57]. The MDP is defined using a tuple

(X,A, p, r, q), where X denotes the finite set of states, A is the finite set of actions,

P : X ×A×X ′ → [0, 1] are the state transition probabilities px,a(x
′) that a state

x
′ is attained when an action a ∈ A is taken in state x where x, x′ ∈ X. A reward

r : X × A → R is associated with an a ∈ A from a state x ∈ X. The prior

distribution q is chosen such that it is a representation of the constraints of H.

We consider the actions a ∈ A to be deterministic given p and q.

Definition 6.1. We define a solution (or path) π = {X1 = x1, X2 = x2, · · · , XN =

xN} as a sequence of states attained as a consequence of decisions a ∈ A taken to

maximize the cumulative reward in the MDP.

That is, π = {X1 = x1, X2 = x2, · · · , XN = xN}, where x1, x2, · · · , xN ∈ X , or

simply π = {x1, x2, · · · , xN}. Also, we represent a path πi as a sequence of partially

observed MDP until the stage i. That is πi = {X1 = x1, X2 = x2, · · · , Xi = xi},

where x1, x2 · · · , xi ∈ X , or simply πi = {x1, x2, · · · , xi}. We also write the kth

element of the sequence π as π(k). We define the constraint satisfaction function

(CSF) A(·) such that

A(π) =



1, if π satisfies all the constraints

ci(π), hj(π) of H; for all i, j,

0, otherwise.

(6.4)

We also define A(·) on a partially observed sequence πk as A(πk) = 1 for

1 ≤ k < N if there exists at least one forward looking subsequence

{π(k + 1), π(k + 2), · · · , π(N)} such that {πk, π(k + 1), π(k + 2), · · · , π(N)}
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satisfies all the constraints. This is represented as

A(πk) =



1, if there exists at least one subsequence

{π(k + 1), π(k + 2), · · · , π(N)} defined

above, that satisfies all the constraints

ci(πk), hj(πk) for all i, j.

0, otherwise.

(6.5)

6.2.3 Constraint satisfaction as an Information measure

Ameasure of information called Information-to-go (Ig) was introduced in [143].

The term Ig is associated with a sequence that specifies cumulated information

processing cost or bandwidth required to quantify the future decisions and actions.

The measure (Ig) defines how many bits on average the system needs to specify

the future states in an MDP (or its informational regret) with respect to the prior.

This is written as

Iπm(Xm) =

Ep(Xm+1,···,XN |Xm) log p(Xm+1, · · · , XN |Xm)
z(Xm+1, · · · , XN) ,

(6.6)

where p(Xm+1, Xm+2, · · · , XN |Xm) is the conditional distribution of the future

looking sequence given a sequence πm, and the fixed prior z(Xm+1, Xm+2, · · · , XN).

Inspired by [143], we propose a modified Iπg defined in (6.7) that measures the

constraint-satisfaction (CS) criterion. We write

Iπmg (Xm) ,

Ep(Xm+1,···,XN |Xm) log p(Xm+1, · · · , XN |Xm)
q(Xm+1, · · · , XN |Xm) .

(6.7)
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Effectively, the term Iπmg (Xm) denotes the Kullback-Leibler (KL) divergence

between the distribution of future looking sequence Xm+1, · · · , XN given Xm

with respect to the known prior conditional distribution of the successive future

states q(Xm+1, Xm+2, · · · , XN |Xm). The Iπg (Xm) can be thought of as the

information processing cost in bits to ensure constraint satisfaction in pursuing a

partially observed path πm going into the indefinite future with respect to the

known conditional prior q(Xm+1, Xm+2, · · · , XN |Xm).

Intuitively, Iπmg (Xm) ≈ 0 implies that the least information is required to

pursue the path πm to satisfy the CSF A(πm). On the other hand, a large value

of Iπmg (Xm) implies maximum information is required to make the decision (or

inability to make a decision) of whether the CSF A(πm) is satisfied when

pursuing the path πm.

We write the conditionals p(Xm+1, Xm+2, · · · , XN |Xm) as simply p and the

conditional priors q(Xm+1, · · · , XN |Xm) as q for compact representation. The

details pertaining to the evaluation of the conditionals p and the prior q are

discussed in Section 6.4.

We now formally show that the measure Iπg (Xm) described in (6.7) indicates

the CS criteria of H using corollary-6.1. However, we first define the condition

for the prior q to be a close representation of the CS criteria.

Definition 6.2. Let Cset be the set containing all solutions to the problem H that

satisfy the constraints, that is ∀πc ∈ Cset, A(πc) = 1. Now let the priors q′ be

determined using |Cset| solutions, and the statistics q be obtained considering a

subset of solutions from Cset say n, such that n� |Cset|. We then say that q is a

close representation of the CS criteria if DKL(q||q′)→ 0, where DKL(q||q′) is the

KL divergence between the distributions q and q′.

Corollary 6.1. If a solution π1 to H is sampled from the distribution p1 such
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that A(π1
m) = 1, and if the q are chosen to be a close representation of the CS

criteria of H, then the measure Iπ1
m

g (Xm)→ 0.

Proof. Let π1 and π2 be solutions to H having the distributions p1 and p2

respectively, such that

π1 ∈ Cset, or A(π1) = 1,

π2 /∈ Cset, or A(π2) = 0,
(6.8)

then it is straightforward to note that

Iπ
1
m

g (Xm) = DKL(p1||q),

Iπ
2
m

g (Xm) = DKL(p2||q).
(6.9)

It follows that

Iπ
1
m

g (Xm) < Iπ
2
m

g (Xm). (6.10)

Since p1 → q as A(π1
m) = 1, and q → q′, we have

Iπ
1
m

g (Xm) ≈ 0. (6.11)

6.2.4 Problem setup with information measure

Using the definitions and notations defined in Section 6.2 and 6.2.3 we rewrite

the problem H as

max
π;A(π)>0

fπ(X), (6.12)

126



where fπ(X) = ∑N
i=1 biφi(Xi) for path π.

Decoupling the constraints from (6.12) and absorbing the same into (6.7),

the class of problems H defined using (6.3) can be recast as an unconstrained

multi-objective optimization problem (MOOP) [70,163]

min
π
Iπg (X),max

π
fπ(X). (6.13)

Minimizing Iπg (X) ensures the constraint satisfaction criterion and at the same

time maximize the reward fπ(X). However, the MOOP (6.13) has a set of

solutions that define the best tradeoff between the competing objectives (In our

case Iπg (X), and fπ(X)). Formally these set of solutions are called the Pareto

optimal (PaO) solutions which we denote as P [70]. It can be shown that with

an appropriate selection of the priors q such that it is a close representation of

the CS criteria, the optimal solution π∗ to (6.12) belongs to P (Theorem 6.2).

A classical approach to solve (6.13) is to use the method of weighted sum of

the objectives, and construct a single objective function Gπ(X,w1, w2) as [70]

Gπ(X,w1, w2) = w1I
π
g (X)− w2f

π(X), (6.14)

where w1, w2 ∈ R are the weights associated with the objectives Iπg (X) and fπ(X),

respectively. It is known that the optimal solution to min
π
{Gπ(X,w1, w2)} for any

w1, w2 always belongs to the PaO set P [70]. That is

πp = argmin
π

{
w1I

π
g (X)− w2f

π(X)
}
, (6.15)

where πp ∈ P .

Without loss of generality, we can modify (6.15) to replace the weights w1 = 1,
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and w2 = β as

Gπ(X, β) = Iπg (X)− βfπ(X),

πp = argmin
π

{
Iπg (X)− βfπ(X)

}
.

(6.16)

We can also construct (6.16) by using a Lagrangian multiplier β [143]. However

in [143], the information-to-go Iπg (X) is not a representation of the CS criteria as

we have defined with our setup in Section 6.2.3.

It can be shown that there exists βo ∈ (βL, βU) such that

πp
∗ = argmin

π

{
Iπg (X) − βofπ(X)

}
. Here πp∗ ∈ P is the optimal solution to (6.3)

in probability (Theorem 6.5).

Definition 6.3. We say that the solution πβo is close to π∗ in probability when

Pr
{ ∥∥∥ Gπβo (X)−Gπ∗(X)

∥∥∥
2
≤ ε

}
≥ 1 − δ, for βo ∈ (βL, βU), where ε, δ can be

chosen arbitrarily close to zero.

The notation used to represent the solutions going forward is described as

follows. The optimal solution to the problem H defined in (6.12) is represented

as π∗. The optimal solution to the problem H defined in (6.12) in probability

is denoted as πp∗ . The notation πp is used to represent the PaO solution to the

modified problem (6.13).

6.3 Optimality Analysis

In this section we will show that there exists a βo ∈ (βL, βU) such that the

optimal solution πp
∗ to (6.12) exists in probability. In addition, we will show

that a DP-based approach can be used to solve (6.16). As a result, πp∗ can be

determined in a computationally efficient way. To do so, we state and prove a

series of Theorems 6.1-6.7. Although well known, we first show that the solution
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πp of (6.15) for any given β ≥ 0 belongs to the Pareto optimal set P of (6.13) for

completeness [70].

Theorem 6.1. If π = πp yields the global minimum of Iπg (X)− βfπ(X) for any

β ≥ 0, then it can be shown that the solution πp ∈ P, where P is the PaO front

of (6.13).

Proof. By definition the PaO set P consists of solutions that are non-dominated.

A solution πp of (6.13) is said to be dominated by another solution π1 when both

the conditions below are satisfied [70]

Iπ
1

g (X) < Iπ
p

g (X), and fπ1(X) > fπ
p(X). (6.17)

Let πp be the optimal solution to (6.16) for some β ≥ 0. Let us say there exists

another solution π1 to (6.16) that dominates πp but is not an optimal solution.

That is

Gπ1(X, β) > Gπp(X, β),

Iπ
1

g (X)− βfπ1(X) > Iπ
p

g (X)− βfπp(X),

Iπ
1

g (X)− Iπpg (X) > β
(
fπ

1(X)− fπp(X)
)
.

(6.18)

As π1 dominates πp, (6.17) is satisfied, and hence the LHS of (6.18) is a negative

number and the RHS is a positive number. This is a contradiction for any β ≥ 0.

Hence, the optimal solution of (6.16) is non-dominated and lies in the PaO frontier

of (6.13).

As a consequence of Theorem 6.1, we see that a solution πpβ is obtained for any

value of β ≥ 0 such that πpβ ∈ P . We now show that for a prior q that is a good

representation of the CS criteria, the optimal solution π∗ to H in (6.12) belongs

to the PaO set P of (6.13) using Theorem 6.2.
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Theorem 6.2. If π∗ is the optimal solution to H defined in (6.12), and if the

priors q are chosen such that DKL(q||q′)→ 0, then it can be shown that π∗ ∈ P.

Proof. Given that π∗ is optimal solution to (6.12) with priors q chosen to have

close representation of the constraint satisfaction criteria, we can write

Iπ
∗

g (X) < ε, (6.19)

where ε is a small number. Let π1 be another solution to (6.12) that is not an

optimal solution to (6.12), however dominates π∗. That is

Iπ
1

g (X) < Iπ
∗

g (X), and fπ1(X) > fπ
∗(X). (6.20)

As a consequence, we have Iπ1
g (X) < Iπ

∗
g (X) ≤ ε which implies that the solution π1

satisfies all the constraints of (6.12) A(π1) > 0, and has a better reward fπ1(X)

compared to π∗. Hence π1 is the optimal solution to (6.12) not π∗. This is a

contradiction. Hence we claim that π∗ ∈ P .

A converse of Theorem 6.2 can be stated as: if q is not a good representation

of the CS criteria, then it can be shown that the optimal solution π∗ of (6.12)

need not belong to P .

Every possible solution π to the problem H (exhaustive set Bset) can be

mapped to (f1, f2) plane representation, where we write f1 = Ig(X), and

f2 = f(X) for simplicity of notation. The PaO solutions of (6.13) can be seen as

points (fπp1 , fπ
p

2 ) in the (f1, f2) plane, where πp ∈ P . We define a map φp such

that fπp2 = φp(fπ
p

1 ), ∀πp ∈ P that is representative of the PaO front P in the

(f1, f2) plane. This is illustrated using Fig. 6.2(a) [70]. If the function

fπ
p

2 = φp(fπ
p

1 ) is continuous, differentiable, and concave then the optimal

solutions to (6.16) for any βm ≥ 0 will correspond to a unique point on the PaO

130



front in the (f1, f2) plane. However, if φp is non-concave, then there may exist

some πq ∈ P that can never be obtained by solving (6.16) for any β ≥ 0 [70].

This is illustrated using Fig. 6.2(b), and substantiated using the Theorems 6.3

and 6.4.

(a) Concave PaO front (b) Non-concave PaO front

Figure 6.2: An illustration of the Pareto-optimal solution on a concave and a non-concave front.

Theorem 6.3. If the function φp(fπ
m

1 ) is continuous, differentiable, and concave

such that its derivative φ′p(fπ
m

1 ) ≥ 0,∀πm ∈ [fπa1 , fπ
b

1 ], where πa, πm, πb ∈ P, then

the solution πm to argmin
π

{
fπ1 −βmfπ2

}
corresponds to the tangent to the function

φp at fπm1 , such that φ′p(fπ
m

1 ) = 1
βm

Proof. We rewrite (6.16) for β = βm as

Gπ(X, βm) = fπ1 − βmfπ2 , or

fπ2 =
( 1
βm

)
fπ1 −

Gπ(X, βm)
βm

= φp(fπ1 ).
(6.21)

We observe that (6.21) represents a line with slope 1
βm

having an f2 intercept

at −Gπ(X,βm)
βm

. Let this line be a tangent to the function φp at fπm1 . That is
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φ′p(fπ
m

1 ) = 1
βm

. Also we have:

φp(fπ
m

1 ) =
( 1
βm

)
fπ

m

1 − g0

βm
, (6.22)

where g0 = Gπm(X, βm). Let there be another solution πq where fπq2 = φp(fπq1 )

such that g0 > g1 = Gπq(X, βm). We can then write

φp(fπ
q

1 ) =
( 1
βm

)
fπ

q

1 −
g1

βm
. (6.23)

combining (6.22) and (6.23) we have

βm
φp(fπ

q

1 )− φp(fπ
m

1 )
fπ

q

1 − fπ
m

1
= 1 + (g0 − g1)

fπ
q

1 − fπ
m

1
, or

φp(fπ
q

1 )− φp(fπ
m

1 )
fπ

q

1 − fπ
m

1
>

1
βm

,

φp(fπ
q

1 )− φp(fπ
m

1 )
fπ

q

1 − fπ
m

1
> φ′p(fπ

m

1 ),

(6.24)

when fπ
q

1 > fπ
m

1 . Since φp is concave and differentiable, we know that it is

bounded by its first order Taylor approximation when fπq1 > fπ
m

1 [164]. That is

φp(fπ
q

1 )− φp(fπ
m

1 )
fπ

q

1 − fπ
m

1
≤ φ′p(fπ

m

1 ). (6.25)

This is a contradiction. Similarly if fπq1 < fπ
m

1 we have

βm
φp(fπ

m

1 )− φp(fπ
q

1 )
fπ

m

1 − fπq1
= 1− (g0 − g1)

fπ
m

1 − fπq1
, or

φp(fπ
m

1 )− φp(fπ
q

1 )
fπ

m

1 − fπq1
<

1
βm

,

φp(fπ
m

1 )− φp(fπ
q

1 )
fπ

m

1 − fπq1
< φ′p(fπ

m

1 ).

(6.26)
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However, when fπ
q

1 < fπ
m

1 , using the property of concavity and Taylor

approximation we know [164]

φp(fπ
m

1 )− φp(fπ
q

1 )
fπ

m

1 − fπq1
> φ′p(fπ

m

1 ), (6.27)

which is again a contradiction. Hence, we can safely conclude that πm is the

optimal solution to (6.16) for β = βm.

The consequence of Theorem 6.3 is that for every PaO solution πp ∈ P there

exists a unique value of β that yields an optimal solution to (6.16) when φp is

concave. Conversely, if φp is non-concave, and for some πs ∈ P then there may

never exist any β such that πs = argmin
π

{
fπ1 − βfπ2

}
[70].

Theorem 6.4. If the PaO solutions P to (6.13) correspond to a discrete set of

points on the function φp, where φp is continuous, differentiable, and concave,

such that its derivative φ′p(fπ
m

1 ) ≥ 0,∀πm ∈ [fπa1 , fπ
b

1 ], then there exist a unique

βm ∈ (βL, βU) such that πm = argmin
π

{
fπ1 − βmfπ2

}
for every πm ∈ P.

Proof. Let us consider any three consecutive solutions π1, πm, π2 ∈ P such that

fπ
1

1 < fπ
m

1 < fπ
2

1 ∈ (fπa1 , fπ
b

1 ). For any β ≥ 0, we have the following

φp(fπ
1

1 ) =
( 1
β

)
fπ

1

1 −
g1

β
,

φp(fπ
m

1 ) =
( 1
β

)
fπ

m

1 − gm
β
,

(6.28)

where g1 = Gπ1(X, β), and gm = Gπm(X, β). Using (6.28), we can write

βα = 1 + g1 − gm
fπ

m

1 − fπ1
1
, (6.29)

where α = φp(fπm1 )−φp(fπ1
1 )

fπ
m

1 −fπ1
1

. However for concave function φp, and when fπ1
1 < fπ

m

1
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we know that [164]

α ≤ φ′p(fπ
1

1 ) = 1
β1
. (6.30)

From (6.29) and (6.30) we have

β

β1
> 1 + g1 − gm

fπ
m

1 − fπ1
1
, or β > β1

(
1 + g1 − gm

fπ
m

1 − fπ1
1

)
. (6.31)

From (6.31) it is clear that β > β1 when gm < g1.

Now let us consider the following

φp(fπ
m

1 ) =
( 1
β

)
fπ

m

1 − gm
β
,

φp(fπ
2

1 ) =
( 1
β

)
fπ

2

1 −
g2

β
,

(6.32)

where g2 = Gπ2(X, β). Hence we can write

βγ = 1 + g2 − gm
fπ

m

1 − fπ2
1
, (6.33)

where γ = φp(fπm1 )−φp(fπ2
1 )

fπ
m

1 −fπ2
1

. We also know that for concave function φp, and when

fπ
m

1 < fπ
2

1 we have [164]

γ > φ′p(fπ
2

1 ) = 1
β2
. (6.34)

From (6.33) and (6.34) we have

β

β2
< 1 + g2 − gm

fπ
m

1 − fπ2
1
, or β < β2

(
1 + g2 − gm

fπ
m

1 − fπ2
1

)
. (6.35)

From (6.35) it is clear that β < β2 when gm < g2. From (6.31), and (6.35) we
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have

gm < g1; gm < g2,when β1 < β < β2. (6.36)

Now consider three points π3, πm, π4 ∈ P such that fπ3
1 < fπ

1
1 < fπ

m

1 < fπ
2

1 <

fπ
4

1 ∈ (fπa1 , fπ
b

1 ). Extending the same analysis, we have

gm < g3; gm < g4,when β3 < β < β4, (6.37)

where φ′p(fπ
3

1 ) = 1
β3
, and φ′p(fπ

4
1 ) = 1

β4
. Also g3 = Gπ3(X, β), and g4 = Gπ4(X, β).

Using the property of concave functions, we have β3 < β1 < βm < β2 < β4.

Extending the analysis all the way up to the points πa, πm, πb we have

gm < ga; gm < gb,when βa < β < βb, (6.38)

where φ′p(fπ
a

1 ) = 1
βa
, and φ′p(fπ

b

1 ) = 1
βb
. ga = Gπa(X, β), and gb = Gπb(X, β).

Using the property of concave functions, we have βa < · · · < β3 < β1 < βm <

β2 < β4 · · · βb. From (6.38) it is clear that

πm = argmin
π

{
fπ1 − βfπ2

}
, when β1 < β < β2,∀πm ∈ P . (6.39)

As a consequence of the Theorem 6.4, we claim that if PaO solutions of (6.13)

satisfy fπp2 = φp(fπ
p

1 ), where φp is continuous, differentiable, concave, and π∗ ∈

P , then there always exists a βo ∈ (βL, βU) such that π∗ = argmin
π

{
Iπg (X) −

βof
π(X)

}
, where π∗ is the optimal solution to H described using (6.12). The

Theorem 6.4 can also be visualized as a special case of the hyperplane separation
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theorem [164].

Theorem 6.5. If the priors q are chosen such that DKL(q||q′) → 0, then there

always exists a βo ∈ (βL, βU) such that πp∗ = argmin
π

{
Iπg (X) − βofπ(X)

}
, where

πp
∗ is the optimal solution to (6.12) in probability.

Proof. Given that the priors q are close representation of the CS criteria A(π) to

(6.12), using Theorem 6.2 we have that π∗ ∈ P , and

|fπ∗1 − fπ
0

1 |≤ µ, (6.40)

where π∗ is the optimal solution to (6.12), µ is a small number, and π0 ∈ P such

that fπ0
1 = min

π∈P
fπ1 .

We know from Theorem 6.4 that if the PaO solutions π ∈ P represented in

the (f1, f2) plane satisfy fπ2 = φp(fπ1 ), where φp is continuous, differentiable, and

concave there always exists a βo ∈ (βL, βU) such that π∗ = argmin
π

{
fπ1 − βofπ2

}
.

However, in the general case when φp is non-concave there can be no β such that

π∗ = argmin
π

{
fπ1 − βfπ2

}
.

Let us consider that there exists another solution πq ∈ P where |fπq1 −fπ
0

1 |≤ µ,

and there exists a βo ∈ (βL, βU) such that πq = argmin
π

{
fπ1 − βofπ2

}
. In such a

case we have fπ0
1 ≈ fπ

∗
1 ≈ fπ

q

1 . Now when β is swept in (0, βmax) where βo ≤ βmax,

and solve the minimization argmin
π

{
fπ1 − βfπ2

}
, we obtain the solutions π0 and

πq but not the optimal solution π∗. It is worth noting that π0 is obtained when

β = 0. Since fπ0
1 ≈ fπ

∗
1 ≈ fπ

q

1 , it is straightforwards to see that

|π0 − π∗|2< ε, and |πq − π∗|2< ε. (6.41)

Also, if there is no πq, π0 ∈ P , such that |fπ∗1 − fπ
0

1 |≤ µ, and |fπq1 − fπ
0

1 |≤ µ then

it is easy to see that π0 = π∗ as the priors q closely represent the CS criteria. In
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such a case, β = 0 always ensures the optimal solution π∗ to the minimization

(6.16). Considering this argument and (6.41) we have

Pr
{ ∥∥∥ πp∗ − π∗∥∥∥

2
≤ ε

}
≈ 1 for βo ∈ (βL, βU) or,

Pr
{ ∥∥∥ πp∗ − π∗∥∥∥

2
≤ ε

}
= 1− δ,

(6.42)

where πp∗ could be either πp∗ , πp0 or πq. Here ε, δ are small numbers close to

zero.

Now let us focus our attention on solving (6.16) in an efficient way for a

given β. If (6.16) satisfies the Bellman’s optimality criterion, we can use the

dynamic programming framework to solve it. We say that the value function

Gπ(X, β) is said to satisfy BPO under the following conditions [148,165–167]:

(1) The value function Gπ(X, β) can be broken down into two parts

consisting of an immediate reward component (subproblem) and a scaled

(discounted) future value function for a given β.

(2) The subsolution πpk of the optimal solution πp obtained by solving an

incompletely observed MDP are themselves optimal solutions for their

subproblems. This is illustrated below.

If πp = argmin
{π(i)}Ni=1

Gπ(X, β) for some β, and if we can express Gπk(Xk, β) =

Hπk(Xk, β) + Gπk+1(Xk+1, β), where Hπk(Xk, β) is the subproblem defined based

on the partial observation of the MDP until stage k, and Gπk+1(Xk+1, β) is the

future value function then we have

πp = argmin
{π(i)}Ni=1

{
Hπk(Xk, β) +Gπk+1(Xk+1, β)

}
= argmin
{π(i)}Ni=1

{
Hπk(Xk, β) + argmin

{π(i)}N
i=k+1

Gπk+1(Xk+1, β)
}
.

(6.43)
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Observing (6.43), we say that argmin
π

Gπ(X, β) satisfies BPO if the solution to the

subproblem can be written as πpk = argmin
{π(i)}ki=1

{
Hπk(Xk, β)

}
, when the subsolution

πpk is part of the optimal solution πp, for all k ∈ [1, N ].

We show that the problemH in (6.12) does not satisfy the BPO using Theorem

6.6, later we argue that the modified problem (6.16) satisfies BPO in Theorem

6.7. As a result we can use DP to solve (6.16) for various β’s to find the PaO set

P of (6.13).

Theorem 6.6. The problem H described using (6.3) does not satisfy the BPO.

Proof. From (6.3), it is easy to see that fπm(Xm) = bmφm(Xm) + fπm+1(Xm+1).

Using this recursion, we can write the value function in (6.12) as

fπ(X) = fπ1(X1) = ψπk + fπk+1(Xk+1), (6.44)

where ψπk = ∑k
i=1 biφi(Xi = π(i)). Given that π∗ = argmax

π;A(π)>0
fπ(X) we say that

fπ(X) satisfies BPO if the sequence of subsolutions π∗k to the subproblems

argmax
πk;A(πk)>0

ψπk is part of the optimal solution π∗ for all k ∈ [1, N ].

However if we have an infeasible solution π̂ such that f π̂(X) > fπ
∗(X), and

A(π̂) = 0 but the solution π̂ satisfies the CSF A(π̂k) > 0 at some intermediate

stage k, then the subproblem argmax
πk;A(πk)>0

ψπk will not pick the optimal sequence π∗

going forward into the future stages beyond k. This scenario is a consequence of

placing no conditions on the objective and the constraint functions of H. Thus

the solution obtained by solving a sequence of subproblems argmax
πk;A(πk)>0

ψπk will be

different from π∗.

Theorem 6.7. If πp = argmin
π

{
fπ1 − βfπ2

}
for any β ≥ 0, then it can be shown

that min
π

{
fπ1 − βfπ2

}
satisfies the BPO when the priors q are chosen such that

DKL(q||q′)→ 0. Hence an optimal solution πp of (6.16) can be found using a DP.
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Proof. We have Gπ(X, β) , Iπg (X)− βfπ(X). We can also write

Gπ(X, β) = Gπ1(X1, β) , Iπ1
g (X1)− βfπ1(X1), (6.45)

where Iπmg (Xm) is described using (6.7) and fπm(Xm) = ∑N
i=m biφi(Xi) for a

partially known sequence πm. It is easy to see that fπm(Xm) can be expressed

recursively as

fπm(Xm) = bmφm(Xm) + fπm+1(Xm+1). (6.46)

We now show that the term Iπmg (Xm) can be expressed recursively. Using chain

rule and the Markov property we simplify (6.7) as

Iπmg (Xm) = Ep(Xm+1,···,XN |Xm) log p(Xm+1, · · · , XN |Xm)
q(Xm+1, · · · , XN |Xm) ,

= Ep(Xm+1,···,XN |Xm) log p(Xm+1|Xm) · · · p(XN |XN−1)
q(Xm+1|Xm) · · · q(XN |XN−1) ,

= Ep(Xm+1|Xm) log
[
p(Xm+1|Xm)
q(Xm+1|Xm)

]
+ Iπm+1

g (Xm+1).

(6.47)

Using the (6.45), (6.46), and (6.47) we can write

Gπm(Xm, β) , Ep(Xm+1|Xm) log
[
p(Xm+1|Xm)
q(Xm+1|Xm)

]
+ Iπm+1

g (Xm+1)

− β
{
bmφm(Xm) + fπm+1(Xm+1)

}
,

Gπm(Xm, β) , Ep(Xm+1|Xm) log
[
p(Xm+1|Xm)
q(Xm+1|Xm)

]
− βbmφm(Xm) +Gπm+1(Xm+1, β)

(6.48)
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Using the recursive relationship (6.48) we have

Gπ(X, β) = Gπ1(X1, β),

= Ep(X2|X1) log
[
p(X2|X1 = π(1))
q(X2|X1 = π(1))

]
− βb1φ1(X1 = π(1)) +Gπ2(X2, β),

= Hπk(Xk, β) +Gπk+1(Xk+1, β),

(6.49)

where

Hπk(Xk, β) = Dπk − βψπk(Xk), Dπk = D
πk−1
KL (p(X1, · · · , Xk)||q(X1, · · · , Xk)),

=
k∑
i=1

Ep(Xi+1|Xi=π(i)) log p(Xi+1|Xi = π(i))
q(Xi+1|Xi = π(i)) ,

ψπk(Xk) =
k∑
i=1

biφi(Xi = π(i)).

(6.50)

For compact representation, we modify (6.49) and (6.50) as

Gπ = Hπk +Gπk+1 , and Hπk = Dπk − βψπk . (6.51)

We know that Dπk ≥ 0. Also Dπp
k ≤ Dπ̂k for any π̂, and for all k ∈ [1, N ] when the

priors q are chosen to be a close representation of the CS criteria A(π) [74]. Here

πp is the optimal solution to (6.16) for a given β ≥ 0. Given that the problem

H defined in (6.12) satisfies BPO without the constraints, we have ψπpk ≥ ψπ̂k for

any solution π̂, and for all k ∈ [1, N ]. Hence, from (6.51) we have

Hπp
k ≤ H π̂k ,∀k ∈ [1, N ], and for any π̂k. (6.52)
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Thus, the subsolutions πpk = argmin
{π(i)}ki=1

{
Hπk

}
for k ∈ [1, N ] obtained by solving an

incompletely observed MDP until the stage k are themselves part of the optimal

solution πp. Therefore min
π

{
fπ1 − βfπ2

}
satisfies the BPO and DP can be used to

solve πp = argmin
π

{
fπ1 − βfπ2

}
for any β ≥ 0.

Given that a DP-based approach can be used to find the set of PaO solutions

P by solving (6.16) that correspond to different values of β, and π∗ ∈ P ; we intend

to find βo ∈ (βL, βU) by evaluating (6.16) minimum number of times. A binary

search can be used to do so. This is discussed in Section 6.5.

A trellis-based VA can be used to find the optimal solution π∗ (in probability) to

(6.16) [168]. This would necessitate the computation of the path metric PMπm+1

at stage m+ 1 as

PMπm+1 = Ep(Xm+1|Xm=π(m)) log
[
p(Xm+1|Xm = π(m))
q(Xm+1|Xm = π(m))

]
− βbiφm(Xm+1), (6.53)

for a path πm that is incident on the node xj ∈ X at stage m + 1 of the trellis

structure of the VA; and then select the path that has a minimum value among

them. This is the well known Add-Compare-Select (ACS) operation in the VA.

A description of p(Xm+1|Xm) and q(Xm+1|Xm) at every stage of the trellis will

suffice to compute the path metric in (6.53). This is illustrated using Fig.6.3.

6.4 The distributions p and q

In this section, we will discuss the methods to evaluate the distributions

p(Xm+1|Xm) and q(Xm+1|Xm),∀m ∈ [1, N).
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Figure 6.3: An example trellis indicating the winning path (in red) tracing a near-optimal
solution π = {X1 = x4, X2 = x3, X3 = x1, · · · , XN = x1} from the starting node S to the toor
node T based on the path metric defined in (6.53) for X = {x1, x2, x3, x4}.

6.4.1 Evaluation of the priors q

To evaluate the conditional priors q(Xt+1 = xi|Xt = xj)∀t ∈ [1, N);xi, xj ∈ X ,

we sample a set of K solutions from the exhaustive search space Bset of problem H

such that they satisfy A(π) > 0. We then identify N1 < K solutions {πi}N1
i=1 out

of the K selected solutions that have maximum reward, that is f(π1) ≥ f(π2),≥

Figure 6.4: The statistics of the solution in the set C is examined and q determined using
(6.54) at every transition between stage t and t + 1,∀t ∈ [1, N). Here C ⊂ S ⊂ Bset, where
|C|= N1, |S|= K, and N1 < K � |Bset|.
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· · · ≥ f(πN1). Using these N1 subset of solutions we evaluate

q(Xt+1 = xi|Xt = xj) = F ({Xt+1 = xi|Xt = xj})
N1

, ∀t ∈ [1, N);xi ∈ X , (6.54)

where F ({Xt+1 = xi|Xt = xj}) returns the number of times the event

{Xt+1 = xi|Xt = xj} occur among the N1 solutions. It follows that when

K → |Bset|, and for a small N1 we have q(π∗)→ 1. Pictorially, this is illustrated

using Fig.6.4. The larger the value of K, the closer q is to q′ albeit at the cost of

computational complexity. Depending on the problem, domain-specific insights

can often be used to narrow down the value of K. If not, it can be chosen at

random. In the example problem discussed in Section 6.7 we chose K = 100.

Alternatively, one can also use other fast non-parametric techniques or

heuristic approaches to estimate the conditional priors q [169,170].

6.4.2 Evaluation of the conditional p

We describe two methods to evaluate the conditional distribution p(Xt+1|Xt).

In the first approach the conditionals p(Xt+1|Xt) are derived at stage t of the

trellis traversal using the constraints ci(·), hj(·), the starting distribution of states

q(X1), and the path metrics PMπt . In the second approach, we make use of the

well known iterative Blahut-Arimoto algorithm (BAA) to obtain p(Xt+1|Xt) at

stage t of the trellis traversal [74,171]. It can be shown that by taking derivative

ofGπ(X, β) with respect to π and then setting the gradient ofGπ to 0, the equation
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(6.16) satisfies the equations shown below [143,171–173].

p(k)(Xt = xi) =
∑
xj∈X

p(Xt−1 = xj)p(k−1)(Xt = xi|Xt−1 = xj), with,

p(k)(Xt = xi|Xt−1 = xj) = p(k)(Xt = xi) exp(−βGπt−1(Xt, β))∑
xl∈X p

(k)(Xt = xl) exp(−βGπt−1(Xt, β)) ,

(6.55)

where k is the iteration number. It is also worth noting that the problem (6.16)

has an analogy to the variant of the rate-distortion problem in information theory.

That is, (6.16) can be visualized as

min
p(Xt+1|Xt)

{
Iπg (Xt)

}
such that fπ(Xt) ≥ D, (6.56)

where D is some minimum reward that needs to be guaranteed. The solution to

(6.56) is the set of self-consistent equations described in (6.55).

6.5 Algorithm description

It is seen from Section 6.3 that solving the problem (6.16) for different

β ∈ [0, βMax] produces a set of solutions in P . Under the assumption that the

priors q are selected such that they closely represent the CS criteria A(π), it is

shown in Theorem 6.5 that there always exists a βo ∈ (βL, βU) such that

πp
∗ ∈ P , where πp∗ is the optimal solution to (6.12) in probability. We also

showed that DP can be used to solve (6.16). We propose two algorithms based

on the way the conditional p is constructed as discussed in Section 6.4. In the

first variant, the conditional p is evaluated using the constraints of the problem

H. We call this Information-assisted DP(IADP-specific) and is described in

Algorithm 7.
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Algorithm 7 IADP-specific.
1: procedure IADP-s(φt(xi),X ,M ,N ,q(Xt|Xt−1), β, {bt}Nt=1)
2: Evaluate p(X1) as described in section 6.4.2
3: t← 1
4:

{
πit = xi

}M
i=1

Initialize M paths

5:
{
PMπit

← Ep(X1=xi) log p(X1=xi)
q(X1=xi) − βb1φ1(xi)

}M
i=1

Initialize path metrics
6: for each stage t = 2 : N do
7: Evaluate p(Xt|Xt−1) as described in section 6.4.2
8: for all xi ∈ X do
9: for all xj ∈ X do
10: vxj ← PM

πjt−1
+ Ep(Xt|Xt−1=xj) log p(Xt|Xt−1=xj)

q(Xt|Xt−1=xj) − βbtφt(xi)

11: end for
12: PMπit

← min
xj
{vxj}

13: l← argmin
xj
{vxj}

14: πit ← {πlt−1, xi}
15: end for
16: end for
17: πβ ← argmin

πkN

{PMπkN
}

18: return πβ . Solution for the given β
19: end procedure

In the second variant, the conditional p is derived using the well known BAA

[171]. We call this algorithm IADP-BAA and is described in Algorithm 9. Both

these algorithms use the traditional VA framework that evaluate the path metrics

as defined in (6.53) [168]. The proposed algorithms are run for different values

of β chosen using a binary search (BS) algorithm described in Algorithm 8. This

ensures that the solution πp∗ is obtained in a computationally efficient way.
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Algorithm 8 Binary Search βo.
1: procedure SearchBeta(βmax,TRange)
2: βmax ← Max. value of β
3: TRange ← Range threshold for exit
4: βU ← βmax, βL ← 0, βo ← βU+βL

2 .

5: do
6: πβo ← IADP-specific(βo)
7: if A(πβo) > 0 then
8: βL ← βo Constraints met, change lower bound.
9: else
10: βU ← βo
11: Constraint violation, change upper bound
12: end if
13: βo ← βU+βL

2
14: while (βU − βL) > TRange
15: return βo
16: end procedure

6.6 Computational Complexity Analysis

This section compares the computational complexity (CC) of the proposed

IADP-Specific and IADP-BAA methods, NLBB, and the ES algorithms. The

main computational blocks of the proposed algorithms can be categorized into

(i) performing the ACS operation that requires the computation of the path

metric PMπ at each node of the trellis, and later selecting the path πi with the

least value among the paths incident on each node of the trellis, (ii) The

computation of the conditionals p(Xm+1|Xm),∀m ∈ [1, N) during the trellis

traversal, (iii) The evaluation of the priors q(Xm+1|Xm),∀m ∈ [1, N), and (iv)

The binary search to find the βo that yields the optimal solution in probability.

(i) Exhaustive search (ES): The total number of solutions in the Bset = MN ,

and hence it has a CC of O(MN).

(ii) NLBB: Obtaining an optimal solution using NLBB has a worst-case

computational complexity similar to that of the ES, which is O(MN).

(iii) IADP-Specific: The total number of ACS evaluations for an M state
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Algorithm 9 IADP-BAA.
1: procedure IADP-b(φt(xi),X ,M ,N ,q(Xt|Xt−1), β, {bt}Nt=1)
2: T ← Threshold of BAA convergence
3: Evaluate p(X1) Assume a starting distribution
4: for each stage t = 2 : N do
5: for each xi, xj ∈ X do
6: k ← 1
7: do
8: Gπ

j
t−1(Xt = xi, β)← Gπ

j
t−1(Xt = xi, β)+

9: Ep(k−1)(Xt|Xt−1=xj) log p(k−1)(Xt|Xt−1=xj)
q(Xt|Xt−1=xj) − βbtφt(xi)

10: Compute : p(k)(Xt = xi) and p(k)(Xt = xi|Xt−1 = xj) using (6.55)
11: k ← k + 1
12: while Gπ

j
t−1(Xt = xi, β) ≤ T

13: end for
14: for each xi,∈ X do
15: Gπ

i
t(Xt = xi, β)← min

xj
{Gπ

j
t−1(Xt = xi, β)}

16: r ← argmin
xj
{Gπ

j
t−1(Xt = xi, β)}

17: πit ← {πrt−1, xi}
18: end for
19: end for
20: πβ ← argmin

πm
{GπmN (XN , β)}

21: return πβ . Solution for the given β
22: end procedure

trellis with horizon length of N is NM2, and a total of (N − 1)M2 evaluations

are required for p(Xm+1|Xm),∀m ∈ [1, N). For the evaluation of the priors q as

discussed in Section 7.4.1 we need K solutions to be sampled, and hence the

complexity is Kµ. The term µ is the number of arithmetic operations required

to evaluate the cost function f(·) and the CSF A(·) for each candidate sample.

The evaluation of (6.54) can be accomplished using a lookup table. It can be

shown that for a BS algorithm with an exit range threshold TRange = βU − βL,

and for a maximum value of beta βMax, the average number of searches required
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is log2( βMax
TRange

). Hence the overall computations required for IADP-specific is

TIADP-specific = (NM2 + (N − 1)M2) log2

( βMax

TRange

)
+Kµ. (6.57)

(iv) IADP-BAA: For the IADP-BAA, the only difference compared to IADP-

Specific is the computation of the conditionals p. A total of Niter(N − 1)M2

computation is required for p, where Niter is the average number of iterations

required for the BAA to achieve the required convergence. Thus we have

TIADP-BAA = (NM2 +Niter(N − 1)M2) log2

( βMax

TRange

)
+Kµ. (6.58)

It can be observed that both the proposed IADP-Specific and IADP-BAA

algorithms have overall complexity of O(NM2).

Although the limiting behavior of the complexity for both IADP-Specific and

IADP-BAA is the same, the total number of arithmetic operations required for

IADP-BAA is greater than IADP-Specific because of the iterative nature of

BAA. However, both methods have the same order of complexity as that of the

VA. The comparison of the execution times using Matlab profiler using the

discussed algorithms for ADC BA and DFA examples are shown in Table 6.4

and Table 6.6 respectively.

It is also worth noting that the priors q can also be evaluated using other

faster techniques [169,170].

6.7 Example application

In this section, we use the proposed algorithms to solve the following two

problems in H.
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• ADC bit allocation in MaMIMO receivers [32,33]

• DNA fragment assembly (DFA) problem in bioinformatics [174,175]

We describe the problem briefly, and present our findings by contrasting the

performance and computational complexity with the state-of-art algorithms and

ES method.

6.7.1 ADC Bit Allocation for MaMIMO: Problem

The future generations of wireless communication like 6G envision the use of

ultra-high bandwidths, ultra-Massive MIMO at terahertz (Thz) frequency ranges

to improve throughput significantly [176]. This will help provide optical-fiber-like

performance in wireless backhauling, backbone (rack-to-rack) connectivity in data

centers, and high data rate kiosk-to-mobile communications [177–179]. However,

power consumption remains a significant hurdle toward the practical deployment

of THz systems. One of the major bottlenecks is the poor energy efficiency (EE) of

the system due to the high-resolution analog to digital converts (ADC) operating

at these extremely large bandwidths having a large number of Radio Frequency

(RF) chains. Using fixed low-resolution ADCs is a popular approach adopted

in Ma-MIMO 5G receiver architectures to mitigate large power demands [32].

However, an optimal EE performance is necessary to meet the stringent demands

set out by the 5G standards [80,82]. Adopting variable-resolution (VR) ADCs in

Ma-MIMO settings yields such benefits [6, 32–35,180].

The ADC BA problem is to assign the number of bits to be used by Variable-

Resolution ADCs on different RF paths of the MaMIMO receivers. An optimal

BA ensures that the performance of the receiver is maximized under a non-linear

power constraint. In [32], the authors reduce this to a problem in H, which is
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described as

argmax
{xi}Ni=1;A(x)>0

{ N∑
i=1

a2
i

b2
i + di2xi

}
, (6.59)

where ai, bi, and di are constants ∈ R that represent channel singular value, noise

power, and coefficient of quantization noise due to bit allocation xi on the ith RF

path, respectively. Here N is the number of RF paths in the receiver. The bits xi

can take values from the set X = {1, 2, 3, 4}. The ADC BA problem in pictorially

illustrated in Fig. 6.5. The CSF A(x) > 0 iff the power constraint ∑N
i=1 2xi ≤ Pb,

Figure 6.5: A mmWave MaMIMO receiver adopting BA algorithm for VR-ADCs

and bit-ordering constraint x1 ≥ x2 ≥ · · · ≥ xN are satisfied. The total ADC

power budget is Pb. Hence we have

A(x) =



1, if ∑N
i=1 2xi ≤ Pb,

x1 ≥ x2 ≥ · · · ≥ xN .

0, Otherwise.

(6.60)
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Evaluation of the conditionals p for the ADC BA problem

We define p(Xt+1|Xt) between the stages t and t+ 1 for a given path πt based

on the two constraints in (6.60). We know the elements of the path πt for stages

1, · · · t. Thus we write

p(Xt+1 = xi|Xt) =

S
[
Pb −

(∑t
k=1 2xk + 2xi

)]
+ ñ∑

xj∈X

[
S
(
Pb −

(∑t
k=1 2xk + 2xj

))
+ ñ

]∀xi ∈ X , (6.61)

where S(x) = 1
1+e−x is a sigmoid function that bounds the domain of S in [0, 1] for

x ∈ [−∞,∞]. It is easy to see that the term Pb − (∑t
k=1 2xk + 2xi) represents the

residual power available for the path πt to ensure the power constraint is satisfied.

The larger the term Pb − (∑t
k=1 2xk + 2xi), the greater the chance of satisfying

the power constraint. The condition Pb − (∑t
k=1 2xk + 2xi) ≤ 0 indicates that

the power budget is exhausted for the path πt. The normalization term in the

denominator of (6.61) ensures that ∑xi∈X p(Xt+1 = xi|Xt) = 1. In addition, we

add noise ñ ∼ N (0, σ2) with a very small variance σ2 to ensure randomness in the

distribution. The probabilities p(Xt+1 = xi|Xt) can be efficiently computed on

the fly for the path πt at stage t during the trellis traversal in VA. The constraint

x1 ≥ x2 ≥ · · · ≥ xN is taken care of when

p(Xt+1 = xi|Xt = xj) = 0 when xi < xj;∀xi, xj ∈ X . (6.62)

Simulation results for the ADC BA problem

We use the proposed algorithms to analyze the BA problem in MaMIMO

described in subsection 6.7.1. We consider the scenarios with the number of RF
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paths N = 8 and N = 12 [57]. We set the power budget Pb = 32 and Pb = 48

(normalized power) for N = 8 and N = 12 respectively. We sweep the value of

β ∈ [0, 10] in steps of 0.01 for the purpose of analysis using the proposed

methods. The solution πβ obtained for each β with IADP-specific and

IADP-BAA for both scenarios is shown in the Table 6.2 and 6.3 for N = 8 and

N = 12 respectively. A plot of the trade-off curve between the reward fπ(X)

and the CSF criterion (Information-to-go) Iπg (X) ((f1, f2) plot) for various

values of β are shown in Fig.6.6 for both scenarios.

It can be observed that the IADP-specific algorithm yields an optimal

solution when β ∈ [0.08, 0.43], and the IADP-BAA does so when β ∈ [0.02, 0.04]

for N = 8. Similarly, for N = 12, it can be seen that the IADP-specific

algorithm yields an optimal solution when β ∈ [0.09, 0.1], and the IADP-BAA

fails to achieve the optimal solution for the resolution of β considered. Instead

the IADP-BAA identifies the near-optimal (optimal in probability) solution

when β ∈ [0.02, 0.04]. This observation corroborates with our theoretical

analysis in Section 6.3. The entries in the Table 6.2 and 6.3 that correspond to

the optimal and near-optimal solution are highlighted using red and bold text.

We also use a nonlinear BB (NLBB) algorithm with branching and pruning

based on dominance, and constraint satisfaction to solve the BA

problem [66, 181]. It is to be noted that the NLBB guarantees the optimal

solution with the worst-case computational complexity as that of the ES [66].

To exemplify the analysis discussed in the Section 6.3, we plot all the

possible solutions to the BA problem in the
(
Iπg (X), fπ(X)

)
plane in Fig.6.8 for

both scenarios N = 8 and N = 12. It can be observed that only the solutions

highlighted in dotted black circles in Fig.6.8 can be obtained by sweeping β.

This can be confirmed from Fig.6.6. This is a consequence of Theorem 6.4, as it
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can be observed that the solutions in the PaO front indicated by the dotted

green line do not fit a non-concave function φp as discussed in Section 6.3.

However, an alternate technique called the ε−constrained method is used to

discover all the other PaO solutions in P [70]. A plot of the PaO solutions

obtained using this method is indicated in Fig.6.7. It can be observed that most

of the PaO points are unraveled.

Table 6.2: [Scenario-1] : Simulation results for ADC BA problem using the proposed Algorithms
with number of RF paths N = 8 and power budget Pb = 32.

ADC BA (N = 8) Solution πβ Reward Power (normalized)

β = [0, 0.07] {4, 1, 1, 1, 1, 1, 1, 1} 17.543 30 [Meets constraints]

β = [0.08, 4.3] {4, 2, 1, 1, 1, 1, 1, 1} 18.0081 32 [Meets constraints]

β = [4.31, 10.0] {4, 4, 4, 4, 4, 4, 1, 1} 25.6008 100 [Violates constraints]

The solution πβ, reward and the power for ADC BA problem for various
values of β using IADP-specific method.

ADC BA (N = 8) Solution πβ Reward Power (normalized)

β = [0, 0.01] {4, 1, 1, 1, 1, 1, 1, 1} 17.543 30 [Meets constraints]

β = [0.02, 4.31] {4, 2, 1, 1, 1, 1, 1, 1} 18.0081 32 [Meets constraints]

β = [4.32, 10.0] {4, 4, 4, 4, 4, 4, 1, 1} 25.6008 100 [violates constraints]

The solution πβ, reward and the power for ADC BA problem for various
values of β using IADP-BAA method.

The Brute-force solution is π∗ = {4, 2, 1, 1, 1, 1, 1, 1} with reward = 18.0081 and Power=32.

153



Table 6.3: [Scenario-2] : Simulation results for ADC BA problem using the proposed Algorithms
with number of RF paths N = 12 and power budget Pb = 48.

ADC BA (N = 12) Solution πβ Reward Power (normalized)

β = [0, 0.01] {4, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1} 18.8459 44 [Meets constraints]

β = [0.02, 0.08] {4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1} 19.438 48 [Meets constraints]

β = [0.09, 0.1] {4, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1} 19.5484 48 [Meets constraints]

β = [0.11, 5.93] {4, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1} 20.1405 52 [Violates constraints]

β = [5.94, 10.0] {4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1} 25.6101 108 [Violates constraints]

The solution πβ, reward and the power for ADC BA problem for various
values of β using IADP-specific method.

ADC BA (N = 12) Solution πβ Reward Power (normalized)

β = [0, 0.01] {4, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1} 18.8459 44 [Meets constraints]

β = [0.02, 0.04] {4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1} 19.438 48 [Meets constraints]

β = [0.05, 5.86] {4, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1} 20.1405 52 [Violates constraints]

β = [5.87, 6.4] {4, 3, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1} 24.7905 100 [Violates constraints]

β = [6.41, 10.0] {4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1} 25.6101 108 [Violates constraints]

The solution πβ, reward and the power for ADC BA problem for various
values of β using IADP-BAA method.

The Brute-force solution is π∗ = {4, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1} with reward = 19.5484 and
Power=48.

Table 6.4: Comparison of the Matlab execution time for IADP-Specific, IADP-BAA, NLBB,
and ES Algorithms for ADC BA problem.

Algorithm Matlab execution time (N = 8) Matlab execution time (N = 12)
IADP-Specific 3.9s† 4.7s†

IADP-BAA 38.3s† 51s†
NLBB 123s 462s

Exhaustive search 192.4s 1095.1s
† The runtime includes the prior q computation time.
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Figure 6.6: Simulation results for the ADC BA problem using the proposed IADP-specific and
IADP-BAA methods. Here we sweep β ∈ [0, 10] in steps of 0.01 for analysis purpose.
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Figure 6.7: Pareto-optimal solutions to the ADC BA problem (6.59) found using ε-constrained
method using DP algorithm by sweeping β ∈ [0, 10] in steps of 0.01.

Scenario-1: Number of RF Paths N = 8. Scenario-2: Number of RF Paths N = 12.

Figure 6.8: (Iπg (X), fπ(X)) plot indicating all possible solutions to ADC BA problem.

155



6.7.2 DNA Fragment Assembly problem

The DFA is the challenging process of DNA sequencing, and it has equivalence

to the TSP [174, 175, 182]. DNA sequencing’s main problem is that the current

technology can not read an entire genome in one shot, sometimes not even more

than 1000 bases. Even the simplest organisms, like bacteria and viruses, have

much longer genome lengths. Consequently, the genomes are broken down into

smaller readable fragments and sequenced [183]. In this step, N copies of DNA

are created. A short fragment is derived from each of the replicated DNA at

some random location. These short fragments are then sequenced. The final and

challenging step is to assemble these sequenced fragments to obtain the original

DNA sequence. This step is called the DFA and is illustrated through an example

below [57,174]. A pictorial illustration of the DFA problem is shown in Fig. 6.9.

Figure 6.9: An illustration of the steps involved in DNA sequencing and DFA problem

We assume the DNA sequence to be TTACCGTGC, and the fragments
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sequenced using 4 DNA copies being F1 = ACCGT , F2 = CGTGC,

F3 = TTAC, and F4 = TACCGT . The overlap of each fragment with the other

three fragments is computed using the similarity measure. Based on this

similarity measure, the order of fragments is determined which in the case of this

example is F3F4F1F2.

The DFA problem is posed as a maximization problem where the sum of the

similarity measures between two adjacent DNA fragments is maximized [174].

This is subject to the constraint that there is no repetition of the fragments in

the sequence. Formally, this problem is defined as [174]

max︸ ︷︷ ︸
{Fσi}

N
i=1;A(F)>0

{N−1∑
i=1

φ(Fσi , Fσi+1)
}
, (6.63)

where F = {Fσ1 , Fσ2 , · · · , FσN} is the set of fragments (solution) indicating the

assembled DNA sequence, σi is the fragment index, and φ(Fσi , Fσi+1) is the

similarity measure between the fragments Fσi and Fσi+1 . Here, the set X is

collection of DNA fragments {Fj}Nj=1, where N is the number of fragments. For

this problem the CSF A : F → {0, 1} is defined on the set F as A(F) > 0 iff all

the fragments in F are unique. The CSF is denoted as

A(F) =


1, if

N⋂
i=1

Fσi = ∅,

0, Otherwise.
(6.64)

We consider the DFA of a small section of the DNA sequence of bacterium

Escherihia Coli (E. coli) [174]. The original section of the DNA is represented as

TACTAGCAATACGCTTGCGTTCGGT . We consider N = 10 fragments

each with 8 bases, as follows: F1 = ACGCTTGC, F2 = TTGCGTTC,

F3 = ACTAGCAA, F4 = CGTTCGGT, F5 = AGCAATAC, F6 = TACTAGCA,
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F7 = AATACGCT, F8 = CTTGCGTT, F9 = ATACGCTT, and

F10 = CTAGCAAT. The optimally assembled fragments

π∗ = {F6F3F10F5F7F9F1F8F2F4}, which is based on the similarity score given

in [174].

Evaluation of the conditionals p for the DFA problem

The only constraint we have for the DFA problem is the non-repeatability of

the fragments in the assembled sequence as seen in (6.64). Thus the simplest way

to define the conditional is to assign a zero transition probability if a fragment is

repeated within a partially observed sequence at stage t. That is

p(Xt+1 = Fσi |Xt) =
A
(
πt
⋂
Fσi

)
∑
Fσj∈X A

(
πt
⋂
Fσj

)∀Fσi ∈ X , (6.65)

where πt is the partially observed fragments until stage t which is

πt = {Fσ1 , · · · , Fσt}. The function A(∅) = 1, and A(π) = 0 if π is not empty.

Simulation results for the DNA fragment assembly problem

For the purpose of analysis we sweep the value of β ∈ [0, 10] in steps of 0.01

using the proposed algorithms for solving the DFA problem in (6.63). The solution

πβ indicating the assembled fragment indices ({σi}Ni=1) obtained for each β with

IADP-specific and IADP-BAA is shown in the Table 6.5. The trade-off curve

between the reward and the CSF criterion for various values of β are shown in

Fig. 6.10(a). It can be observed that both proposed algorithms (IADP-specific

and IADP-BAA) achieve exact solutions when β ∈ [0.08, 0.32], and β ∈ [0.06, 0.09]

respectively. To discover all the PaO solutions we use the ε−constrained method.

A plot of the PaO solutions obtained using this method is indicated in Fig 6.10(b).

It can be observed that ε−constrained method extracts two other PaO solutions

158



with both IADP-specific and IADP-BAA.

Table 6.5: Simulation results for DFA problem using the proposed Algorithms.

DFA Solution πβ Reward Unique fragments

β = [0, 0.07] {2, 8, 4, 1, 9, 7, 5, 10, 3, 6} 53.35 True

β = [0.08, 0.32] {6, 3, 10, 5, 7, 9, 1, 8, 2, 4} 55.0 True

β = [0.33, 0.38] {6, 3, 10, 5, 7, 9, 1, 2, 8, 2} 56.0 False

β = [0.39, 2.09] {8, 2, 8, 6, 3, 10, 5, 10, 3, 6} 57.67 False

β = [2.1, 5.31] {6, 3, 10, 6, 3, 10, 5, 10, 3, 6} 60.0 False

β = [5.32, 10.0] {6, 3, 10, 3, 10, 3, 6, 3, 6, 3} 63.0 False

The solution πβ, reward and constraint satisfaction for DFA problem for
various values of β using IADP-specific method.

DFA Solution πβ Reward Unique fragments

β = [0, 0.05] {5, 10, 6, 3, 7, 9, 1, 8, 2, 4} 53.34 True

β = [0.06, 0.09] {6, 3, 10, 5, 7, 9, 1, 8, 2, 4} 55.0 True

β = [0.1, 0.32] {2, 8, 2, 1, 9, 7, 5, 10, 3, 6} 56.0 False

β = [0.33, 2.2] {8, 2, 8, 6, 3, 10, 5, 10, 3, 6} 57.67 False

β = [2.21, 5.3] {6, 3, 10, 6, 3, 10, 5, 10, 3, 6} 60.0 False

β = [5.31, 10.0] {6, 3, 6, 3, 10, 3, 6, 3, 6, 3} 63.0 False

The solution πβ, reward and constraint satisfaction for DFA problem for
various values of β using IADP-BAA method. The ES solution is

π∗ = {6, 3, 10, 5, 7, 9, 1, 8, 2, 4} with reward = 55 with unique assembled DNA fragments.
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Figure 6.10: Simulation results for the DFA problem using the proposed IADP-specific and
IADP-BAA methods.

Table 6.6: Comparison of the Matlab execution time for IADP-Specific, IADP-BAA, NLBB,
and ES Algorithms for DFA problem

Algorithm Matlab execution time
IADP-Specific 11.8 s†

IADP-BAA 91 s†
NLBB 265 s

Exhaustive search 592 s
† The runtime includes the prior q computation time.

160



6.8 Conclusions

In this chapter, we described and motivated the readers about the relevance of

solving the CDO problem class H. The problem class H is a subset of constrained

combinatorial problems with no conditions placed on the constraints and whose

objective function satisfies BPO. Such problems present a considerable challenge

to solve optimally with computationally efficient algorithms. These problems are

ubiquitous in wireless communication, signal processing, bioinformatics, and many

other domains. This chapter describes how such problems can be reformulated as

unconstrained ones using an information-theoretic measure. This chapter proposes

two algorithms based on the dynamic programming framework to solve them. An

extensive analysis to establish strong near-optimality guarantees is provided, and

it is shown that the computational complexity order of the proposed algorithms

is similar to that of the Viterbi algorithm.

A strong near-optimality guarantee is a consequence of the selection of the

priors q that closely represent the constraints of the problem. Theoretical analysis

as to the behavior of the solutions when the priors q are not a good representation

of the constraints will be a valuable extension to the current work. In addition, a

faster method than the proposed binary-search technique to determine the range

of β to arrive at an optimal or near-optimal solution is desirable and can be a

scope for future work.
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Chapter 7

Theoretical foundations of the

information-directed

branch-and-prune algorithm

In chapter 5, we discussed how the Information-directed branch-and-prune

(IDBP) algorithm was used to derive the optimal RIS phase-settings in a RIS-

assisted MaMIMO multi-user framework under interference. In this chapter, we

shall detail the theoretical underpinning of the proposed IDBP algorithm. The

IDBP algorithm belongs to the family of tree-traversal search methods, which

enumerate the potential solutions to the non-convex optimization problems under

consideration by storing partial solutions to the subproblems using a tree data

structure. However, they are vastly different compared to the well-known branch-

and-bound (BnB) algorithms. The difference between the two, mainly, is that in

IDBP, the pruning decisions are not based on the bounds of the reward or cost

of the optimal solution, instead, they are derived using an information-theoretic

measure. For the first time in literature, we provide theoretical guarantees for
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near-optimality with the proposed IDBP algorithm using asymptotic equipartition

theory, which will be detailed in this chapter. We will first present the background

on the general tree-search techniques and very briefly describe the branch-and-

bound (BnB) algorithm, and later glimpse upon some of the recent works of

interest in the literature on tree-search algorithms.

7.1 Background

The tree-search framework encapsulates a family of algorithms, which solves

a combinatorial optimization (CO) problem by implicitly enumerating all the

possible solutions to the given problem [66, 119, 184]. These methods enumerate

the potential solutions by storing partial solutions to the subproblems using a

tree data structure. The main components of tree-search algorithms involve (i)

branching- which involves partitioning the solution space into smaller search

spaces that can be solved recursively, (ii) pruning- which are the set rules that

are used to prune off the provably suboptimal search regions, and finally a (iii)

systematic search mechanism- that determines the order in which the

subproblems in the tree are explored. An example of branching would involve

partitioning the solutions into convex sets or feasible sets. The pruning rule

could be laid out by establishing either upper or lower bounds at a particular

tree node, representing a partial solution. These pruning rules ensure that the

optimal solutions through them are worse than the current partial solution. The

search techniques could be specific to a problem, or generic tree search

techniques like Depth-First-Search (DFS) or a Breadth-First-Search (BFS) could

be employed.

The complexity of the tree-search algorithms, in general, is shown to be

O(Mbd), where b is the branching factor of the tree, d is the depth of the tree,
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and M is the number of arithmetic operations needed to process a given node

(explore the subproblems underneath it) [66, 184]. It is to be noted that a BnB

algorithm with no pruning rules and with the enumeration of all possible

solutions would be an exhaustive search (ES). Hence, to find an optimal solution

to a given CO problem, it is necessary to define good branching and pruning

strategies! Unfortunately, this can be achieved only by well-behaved problems,

in other words, convex and nonlinear problems. In situations where the problem

under consideration is nonconvex, then defining the pruning rules is not

straightforward.

The BnB algorithm is a special case of the tree-search technique in which the

pruning rules are defined by setting the bounds of the cost functions under

consideration [66]. Although the BnB algorithms are used to tackle nonconvex

CO problems, they are slow, having exponential worst-case complexity similar to

ES [185]. The BnB algorithms are nonheuristic when provable

branching-and-bounding rules on global objective function can be defined. This

ensures provable near-optimality guarantees. Heuristic methods are being

explored in recent years for BnB algorithms for determining both branching and

bounding rules [186]. A survey of recent advances in searching, branching, and

pruning for BnB methods is studied in [66]. The survey provides a formal

description of the BnB algorithms in general. The paper also describes some of

the commonly-used search strategies, branching, and pruning rules. The

manuscript [185] provides a tutorial on the theory of BnB algorithms with a

focus on unconstrained nonconvex minimization problems and provides a

convergence analysis. This manuscript considers two simple examples. It can be

noted that the complexity to achieve near-optimality is almost exponential.

More recently, machine learning techniques have been explored to be used for
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defining the branching, and pruning rules [186]. In the paper [186], the authors

show how to use the ML to determine an optimal weighting of any set of

partitioning procedures for the instance distribution at hand using samples from

the distribution. The authors also show that learning an optimal weighting of

partitioning procedures can dramatically reduce tree size. This reduction can

even be exponential. A plethora of papers have appeared in recent years that

focus on improving the branching and pruning strategies in the BnB framework

using ML-based techniques. Most of these methods involve training overheads

and carry a huge computational burden [187–189]. Heuristic BnB algorithms are

proposed in [190, 191]. A BnB algorithm for solving a nonconvex problem by

partitioning the feasible set of solutions by reduction of the duality gap existing

between the given problem and its lagrangian dual is proposed in [192].

However, no guarantees on optimality or near-optimality are discussed in this

work. A BnB algorithm for solving nonconvex quadratic problems with box

constraints using a new way of defining the lower bound is proposed in [193].

Several studies have proposed modified BnB frameworks to tackle a specific

problem [194–201]. However, in general, they do not treat optimality or

near-optimality analysis. Even if they do, they do not discuss the impact of

computational complexity.

7.1.1 Contributions in this chapter

The motivation to develop this algorithm stems from the fact that no existing

methods exist in literature that provide theoretical guarantees to solve the general

class of constrained combinatorial problems in polynomial time. The general class

of combinatorial problems that encompass non-convex and non-linear problems

with large number of decision variables are omnipresent in the area of wireless
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communication. The problem of identifying the optimal RIS phase-shifts in a

RIS-assisted MaMIMO wireless networks to improve energy efficiency for a multi-

user NLOS link, where the RIS has a very large number of reflecting surfacesM is

a classic example (see chapter 5). The contributions of this chapter are as follows:

• We present a novel Information-Directed Branch-and-Prune algorithm, in

which, we, to the best of our knowledge, for the first time in the literature

use an information-theoretic measure to decide on the pruning rules in a

tree-search algorithm to arrive at the solution to a general class of non-

convex, non-linear combinatorial problem. The proposed IDBP is vastly

different compared to the traditional branch-and-bound algorithm that uses

bounds of the cost function to define the pruning rules.

• We establish theoretical guarantees for near-optimality, and substantiate

the claims by comparing the solutions obtained with the exhaustive search

method.

• We contrast the performance and the time complexity of the proposed

algorithm, and show that the IDBP has a polynomial time complexity

when the prior distribution is chosen appropriately.

7.2 Problem setup

The constrained discrete optimization problem in the general form is stated

as below, where Φ∗ is the optimal solution to (7.1) if it exists.

max
Φ

f(Φ),

such that ci(Φ) ≤ αi; for 1 ≤ i ≤ QI ,

hj(Φ) = βj; for 1 ≤ j ≤ QE,

(7.1)
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where Φ = [φ1, φ2, · · · , φM ]T . Here φi ∈ Φ can only take values from the set Φ

whose cardinality is K. The set Φ ⊂ R. The terms QI and QE represent the

number of inequality and equality constraints, respectively.

7.3 Modeling the solution as an MDP

We model the solution Φ as a sequence of random variables

Φ = {Φ1,Φ2, · · · ,ΦM}, where we represent the discrete random variable Φi with

probability mass function (PMF) p(Φi). The solution can be visualized as a

finite horizon Markov decision process (MDP), which is defined using a tuple

(Φ,A, p, r, q), where Φ denotes the finite set of states, A is the finite set of

actions, p : Φ×A×Φ′ → [0, 1] are the state transition probabilities pφ,a(φ
′) that

a state φ′ is attained when an action a ∈ A is taken in state φ where φ, φ′ ∈ Φ.

A reward r : Φ × Φ → R is associated with an a ∈ A from a state φ ∈ Φ. The

prior distribution q represents the statistic of the optimal solution. We consider

the actions a ∈ A to be deterministic given p and q. We define a solution

π = {Φ1 = φ1,Φ2 = φ2, · · · ,ΦM = φM} as a sequence of states attained as a

consequence of decisions a ∈ A taken to maximize the cumulative reward in the

MDP.

We design the IDBP algorithm with pruning rules so as to minimize the

effective Kullback-Leibler (KL) divergence between the distribution of future

looking sequence {Φm+1, · · · ,ΦM} given Φm with respect to the known prior

conditional distribution of the successive future states

q(Φm+1,Φm+2, · · · ,ΦM |Φm). We call this algorithm the IDBP. Effectively, we can
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write [143] (Refer to Appendix 7.7 for the proof)

πopt = argmin
π
{DKL(p(Φ1, · · · ,ΦM)||q(Φ1, · · · ,ΦM))}. (7.2)

Using the Asymptotic Equipartition Property (AEP), it can be shown that the

solution πopt is optimal in probability. This is detailed in the next section. We say

that the solution πopt is close to π∗ in probability when Pr{ | f(πopt)− f(π∗)| ≤

ε} ≥ 1 − δ, where ε, δ can be chosen arbitrarily close to zero. Here, π∗ is the

optimal solution to (7.1). That is Φopt = diag(π∗).

7.4 Optimality Analysis

In this section, we provide the proofs of Theorems 7.1 - 7.3, and Lemma 1

that establishes theoretical guarantees of the optimal solution in probability using

the proposed IDBP Algorithm. Before laying out the details of the optimality

analysis, we first describe one of the methods that can be used to derive the

statistics q.

7.4.1 Determination of the priors q of the optimal solution

Given that we model the solution as an MDP, we write the statistics of the

optimal solution π∗ as π∗ ∼ q(Φ1,Φ2, · · · ,ΦM), where

q(Φ1,Φ2, · · · ,ΦM) = q(Φ1)q(Φ2|Φ1) · · · q(ΦM |ΦM−1). Here q(Φ1) is initial state

distribution. We assume that the MDP is homogenous and hence it is sufficient

to determine the transition probabilities q(Φt+1 = φi|Φt = φj) between any two

consecutive stages t and t + 1,∀t ∈ [1,M);φi, φj ∈ Φ. To do so, we identify m

solutions {πi}mi=1 from the exhaustive search space of problem (7.1) such that
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f(π1) ≤ f(π2) ≤ · · · ≤ f(πm). Using these m subset of solutions we evaluate

q(Φt+1 = φi|Φt = φj) = F ({Φt+1 = φi|Φt = φj})
mM

∀t ∈ [1,M);φi, φj ∈ Φ,
(7.3)

Here F ({Φt+1 = φi|Φt = φj}) returns the number of times the event {Φt+1 =

φi|Φt = φj} occur among the m solutions. It follows that if π∗ ∈ {πi}mi=1, and

for a small m we have q(π∗)→ 1. Alternatively, one can also use other fast non-

parametric techniques or heuristic approaches to estimate the conditional priors

q [169,170].

We know that MDP Φ = {Φ1,Φ2, · · · ,ΦM} can be visualized as homogenous

Markov source, and exhibits AEP. Some of the well known definitions from AEP

that we shall use in our proof of optimality is outlined below [74,202].

Definition 7.1. A sequence πn (or a solution of length n) is strongly δ typical

with respect to the distribution q if ∀φ ∈ Φ : |qπn(φ)− q(φ)|≤ δq(φ).

Here qπn(φ) = `(φ)
n

is the empirical distribution signifying the number of

occurrences of φ denoted as `(φ) over n observations.

Definition 7.2. The strongly δ-typical set, T nδ (Φ) is a set of all strongly δ typical

sequences. That is

T nδ (Φ) =
{
πn :

∣∣∣qπn(φ)− q(φ)
∣∣∣ ≤ δq(φ)

}
. (7.4)

Definition 7.3. The weakly ε-typical set, Anε (Φ) is a set of all sequences such that

Anε (Φ) =
{
πn :

∣∣∣− 1
n

log q(πn)−H(Φ)
∣∣∣ ≤ ε

}
, (7.5)
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where H(Φ) is the source entropy rate of the MDP under consideration. We

now modify the Definition 7.1 to incorporate the conditional priors q(Φt+1 =

φi|Φt = φj), and show that the solution πn belongs to Anη (Φ), for some η → 0,

when the following condition |qπn(φi|φj)− q(φi|φj)|≤ δq(φi|φj) is satisfied.

Theorem 7.1. A sequence πn is η typical with respect to the conditional

distribution q if ∀φi, φj ∈ Φ : |qπn(φi|φj) − q(φi|φj)|≤ δq(φi|φj), for some

η, δ → 0.

Proof. We have qπn(φi|φj) the empirical conditional distribution of the sequence

πn defined as

qπn(Φt+1 = φi|Φt = φj) = qπn(φi|φj) = `({φi|φj}; πn)
n

,

∀t ∈ [1, n);φi, φj ∈ Φ,
(7.6)

where `({φi|φj}; πn) denotes the number of occurrences of the transitions φi to φj

in the sequence πn. Let the sequence πn = {φt(1), φt(2), · · · , φt(n)}, where φt(i) ∈

Φ,∀i ∈ [1, n]. Then we have

q(πn) = q(φt(1))`(φt(1);πn)
n−1∏
i=2

q(φt(i+1)|φt(i))`(φt(i+1)|φt(i);πn), (7.7)

where `(φt(1); πn) is the number of occurrences of the state φt(1) in the sequence

(solution) πn. We write (7.7) as

log(q(πn)) = `(φt(1); πn) log q(φt(1))

+
n−1∑
i=2

`({φt(i+1)|φt(i)}; πn) log q(φt(i+1)|φt(i))
(7.8)

For simplicity of notation, we represent the conditionals {φt(i+1)|φt(i)} as ψi, φt(1)
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as ψ1, and `(φt(1); πn) as `(ψ1) We simplify (7.8) further as

log q(πn) =
n−1∑
i=1

`(ψi) log q(ψi),

=
n−1∑
i=1

{
`(ψi)− nq(ψi) + nq(ψi)

}
log q(ψi),

= n
n−1∑
i=1

q(ψi) log q(ψi)

+ n
n−1∑
i=1

( 1
n
`(ψi)− q(ψi)

)
log q(ψi),

= −n{H(Φ) + η}

(7.9)

where H(Φ) = H(Φ1) +∑N−1
i=2 H(Φi+1|Φi) for the MDP under consideration [74],

and

η =
n−1∑
i=1

( 1
n
`(ψi)− q(ψi)

)
(− log q(ψi)),

≤
n−1∑
i=1

∣∣∣ 1
n
`(ψi)− q(ψi)

∣∣∣(− log q(ψi)).
(7.10)

We know that
∣∣∣ 1
n
`(ψi) − q(ψi)

∣∣∣ =
∣∣∣qπn(φi|φj) − q(φi|φj)

∣∣∣ for i ∈ [1, n], and hence

we have

η ≤ δ
n−1∑
i=1

q(ψi)(− log q(ψi)) =
∣∣∣δH(Φ)

∣∣∣, or
≤ η̂, where η̂ =

∣∣∣δH(Φ)
∣∣∣.

(7.11)

It is straightforward to see that for a finite N , η̂ → 0 as δ → 0. Hence we can

write (7.10) as

(
H(Φ)− η̂

)
≤ − 1

n
log q(πn) ≤

(
H(Φ) + η̂

)
(7.12)
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We now show that the optimal sequence π∗ ∈ AMε (Φ).

Theorem 7.2. Let q be the conditional priors derived using the m-best sequences

{πi}mi=1 as described in (7.3) that accurately represent the optimal solution π∗, then

π∗ ∈ AMε (Φ).

Proof. Let the m-best sequences be denoted as

πi = {φi1, φi2, · · · , φiM}, where φij ∈ Φ,∀j ∈ [1,M ]. (7.13)

we now have the empirical distribution of the sequences as

q̂(πi) = q̂πi(φi1)
M−1∏
j=2

q̂πi(φj+1|φj),

where q̂πi(φi1) = `(φi1; πi)
M

= `({φi1|φ0}; πi)
M

,

q̂πi(φij+1|φij) =
`({φij+1|φij}; πi)

M − 1 .

(7.14)

It is also worth noting that the starting transition φ0 to φi1 occurs only once in

the sequence. Hence in general we can write

q̂πi(φij+1|φij) =
`({φij+1|φij}; πi)

M
. (7.15)

However from (7.3) we have

q(φj+1|φj) = F (φj+1|φj)
mM

. (7.16)

Since F (φj+1|φj) is the number of occurrences of the transitions φj to φj+1 in all
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the m sequences, we can rewrite (7.15) as

m∑
i=1

q̂πi(φij+1|φij) = 1
M

m∑
i=1

`(φij+1|φij; πi) = 1
M
F (φj+1|φj). (7.17)

We say that the empirical priors q̂ is an accurate representation of the optimal

sequence π∗ if

q̂π1(φj+1|φj) ≈ q̂π2(φj+1|φj) ≈ · · · ≈ q̂πm(φj+1|φj)

≈ q̂π∗(φj+1|φj)∀j ∈ [1,M − 1].
(7.18)

substituting (7.18) in (7.17) we have

mq̂π∗(φj+1|φj) ≈
1
M
F (φj+1|φj),

q̂π∗(φj+1|φj) ≈
1

mM
F (φj+1|φj),

q̂π∗(φj+1|φj) ≈ q(φj+1|φj), ∀j ∈ [1,M − 1]. (7.19)

From (7.19) we can write

∣∣∣q̂π∗(φj+1|φj)− q(φj+1|φj)
∣∣∣ ≤ δq(φj+1|φj),

∀j ∈ [1,M − 1], and for some δ → 0.
(7.20)

Now using Theorem 7.1 we can write π∗ ∈ AMε (Φ) w.r.t conditional q; if the

statistic q is a close representation of the optimal solution π∗.

Using the proposed IDBP algorithm we find another sequence πp as a solution,

drawn from a conditional distribution p(φi|φj),∀t ∈ [1,M);φi, φj ∈ Φ such that

p(πp) ≈ q(π∗), and DKL(p||q) → 0. We now show that the sequences πp, π∗ ∈

Anη (Φ) w.r.t the conditional q for some η → 0.
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Theorem 7.3. Let πp be a sequence obtained using the conditional distribution

p(φi|φj) such that pπp(φi|φj) ≈ qπ∗(φi|φj), φi, φj ∈ Φ, and DKL(p||q) → 0; then

it can be shown that the sequence πp and π∗ belong to the typical set w.r.t the

conditional q. That is πp, π∗ ∈ AMη (Φ) for some η → 0.

Proof. We have

pπp(φi|φj) ≈ qπ∗(φi|φj),∀φi, φj ∈ Φ, DKL(p||q)→ 0. (7.21)

From Theorem 7.2, we have π∗ ∈ AMε (Φ), and using Theorem 7.1 we can write

∣∣∣qπ∗(φi|φj)− q(φi|φj)∣∣∣ ≤ δq(φi|φj), or∣∣∣pπp(φi|φj)− q(φi|φj)∣∣∣ ≤ δ
′
q(φi|φj). (using (7.21))

(7.22)

where δ′ → 0. For some η = max(δ, δ′), we can write the following

∣∣∣pπp(φi|φj)− q(φi|φj)∣∣∣ ≤ ηq(φi|φj),∣∣∣qπ∗(φi|φj)− q(φi|φj)∣∣∣ ≤ ηq(φi|φj),
(7.23)

where η → 0, and ∀φi, φj ∈ Φ. Hence we have πp, π∗ ∈ AMη (Φ).

Finally, it follows that if πp ∈ AMη (Φ) w.r.t the conditional q, which is a close

representation of π∗, then πp is optimal solution in probability.

Lemma 1. If πp, π∗ ∈ AMη (Φ) w.r.t the conditionals q, and if q is a close

representation of the optimal solution π∗ we have

Pr
{
| f(πopt)− f(π∗)| ≤ ε

}
≥ 1 − δ, where ε, δ are very small numbers not

related to η.

Proof. Since we have πp, π∗ ∈ AMη (Φ), we have p(πp) = p(π∗) ≈ 1, or πp → π;

Hence we can safely write Pr
{
| f(πopt)− f(π∗)| ≤ ε

}
≥ 1− δ.
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7.5 Computational complexity analysis

The algorithm yields an optimal solution in probability πopt if the priors q

selected is a close representation of the optimal solution π∗. In such a situation, the

proposed IDBP algorithm requires a single-pass tree traversal to get to the solution

πopt. This is the best case. However, when q is not an accurate representation

of π∗, additional solutions can be explored using a second pass from every node

visited by traversing the tree along the second-best child. Although following the

path along second-best child recursively explores more solutions, it is easy to see

that this increases the complexity exponentially in M , having a time complexity

of ≈ O(2M). The algorithm will turn out to be an ES if one has to follow K−best

paths recursively having a complexity of O(KM). Alternatively, we propose to

follow k−best children, but not recursively. A 2−best children solution exploration

in a non-recursive fashion is described in Algorithm 7. One can choose to extend

this algorithm to explore k-best children. This is illustrated using Fig.7.1.

A single-pass tree traversal to get to the solution πopt has a complexity of

O(µKM), where M is the number of RIS elements (also the depth of the tree

Figure 7.1: An illustration of the path (solutions) explored when using a single-pass, 2−best,
and 3−best children traversal.
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under consideration). The term µ is the number of arithmetic operations required

to compute the MI between the current node and one of its children. Hence

to compute the MI between a given node and all its children, the number of

arithmetic operations required is µK, where K is the cardinality of Φ. When

exploring additional solutions using a second pass from every node visited (in a

non-recursive fashion) to traverse the tree along the second-best child, the number

of nodes to be processed is M + 1 + 2 + · · · + M − 1 = M(M+1)
2 , and hence

has a complexity of O(µKM2). This is illustrated in Fig.7.1. Similarly, when

we consider solutions from the 3−best children along the best-child path, the

number of nodes to be processed is M + 2 + 4 + · · ·+ 2(M − 1) = M + 2M(M−1)
2 ,

which again has O(µKM2) complexity. In general, solutions considering k−best

children along the best-child path have a complexity of O(µKkM2). Extending

the result to explore K−best solutions from the best path still has a polynomial-

time computational complexity of O(µK2M2). On average, with a prior q selected

to have a close statistics of the optimal solution π∗, the proposed IDBP algorithm

yields an optimal solution in probability πopt with a complexity of O(µK2M2).

One of the many ways to identify the priors q to have a good representation of

π∗ is to use a fast heuristic algorithm to identify {πi}mi=1 discussed in subsection

7.4.1 [110]. It is to be noted that this computational complexity does not include

the evaluation of the conditional priors q described in 7.4.1. The priors q can be

evaluated with significantly reduced computation using random sampling (with

m�M) or heuristics methods [169,170].

7.6 Conclusion

In this chapter, we developed the theoretical framework for the proposed IDBP

algorithm. The IDBP algorithm uses a KL divergence (or Information-to-go) to
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define the pruning rules in the tree-search algorithm to evaluate the solution for a

general class of combinatorial problems. The IDBP is vastly different compared to

the well-known BnB algorithm that uses the bounds on the cost function to define

the pruning rules. It was also seen that the effectiveness of the BnB algorithm is

based on identifying partitions in the tree structures to prune the same. If not,

the BnB algorithm has to enumerate all possible solutions like the ES method to

identify the optimal solution which leads to exponential time complexity. Only

the optimization problems that have a convex structure lend to such effectiveness

in the BnB algorithm. Hence the worst-case computational complexity of the BnB

algorithm to solve a general class of combinatorial problems is as good as the ES

method. On the other hand, using the AEP we showed that the IDBP algorithm

guarantees near-optimality with appropriate selection of the prior statistics in

polynomial time. In chapter 5, we detailed the simulations and results obtained

using the proposed IDBP algorithm for the RIS phase identification problem.

7.7 Appendix

Given the MDP model for the solution to (7.1), we use a measure of

information called Information-to-go (Ig) introduced in [143] to recast the

deterministic problem (7.1) to a stochastic one. The term Ig is associated with a

sequence that specifies cumulated information processing cost or bandwidth

required to quantify the future decisions and actions. The measure (Ig) defines

how many bits on average the system needs to specify the future states in an

SSDP (or its informational regret) with respect to the prior. This is written as

IΦm

g = Ep(Φm+1,···,ΦM |Φm) log p(Φm+1, · · · ,ΦM |Φm)
q(Φm+1, · · · ,ΦN) , (7.24)

177



where p(Φm+1,Φm+2, · · · ,ΦM |Φm) is the conditional distribution of the future

looking sequence given a sequence Φm, and the fixed prior

q(Φm+1,Φm+2, · · · ,ΦN). The term Φm indicates the partially observed (decided)

sequence {Φ1,Φ2, · · · ,Φm} for some m ≤M .

However, the analysis with (7.24) is more complex and difficult, hence an

approximation to Markovicity is considered [143]. In which case, we can rewrite

(7.24) as

IΦm

g = Ep(Φm+1,···,ΦM |Φm) log p(Φm+1, · · · ,ΦM |Φm)
q(Φm+1, · · · ,ΦM) . (7.25)

In [143], the authors claim that "...the Markovicity condition seems, at first sight,

a comparatively strong assumption which might seem to limit the applicability of

the formalism for modeling the subjective knowledge of an agent. However, under

the knowledge of the full state, in the model the agent itself is not assumed to have

full access to the state." (Section 8.2 in [143]).

In the case when the prior q(Φm+1, · · · ,ΦM) can also be sampled as conditionals,

that is q(Φm+1, · · · ,ΦM |Φm), then we can rewrite (7.25) as

IΦm

g = Ep(Φm+1,···,ΦM |Φm) log p(Φm+1, · · · ,ΦM |Φm)
q(Φm+1, · · · ,ΦM |Φm) . (7.26)

Using chain rule and Markovicity, we can establish a recursive relationship for

(7.26) [72]

IΦm

g = Ep(Φm+1,···,ΦM |Φm) log p(Φm+1, · · · ,ΦM |Φm)
q(Φm+1, · · · ,ΦM |Φm) ,

= Ep(Φm+1,···,ΦM |Φm) log p(Φm+1|Φm) · · · p(ΦM |ΦM−1)
q(Φm+1|Φm) · · · q(ΦM |ΦM−1) ,

= Ep(Φm+1|Φm) log
[
p(Φm+1|Φm)
q(Φm+1|Φm)

]
+ IΦm+1

g .

(7.27)
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Hence IΦm

g can be written as a value function with a recursive relationship that

satisfy the Bellman’s optimality criterion [72, 143] and is a classical example of a

MDP. It is also worth noting that effectively (7.27) can be written as

IΦ
g = DKL(p(Φ1, · · · ,ΦM)||q(Φ1, · · · ,ΦM)). (7.28)

Intuitively, IΦ
g ≈ 0 implies that the least information is required to pursue the

path Φ for optimality or near-optimality. On the other hand, a large value of IΦ
g

implies considerable information is required to make the decision (or inability to

make a decision) in pursuing the path Φ for optimality.
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Chapter 8

Concluding remarks

Massive MIMO is a disruptive technology that has immense potential to

enable the aggressive requirements of future wireless communication standards.

The future wireless standards envision many-fold increases in the data

throughput, spectral-, and energy efficiency of the system. The MaMIMO

architectures with a large number of RF chains that scale with the number of

antennas in such systems suffer increased power consumption and poor energy

efficiency. One such problem is the use of high-resolution ADCs operating at

large signal bandwidths in MaMIMO receivers with a large number of RF

chains. Variable-low-resolution ADCs have been studied previously to address

such problems. However, an optimal bit-allocation algorithm that achieves

optimal performance for a given power budget is a challenging one that impacts

system performance and many practical design considerations. A multitude of

such demanding resource-allocation problems presents itself within the

MaMIMO transceivers that need to be addressed to leverage the full benefits of

MaMIMO technology. An example of such problems includes (i) RIS phase-shift

identification in RIS-assisted MaMIMO for capacity and EE enhancement,

security, sensing, localization, and data harvesting applications, (ii) optimal user
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equipment partitioning by a base station serving them equipped with MaMIMO

to mitigate pilot contamination, and (iii) efficient power allocation and

beam-forming strategies, to name a few.

In the first part of this thesis, we study two such resource allocation problems

that impact the performance and the network energy efficiency of the system

and propose optimal resource allocation strategies that outperform the

state-of-the-art algorithms. In the second part of the thesis, we take a generic

approach to solve such resource allocation problems and pose them as a class of

constrained combinatorial problems. For the first time in the literature, we view

such problems in an information-theoretic sense and propose two algorithms to

solve them. Importantly, we show that the proposed solution guarantees

near-optimality with significant computational advantages. This class of

problems also arises in many other fields of science and engineering, like

bioinformatics, finance, signal processing, and machine learning. We use one

such proposed algorithm to solve the DNA fragment assembly problem and show

its superiority by contrasting the performance and computational speed with

other well-known methods.

8.1 Part-I

In chapter 3, we developed the signal model for a millimeter wave MaMIMO

transceiver system equipped with a large number of antennas, hybrid precoder,

hybrid combiner, and VR-ADCs. A closed-form expression for the performance

attributes like MSE, throughput, and energy efficiency was derived as a function

of the bit allocation of the ADC across all the RF chains. In addition, it was

proved that the MSE at the receiver can achieve the theoretical best possible
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performance (Cramer Rao Lower Bound) by suitable design of the precoders,

combiners, and VR-ADC allocations. In addition, it was established that using

variable-low-resolution ADCs has significantly better performance (MSE,

throughput, and energy efficiency) compared to using fixed-low-resolution ADCs

for some of the commonly occurring millimeter wave channel conditions. An

algorithm called "Q-search" was developed using the maximization expression for

the throughput derived. The proposed algorithm extracts the bit-allocation

solution that is exactly the same as that of the exhaustive search with a

polynomial time complexity! In addition, we proposed another heuristic

algorithm based on the simulated annealing whose parameters can be changed to

trade optimality with computational speed. An example design of the VR-ADC

architecture, and its modus operandi augmented with the proposed BA was also

discussed to motivate practical considerations.

In chapter 4, we formulate the problem of VR-ADC BA to be solvable using a

DNN framework. The principal motivation behind the ML framework to solve

the VR-ADC problem stems from the assumption of using perfect CSI at both

the transmitter and receiver. A closed-form expression to obtain the capacity

expression as a function of bit allocation for an imperfect channel scenario is not

straightforward. On the other hand, the proposed DNN framework finds a

relationship between the impaired channel parameters and its associated bit

allocation by training the DNN from previously available data. The training

data set to the DNN consists of the input-output pairs, the input being the

channel’s singular values and SNR, and the output being an optimal bit

allocation. This training set is updated over time and is usually derived using

ES. Since the training is computationally intensive, it is initiated by the

proposed algorithm only when the MSE errors deteriorate beyond a certain
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threshold. Using simulations it is shown that the proposed algorithm has EE

performance close to that of the ES for both perfect and imperfect CSI

scenarios. In addition, a notable computational complexity advantage is

demonstrated after sufficient learning of the channels is presented to the system.

In chapter 5, we studied the RIS phase-shift identification problem in a

RIS-assisted MaMIMO system. A system and a channel model were developed

considering a blocked LOS link between the transmitter and the receiver of

interest in a multi-user communication framework under interference. An

expression for the MSE, throughput, and EE was derived as a function of the

RIS phase shifts of the reflecting elements in the RIS, while the transceivers are

equipped with a hybrid precoder and combiner, and fixed-low-resolution ADCs.

Although the use case considered is for vehicular communication networks, the

results are applicable to cellular networks without any loss of generality. It was

shown that the MSE achieves the CRLB with the appropriate design of the

hybrid precoder, combiner, and RIS phase shifts. We also derived the optimality

equivalence of the MSE, throughput, and EE expressions. Essentially, implying

that minimizing the MSE expression or maximizing the expression for the

throughput, or maximizing the EE yields the same solution. An

information-theoretic branch-and-prune or IDBP algorithm was developed to

optimize the MSE expression. The IDBP algorithm guarantees a near-optimal

solution. The proposed method was compared with the ES method and other

state-of-the-art algorithms, like the trace-maximization method and alternating

maximization. Using simulations it was demonstrated that the proposed IDBP

algorithm outperforms the compared methods with significant computational

advantage.
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8.2 Part-II

In chapter 6, we defined a class of constrained discrete optimization problems

called the problem class H, that encompasses a majority of optimization

problems that arise quite frequently in the general areas of wireless

communication, signal processing, and machine learning. The problem class H

encompasses the two problems that were discussed in chapter 3 and 5 that are

NP-Hard. We used an MDP to model the solution to such problems and

developed a mathematical framework using an information-theoretic measure

called Information-to-go to characterize the constraints of the problem. We

further showed that by augmenting the reward and the information-to-go, and

by using the principles of multi-objective optimization, we can recast these

constraint problems as unconstrained ones, which surprisingly could be shown to

satisfy the BPO. This enabled us to use dynamic programming to solve them

optimally. We called this algorithm information-assisted dynamic programming

or IADP. An extensive analysis to establish strong near-optimality guarantees

was provided, and it was shown that the computational complexity order of the

proposed algorithms is similar to that of the Viterbi algorithm.

We use the proposed IADP to solve (i) the ADC bit allocation problem that was

discussed in chapter 3, and (ii) the DNA fragment assembly problem that has its

equivalence to the well-known and the notorious traveling-salesman

problem [182]. Using simulations, we compare the performance and

computational speeds of the proposed method with other well-established

methods, and the results indicate the superior performance of the proposed

IADP.

In chapter 7, we laid out the theoretical foundations of the proposed IDBP

algorithm used to solve the RIS phase-shift identification problem discussed in
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chapter 5. We also analyzed the problem in its general form and model the

solution as a sequential decision-making framework. We defined and proved a set

of theorems using AEP to establish the near-optimality guarantees of the

proposed IDBP algorithm. For the first time, we used an information-theoretic

measure to decide on the pruning rules in a tree-search algorithm to solve a

general class of non-convex, non-linear combinatorial problems. The proposed

IDBP is vastly different compared to the traditional branch-and-bound

algorithm that uses the bounds of the cost function to define the pruning rules.

We also analyzed the computational complexity of the proposed algorithm and

demonstrated that, given an appropriate selection of the prior statistics of the

solution, the computational complexity is polynomial time.

8.3 Future research direction

In chapter 3, the proposed BA algorithms, as well as the RIS phase-shift

identification framework proposed in chapter 5, consider that the perfect channel

state information (CSI) is available both at the transmitter and the receiver.

Although the BA algorithm considering an imperfect CSI using deep neural

network was examined in chapter 4, a more rigorous study establishing the

closed-form expressions of the MSE, throughput, and EE as a function of the

imperfect CSI parameters would be a good value add to the future work. The

design, architecture, and implementation of VR-ADCs that combine the

proposed BA algorithms to assess the real-world performance against the

simulations would be a noteworthy practical contribution. None of such

architectures have been realized in practice even though a significant amount of

theoretical contributions exist in this area. In chapter 5, a passive RIS was
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considered. However, in the future, this study can be extended to encompass

active RIS, where additionally, the amplitude of the signal reflections from the

RIS can be modified along with the phase shift to further enhance the

performance of the RIS-assisted MaMIMO systems. This would require

modifying the problem formulation, especially the expressions for MSE,

throughput, and the EE of the system, which will impact the hybrid precoder

and combiner design. It is also worth noting that the proposed IDBP algorithm

will still hold good to solve the active RIS parameter identification problem, as

the algorithm is agnostic to the problem being non-convex and non-linear in its

decision variables!

For the proposed information-theoretic algorithms, a strong near-optimality

guarantee is a consequence of the selection of the priors q that closely represent

the constraints of the problem under consideration. Theoretical analysis as to

the behavior of the solutions when the priors q are not a good representation of

the constraints will be a valuable extension to the current work. The application

of the proposed IADP and IDBP algorithms to very large problem sizes in

wireless communications or other domains, for example, DNA sequencing, and

stock-price projection, can be an excellent testimony to the proposed techniques.
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