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Abstract 

Recent research in the artificial grammar literature has found 
that a simple exemplar model of memory can account for a 
wide variety of artificial grammar results (Jamieson & 
Mewhort, 2009, 2010, 2011). This classic type of model has 
also been extended to account for natural language sentence 
processing effects (Johns & Jones, 2015). The current article 
extends this work to account for sentence production, and 
demonstrates that the structure of language itself provides 
sufficient power to generate syntactically correct sentences, 
even with no higher-level information about language provided 
to the model. 

Keywords: Language production; Computational models of 

language; Corpus-based models. 

Introduction 

Human languages are both productive and regular. They are 

productive in that an infinite number of utterances are 

possible for any language, and regular in that the utterances 

produced by speakers are systematic.  In order to explain 

these aspects of language, it has been proposed that it is 

necessary to have a formal grammar underlying language 

performance (Chomsky, 1988). A grammar of sufficient 

complexity can construct utterances of any length while 

maintaining consistency in utterance construction. 

The need and evidence for formal grammars in explaining 

language performance has been argued in many different 

places (e.g. Christiansen & Chater, 2008; Evans & Levinson, 

2009). The goal of this article is not a rehashing of this debate 

but instead to examine the interaction between regularity and 

productivity, cornerstones of any theory of language, with the 

ultimate goal being to understand the constraints that the 

structure of language itself provides. Specifically, given that 

languages are highly regular and consistent, the question that 

will be examined here is what power this regularity provides 

to the production of grammatically correct utterances. 

Historically, to make the study of language more 

manageable, researchers have studied how people learn the 

grammar of small artificial languages.  Classic accounts of 

artificial grammar results propose that as subjects are 

exposed to strings randomly generated from a pre-defined 

grammar, they are capable of using this experience to 

internally generate a representation of this grammar, and in 

turn use this abstraction to discriminate between grammatical 

and ungrammatical strings (Reber, 1967). However, people 

are unable to verbally describe the rules they used to 

accomplish this discrimination (i.e., it is implicit knowledge). 

Recent results by Jamieson and Mewhort (2009, 2010) call 

this explanation into question. Jamieson and Mewhort 

demonstrated, across a wide variety of tasks and 

manipulations that a simple explicit memory model (Minerva 

2; Hintzman, 1986) can account for most of the relevant 

findings in the artificial grammar literature. 

The reason why a simple recording of the environment 

could explain artificial language results is clear: the stimuli 

contained in an artificial grammar task provide a lot of 

information about the structure of the underlying grammar. 

That is, like natural language, the artificial languages that are 

constructed from artificial grammars are regular. This 

regularity causes the underlying structure of a grammar to 

emerge across the exemplars that are displayed in an artificial 

grammar experiment, even with no higher-level abstraction 

taking place during learning. 

To formalize this, Jamieson & Mewhort (2011) have 

implemented the latter position of a string using a model of 

memory that combines the storage and retrieval operations 

from Hintzman’s (1986) MINERVA 2 model of episodic 

memory with the holographic reduced representations from 

Jones and Mewhort’s (2007) BEAGLE model of word 

meaning.  According to the model, each studied grammatical 

sentence is stored to memory.  When a probe is presented at 

test, it retrieves all of the stored sentences in parallel.  If the 

information retrieved from memory is consistent with the 

probe, the probe is judged to be grammatical; else, it is judged 

to be ungrammatical. 

Despite the model’s simplicity, it predicts a surprising 

number of results in the artificial-grammar task including (a) 

the linear relationship between mean judgement accuracy and 

the redundancy of the generative grammar, (b) judgements of 

grammaticality for individual test items, (c) grammatical 

string completion, and (d) variation in peoples’ judgements 

depending on how they represent strings in memory (Chubala 

& Jamieson, 2013; Jamieson & Mewhort, 2009, 2010, 2011).   

But, why? 

The power of this model comes from the natural correlation 

between the form and amount of structure in an exemplar 

produced with a grammar and the grammar that was used to 

produce it (Jamieson & Mewhort, 2005). It follows, then, that 

each studied grammatical exemplar provides information 

about the underlying grammar. It also follows that a 

collection of grammatical exemplars will almost always 

provide a sum of information greater than that provided by 

one exemplar alone. That is, it is the combination of 

exemplars that gives the model its power.  The question, then, 

is not how information about the grammar can be stored in 

memory, but how is that information harnessed at retrieval? 
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In artificial grammar experiments, parallel retrieval of 

grammatical exemplars is sufficient (Jamieson & Mewhort, 

2011).  But, can that class of explanation scale from handling 

small artificial grammars to handling how people learn 

grammar in their natural language?  

The goal of this article is to examine the power that the 

productive and regular nature of language provides in 

allowing an exemplar model of natural language to produce 

grammatically correct utterances. Exemplar models are 

attractive models to examine this question because the 

complexity of the model lies in the complexity of the 

information that is being encoded. By storing natural 

language sentences within an exemplar memory, and 

determining how effective this stored information is at 

generating grammatically correct utterances, an examination 

of the power of the structure of language is provided. 

The Exemplar Production Model (EPM) 

Our model combines the storage and retrieval scheme from 

Hintzman’s (1986) MINERVA 2 model of episodic memory 

with the reduced holographic representation scheme from 

Jones and Mewhort’s (2007) BEAGLE model of semantics, 

and is similar to an exemplar approach to language 

comprehension recently explored by Johns & Jones (2015).   

Representation 

In the model, each word is represented by its own unique 

random vector, w, of dimensionality N, where each 

dimension takes a randomly sampled value from a normal 

distribution with mean zero and standard deviation 1/√𝑁. In 

the simulations that follow, N = 1024. 

Any given sentence is represented by two vectors, both of 

which are constructed from the word representations.  The 

first vector, c, is called the sentence’s context vector and is 

computed as, 

 

𝐜 =∑𝐰𝒊

𝑛

𝑖=1

 

 

where c is the context vector, n is the number of words in the 

sentence, and wi is the vector that represents the word in serial 

position i of the sentence. As shown, the context vector sums 

the information from all of the words that appear in the 

sentence, but it does not include any information about the 

order in which the words occurred. For example, the context 

vector that encodes “eat your dinner” is equal to the context 

vector that encodes “dinner your eat”.  

The second vector, o, is called the sentence’s order vector 

and is computed as,  

 

𝐨 =∑𝐰𝑖⊛ 𝐥𝑖 +∑𝐰𝑖−1⊛

𝑛

𝑖=2

𝑛

𝑖=1

𝐰𝑖

+∑𝐰𝑖−2⊛𝐰𝑖−1⊛𝐰𝑖

𝑛

𝑖=3

 

 

where o is the order vector, n is the number of words in the 

sentence, wi is the word in serial position i, wi-1 is the word in 

serial position i – 1, wi-2 is the word in serial position i – 2, li 

is a vector that represents serial position i, and ⊛ denotes 

directional circular convolution (see Jones & Mewhort, 2007; 

Plate, 1995).  As shown, the order vector sums information 

about (a) what word appears in each serial position in the 

sentence (i.e., serial position information), (b) which pairs of 

words follow one another from left to right in the sentence 

(i.e., bigram information), and which triplets of words follow 

one another from left to right in the sentence (i.e., trigram 

information).  Given the inclusion of trigram information, the 

formula cannot be applied to a sentence with fewer than three 

words.  

Finally, a sentence’s vector representation, s, is a 2N 

dimensional vector formed by concatenating the N 

dimensional context vector and the N dimensional order 

vector such that dimensions 1…N in s store the context vector 

and dimensions N+1…2N in s store the sentence’s order 

vector. Thus a sentence is represented as a vector s that is 

equal to c // o, where // represents concatenation. 

Storage of language experience 

To represent experience with language, we store m sentences 

to a m  2N  matrix, where rows represent sentences and 

columns represent features that encode the information in the 

sentence. Thus, memory for 1000 sentences is represented in 

a 1000  2048 matrix whereas memory for 125,000 sentences 

is represented by a 125,000  2048 matrix. 

Retrieval  

Retrieval in the model is probe-specific, similarity- driven, 

and parallel. When a probe is presented to memory, it 

interacts with the information in the stored traces to construct 

the memory of a previously experienced event. Decision 

follows from the construction. Since retrieval is similarity-

driven, a probe retrieves traces that are similar to it. Because 

a probe retrieves whole traces from memory and these whole 

traces record both context and order information in a 

sentence, a probe that includes just the context information 

will also retrieve the order information that it has co-occurred 

with in the past. This is how the model simulates cued-recall, 

and it is the mechanism that the model uses to retrieve a 

sentence (i.e., word order) given a context vector (i.e., an 

unordered list of words).  

The echo, e, is computed as, 

 

𝐞 =∑

(

 
∑ 𝑝𝑗 × 𝑀𝑖𝑗
𝑁
𝑗=1

√∑ 𝑝𝑗
2𝑁

𝑗=1 √∑ 𝑀𝑖𝑗
2𝑁

𝑗=1 )

 

9

×𝑀𝑖

𝑚

𝑖=1

 

 

where p is the context vector that encodes an unordered list 

of words (i.e., includes information in serial positions 1…N 

with serial positions N+1…2N set to zero), M is the memory 

matrix that stores the model’s sentence knowledge, e is the 

echo, and m is the number of sentences stored in memory. As 
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with a sentence representation, features 1…N in e represent 

the context vector retrieved from memory and features 

N+1…2N in e represents the order vector retrieved from 

memory.  Although it is not explicitly stated in the formula, 

if the similarity between a probe and memory trace is less 

than zero, the similarity is rewritten as equal to 0 (i.e., 

equivalent to excluding the trace from the calculation of the 

echo). This same procedure was used in Johns and Jones 

(2015) and Kwantes (2005), and is useful because it allows 

for the amount of noise in the echo to be reduced. 

Decision  

Our goal is to measure the model’s ability to produce a 

syntactic sentence composed of words presented in an 

unordered words list.  For example, given the words eat, 

dinner, and your, we would like the model to produce “eat 

your dinner” rather than “dinner eat your”.   

To accomplish the transformation from unordered word list 

to syntactic production, the model compares the order vector 

in the echo to each of the n! order vectors corresponding to 

the n! ways or ordering the words in the unordered list. For 

example, given the list eat, your, and dinner the model 

retrieves an order vector based on the context vector, c = weat 

+ wyour + wdinner, and then compares the retrieved order vector 

against all 3! = 6 sentences that can be constructed from the 

three words: “eat your dinner”, “eat dinner your”, “your eat 

dinner”, “your dinner eat”, “dinner eat your”, and “dinner 

your eat”. The order vector that is most similar to the 

information in the echo is selected as the best alternative. 

Because all other orders bear some similarity to the order 

information in the echo, the operation can also be used to rank 

order the model’s preference over all possible n! sentences 

from first (i.e., most similar) to last (i.e., least similar).  

Summary  

In summary, the model builds and stores a representation of 

each sentence in a text corpus.  When presented with an 

unordered word list, the model retrieves a corresponding 

order vector and produces a word order that corresponds to 

the order vector that is most similar to the order vector 

retrieved from memory.  

Simulations 

The simulations that follow apply the model to a sentence 

production task.  Each simulation involved two major steps. 

First, we constructed a record of language experience by 

storing m sentences of length n to memory; the sentences 

were sampled randomly from a corpus. Second, we computed 

the model’s ability to translate each of 200 unordered word 

lists of length n into ordered sentences of length n.  

We expect the model will re-write unordered word lists as 

syntactic sentences. If true, our simulations would 

demonstrate that parallel retrieval from a record of language 

is sufficient to produce at least one hallmark of syntactic 

behavior.  This would reinforce the power of exemplar 

models of language, and would add to the growing literature 

on the importance of individual experience with language 

(Abbot-Smith & Tomasello, 2006; Jamieson & Mewhort, 

2010, 2011; Johns & Jones, 2015). 

Sentences 

Given our goal is to conduct an analysis of natural 

language, it was critical that we get a fair sample of natural 

language use.  To meet that demand and to model a wide 

range of language experience, we assembled a pool of 

6,000,000 sentences from a number of sources including 

Wikipedia articles, Amazon product descriptions (attained 

from McAuley & Leskovec, 2013), 1000 fiction books, 1050 

non-fiction books, and  1500 young adult books.  Once 

collated, we edited the list to exclude repetitions and, then, 

we organized the total list into sub-lists of sentences 

composed of 3, 4, 5, 6, and 7 words. Finally, we used the 

sentences in the final pool to construct a list of 200 three word 

test sentences, 200 four word test sentences, 200 five word 

test sentences, 200 six word test sentences, and 200 seven 

word test sentences.   All sentences simple in construction, 

and use mostly high frequency word, but given the 

complexity of the task provide a useful assessment of the 

model’s performance (all test sentences can be found at 

http://btjohns.com/experience_sents.zip). No general 

syntactic construction was used, but the majority consist of 

single phrase structures. Examples of sentences used for each 

sentence size are: 

3 - Eat your dinner. 

4 - The children were flourishing. 

5 - He walked into the bedroom. 

6 - She held something in one hand. 

Simulation parameters 

We conducted simulations as a function of two key 

parameters: sentence length (i.e., n) and language experience 

(i.e., m).  Analysis of sentence length was accomplished by 

conducting separate simulations for sentences of length n = 

3, 4, 5, 6, and 7. Analysis of language experience was 

accomplished by conducting separate simulations given m = 

1000, 2000, 3000 … 125,000 sentences stored in memory.  

To ensure that results were not conditional on a particular 

record of language experience, each simulation was 

conducted using a different random sample of m words.  

Crossing both factors produces a 5 (sentence length) x 125 

(language experience) factorial design. 

Two measurements of performance 

We measured sentence completion performance two ways.  

The first method tallied the percentage of tests in which the 

model most preferred the word order that corresponded to the 

original sentence.    

The second method ranked the model’s decisions for all 

possible word orders from first (i.e., most similar to the order 

vector in the echo) to last (i.e., least similar to the order vector 

in the echo) and, then, recording the rank at which the original 

input sentence appeared. For example, if the model was given 

“eat your dinner” it would produce a rank order of all six 

possible sentences composed of the three input words. If “eat 
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your dinner” was the third preferred word order, the trial 

would be scored as a rank 3 decision.  

In summary, the first percent correct measure was an 

absolute index of model performance, as if the model (like an 

experimental subject) provided a single response for each test 

sentence.  The second rank based measure offers a more 

nuanced assessment that measures how close the model was 

to making the right decision whether its first choice matched 

or did not match the exact word order in the test sentence.  

 

Results 

Figure 1 shows results over the complete 5  125 factorial 

design. The top panel in Figure 1 shows the percent correct 

production rate (e.g., the model returned “eat your dinner” 

when presented with “dinner your eat”). The bottom panel in 

Figure 1 shows the mean rank of the model’s decisions. In 

both cases, performance for 3, 4, 5, 6, and 7 words test 

sentences are presented as different lines with language 

experience measured in number of sentences ordered along 

the abscissa. 

As shown in the top panel of Figure 1, the model’s ability 

to reproduce word order in the presented test sentence varies 

as a monotone function of sentence length, being best for 

short sentences and worse for long sentences. However, one 

must exercise caution in making that comparison. Chance 

performance changes dramatically as a function of sentence 

length. At the extremes, when n = 3 the probability of 

guessing the correct word order is equal to 1 in 6 whereas 

chance is equal to 1 in 5040 when n = 7. Thus, performance 

at m = 1000, the final score of 90% correct in the three word 

condition might be considered as or even less impressive than 

the corresponding but lower score of 52% correct in the seven 

word condition. 

Also shown, the model’s performance improves as a 

function of language experience, with the improvement being 

fastest early on in the addition of sentences to memory and 

slowing considerably after memory includes a record of 

approximately 50,000 sentences.  

The bottom panel in Figure 1 presents a more nuanced 

picture of results. As shown, when language experience is 

modest, m = 1000, the model commits far more misses (i.e., 

large mean rank scores).  But as language experience 

increases, mean rank scores drop considerably to nearly 1 for 

most sentence lengths, and under 10 for all. Combined, these 

figures show that even though the model does not always 

choose the particular word order in the input sentence, it 

nevertheless has a strong preference for that specific word 

order. So, what does a near miss mean?  

Although we have scored near misses as wrong, they may 

occasionally be correct in the broader sense. For example, 

consider that the model preferred “they quietly went down 

the stairs” when tested on “they went quietly down the stairs”. 

Although the model failed to produce the input sentence, it 

nevertheless generated a syntactic alternative. 

 

Figure 2 shows results when m = 125,000 sentences 

(hatched bars; previous data from Figure 1) and when m = 

500,000 sentences (closed bars). The top panel shows results 

with the percent correct measure; the bottom panel shows 

results with the average rank measure. Although the results 

in the hatched bars in Figure 2 are already presented in Figure 

1, the re-presentation shows differences that cannot be seen 

in in the ranking data in Figure 1.  

As shown, the mean rank was less than 2 for the three, four, 

and five word sentences, was less than 4 for the six word 

sentences, and was less than 10 for the seven word sentences.  

Given the average expected ranks for guessing with 3, 4, 5, 

6, and 7 word sentences are equal to 3, 12, 60, 360, 2520, and 

5040 respectively, the results are very impressive indeed. 

Plus, as we have already mentioned, whereas a rank greater 

Figure 1. Syntactic completion rates. Top panel shows the 

percentage of items that the model reproduced the exact 

word order in the test sentence. Bottom panel shows the 

mean rank order of the model’s preference for the exact word 

order in the test sentence where 1 = best. 

Figure 2. Performance from Figure 1 where m = 125,000 and 

results from a new simulation were m = 500,000. 
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than one indicates that the model failed to reproduce the exact 

order of words from the input sentence, the model still might 

have chosen an alternative syntactic completion—a 

possibility that increases with the number of words in the 

sentence. We plan to assess this possibility in the future. 

Finally, the solid bars in Figure 2 show results for 

simulations where m was increased from 125,000 to 

500,000—a larger sample of language experience that is 

more in line with work in other corpus based model analyses 

(e.g., Landauer & Dumais, 1997).   

As shown, increasing the number of sentences in memory 

from 125,000 to 500,000 produced a modest 2-3% overall 

improvement of performance but with most of that 

improvement in judgments about longer sentences. This 

result reinforces our previous conclusion that after an initial 

50,000 sentences are stored in memory (see Figure 1), each 

additional sentence has a diminished impact on the model’s 

performance. 

In summary, Figures 1 and 2 represent a very high level of 

performance, even at large sentence sizes. For smaller 

sentence sizes of 3, 4, and 5, the model operated at greater 

than 75% correct, and was greater than 50% correct even at 

seven word sentences. Interestingly, much of the 

improvement in the model’s performance was made with a 

relatively small number of sentences, with small 

improvements after 50,000 sentences. The reduction in 

performance across sentence sizes is linear, suggesting that 

as more sentence types are possible, the introduction of noise 

reduces model performance by a constant. In fact, the final 

ranking across the different sentence sizes was almost 

entirely due to the number of alternatives in the construction 

process, with a Pearson correlation equal to 0.99 between 

final ranking and number of permutations. As already 

discussed, this may also be a function of there being more 

possible syntactic constructions for words being greater with 

a higher number of words.  

In conclusion, the model demonstrates a simple point: a raw 

record of language experience combined with parallel 

retrieval can provide a powerful mechanism to account for 

how people order words in sentences. The analysis also 

suggests that the body of linguistic experience need not even 

be overwhelmingly large and that a relative few (i.e., 50,000 

exemplars) can go a long way to helping a person produce 

syntactic word orders in their natural language.  Finally, the 

analysis also demonstrates that an appreciation of syntax can 

emerge from the application of a simple parallel retrieval 

mechanism applied to a realistically scaled representation of 

language experience. 

General Discussion 

Natural languages are defined by productivity and regularity. 

They are capable of producing an infinite number of different 

utterances, with all the utterances having a consistent 

structure. To account for these differing aspects of language 

it has been proposed that a formal grammar is necessary. 

A formal grammar is a top-down approach, which seeks to 

understand language processing from the connections 

between abstract categories. The approach taken here with 

the Exemplar Production Model is the opposite of this: use a 

model that only knows the structure of past utterances, and 

use that experience to construct a future utterance. That is, it 

is a bottom-up approach, where past experience controls 

future behavior. The EPM was designed to exploit the 

productivity and regularity of natural language, in order to 

determine the power of experience in producing grammatical 

utterances. 

The EPM proposes that it is not an analysis or encoding of 

a single utterance that provides the model power. Instead it is 

the overlap in the usage of language: even though no two 

utterances may be identical (productivity; this was ensured in 

the above simulations by removing repeat sentences), the 

structure of a language emerges as a function of recorded 

exemplars. That is, it is the combinatorial statistics that 

emerges from the parallel retrieval of a relatively large 

number of sentence exemplars that provides the model the 

ability to construct grammatically correct sentences. What 

this suggests is that the consistent, but not identical, structure 

of studied utterances allows for the development of grammar-

like behavior, albeit without an actual grammar. 

The EPM is a simple model that encodes pure location and 

linear n-gram information to encode an exemplar of a 

sentence. A classic retrieval operation, based off of 

MINERVA 2, is used to construct the likely ordering of a 

sentence. Every possible ordering of a sentence is tested, with 

the ordering that is most similar to the expected structure 

being produced. There is no higher-level processing 

integrated into the model, and so the behavior of the model is 

entirely experience-dependent.  In that sense, the theory is 

perfectly continuous with our previous efforts to build an 

exemplar-based model of language learning and 

comprehension using the same mechanisms and ideas (see 

Johns & Jones, 2015).  However, there are some differences 

in the details of the current and previous models that need to 

be resolved before a complete integration of the two is 

realized.  We take the problem of that integration as a 

challenge that would move toward the kind of model needed 

to generate a complete picture of how an exemplar-based 

model of memory can serve as a valuable competitor in the 

discipline’s pursuit of a theory of language and language use. 

The model was shown to be able to construct the correct 

ordering of simple sentences of sizes 3 to 7 to a high degree, 

with a linear drop in performance as sentence size increases. 

This demonstrates that past experience with language 

provides a large amount of power in producing 

grammatically correct utterances.  

However, the really interesting part of the model’s behavior 

is the performance of the EPM as a function of the number of 

exemplars it has studied. Performance rapidly increases with 

the first 20-25,000 sentences studied, with small 

improvements subsequently (the learning function most 

resembles a power law). Even when the total number of 

exemplars studied is quadrupled from 125k to 500k 

sentences, only a small improvement in performance is seen. 

However, it does provide a look into what the regular nature 
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of language provides productivity: even with a small amount 

of linguistic experience, the correct structure of language 

emerges, due to the highly structured nature of natural 

language. Language is far from random and this consistency 

provides a simple model the ability to construct 

grammatically correct sentences, without any higher-level 

processing. As more exemplars are stored, the overlap in 

structure of the sentences emerges (due to the productivity of 

language), which allows for the model to exploit the 

combinatorial nature of language usage. 

This is not to say that this approach does not have any 

challenges. The main one being that the model potentially 

operates at the wrong level of analysis – phrases may be the 

right unit of exemplars rather than whole sentences, as is the 

typical case in generative linguistics. Sentences then can be 

constructed by determining the correct order of phrases, 

integrating higher-level information into the exemplar 

construction process. This would also allow for the model to 

operate with lower number of words, which would be 

advantageous due to the model becoming computationally 

burdensome at a high number of words. It would also allow 

for the model to be tested on longer sentence sizes. 

Another issue with the model concerns its encoding 

scheme:  if it is generating the structure of a sentence of size 

n, it studies only exemplars of the same size.  More research 

is required to determine the best mechanism to encode 

location in a relative fashion, where exemplars of differing 

length can be included in the same retrieval process.  

However, these problems arise because of the simplicity of 

the approach, which is also its most promising feature. There 

is very little built into the machinery of the model and it still 

operates at a high level of performance. It provides a 

promising framework to examine language production and 

comprehension from a bottom-up point of view and allows 

for an examination into the power of experience in explaining 

linguistic behavior. 
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