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Abstract

Our ability to plan and build a wide array of physical
structures, from sand castles to skyscrapers, is a defining
feature of modern human intelligence. What cognitive tools
enable us to create such complex and varied structures?
Here we investigate how practice “reverse-engineering” a set
of physical structures impacts the procedures that people
subsequently use to build those structures, as well as how well
they build them over time. Participants (N=105) viewed 2D
silhouettes of 8 unique block towers in a virtual environment
simulating rigid-body physics, and aimed to reconstruct each
one in less than 60 seconds. We found that people learn
to build each tower more accurately and quickly across
repeated attempts, and that these gains reflect both group-level
convergence upon a smaller set of viable policies, as well
as error-dependent updating of each individual’s strategies.
Taken together, our study provides novel insight into how
humans learn from prior experience to discover better solutions
to physical reasoning problems over time.
Keywords: planning; spatial reasoning; intuitive physics;
construction; action

Our ability to plan and build a wide array of physical
structures, from sand castles to skyscrapers, is a hallmark
of modern human intelligence. What cognitive mechanisms
enable us to create such complex and varied structures?
Towards answering this question, a natural starting point is
to consider how people learn to ”reverse-engineer” existing
structures — that is, infer an appropriate decomposition of it
that can be translated into a sequence of actions to recreate
it from simpler components. Such problems are likely to
recruit general-purpose mechanisms for physical reasoning
and planning, in addition to mechanisms for learning from
prior experience. Here we investigate the role of practice
in guiding how people discover better solutions to such
problems over time.

Our paper builds on classic work investigating how people
reason about the properties of physical objects and how
they interact with one another (McCloskey, 1983), a suite
of abilities known as intuitive physics. A useful proposal
emerging from more recent work on intuitive physics is
that people reason about how physical systems evolve
over time via mental simulation, which may provide a
noisy approximation to real physical dynamics (Battaglia,
Hamrick, & Tenenbaum, 2013; Sanborn, Mansinghka, &
Griffiths, 2013; Hegarty, 2004). While many tasks in this
literature involve passive judgments about physical scenes,
a promising new direction is to consider tasks that involve

active interventions on physical systems to achieve various
goals (Allen, Smith, & Tenenbaum, 2019; Hamrick et al.,
2018). In particular, the current study takes inspiration from
prior work investigating how physical interventions can be
beneficial for downstream performance on various physical
reasoning tasks (Dasgupta, Smith, Schulz, Tenenbaum, &
Gershman, 2018; Kirsh & Maglio, 1994).

Our paper is also informed by recent advances in theories
of human planning that highlight the pervasive role of
mental simulation in guiding human sequential decision
making (Solway & Botvinick, 2015, 2012; Daw, Gershman,
Seymour, Dayan, & Dolan, 2011), combined with reasonable
assumptions about the cognitive costs of conducting mental
simulations (Callaway et al., 2018; Hamrick, Smith, Griffiths,
& Vul, 2015). While this progress has been galvanizing, the
generalizability of current theories to construction behavior is
potentially limited by the historically narrow focus on tasks
with relatively low state-space complexity (van Opheusden,
Galbiati, Bnaya, Li, & Ma, 2017), as well as abstract action
spaces and state transitions (Daw et al., 2011) that are far
removed from the physical environment. Moreover, these
theories do not address our core question of how people make
efficient use of prior task experience to overcome inherent
cognitive resource limitations, thereby learning how to plan
better over time.

Here we investigate how practice “reverse-engineering”
a set of physical structures in a 2D virtual environment
impacts the procedures participants subsequently use to
build those structures, and how well they build them across
repeated attempts. Our specific approach draws most
direct inspiration from prior work in developmental science
(Cortesa et al., 2018; Bullock & Lütkenhaus, 1988) and
AI (Bapst et al., 2019; Jones, Hager, & Khudanpur, 2019)
that have examined physical construction behavior. The
current study advances these prior investigations in three
ways: first, we develop a web-based environment for physical
construction, facilitating the collection of large behavioral
datasets; second, we examine how participants build the same
structure multiple times, providing quantitative insight into
how people adapt their strategies based on prior performance;
third, we show that healthy adult participants learn in a highly
sample-efficient manner from previous construction attempts,
providing a novel benchmark for AI construction agents to
emulate and explain.
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Figure 1: (A) Schematic of task display. The left window contained a target silhouette, and the right contained a building environment with
gridlines. (B) For each participant the 8 silhouettes were randomly assigned to conditions, 4 in repeated and 4 in control. (C) Repeated towers
were attempted 4 times, interleaved among other towers. Control towers were attempted twice, once at the beginning and once at the end of
each session.

Methods
The goal of our experiment was to understand how practice
“reverse-engineering” a set of physical structures impacts
how people build them over time. To accomplish this, we
developed a web-based environment in which people could
construct various block towers under simulated rigid-body
physics. On each trial, participants aimed to reconstruct
a specific target tower in less than 60 seconds using a
fixed inventory of rectangular blocks. What made this task
challenging is that only silhouettes of these towers were
provided, requiring participants to infer which blocks to use,
where to place them, and in what order. Over the course of
an experimental session, participants built each tower either
two or four times, allowing us to measure the degree to which
additional task experience led to greater improvement.

Participants
107 U.S.-based participants were recruited from Amazon
Mechanical Turk. After accounting for technical issues
during data acquisition (i.e., missing data), data from 105
participants were retained (49 female, mean age = 36.8
years). Participants provided informed consent in accordance
with the UC San Diego IRB.

Stimuli
To identify a set of block towers of similar complexity, we
randomly sampled a large number of stable configurations of
8-16 blocks, then manually selected 8 of these that could be
reconstructed in different ways (Fig. 3A).

Task Procedure
On each trial, participants were presented with two adjacent
display windows: On the left, a target block tower was
presented as a silhouette centered on the floor in a 18x13
rectilinear grid environment (Fig. 1A); on the right, they
were provided with an open building environment and a fixed
inventory of five types of rectangular blocks that varied in
their dimensions (i.e., 1x2, 2x1, 2x2, 2x4, 4x2).

Participants’ goal was to build a tower that matched
the shape of the target silhouette in less than 60 seconds

using any combination of the blocks provided. To select a
specific block type, they clicked on its image in the block
inventory. Then, by hovering the mouse cursor over the
building environment, a translucent block would appear,
showing where the block would be placed when they clicked
the mouse again. Blocks could be placed on any level surface
in the building environment (i.e., either the floor or on top
of another block). To minimize the intrusion of low-level
motor noise in block placement, the locations of each block
‘snapped’ to grid.

After the placement of each block, participants’ towers
became subject to gravity, simulated using Matter.js. Thus,
if their tower was not sufficiently stable, single blocks or
even the entire tower could fall over. After 60 seconds had
elapsed or if any block fell, the trial immediately ended and
participants moved onto the next tower. We truncated trials on
which any block fell for two main reasons: first, to ensure that
all recorded block placements could in principle form part
of a forward plan to build the target silhouette, rather than
reflect online corrections for error; and second, to strongly
incentivize the production of stable towers. Participants were
rewarded for both accuracy and speed: the more accurate
their reconstructions, the larger the monetary bonus they
received. If they perfectly reconstructed the target silhouette,
they could earn an additional bonus for speed.

Design
For each participant, the 8 block towers were randomly split
into 2 sets containing 4 towers each: a repeated set and a
control set (Fig. 1 B). Repeated towers were attempted 4
times, randomly interleaved among other towers. Control
towers were attempted twice, once near the beginning and
once near the end of each session, randomly interleaved
among other towers. Thus there were a total of 24 trials in
each session, including 8 first attempts and 8 final attempts
of each tower. In subsequent comparisons between the first
and final attempts on each tower, we combine data from both
repeated and control sets. In analyses of fine-grained changes
in behavior across successive attempts on the same tower, we
restrict our analysis to the control sets.
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Results
Change in reconstruction accuracy across attempts
We used the F1 score as our primary measure of
reconstruction accuracy, which reflects the degree to which
the shape of participants’ reconstruction coincided with
the target silhouette, and lies in the range [0,1], where
higher scores indicate higher accuracy. It is computed
by taking the harmonic mean of the precision (i.e., the
proportion of participants’ reconstruction that coincided with
the target silhouette) and recall (i.e., the proportion of
the target silhouette that coincided with the participants’
reconstruction):

F1 =
2

(recall−1 + precision−1)

In their first attempt, participants’ reconstructions were
moderately accurate, suggesting that they were engaged with
the task but not at ceiling performance (control: F1 = 0.790,
95% CI: [0.776,0.803]; repeated: F1 = 0.800, 95% CI:
[0.786,0.814]; confidence intervals generated via bootstrap
resampling). To evaluate changes in reconstruction accuracy
over time, we fit a linear mixed-effects model predicting
F1 score from attempt (first, final) and condition (repeated,
control) as fixed effects, including random intercepts for
participant and tower. We found a main effect of attempt
(b = 0.0759, t = 6.99, p < 0.001), showing that participants’
reconstruction accuracy reliably improved between their first
and final attempts. We found no reliable effect of condition
(b = 0.00803, t = 0.737, p = 0.461), and no evidence of
an interaction between attempt and condition (b = 0.0182,
t = 1.19, p = 0.235), suggesting that these improvements
may primarily reflect a combination of task-general and
tower-specific learning.

In particular, participants may have learned how to more
consistently place blocks that are fully contained within the
silhouette, resulting in fewer ‘off-by-one’ errors. To explore
this possibility, we visualized the spatial distribution of block
placements by constructing a heatmap of block placements,
averaged across participants (Fig. 3). This heatmap suggested
that participants did place a greater proportion of blocks
outside of target locations in their first attempts than in their
final attempts. To evaluate this possibility, we defined the
spatial error for a given tower on a given attempt as the
root-mean-squared cityblock distance between each location
in the heatmap and the edge of the target silhouette (zero if
within the silhouette), weighted by the value at each location
in the heatmap. We then computed the mean change in spatial
error between their first and final attempts, which revealed
that participants generally made fewer and less extreme errors
in their final attempts than in their first attempts (m=−0.625,
95% CI: [−1.08,−0.209], p = 0.012).

Change in reconstruction fluency across attempts
In addition to placing blocks more precisely, participants may
have also learned to produce more accurate towers by being
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Figure 2: (A) Reconstruction accuracy across build attempts. (B)
Build time across attempts, separated by perfect (F1 = 1) and
imperfect reconstructions. Error bars represent 95% CI.

better able to place more blocks within the time available
on each trial. To evaluate this possibility, we modeled the
change in the number of blocks used between the first and
final attempts using a linear mixed-effects model otherwise
identical in structure to that previously used to analyze
accuracy, however we excluded trials which were truncated
due to blocks falling. This analysis revealed a strong main
effect of attempt (b= 1.19, t = 7.41, p< 0.001), showing that
participants were able to consistently use more blocks in their
final attempt. There was no evidence of an effect of condition
(b = 0.0425, t = 0.264, p = 0.792) nor of an interaction
between attempt number and condition (b= 0.167, t = 0.735,
p = 0.463).

There are at least two potential explanations for how
participants were able to place more blocks in their final
attempt: first, their fluency with the construction task
interface may have improved, allowing them to select and
place more blocks per unit of time; second, they may have
been able to recall previously used procedures for building
a given tower, and thus required less preparation time to
devise an action plan prior to placing their first block. We
estimated task fluency by computing the mean time between
successive block placements within a single trial. We
estimated preparation time by computing the time between
trial onset and the placement of the first block. We found that
task fluency increased (b = −1.30, t = −9.306, p < 0.001)
and preparation time decreased (b = −2.24, t = −8.64,
p < 0.001) between first and final attempts, suggesting that
participants’ improved accuracy may reflect changes in both.

To quantify how quickly participants completed their
reconstructions, we measured the amount of time elapsed
between the start of each trial and the final block placement
on that trial, again omitting trials which were truncated
due to falling blocks. In their first attempt, participants
used nearly all of the time allotted (control: 51.8s, 95%
CI: [51.1,52.7]; repeated: 52.2s, 95% CI: [51.6,52.8]),
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Figure 3: (A) 8 target silhouettes used in the experiment. (B,C) Heatmap representations of the spatial distribution of block placements for
each tower, for first and final attempts. The intensity of each cell reflects the proportion of participants who had placed a block in that location.

and appeared to use less time to build each tower across
attempts (Fig. 2B). To evaluate changes in build time between
the first and final attempt, we fit a linear mixed-effects
model including attempt (first, final) and condition (repeated,
control) as fixed effects, including random intercepts for
participant and tower. This analysis revealed a main
effect of attempt (b = −1.92, t = −4.25, p < 0.001) but
not of condition (b = −0.704, t = −1.80, p = 0.0725).
In exploratory analyses, we discovered that 22.4% of all
trials contained perfect reconstructions (i.e., F1 = 1) of
the target silhouette. When we included an additional
binary variable in our regression model indicating whether a
trial contained a perfect reconstruction, we discovered that
these ‘perfect’ reconstructions took reliably less time than
imperfect reconstructions (b=−3.81, t =−4.47, p< 0.001).
Moreover, a reliable interaction between attempt number and
this binary variable revealed that decreases in build time from
first to final attempts were greater for perfect reconstructions
(b =−5.04, t =−5.10, p < 0.001). Together, these findings
suggest that the greatest increases in speed occurred once
participants had discovered a way of producing a perfect
reconstruction.

Change in reconstruction procedure across attempts
While an increase in speed and decrease in preparation
time are consistent with the possibility that participants
were reusing successful procedures they had previously
used to build each tower, these measures only indirectly
bear on this question. To directly assess the extent to
which participants reused previously used procedures across
attempts, we derived a measure of the similarity between
two procedures, which evaluates how similar the individual
actions comprising each procedure are.

Each action consists of an individual block placement,
represented by a 4-vector [x,y,w,h], where 0 ≤ x ≤
15, 0 ≤ y ≤ 13 represents the coordinates of the
bottom-left corner of the current block and where (w,h) ∈
{(1,2),(2,1),(2,2),(2,4),(4,2)} represent its width and

height, respectively. Each procedure consists of the full
sequence of such actions performed on a given reconstruction
attempt. For any pair of action sequences, we define the “raw
action dissimilarity” as the mean Euclidean distance between
corresponding pairs of [x,y,w,h] action vectors (Fig. 4A,
light). When two sequences are of different lengths, we
evaluate this metric over the first k actions in both, where
k represents the length of the shorter sequence. As this
measure compares the dissimilarity of sequences on an
action-by-action basis, it assumes that when a ‘similar’ plan is
executed again, that similar actions are performed in exactly
the same order.

To obtain a measure of similarity between procedures
that is robust to differences in the exact order in which
actions are performed, we also derived a “transformed”
measure of dissimilarity between sets of actions. We
used the Kuhn-Munkres algorithm to identify the one-to-one
mapping between each pair of action sequences minimizing
the Euclidean distance between them (Fig. 4A, dark). This
“transformed” measure has the advantage of being sensitive
to correspondences between similar actions performed in
different attempts, even when they were performed in a
different order. We fit both raw and transformed action
dissimilarities with a linear mixed-effects model including
fixed effects for attempt pair, the accuracy of the previous
attempt, and the dissimilarity type (raw or transformed), as
well as random intercepts for tower and participant. We found
that Euclidean distance is negatively related to attempt pair
(b =−0.186, t =−7.40, p < 0.001; Fig. 4A), suggesting that
participants became increasingly consistent in the procedure
they used to reconstruct each tower across repeated attempts.
We also found that transformed dissimilarities were smaller
than raw ones (b = −0.482, t = −2.96, p = 0.00315),
suggesting that when participants did reuse actions from prior
attempts, they could perform these in a somewhat different
order to achieve similar outcomes.

One potential explanation for the increase in internal
consistency in procedures across attempts is that
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Figure 4: (A) Magnitude of change in action sequences (raw) and sets of actions (transformed) across successive build attempts. (B)
Magnitude of change in sets of actions as a function of accuracy (F1) on previous attempt, for each pair of successive attempts of a given
tower. (C) Gini index for n-grams of action sequences in first and final attempts, compared to those of a random-policy agent. Higher Gini
index reflects a smaller number of frequently appearing action sequences. (D) Variability between sets of actions performed by different
participants on first and final attempts. Each line segment represents a different tower.

participants improved their ability to produce more accurate
reconstructions across attempts, and thus did not need to
update their procedure as dramatically in later attempts.
To the extent that accuracy on prior attempts is related to
how much participants alter their procedure in subsequent
attempts, we would predict that more successful procedures
are more likely to be reused than unsuccessful ones.
Consistent with this prediction, we found a strong negative
relationship between accuracy on the most recent attempt
and how much they changed their procedure (b = −0.6426,
t = −4.054, p < 0.001; Fig. 4B), such that participants
updated their procedure to a greater extent when their
previous attempt was less successful. Taken together, these
results suggest that people can reason flexibly about these
physical construction problems, making efficient use of prior
experience to update their procedures accordingly.

Consistency and variability in procedures across
individuals
Our results so far show that participants employ
increasingly accurate and internally consistent procedures
for reconstructing each tower, raising a natural question
concerning the degree to which procedures used by different
participants coincide with one another. We visualized the
distribution of procedures used by different participants by
constructing a map of trajectories over intermediate states
visited between the start and end of their reconstruction
(Fig. 5), where each state is defined by the shape of the
reconstruction up to that point. Under this definition,
reconstructions that are composed of different blocks but
share the same shape are treated as occupying the same state.

Even in their first attempt, many participants appeared
to traverse the same states when reconstructing each target
silhouette (Fig. 5A), hinting at broad consistency in the

procedures humans use to perform this task. Additional
simulations suggested that at most 2.2% of the total number
of possible solutions to each tower were represented in our
dataset (i.e., 435 unique trajectories across all towers out of
19,677 discovered so far via random sampling). To rigorously
quantify participants’ systematic biases toward certain states,
we computed the Gini index (G) over the frequency of visits
to each state across all participants:

G =
n

∑
i=1

n

∑
j=1

∣∣xi− x j
∣∣∗ (2 n

∑
i=1

n

∑
j=1

x j)
−1

where n is the number of total states visited and xi and x j
represents the number of times states i and j were visited,
respectively. G is largest when there are a small number
of frequently visited states, and lies in the range [0,1]. To
estimate how strongly human policies concentrate on the
same sequences of states at different timescales, we next
extracted n-gram representations for all state trajectories,
each defined by n successive states, for 1 ≤ n ≤ 10,
then calculated Gn for each of these n-gram frequency
distributions. To provide a baseline, we also constructed a
random-policy agent that samples blocks and viable locations
(i.e., within silhouette, maintaining stability) with equal
probability. We used this random-policy agent to generate
a null distribution of 1000 Gini values, each computed from
105 random-policy agents identified by unique random seeds.
When comparing the mean observed G for human trajectories
to this null distribution, we found that human state trajectories
were reliably more concentrated on fewer n-grams than the
random-policy agents, across n-grams of all lengths, for both
first attempts (Z-score = 21.6) and final ones (mean Z-score
= 42.7; Fig. 4C). These results show that a policy of selecting
random viable actions is insufficient to explain patterns of
human action selection in this task.
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Insofar as participants are biased to discover similar
solutions over time, we may expect the Gini index to
grow between the first and final attempts. To evaluate
this possibility, we fit human Gini values with a linear
mixed-effects model including attempt number, linear and
quadratic terms for n, as well as random intercepts for
target towers and participants. This analysis revealed a
positive effect of attempt number (b = 0.112, t = 6.02,
p < 0.001), suggesting that participants tended to converge
on a smaller set of procedures across attempts, and this
convergence applied to n-grams over action sequences of
all lengths (Fig. 4C). Although such convergence is one
signature of using similar procedures, the above analysis
is insensitive to cases where two participants reconstruct a
silhouette by placing the same blocks in the same locations,
yet only have first and final world states in common. To
address this limitation, we examined the distribution of
dissimilarities between the sets of actions performed by
different participants, and found that the variance of this
distribution was smaller on final attempts than on first
attempts, for all target towers (t(7) = 10.603, p < 0.001;
Fig. 4D). Taken together, these results indicate that despite
the relatively high state-space complexity of this task, people
share systematic biases toward similar solutions even on
their first attempt, and tend to update their strategies across
repeated attempts in similar ways, converging on a smaller
set of solutions over time.

Discussion

In this paper, we investigated how people reason about
challenging physical construction problems and update their
strategies across repeated attempts. We developed a novel
task requiring participants to “reverse-engineer” various
block towers, which could be reconstructed in many different
ways. We found that people can substantially improve the
accuracy and speed with which they reconstruct these towers,
even after one or a few prior attempts. Moreover, our data
indicate that changes in task fluency are insufficient to explain

the observed patterns of improvement, as the degree to
which participants altered the procedure they used was highly
dependent on how successful their prior attempt had been.
We also found that different individuals often discovered
similar solutions to the same problem, suggestive of shared
biases.

A key question raised by this paper concerns the source
of the systematicity we see in human strategies. It is
possible that shared prior experience with other physical
reasoning and planning tasks may play a crucial role, and
understanding how humans transfer such broad experiences
to new tasks may be critical for developing AI agents that
learn as flexibly as humans do. In future work, we plan to
evaluate state-of-the-art AI construction agents (Bapst et al.,
2019) on a version of the same task with a larger number
of towers, using the same metrics. Such evaluations will be
critical to expose the extent to which current algorithms for
physical reasoning and planning emulate human behavior in
this domain, as well as potential gaps for future algorithms to
fill.

Another important direction for future work is to
investigate how mental simulation and physical experience
interact to support effective physical reasoning. Future
experiments could manipulate participants’ ability to apply
physical interventions when solving these problems and
measure the consequences on how quickly they learn from
multiple attempts using mental simulation alone vs. physical
practice. Such studies may help to shed additional light on
how people spontaneously decide when to think more and
when to act during problem solving (Dasgupta et al., 2018;
Kirsh & Maglio, 1994).

In sum, our paper presents novel benchmarks for
computational theories of physical reasoning and planning to
explain, as well as a strong candidate for task domain that
can be fruitfully studied in both cognitive psychology and AI.
Such strong alignment between empirical studies of human
behavior and algorithms development may lead to both more
robust AI and a deeper understanding of human cognition.
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