
1

Visualization Exploration and Encapsulation via a
Spreadsheet-like Interface

T.J. Jankun-Kelly and Kwan-Liu Ma
Computer Science Department,
University of California, Davis

Abstract—
Exploring complex, very large data sets requires inter-

faces to present and navigate through the visualization of
the data. Two types of audience benefit from such coherent
organization and representation: first, the user of the visu-
alization system can examine and evaluate their data more
efficiently; second, collaborators or reviewers can quickly
understand and extend the visualization. The needs of these
two groups are addressed by the spreadsheet-like interface
described here. The interface represents a 2-dimensional
window into a multi-dimensional visualization parameter
space. Data is explored by navigating this space via the
interface. The visualization space is presented to the user
in a manner that clearly identifies which parameters cor-
respond to which visualized result. Operations defined on
this space can be applied which generate new parameters
or results. Combined with a general purpose interpreter,
these functions can be utilized to quickly extract desired
results. Finally, by encapsulating the visualization process,
redundant exploration is eliminated and collaboration is fa-
cilitated. The efficacy of this novel interface is demonstrated
through examples using a variety of data sets in different do-
mains.

Keywords—spreadsheets, user interfaces, knowledge repre-
sentation, scientific visualization, visualization systems, col-
laboration

I. Introduction

IN order to gain insight from large, scientific data sets
via visualization, both efficient algorithms and intuitive

user interfaces (UIs) are needed. Research in visualiza-
tion has focused upon the former, developing techniques to
generate realistic, informative visualizations quickly and
economically. As these methods proliferate, powerful and
informative user interfaces to make use of them become
more important. By presenting and storing the visualiza-
tion exploration process, this process becomes streamlined:
past work can be built upon—avoiding potentially costly
repetition—and results can be easily shared and reused.
Towards this end, a spreadsheet-like interface that satis-
fies these requirements has been developed. This paper
discusses its capabilities and illustrates its uses through a
series of examples.

Conventional spreadsheets have three properties [1]: tab-
ular layout, operators, and cell dependency management.
Tabular organization allows quick comparison of results
and structures the subsequent analysis. Cell operators can
assist in this analysis by providing a suite of functions to

Visualization and Graphics Research Group, Center for Image
Processing and Integrated Computing, Computer Science Depart-
ment, University of California, Davis, CA 95616. E-mail: {kelly,
ma}@cs.ucdavis.edu

manipulate the cell values. Cell dependency is used to al-
low changes in one area of the spreadsheet to propagate to
others. The usefulness of these characteristics is attested
by the number of different applications of spreadsheets that
exist. Our spreadsheet-like interface uses similar properties
to organize and control the visualization process. The tab-
ular display acts as a window into a multi-dimensional visu-
alization space that a user manipulates to discover results
of interest. Operators on the cells can analyze and generate
visualizations. Similarly, parameter operators can be used
to further exploration. As cells represent fixed points in vi-
sualization space, traditional spreadsheet cell dependency
management does not apply. This is offset by an inter-
preter that can modify the visualization at a lower level.
The interpreter allows experts to perform complex opera-
tions upon the data that supersede the UI’s facilities. Our
interface builds upon the strengths of spreadsheets while
augmenting them towards the task of visualization explo-
ration.

Besides presenting an interface to the visualization pro-
cess, our spreadsheet also captures that process for the
user. This encapsulation of the history is crucial. As
the size of scientific data increases, users of visualization
systems must be able to explore this data efficiently. Re-
dundant exploration, a potentially expensive operation, is
avoided by storing and displaying previous results. In ad-
dition, the user gains a clear picture of what has and has
not been tried. This information can then be shared with
others to communicate both the results and the steps used
to generate those results. These details are discussed in the
following sections.

II. Visual Representations of Data Exploration

The reuse of visualizations is an important issue, espe-
cially when generation of the visualization is costly. Results
from a previous visualization can suggest parameters for
later investigation. A user interface which exposes these
previous results will make subsequent exploration of the
data easier. The interface also needs to transparently allow
the user to navigate through and manipulate the underly-
ing data. If the interface is cumbersome in either its usage
or presentation of information, the user cannot properly an-
alyze their data. The user interface must both intuitively
display the progress of the visualization session and allow
visual manipulation of this progress. Such interfaces are
visual representations of the visualization process. An ef-
fective visual representation of the data exploration should

tjk

tjk

tjk
As printed in IEEE Transactions on Visualization and Computer Graphics, 7(3), 2001, pp. 275-287

2

meet the following criteria:
• Parameter Manipulation: The user must be able to set
and manipulate parameter values to generate visualiza-
tions.
• Intuitive Display : The relationship between and context
of different visualizations must be displayed.
• Visualization Operators: Parameter and value opera-
tors to extract information and generate new visualizations
must be provided.
• Process Encapsulation: The history of the exploration
process must be captured for later collaboration.
These properties build upon each other. For example, the
history of the visualization session should utilize the intu-
itive display used for the main interface; this would lessen
the conceptual distance between the results and the steps
used to generate the results. [2]. Our spreadsheet-like in-
terface has been designed to satisfy these criteria.

A. Turn-Key

In traditional turn-key visualization user interfaces, a
user iteratively changes parameter values directly in order
to search for the desired result. This trial and error pro-
cess is inefficient and does not communicate context that
directs a user toward their goal. Automatic systems that
generate parameter values can help this process, but their
result is lost if the user subsequently modifies a parameter
value. Once an acceptable visualization result is obtained,
only the final parameter settings and image are available
to be recorded and shared with collaborators; all previous
results are lost. While perhaps sufficient for prototypes,
these user interfaces do not allow sophisticated control of
the exploration.

B. Data-flow

Data-flow interfaces represent the data exploration pro-
cess by a directed network of connected components. These
components act upon the data sets or output of other states
to produce their final result(s). Each component in the net-
work represents an operation or transformation on the out-
put of the previous step. Components can set parameter
values for subsequent visualization techniques or perform
other tasks such as annotation or image cropping. Several
commercial systems use a data-flow interface for visualiza-
tion [5], [3], [4].

Data-flow interfaces have a better state display than tra-
ditional turn-key interface through the data-flow graph:
the graph clearly displays the flow of information whereas
a turn-key interface has no such contextual information
beyond the current state. This flow graph can be shared
with collaborators to communicate the process needed to
generate the final result. One weakness of the data-flow
approach is that it does not indicate the history of the vi-
sualization process. Like the turn-key interface, changes to
the settings of one of the flow nodes cause the previous im-
age to be lost. After several iterations, if the user wishes to
revisit a previous collection of settings, there is no obvious
assistance from the user interface to support this task.

C. Parameter-based Representations

Unlike representations which focus on the flow of data
through a system, parameter-based representations focus
on the changes of parameter values during the visual-
ization process. These user interfaces manipulate the
operands of the visualization techniques (the parameters)
directly whereas data-flow system encapsulate the param-
eters within the techniques. Two interfaces of this type are
the Design Galleries system [6] and image graphs [7].

The Design Galleries system considers data exploration
a process of exploring a multidimensional space of visual-
ization parameters. The results a user desires exist within
this space. It is the system’s job to aid in the discovery
of the parameters that correspond to the images. After a
pre-processing rendering stage, the system displays a 3D
representation of the design space. A user then navigates
this space to find their desired images. By replacing a trial
and error approach with a structured navigation of param-
eter values, the system allows a more efficient exploration.

The image graph system follows a similar structured ap-
proach. Unlike the Design Galleries system, image graphs
are built dynamically instead of during a pre-processing
stage. An image graph is a graph representation of the vi-
sualization process that distinctly displays the relationship
between generated images via glyph edges. The graph is
used to explore the space of visualization parameters. As
more visualizations are added, the graph structures itself
so that related images are clustered together. A user can
manipulate this structure as they desire. Operations upon
the edges and nodes in the graph can be used to generate
further results. The graph can be shared, thus providing a
history of the final result with the result itself.

Unlike the previously mentioned user interfaces, both of
the interfaces display the history of the data exploration
process. However, these interfaces posses two key limita-
tions. First, screen space becomes limited as the number of
different parameter settings increases; though screen real
estate management is a concern for all visualization user
interfaces, the rate of growth of parameter settings makes
this issue paramount for parameter-based interfaces. As
more images are added, zoom techniques, graph compres-
sion, or focus+context techniques must be used in order to
display the entire graph [8]. Thus, comparisons between
results become more difficult as more images are added.
Second, both interfaces are limited by their display and
manipulation of a single data set at a time. This prevents
cross data set comparisons or operations.

D. Spreadsheet Representations

Spreadsheets are a subset of form visual programming
languages where the user programs the contents of cells
aligned in a grid [9]. Spreadsheets are most familiar from
numeric applications. The visual language community has
extensively studied spreadsheets and their applications.
For example, the Forms/3 system [10] has been used to dis-
cuss spreadsheet animation, dynamically expanding grids,
and psychological factors in designing user interfaces [12],
[11], [2].

tjk
As printed in IEEE Transactions on Visualization and Computer Graphics, 7(3), 2001, pp. 275-287

3

Fig. 1. Visual representation of some parameters displayed by the
visualization spreadsheet. As a user edits the underlying parameter,
the icon of the parameter is updated.

Several spreadsheet interfaces for graphics and visualiza-
tion have been developed. Levoy’s SI system [13] wraps a
spreadsheet around a general image processing kernel; each
cell represents a script which can reference other cells to
generate subsequent images. Hasler and Palaniappan have
experimented with a series of spreadsheet-based interfaces
to represent satellite and other earth-observatory equip-
ment data [14], [15]. Chi, et al. [1] demonstrate a set of
principles for visualization spreadsheets through their SIV
system. All of these systems are characterized by their
tabular display, cell operators, and management of cell de-
pendencies as discussed earlier.

There are several unresolved issues when using these pre-
vious spreadsheets as an interface for visualization explo-
ration. Though they posses a structured environment for
display—and thus mitigate some of the display issues of
the parameter-based representations—they do not supply
such structure for the actual exploration. These interfaces
also “collapse” the entire multi-dimensional visualization
parameter space onto a two dimensional window. Thus,
there is no mental metaphor to assist the user in under-
standing and navigating the visualization space. These is-
sues were addressed by our spreadsheet-like interface de-
scribed in [16]. This work was subsequently expanded by
formalizing the model, applying it to different visualiza-
tion domains, and developing an off-line format to capture
the visualization process. With these additional properties,
our spreadsheet system becomes a robust solution to the
parameter exploration problem for visualization.

III. Spreadsheet-based Visualization
Representation

Before we discuss the structure of our spreadsheet-like
interface, we must first discuss the conceptual model be-
hind it. As suggested in Spence [17], the purpose of this
conceptual model is “to have a better understanding of the
artefact, scheme or situation to which the data refers, and

to be able to interpret the model in some useful way.” The
formalism behind our internal model describes the proper-
ties of the interface.

A. Conceptual Model

Like the Design Galleries and image graph systems, we
consider visualization exploration a process of examining a
multi-dimensional space V of parameter values. Each n-
tuple p ∈ V represents a combination of parameters that
produce a visualization. A tuple p uniquely identifies a
point in the visualization space which corresponds to a par-
ticular visualization result r in some result space I. V thus
defines a transformation v : V 7→ I from the parameters
to the results. This transformation is the underlying vi-
sualization technique used. This definition is independent
of the actual application of the spreadsheet. For example,
different visualization parameter spaces exist for direct vol-
ume rendering, isosurface extraction, and vector visualiza-
tion. Parameters such as color or opacity maps would be
used in the first case, while stream line seed location and
ejection rate would be used in the last. The representation
of the visualization result could vary over domain as well:
in direct volume rendering, results are rendered images; in
isosurface visualization, the extracted triangulated surface.

The key feature of this approach is that it decomposes
the visualization process into a sequence of parameter set-
tings that generate results. As the user iteratively changes
parameter values, they trace out a path P = {p0, . . . , pn}
through the visualization space where p0 is the first tuple
of parameter settings explored and pn is the last. This path
can be viewed using the interface, manipulated with the pa-
rameters discussed later, and shared with others. Only the
domain of the visualization process stored (represented by
a particular v), the path P , and its corresponding results
R = {v (p0) , . . . , v (pn)} are needed to recreate a visual-
ization session. The results R are not strictly needed to
recreate a session, though it is often beneficial to maintain
them as generating R can be costly (especially for very
large data sets). The results are also needed if they will be
shared outside of the spreadsheet environment.

B. Display and Navigation

A spreadsheet presents a tabular view of its underlying
data. In numerical applications, this is a 2D array and
thus the correspondence between data and display is triv-
ial. Visualization space is higher-dimensional and therefore
more complicated to display. Our spreadsheet is a movable,
scalable window into this space. By manipulating the visu-
alization parameters, the user changes the position and size
of this window. Unlike previous spreadsheet designs, this
spreadsheet places constraints upon the cell values. The
spreadsheet displays a planar projection spanned by two
axes of the visualization space. Only a single type of pa-
rameter value can be displayed in the rows and columns.
Using volume visualization as an example, the rows could
display color maps while the columns show opacity maps.
For the other, non-displayed parameters, a set of default
values is maintained. These values may be updated at run-

tjk
As printed in IEEE Transactions on Visualization and Computer Graphics, 7(3), 2001, pp. 275-287

4

Fig. 2. Our spreadsheet is a view of two dimensions of a visualization
space. In this example, opacity maps are displayed along rows and
color maps along columns. A particular cell is rendered by combining
the non-displayed parameters’ default values with the parameter val-
ues corresponding to the row and column indices. By changing the
default parameters, in this case the view position, the spreadsheet’s
position in visualization space can be moved.

time. Parameter values are represented by rendered glyphs
in the table headers (Figure 1). A cell in the spreadsheet
represents a result which combines the parameter values of
the row and column intersecting the cell with the default
values for the other parameters. By changing the the de-
fault values for non-displayed parameters, the spreadsheet
“window” can be translated in visualization space (Figure
2). A different kind of motion is achieved by changing the
displayed row and column parameters (Figure 3). Thus,
the data exploration process becomes the process of ma-
nipulating the spreadsheet window through visualization
space.

Previous visualization spreadsheets collapse visualiza-
tion space into 2D without controlling what values are used
in the spreadsheet cells. While this may be useful to dis-
play final visualization results side by side, this projection
hinders exploration efforts since the relationship between
parameter values and result is not immediately evident.

IV. Static Spreadsheet-based Exploration

Without the dynamic operators and the interpreter de-
scribed later, our interface can still be used to explore a
user’s data. In this “static” mode, the user manipulates
the spreadsheet’s position in visualization space and se-
lects which parameters (and thus results) to investigate.
Actual exploration of the data would generally combine
both phases: the data is explored using the static interface
to generate a few images and then the dynamic operations
are used to create further results.

When starting a new visualization session, a user must
first initialize any parameter values that do not have de-

Fig. 3. The spreadsheet window can also be rotated in visualization
space. Starting from a sheet displaying color and opacity maps, the
user first selects an image with the desired properties. These two
parameters will become the new default values. By then selecting
two new parameters to display, in this case view position and zoom
factor, the window is rotated about the selected point to display the
new values.

fault values. Using the spreadsheet, the user can select
which parameters to display along the rows and columns,
and add, edit, remove, and position column and row values
as desired. Depending on the application, all cells or only
those specifically requested by the user may be displayed—
the overhead of rendering the entire table should determine
which method is used. If the selected row or column pa-
rameter is changed, the table is populated with images cor-
responding to the new combination of parameters. If one of
the non-displayed default parameter values is changed, the
images are updated as well. The system visually identifies
which parameters correspond to an image by rendering the
row and column labels as glyphs.

Figure 4 demonstrates a spreadsheet-driven visualiza-
tion. The user wished to display separate skin and bone
surfaces for a foot medical data set using a ray-casting di-
rect volume renderer. First, the user added two opacity
maps which highlight the desired surfaces; the tabular or-
ganization of the spreadsheet allows the two images to be
easily compared side-by-side. After changing the row pa-
rameter to display view positions, the user selected a view
to display the front of the foot. This position was selected
as the new default. Afterwards, the user returned to modi-
fying color maps. Only images utilizing the new view posi-
tion were displayed. Two new color maps were added, the
first a false-color map highlighting differences in value on
the surface and the second a color map to display a flesh-
like tone for the skin and white for the bone. The latter
color map was selected as the new default color map. Fi-
nally, the final images were generated by displaying and
adding a new zoom factor value. If the user wanted, they
could change the default color map or view position to ex-
amine alternate zoomed images.

Tabular organization is one of the advantages the spread-

tjk
As printed in IEEE Transactions on Visualization and Computer Graphics, 7(3), 2001, pp. 275-287

5

Fig. 4. A sequence of spreadsheets displaying the volume visualiza-
tion of a foot data set. Blank cells represent non-rendered images.
The goal was to compare skin and bone surfaces. The user first deter-
mined appropriate opacity maps before modifying the view position,
color map and zoom factor. The spreadsheet was useful in displaying
the images to be compared side-by-side.

sheet has over other representations. As demonstrated
above, it allows quick visual comparison of data values.
This property is especially useful in comparing renderings
of different data sets. Figure 5 displays an example se-
quence of data sets representing time steps in a material
propagation simulation. Changing or adding a parame-
ter value in the figure would affect all the data sets at
once. The equivalent task would require several separate
operations in an image graph. The tabular structure also
suggests natural parallelism when applying the operations
from the next section: new cells generated by an operation
could be distributed to separate processors to be visualized.

V. Dynamic Spreadsheet-based Exploration

The spreadsheet display can be dynamically modified to
supplement the data exploration experience. The dynamic
capabilities include both parameter and value operators
and the associated interpreter. Animations can also be
created.

A. Parameter and Value Operators

Like the numeric functions in traditional spreadsheets,
most spreadsheets define a set of operations that can be ap-
plied to the cells. In visualization spreadsheets, operations
allow the user to create new results from previous ones.
Our spreadsheet defines two types of operations: those act-
ing on parameters (row and columns) and those acting on
values (cells). The former typically generates new param-
eters from their input while the later analyzes cell values.

There is a set of operators for each parameter type: set
operations can be applied to color and opacity maps, his-
tograms can be derived from data sets, or isovalues can be
interpolated. To apply a parameter operator, a user first
selects a range of column or row values to be used as the
operator’s arguments. The user then selects an operator to
apply and, if necessary, customizes its behavior. The first
spreadsheet in Figure 6 displays the illuminated magnetic
field lines in a Tokamak simulation [18]. The purpose of the
visualization was to discover “magnetic islands” inside the
toroid object: i.e., magnetic field surfaces that do not form
closed toroids. From the first spreadsheet, it is not imme-
diately clear whether the first and last field line (measured
in increasing radius from the center of the torus) enclose
the second. When a union operator is applied to the pa-
rameters, combining the display of all three field lines into
a single image in the second spreadsheet, the artifact is
clear.

Value operators are applied in similar manner to parame-
ter operators: the operand cells are selected and a operator
is chosen from a list of possible operations. What is unique
about value operations is how the cells are selected. As the
spreadsheet data is multi-dimensional, cells from alternate
“stacks” of the spreadsheet (i.e., different projections of the
visualization space) can be selected at the same time. If a
user wanted to combine the opacity and color maps from
one image with the view position and zoom factor of two
other images in a volume rendering example (Figure 7), the
user could follow these steps:

tjk
As printed in IEEE Transactions on Visualization and Computer Graphics, 7(3), 2001, pp. 275-287

6

Fig. 5. An isosurface visualization spreadsheet displaying the effects of a shock wave on a bubble of argon over several time steps. Modifying
the displayed isovalue would change all the cells at once, a task that would be more difficult in other representations.

Fig. 6. An example of applying parameter operators, in this case the union of displayed magnetic field lines in a simulation. The top
image displays the three different field lines side by side. When combined, the presence of the “magnetic island” between the layers becomes
apparent.

1. Change the row and column parameters to display color
and opacity maps.
2. Select the cell with the desired color and opacity maps.
3. Change one of the parameters to display view positions.
4. Select the cell with the desired view position.
5. Change one of the parameters to display zoom factor
values.
6. Select the final cell with the desired zoom.
7. Apply the combination operator.

The new cell would then be added to the spreadsheet
at the intersection of the four selected parameter values.
Without cell selection in separate stacks, value opera-

tors could only be applied within a given display, limiting
changes in parameter to the current row or column param-
eter only.

B. Animation

Unlike static images, animations better display 3-
dimensional features of data. Animations are generated us-
ing the same method used to apply value operators. First,
a range of key frame cells, most often from different stacks,
is selected in the spreadsheet. As more than one parame-
ter can change between images, the order of interpolation is
then selected by the user. Finally, the user determines how

tjk
As printed in IEEE Transactions on Visualization and Computer Graphics, 7(3), 2001, pp. 275-287

7

Fig. 7. Selected cells for a composition operator. The user wished to
use the color and opacity maps of the first image, the view position
of the second and the zoom factor of the third. The fourth image
displays the desired visualization.

many intermediate steps to render between each key cell.
The system then automatically renders the animation.

As an example, consider an animation using the first and
last cells in Figure 7. Between these two images, both the
view position and zoom factor has changed. To generate
the animation, the cells containing the two key frame im-
ages would be selected. Next, the user would determine
the order of interpolation: view position followed by zoom
factor or vice versa. The corresponding animation would
illustrate the 3-dimensional features of the flow through the
furnace.

C. Scripting

Another dynamic capability of the spreadsheet is the use
of an interpreter. This interactive environment allows a
user to directly access and manipulate the underlying con-
ceptual model the interface presents. The parameter and
results can be used in user defined functions to program-
matically generate new visualizations. All of the operators
mentioned in the last sections can be utilized by the user.
The usefulness of such an environment has already been
demonstrated [19]. The interpreter grants advanced users
low-level control of the visualization process that the UI
abstracts. For example, the script

for i in range(3):
addParameter("View",

View(xangle=45*i,
yangle=-45*i,
zangle=0))

would generate a series of view positions in an arc about
the data set. This technique can be extended to generate a
series of parameters within the parameter space similar to
the method used by the Design Galleries system. The user
can then use the generated results to narrow their search.

Our implementation of scripting differs from common
macro languages in numerical spreadsheets or the script-
ing abilities in the spreadsheets described by Chi et al. [1].
In these applications, cells are referenced by their row and
column values. If a cell’s value changes, all formulas which
reference that cell are updated; these changes are propa-
gated as needed. In our spreadsheet, the cells represent
immutable points in space. Similarly, the parameter a row
or column represents may change at any time. Thus tradi-
tional spreadsheet reference methods do not apply. In our
interface, references to a cell are translated into the tuple

Fig. 8. An example of referencing a cell. A reference to a cell, in this
case cell (1,2), is translated into a tuple representing the positions
of the cell’s parameter values in their respective parameter lists. The
translated reference is (1,2,3,1,1,2,1).

identifying that cell in the visualization parameter space.
If the second cell in first row is selected, the tuple would
reference the second parameter in the list of displayed col-
umn parameters, the first parameter in the list of row pa-
rameters, and references to the default non-displayed pa-
rameters (see Figure 8). A references to a row or column
is translated into a parameter reference in a similar man-
ner. When the parameters that are referenced by a tuple
are changed, the corresponding result is updated as well.
By way of example, consider a data set representing sev-
eral variables from a turbulent jet simulation (see [20] for
more information). In the simulation, two different sums
of the variables should represent the same value. Using a
user defined function sumData to create a new data set
by summing the values over the entire volume of its argu-
ments, these two sums can be compared visually using the
following script:

addParameter(
"Data Set",
sumData([column(0), column(1)])

render(cell(1, 3))
addParameter(
"Data Set",
loadData("jet_a3a4a5a6"))

render(cell(1, 4))

Figure 9 displays the results of executing this script. These
scripts are a versatile way to drive the visualization process.

VI. Encapsulating and Sharing the Visualization
Process

The spreadsheet eases collaboration by allowing the ex-
change of more information than a set of images. With only
a set of images, a collaborator has no sense of their order
or what parameter values were used to generate them. Ex-
pressed as a spreadsheet, the entire visualization process
can be communicated to other users. First, the results of
the visualization are clearly presented by the spreadsheet.
Second, as discussed previously, parameters used for each
cell are easily identified. Finally, the history of the process
can be viewed, stored, and shared among others.

tjk
As printed in IEEE Transactions on Visualization and Computer Graphics, 7(3), 2001, pp. 275-287

8

Fig. 9. Another spreadsheet examining multiple data sets. The data represent distinct variables in a multi-variate turbulent jet simulation.
The entire simulation has 9 variables. Two of the variables are displayed in the first two columns. The third column is the sum of the first two
variables over the entire volume. The fourth column is the sum of four other non-displayed variables. Both sums are supposed to represent
the total flow through the jet.

A. History Display

The history of the visualization process can be used to
gain insight to where a user has been and where they can
further explore. The interface displays the current state
of the visualization via its projection of the parameter
space. As an option, the user can color the borders of
the cell according to the time when the results was gener-
ated. Colored borders present the history information at-a-
glance: “hotter” borders represent more recently modified
cells than “cooler” borders. For a more extensive inspec-
tion of the history, the history animation can be viewed.

The history animation technique uses some ideas from
Igarashi et al’s animation of the relationship between
spreadsheet formulas [21]. In their work, they use arrows
which fade into view, move from the source of formula data
to the cells which use that data, and then fade out. For
our history animation, we start from an empty spreadsheet
and “fade-in” subsequent changes until the entire state is
represented. For transitions between stacks, the old stack
fades out as the new stack is displayed. In this manner, the
entire history of the visualization process is communicated.

The history animation is controlled through two means.
First, during the animation, the user can change the speed
of the animation to “fast-forward” through the progress.
This fast-forwarding is useful to gloss over portions of the
exploration that are irrelevant to a user’s presentation. Sec-
ond, cells can be marked as “important” before the anima-
tion begins; only these cells will be presented during the
history animation. This capability is especially useful in
the context of collaboration. An animation highlighting
the salient features of the visualization is more informative
than one that displays test images and final results with
equal priority.

B. On-Line Collaboration

The spreadsheet can also be used in shared collabora-
tion environments. In this case, the spreadsheet acts as a
window into a shared visualization in progress. In one sce-
nario, users work individually, synchronizing parameters

and results as desired. In another, changes in the state
of the exploration can be communicated concurrently to
all users. Both situations can be useful: the former when
users are looking for different results and the latter when
an expert is driving the exploration.

C. Off-Line Collaboration

To communicate the results of a visualization exploration
session, the session must be stored off-line in some man-
ner. This off-line storage format should record everything
to recreate the session: the type of visualization performed,
the sequence of parameters explored, and the correspond-
ing results. To be effective, the format should not only be
understandable by the spreadsheet itself but translatable
into formats amenable to data-mining, presentation, and
analysis. For these reasons, we have developed an XML-
based off-line storage format.

XML [22] is a text-based language for generating descrip-
tions of documents. It is a meta-language used to create
languages for documents. There are a wealth of proposed
XML technologies to assist in the translation of XML into
other formats such as HTML [23] and query its contents
[24]. It is thus possible to load results from a spreadsheet
visualization session into another visualization system if a
translator becomes available.

The off-line representation can be partitioned into two
sections: one section representing all the parameters and
results explored and another section for representing the
visualization process itself. All explored parameters and
results—even those later removed from the visualization—
are stored in order to recreate the entire session. The re-
sults reference the parameters that generated the result
and the corresponding visualization (be it an image, em-
bedded VRML model, or other data). The process infor-
mation is akin to a transaction log. Each element in the
list of states represent what changed from the last state
to the current state. These “deltas” are built from a set
of atomic state change operations. Example atomic oper-
ations include adding a parameter value, changing a pa-
rameter, removing a parameter, creating a visualization,

tjk
As printed in IEEE Transactions on Visualization and Computer Graphics, 7(3), 2001, pp. 275-287

9

Fig. 10. The visualization spreadsheet framework.

and navigating through the visualization space. These op-
erations reference the parameter or value relevant to the
change. As some interactions with the spreadsheet can
perform several changes in a single action—for example,
applying a script in the the interpreter—the atomic oper-
ations can be aggregated when needed.

The two sections of the storage file can be used sepa-
rately if needed. For example, the deltas used in repre-
senting state may not be applicable for storing state in an
image graph and may be ignored. Instead, the parame-
ters and results could be used to generate an image graph
representation.

Another form of off-line collaboration is the use of
spreadsheet templates. Templates are interpreter scripts
generated by experts that perform automated manipula-
tion and analysis of the visualization data. For example, a
template could generate optimal color and opacity maps af-
ter analyzing the input data sets, and display the results in
the spreadsheet. Templates can be distributed with data
sets to perform initialization or other functions to assist
users to understand the data.

VII. System Architecture

We have developed an object-oriented framework which
implements the spreadsheet features described in this pa-
per. It consists of four main components: a view object
which handles user interaction and displays the spread-
sheet, a session object which records changes in the spread-
sheet state, a model object which renders the visualization
and applies operators, and an interpreter object which exe-
cutes scripts to manipulate the spreadsheet’s state. Figure
10 illustrates the system.

The primary testing platform for the spreadsheet uses di-
rect volume visualization. The design has also been tested
in a few other domains. Our current implementation is in
Java, using JPython [25], a native Java implementation of
the Python language [26], as its interpreter engine.

A. View Object

The view object displays the spreadsheet and handles
user interaction. To facilitate its use of distributed envi-
ronments, the view is local to each client. This prevents lo-
cal information from being needlessly communicated. The

view is a general object. It can be reused in different visu-
alization applications so long as renderers and editors for
the parameters and results displays are provided. The view
uses the session object to determine the current state of the
visualization and the model object to determine what op-
erations it can apply and to generate visualization results.

B. Session Object

The session object manages the state of the exploratory
process. It communicates this state to the view object so
it can be properly displayed. The state the session object
stores is also used to display history information through
the color borders and animation discussed previously. It is
also the session object’s responsibility to store to and load
from off-line formats.

As the session object captures all state information for
the spreadsheet, it can be used by outside applications to
query and modify the progress of the visualization process.
This means that the spreadsheet can be used as a history
mechanism for another application. This type of “indirect”
usage is very powerful: not only can the state of this outside
application be shared in a manner previously unavailable,
the spreadsheet can be used to apply operators or user de-
fined functions to communicate results back to the original
application. This coupling allow users to benefit from the
spreadsheet interface while using familiar and pre-existing
tools.

Like the view object, the state object is local to the
client. If the spreadsheet was later embedded in a web-
aware applet, it would be inefficient for it to communicate
its state across the network.

C. Model Object

The model object implements the visualization server
component of the system. It represents the underlying
conceptual model and visualization space. Connected view
objects request a result by passing the model a set of pa-
rameter values. These results are then stored by the local
session object for efficiency. The model could potentially
cache previously generated results by their parameter val-
ues so requests by different clients for the same result re-
turn immediately. How the model actually generates visu-
alization results is a pluggable component. For the volume
visualization spreadsheet, the default serial ray casting ren-
derer could potentially be replaced by a renderer that used
a cluster of machines (one for each cell) or a module that
harnesses the real-time capabilities of specialized hardware
such as the VolumePro [27].

The model object also maintains a list of available pa-
rameter and value operators. When new operations are
added, only the central render server must be updated. At
the beginning of a visualization session, clients can request
the list of available operations and download the code for
them locally, thus saving network communication when the
operators are actually applied.

tjk
As printed in IEEE Transactions on Visualization and Computer Graphics, 7(3), 2001, pp. 275-287

10

Fig. 11. A spreadsheet analyzing the effect of different parameters on a 3D segmentation pipeline of a human brain. In this example, the
effect of color thresholding (the column parameter) is examined across two different slices of the brain (the row parameter).

Fig. 12. Another spreadsheet examining the segmentation pipeline. This time, different region size thresholds are displayed along the
columns. Note how the effects of the region growing threshold parameter are less pronounced than those from the previous color thresholding
stage.

D. Interpreter Object

The interpreter is also locally stored by each client. It
implements all the scripting functions described previously.
The interpreter allows the user to manipulate the spread-
sheet’s state in a programmatic way for tasks that would
be difficult or awkward using the UI. Generating the view
positions from the script in Section V-C would be difficult
using the interface but easy with the script. Using the in-
terpreter, users can construct programs to assist them in
their exploration.

VIII. Further Examples

We now illustrate the versatility of the spreadsheet-like
interface through two additional examples. In the first, the
spreadsheet was used to investigate the effect of changing
parameters in a 3D segmentation pipeline. The segmenta-
tion is applied to a volume image of a frozen human brain.
There are six steps in the process, which are controlled by

9 parameters (see [28] for a more complete description).
The brain was sliced and photographed. Due to voids in
the brain, the images contain information from other slices
as well. The purpose of the segmentation is to remove
extraneous information not belonging to each slice. The
spreadsheet can assist in comparing the effects of the seg-
mentation process on several slices simultaneously.

The first step in the segmentation process applies color
thresholding on the image. A particular color component
was chosen as it captures the browns in the brain data very
well. By changing the threshold value, the effects on the
segmentation can be seen (Figure 11). A later step tries to
“grow areas” by checking the size of similar regions against
another threshold. A comparison of settings of this param-
eter can be seen in Figure 12. It became clear through this
analysis that the initial color thresholding has a greater
effect on the segmentation than the later stage and thus
should be considered with more care during the segmenta-

tjk
As printed in IEEE Transactions on Visualization and Computer Graphics, 7(3), 2001, pp. 275-287

11

tion process. The effects of changing both parameters at
the same time was determined by translating the spread-
sheet window in visualization space. Using a script to cycle
through the color thresholds in Figure 11 (a non-displayed
parameter in Figure 12), differences in the images became
readily apparent to the eye. Finally, an image difference
operator defined on the cells was used to get a quantitative
measure of the changes caused by the parameter settings.

One difficulty with the segmentation experiment was the
limitation that only two types of parameters can be dis-
played and edited by the spreadsheet at a time. Creating
a result with a specific set of parameters takes significant
manipulation. One method of overcoming this shortcoming
is to couple the spreadsheet with another application. In
this situation, the spreadsheet becomes a type of interac-
tive history mechanism, recording the process of the explo-
ration while the user manipulates the main program. For
example, the spreadsheet can communicate with an inter-
active volume renderer. As the user changes the parameter
settings in the volume renderer, they are communicated to
the spreadsheet which displays the results. Care must be
taken with parameters which vary often and continuously
(such as view position in this example). For such parame-
ters, the spreadsheet could be updated at regular intervals
or when the user pauses for some time. The default param-
eters of the spreadsheet always correspond to the currently
used parameters in the controlling application. Displayed
row and column parameters can be arbitrary—two conven-
tions are to have them be either the most recently modified
parameters or the most often modified parameters.

The spreadsheet can remain interactive during this “indi-
rect” modification. The user can switch between exploring
with the controlling application or with the spreadsheet.
Consider the visualization of a turbulent jet simulation de-
picted in Figure 13. In this data set, the features of interest
are the negative and positive vorticities in the jet. After
manipulating the data, the user generated two visualiza-
tions which expose the two types of vorticities. Then, by
applying a union operator upon the opacity maps of these
results, a composite image showing both types of vortic-
ities is generated and displayed in the original program.
Exploration can continue from here, using the spreadsheet
for more structured control as the session continues.

IX. Conclusions

By visually organizing the data exploration process while
providing tools to build upon and share this process our
spreadsheet-like interface makes visualization more efficient
and effective. The space of visualization parameters is
made clear by the spreadsheet’s structure and iconic dis-
play. The dependence of a result on its parameters becomes
transparently available. Previous results can be extended
by operators to further discovery. The interpreter can be
used to construct complex visualizations in a programmatic
manner. Finally, the interface makes the history of the
process available to both the user and their collaborators.
Combined, these capabilities utilize the inherent iterative
nature of the visualization process to a user’s advantage.

Fig. 13. The spreadsheet can be coupled with an auxiliary program
that can control the visualization. As the exploration progresses, the
main application updates the spreadsheet with its current state. This
interactive history mechanism can also be used to communicate the
other way. Here the user applied a parameter operator to the opacity
maps (columns) to highlight both the negative and positive vorticities
in a turbulent jet data set.

tjk
As printed in IEEE Transactions on Visualization and Computer Graphics, 7(3), 2001, pp. 275-287

12

This work is powerful because it is general: it can be
applied to a wide domain of visualization problems. The
parameter space abstraction can be used in many visual-
ization tasks. The stored representation can be shared and
extended in several different ways. These ideas will assist
users of visualization in all disciplines to explore, commu-
nicate, and understand their results.

A. Future Work

There exist several directions for future research in both
the spreadsheet-like interface and visual representations of
data exploration in general. Graphics researchers are al-
ready familiar with the difficulties involved in navigating a
3D environment with a 2D interface. The spreadsheet com-
plicates matters as it represents a multidimensional space.
Our current interface possesses means for setting the row
and column parameters. It does not have any method for
locating a previously generated image. Consequently, it
would also be beneficial to display navigational landmarks
that help a user locate themselves in visualization space. It
may also be possible to perform queries upon the represen-
tation to find parameters or results of interest; the types of
queries described by Henze [29] could be used to navigate
and explore the visualization space.

There is significant potential research in modeling the
visualization process. First, it may be possible to create a
general representation of this process. Such a model would
have to be able to determine the core features of the vi-
sualization parameter space and how the user can inter-
act/explore this space. The representation of the “path”
through visualization space can be enhanced as well by
moving from a linear trace to something that captures the
branching nature of the exploration (as in [30]). Given such
a formalism, an XML off-line format similar to the one here
could be created to be shared and built-upon by collabo-
rators using a variety of tools. This framework can also be
enhanced by including extensible meta-data to annotate
the visualization. User studies comparing the developed
interfaces to current interfaces would also assist in address-
ing current interface weaknesses. A better understanding
of the visualization process can only help systems designers
create interfaces more attuned to their users needs.

Acknowledgments

This work was supported by NASA Ames Research Cen-
ter through an NRA award under contract NAG2-1216,
the National Science Foundation under contracts 9983641
(CAREER Awards) and ACI 9982251 (LSSDSV program),
and Lawrence Livermore National Laboratory under ASCI
ASAP Level-2 Memorandum Agreements B347878 and
B503159. Thanks go to Ayodeji Demuren, Lawrence
Berkeley National Laboratory, Arthur Olson, Philip Smith,
Arthur Toga, Robert Wilson, and the Visible Human
Project for the data sets. Michael Gertz at UC Davis as-
sisted in the development of the XML model. The authors
thank the IEEE Visualization 2000 reviewers and members
of the UC Davis Visualization and Graphics Group for their
input and assistance.

References

[1] Ed H. Chi, John Riedl, Phillip Barry, and Joseph Konstan,
“Principles for information visualization spreadsheets,” IEEE
Computer Graphics & Applications, vol. 18, no. 4, pp. 30–38,
July - August 1998.

[2] Sherry Yang, Margaret M. Burnett, Elyon DeKoven, and Moshé
Zloff, “Representation design benchmarks: A design-time aid
for VPL naviable static representation,” Journal of Visual Lan-
guages and Computing, vol. 8, no. 5/6, pp. 563–599, October -
December 1997.

[3] Craig Upson, Thomas A. Faulhaber, Jr., David Kamins, David
Laidlaw, David Schlegel, Jeffrey Vroom, Robert Gurwitz, and
Andries van Dam, “The Application Visualization System: a
computational environment for scientific visualization,” IEEE
Computer Graphics and Applications, vol. 9, no. 4, pp. 30–42,
July 1989.

[4] Mark Young, Danielle Argiro, and Steven Kubica, “Cantata:
Visual programming environment for the Khoros system,” Com-
puter Graphics, vol. 29, no. 2, pp. 22–24, May 1995.

[5] Greg Abram and Lloyd A. Treinish, “An extended data-flow
architecture for data analysis and visualization,” Computer
Graphics, vol. 29, no. 2, pp. 17–21, May 1995.

[6] J. Marks, B. Andalman, P. A. Beardsley, W. Freeman, S. Gibson,
J. Hodgins, T. Kang, B. Mirtich, H. Pfister, W. Ruml, K. Ryall,
J. Seims, and S. Shieber, “Design galleries: A general approach
to setting parameters for computer graphics and animation,” in
Proceedings of SIGGRAPH97. ACM SIGGRAPH, Aug. 1997,
pp. 389–400.

[7] Kwan-Liu Ma, “Image graphs - a novel approach to visual data
exploration,” IEEE Visualization ’99, pp. 81–88, October 1999.

[8] Ivan Herman, Guy Melançon, and M. Scott Marshall, “Graph
visualization and navigation in information visualization: A
survey,” IEEE Transactions on Visualization and Computer
Graphics, vol. 6, no. 1, pp. 24–43, January-March 2000.

[9] Margaret M. Burnett, “Visual programming,” in Encyclopedia
of Electrical and Electronics Engineering, John G. Webster, Ed.
John Wiley and Sons Inc., New York, 1999.

[10] Margaret Burnett and Allen Amber, “Interactive visual data ab-
straction in a declarative visual programming language,” Jour-
nal of Visual Languages and Computing, vol. 5, no. 1, pp. 29–60,
March 1994.

[11] Paul Carlson, Margaret Burnett, and Jonathan Cadiz, “A seam-
less integration of algorithm animation into a declarative visual
programming language,” in Proceedings Advanced Visual Inter-
faces (AVI’96), May 1996.

[12] Margaret Burnett, Andrei Sheretov, and Gregg Rothermel,
“Scaling up a “what you see is what you test” methodology
to spreadsheet grids,” in Proceedings of IEEE Symposium on
Visual Languages 1999. IEEE, Sept. 1999.

[13] Marc Levoy, “Spreadsheets for images,” Proceedings of SIG-
GRAPH 94, pp. 139–146, July 1994.

[14] A. F. Hasler, K. Palaniappan, and M. Manyin, “A high per-
formance interactive image spreadsheet (IISS),” Computers in
Physics, vol. 8, pp. 325–342, May - June 1994.

[15] K. Palaniappan, A. F. Hasler, J. Fraser, and M. Manyin,
“Network-based visualization using the distributed image
spreadsheet (DISS),” in Seventeenth Int. Conf. on Interactive
Information and Processing Systems (IIPS) for Meteorology,
Oceanography and Hydrology, Albuquerque, NM,, Jan. 14-19,
2001, American Meteorological Society.

[16] T.J. Jankun-Kelly and Kwan-Liu Ma, “A spreadsheet interface
for visualization exploration,” in Proceedings of IEEE Visual-
ization 2000, Salt Lake City, Oct. 2000, IEEE.

[17] Robert Spence, Information Visualization, p. 92, ACM Press,
2001.

[18] Greg Schussman, Kwan-Liu Ma, Davis Schissel, and Todd Evans,
“Visualizing DIII-D Tokamak magnetic field lines,” in Proceed-
ings of IEEE Visualization 2000, Salt Lake City, Oct. 2000,
IEEE.

[19] Patrick J. Moran and Chris Henze, “Large field visualization
with demand-driven calculation,” in Proceedings of IEEE Visu-
alization 1999, David Ebert, Markus Gross, and Bernd Hamann,
Eds., New York, Oct. 1999, pp. 27–34, ACM Press.

[20] Robert V. Wilson and Ayodeji O. Demuren, “On the origin
of streamwise vorticity in complex turbulent jets,” in Proceed-
ings of ASME Fluids Engineering Division Summer Meeting
(FEDSM98). ASME, 1998.

tjk
As printed in IEEE Transactions on Visualization and Computer Graphics, 7(3), 2001, pp. 275-287

13

[21] Takeo Igarashi, Jock D. Mackinlay, Bay-Wei Chang, and Polle T.
Zellweger, “Fluid visualization of spreadsheet structures,” in
Proceedings of IEEE Symposium on Visual Languages 1998.
IEEE, Sept. 1998.

[22] World Wide Web Consortium, “Extensible Markup Language
(XML) 1.0,” Tech. Rep., World Wide Web Consortium, 2000,
http://www.w3.org/TR/2000/REC-xml-20001006.

[23] World Wide Web Consortium, “Extensible Stylesheet Lan-
guage (XSL),” Tech. Rep., World Wide Web Consortium, 2000,
http://www.w3.org/TR/xsl/ (Work in Progress).

[24] World Wide Web Consortium, “XQuery: A Query Language
for XML,” Tech. Rep., World Wide Web Consortium, 2001,
http://www.w3.org/TR/xquery/ (Work in Progress).

[25] Jim Hugunin, “Python and Java: The best of both worlds,”
in Proceedings of the 6th International Python Conference.
CNRI, 1997, http://www.python.org/workshops/1997-10/-
proceedings/hugunin.html.

[26] Guido van Rossum, Python Language Reference Manual, July
1999, http://www.python.org/doc/ref/ref.html.

[27] Hanspeter Pfister, Jan Hardenbergh, Jim Knittel, Hugh Lauer,
and Larry Seiler, “The VolumePro real-time ray-casting sys-
tem,” in Proceedings of SIGGRAPH99, Alyn Rockwood, Ed.,
N.Y., Aug. 8–13 1999, ACM SIGGRAPH, pp. 251–260, ACM
Press.

[28] Ikuko Takanashi, Eric Lum, Joerg Meyer, Kwan-Liu Ma, Bernd
Hamann, and Art Olson, “Segmentation and volume rendering
of human brain cryosections,” Submitted to IEEE Visualization
2001 Case Studies.

[29] Chris Henze, “Feature detection in linked derived spaces,” in
Proceedings of the IEEE Visualization 1998, New York, Oct. 18–
23 1998, pp. 87–94, ACM Press.

[30] John Peter Lee and George G. Grinstein, “An architecture for
retaining and analyzing visual explorations of databases,” in
Proceedings of Visualization 1995. 1995, pp. 101–108, IEEE.

T.J. Jankun-Kelly is a PhD Candidate and
graduate student researcher in computer sci-
ence at the University of California, Davis. His
interests include scientific visualization, infor-
mation visualization, computer graphics, and
theory. He received his BS in 1997 from Har-
vey Mudd College and MS in 1999 from the
University of California, Davis. He expects his
PhD in late 2001. Contact Jankun-Kelly by
e-mail at tjk@acm.org.

Kwan-Liu Ma is an associate professor of
computer science at the University of Califor-
nia, Davis, where he teaches and conducts re-
search in the areas of computer graphics and
scientific visualization. His career research goal
is to improve the overall experience and perfor-
mance of data visualization through more ef-
fective user interface designs, interaction tech-
niques, and high-performance computing. Ma
received his PhD from the University of Utah
in 1993. He served as co-chair for the 1997

IEEE Symposium on Parallel Rendering, the IEEE Visualization
Conference Case Studies in 1998 and 1999, and the first NSF/DOE
Workshop on Large Data Visualization. Contact Ma by e-mail at
ma@cs.ucdavis.edu.

tjk
As printed in IEEE Transactions on Visualization and Computer Graphics, 7(3), 2001, pp. 275-287

