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ABSTRACT OF THE THESIS

Sampling and Learning

of the And-Or Graph

by

Ruize Zhang

Master of Science in Statistics

University of California, Los Angeles, 2020

Professor Yingnian Wu, Chair

The And-Or graph is a tool for knowledge representation. In this thesis we first study

the sampling of the And-Or graph with or without context constraints. Without

any constraint on the potential functions of the And-Or graph nodes, the positions

and shapes of different components of the face images are not aligned properly. In

contrast, with both unary constraints and binary constraints, the components are

aligned and the samples are more representative of the And-Or graph. We further

explore parameter and structure learning of the And-Or graph by implementing

and applying some existing algorithms. The experimental results on 1D text data

and 2D face image data are shown. While there is no apparent difference between

the sampling results of the parameter learned And-Or graph and the true And-Or

graph, the sampling results of the structure learned And-Or graph are not perfect

and could be further improved.
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CHAPTER 1

Introduction

1.1 Grammar

In real world signals like natural languages or images, a grammar can be used to

describe how the basic elements can be grouped together to form larger parts of

the signals. We can observe that many small parts appear together very often. For

example, a noun-phrase is a ”reusable” part in language. Such parts repeated a lot

as building blocks of more complex sentences. According to [Cho57], a grammar can

be formulated as G = (VN , VT , R, S). In this formulation, VN represents the parts of

the signals that can be further separated into smaller parts. VT represents the most

elementary parts, R means the rules of generating those smaller parts from higher

lever parts and S stands for the root for us to expand. As an illustration of that,

we can define a simple grammar ourselves:

S →M

M → N

M → N + /−N

N → 0/1/2/3/3/5/6/7/8/9

In the example above, S is the starting point, the rules are represented by arrows,

and M and N are non-terminal nodes. The plus and minus tokens and numbers

from 0 to 9 are terminal nodes.
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1.2 Parse Graph

Parsing can be regarded as the way of analyzing or interpreting a signal and a parse

tree can be used to represent how the signals are separated recursively into reusable

parts and then more elementary parts. Each non-terminal node of the parse tree

can be replaced by its children until the leaf nodes are reached. A parse graph can

be regarded as the combination of a parse tree to represent the grammar structure

introduced in Section 1.1 and also the relations between the vertices, which are

defined as {(v, u)} ⊂ V × V . Here V denotes the vertex set. For example, the

relations can be the chance of co-occurrence of words in text and the orientations

and relative positions for different components of images. An example parse tree of

a sentence is given in Figure 1.1.

Figure 1.1: Example of a parse tree of a sentence
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1.3 And-Or Graph

In parse graphs, there is no or-node to represent substitutions between multiple

components. To represent this relation of substitution in the possible parse graphs,

we can use the And-Or graph. An And-Or graph contains and-nodes to combine

different parts, or-nodes for parts that can be substituted and leaf nodes at the

bottom as basic elements of the signals. Each of the children of the or-nodes has a

weight associate with it, determining the probability that this specific child being

chosen. An And-Or Graph can also have links between nodes of the same level to

describe the relation between different parts of the same level of the graph. An

example And-Or tree structure is given in Figure 1.2. Given that an And-Or graph

is a recursive structure that can potentially contain multiple or-nodes in each level,

it has strong expressive power to generate large amount of combinations of the leaf

nodes using relatively small number of non-terminal and-nodes and or-nodes. As

an efficient way of knowledge representation, it is first explicitly used in [CXL06].

In Statistics M232B: Statistical Computing and Inference in Vision and Cognition,

spatial, temporal, causal and attribute And-Or graphs are introduced for different

objects of modeling and in this thesis we only consider the application of the And-Or

graph in modeling text and images.

Figure 1.2: Example of a AOG tree structure
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1.4 Content Overview

In the following chapters, we first explore the sampling of the And-Or graph with

or without context constraints. As we can see from the sampling results of the

face images, if we don’t consider the constraints on the potential functions of the

And-Or graph nodes, the positions and shapes of different components of the face

image are not aligned properly. In contrast, when we add both unary constraints

and binary constraints, the components are aligned and we the samples are more

representative of the And-Or graph. Then in chapter 3 and 4 we explore parameter

and structure learning of the And-Or graph by implementing and applying the

algorithms introduced in [HNF18] and [TPZ13]. The experimental results on 1D

text data and 2D face image data are shown. While there is no apparent difference

between the sampling results of the parameter learned And-Or graph and the true

And-Or graph, the sampling result of the structure learned And-Or graph is not

perfect and may be further improved as suggested in the conclusion of chapter 4.
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CHAPTER 2

Sampling of the And-Or Graph

2.1 Unconstrained Sampling

An And-Or graph can generate multiple configurations, which are the sequences

formed by all of its leaf nodes. In this section, we sample from all the possible

configurations of the And-Or graph. Since the weights of the or-nodes represent

the likelihood for their children to appear, if we randomly choose one child of each

or-node according to its weight and choose all children of each and-node, we can get

the unconstrained sampling result, which turns out to be a single parse tree. Here

we use two examples to illustrate the sampling, one is the sampling from an And-Or

Graph for 1d text and the other is for 2d face images. Figure 2.1 shows the And-Or

structure of the 1d text. Similarly, Figure 2.2 shows the And-Or structure of the 2d

face images. The 1D text And-Or graph defines how the sentences can be composed

by the leaf words. And the 2D face images shows how the face image is composed by

left eye, right eye, left ear,right ear, nose and mouth of different types. During the

sampling process, we start from the top level root node and expand each node in a

top-down order. To generate the samples with each component in the proper order,

we also need to record the order of occurrence of the ancestors of the leaf nodes and

the leaf nodes themselves from left to right. Examples of the sampling result of the

text and face are shown in Figure 2.3 and Figure 2.4. Figure 2.3 contains the rules

used in generating the sequence of text and then the text itself. Given that this is

unconstrained sampling, we do not consider the attributes and relations associate

5



with the nodes. So we can see that for each rule in Figure 2.3, the two attributes

of each node are randomly selected. And in Figure 2.4 the parts of the face are not

aligned properly.

Figure 2.1: AOG 1D text

Figure 2.2: AOG 2D face
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Figure 2.3: Unconstrained sample of 1D text

Figure 2.4: Unconstrained sample of 2D face
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2.2 Constrained Sampling with Unary Potential Function

Without the constraints for the attributes of the vertices in the And-Or Graph, we

can generate texts or images with correct components. However, as we can see from

the unconstrained face images, the components are not arranged in the proper way.

So we can introduce complexity into the model using the stochasticity brought by

potential functions.

According to the course materials and slides of STATS-232B taught by professor

Song-Chun Zhu, using the maximum entropy principle to match the frequency of

the or-nodes and other statistics one can get the following probability model on the

parse graph contained in the And-Or Graph:

ε(pg) =
∑
v∈V or(pg) λv(w(v)) +

∑
t∈leaf(pg)∪V and(pg) λt(α(t))

+
∑

(i,j)∈E(pg) λi,j(vi, vj, γij, ρij)

p(pg) = 1
Z(Θ)

exp(−ε(pg))

In the equations above, ε(pg) is the total energy. The first term λv in the energy

function accounts for the or-node weights, which corresponds to the probability of

occurrence for each of its’ children. The second and third term are related to the

potential function as the constraints in the model. Specifically, the second term

λt corresponds to energy of a single node, which is related to the attributes α(t)

of the node. The third term λij, on the other hand, corresponds to the relation

between pairs of nodes. γij and ρij here can be regarded as attributes relating to

the structure that binds the pair of vertices and the compatibility of the pair of

vertices. In Figure 2.5 and 2.6, the sampling of the same And-Or grammar, from

section 2.1, for both the text and images, are shown.

As we can see from the sample of the 1D text, the two attributes of the leaf

nodes are now similar to each other. For the 2D face images, the parts of the face

are now aligned in better positions but different parts, for example the two eyes or
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ears, may not be the same type. Also the orientation of the parts may not align

with each other.

In the constrained sampling, we first use the unconstrained sampling to generate

the parse tree of the And-Or Graph as in chapter 2.1, then use Gibbs Sampling

method to modify the attributes of the nodes. To perform Gibbs Sampling, we first

randomly initialize the attributes. Since each of the attribute values has different

range and is continuous, we can’t directly sampling from all possible values from

the range. One way we can use is to divide the range of the attribute values into

100 bins. In each modification, we choose one value from the bins. Then in each

iteration, we calculate the conditional probability of one single attribute of one leaf

node given the attributes of all other attributes, which is proportional to their joint

probability. The joint probability is then given by the probability model above.

Since for each leaf node there are multiple attributes and for each attribute there

are 100 bins, for each leaf node, we need to calculate | attribute | ∗100 values. After

200 Gibbs iterations, we obtain the results in Figure 2.5 and 2.6.
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Figure 2.5: Unary-constrained sample of 1D text

Figure 2.6: Unary-constrained sample of 2D face
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2.3 Constrained Sampling with Binary Potential Function

We can further add binary constraints to the sampling. That is, we consider the

binary potential functions in the energy equation in Section 2.2. Since the binary

potential function is determined by the attributes of pairs of nodes, we need to

calculate the attributes of non-terminal nodes which have relations with other non-

terminal nodes in addition to the potential of the single leaf node calculated in

Section 2.2. In every iteration of the Gibbs Sampling, we again divide the attribute

range of each node that has a potential function into 100 bins. Then when calculating

the joint probabilities, we add the third term in the probability equation in Section

2.2. Since the attributes of the non-terminal nodes here are set as the sum of their

children nodes, we can start from the leaf level and calculate the attributes of non-

terminal nodes recursively. Given that different pairs of nodes have different binary

potential functions, we set different binary potential parameters according to the

semantic states of the nodes and pass that as a parameter to the binary potential

function. In the process of the Gibbs Sampling, since we need to calculate the joint

probabilities for all possible values of the attributes of the leaf nodes and the joint

probability is related to the potential energy of the non-terminal nodes, we need to

modify all the attributes of the non-terminal nodes accordingly. Figure 2.7 and 2.8

show the results generated after 200 Gibbs Iterations. This time we can see that

the face images generated have all the components in the proper positions and also

aligned with each other.

In conclusion, in this chapter we sampled from the And-Or graph for the 1D text

and 2D face image. In this process we explored unconstrained, unary constrained

and binary constrained sampling. While in the unconstrained sampling we just

consider the structure of the And-Or graph, in the constrained sampling we also

consider other factors in the energy function, including the unary potential function

11



of the terminal nodes and binary potential functions between pairs of nodes. To

sample from the distribution, Gibbs sampling is applied. From the sampling results

of the face images, we can see that when both constraints are added, positions and

shapes of different components of the faces are aligned properly.

Figure 2.7: Binary-constrained sample of 1D text

Figure 2.8: Binary-constrained sample of 2D face
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CHAPTER 3

Parameter Learning of the And-Or Graph

In the previous sections, the And-Or graph structure and parameters are known. In

this section, we continue using the face image example to explore the learning of the

And-Or graph parameters with the structure known. The parameters that we want

to learn include the or-node weights and potential function parameters. To learn

the or-node weights, we just need to count the or-node frequencies in the training

data. That is, we count the number of occurrence of the children of each or-node.

If we denote the children of one or-node as Vor1 ...Vorn , this formulation is given as:

w(Vori) =
|Vori |
|Vor| .

In Section 2.2 and 2.3, we have mentioned that the potential is a function of

attributes of the nodes. For unary potential function, the potential function of a

node is related to the attributes of the node itself. For binary potential function,

the potential of a pair of nodes is related to the attributes of this pair. For this

face example, we can define 14 variables to represent the mean x and y position of

the face, nose, left eye,right eye, left ear, right ear and mouth. These 14 variables

are then used in the calculation of the potential function. In this section, we aim

to learn the value of those variables. To be more specific, we set those parameters

as following: face x mean=64, face y mean=64, nose x mean=64, nose y mean=70,

mouth x mean=64, mouth y mean=85, ear left x mean=118, ear left y mean=50,

ear right x mean=10, ear right y mean=50, eye left x mean=80, eye left y mean=42,

eye right x mean=48, eye right y mean=42. During the learning, we can use the L2
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distance of the parameter values we learned and the ground truth values to check

the correctness of this procedure. In the experiment, we witness this L2 distance

reduces to around 5.

To learn the parameters, we apply the self-critic learning of energy based models

in [HNF18]. We use the relation: ∂
∂α
KL(qdata(x) ‖ πα(x)) = Eqdata [

∂
∂α
fα(x)] −

Eπα [ ∂
∂α
fα(x)]. Here α is the parameter we learn and fα(x) is the total potential

function, i.e., the sum of unary potential and binary potential given in section 2.2.

And here we need to minimize the KL divergence between the training sample data

distribution and our parameterized probabilistic distribution.

To calculate the averaged potential gradient function of both training and sam-

pled data, we need to first get the sum of the gradient introduced by the potential

function of each node or pair of node. For the leaf nodes, the unary potential func-

tion is only related to their attributes and the parameters we set. So we can easily

compute the gradient using the unary potential function. However, for binary po-

tential function, the gradient is not that easy to compute. To solve this problem,

we can apply the numerical way of computing the gradient. Since the parameters in

this image case is actually the positions of the components of the face, the value is

discrete and the difference between the adjacent values is 1. Therefore, we can cal-

culate the binary potential of parameter and parameter plus 1 and use the difference

as the potential gradient. To decide which of the 14 parameters should be used to

calculate gradient towards, we can first give each of them a index. A binary poten-

tial parameter is passed to each binary potential gradient function, which records

the index of the parameters that is used. After we get each single gradient, we add

them together as the total potential gradient of one data, which is then averaged

over the dataset.

During the experiment, We use 1000 training data and generate samples in each

iteration. Specifically in each iteration, we use the current potential function to

14



sample new data and use the average potential function gradient with respect to

each of the 14 parameters to compare with that of the training data. Although we

have 1000 training data, generating 1000 samples in each iteration can be slow to

compute. To reduce the amount of computation we reduce the number of samples

to 50. Figure 3.1 shows the samples generated by the learned model. The true

grammar and learned grammar are given in Figure 3.2 and Figure 3.3.

In conclusion, in this part we apply the self-critic learning of energy based mod-

els in [HNF18] to learn the And-Or graph parameters. From the sampling result,

we can see that the positions of the different parts of the face are aligned correctly.

And there is no apparent difference between the binary constrained samples we gen-

erated in Section 2.3 using the true grammar and the samples we generated using

the learned And-Or graph parameters.

Figure 3.1: Parameter learned sample of 2D face
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Figure 3.2: True face grammar in parameter learning

Figure 3.3: Learned face grammar in parameter learning
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CHAPTER 4

Structure Learning of the And-Or Graph

In the previous sections, we know the structure of the And-Or graph and only need

to determine the parse tree or parameters of the potential functions. In this section

we learn the structure of the And-Or graph behind the training data. In this section

we use the 1D text data and another robotic commands dataset to illustrate the

learning.

To learn the structure of the And-Or graph, we apply the algorithm that is

introduced in [TPZ13]. In this paper, the notion of And-Or fragment is introduced.

According to the paper, an And-Or fragment is a combination of and-node and

or-node, with an and-node as the root and several or-node as its children. Each or-

node can then have several children as leaf nodes. This And-Or fragment structure is

better than fragments that only contain and-node and or-node as merely adding and-

fragment to the grammar may be insufficient to cover the structure of the grammar

while merely adding or-fragment decreases the posterior probability of the grammar

and may need more expensive search algorithms [TPZ13].

In [TPZ13], an algorithm for adding And-Or fragment to the grammar piece by

piece is introduced. In each iteration, a randomly chosen And-Or fragment with two

or-nodes and two children for each or-node is chosen from data and then modified by

deleting or adding or-node or leaf-node using its neighboring nodes in the data. The

paper also introduces the notion of posterior gain, which is the product of likelihood

gain and prior gain. These two notions are defined as:

17



likelihood gain: P (X|Gt+1)
P (X|Gt) =

∏n

i=1

∏mi
j=1
‖RDi(aij)‖‖RDi(aij)‖

‖RD‖n‖RD‖

∏
c
(
∑

e
CM [e,c])

∑
e
CM [e,c]∏

e,c
CM [e,c]CM [e,c]

prior gain: P (Gt+1)
P (Gt)

= e−α(‖Gt+1‖−‖Gt‖)

The or-node weight of the And-Or fragment is set as:

P (Oi → aij) = ‖RDi(aij)
‖RD‖

In the equation above, X is the observed data and Gt is the grammar at iteration

t. n is the length of the configuration generated by the And-Or fragment, which

is equal to the number of children or-node of the root node and mi is the number

of children for a or-node in the And-Or fragment. CM is a notion introduced

in the paper as the context matrix for a selected And-Or fragment, where each

entry represents the number of occurrence of one possible configuration of the And-

Or fragment in that specific context in the training data. The context is defined

as the rest of one training data with the parts that can be substituted by the

And-Or fragment removed. RD here denotes the reductions we can make in the

training data, which are the patterns in data that can be generated using the And-

Or fragment. And RDi(aij) are the reductions in which the i-th node reduced is aij.

The last equation here shows that the And-Or fragment add in each iteration uses

the weights that is proportional to the occurrences of the leaf nodes replaced in the

training data, just like the way of setting or-node weights in section 2.2.

In this section, the form of training data for 1D text and robotic commands are

shown in Figure 4.1 and Figure 4.2. The 1D text data is sampled from the same

And-Or graph in section 2.1. We can implement the algorithm in [TPZ13], which is

shown in Figure 4.3 with greedy search to learn the structure of the And-Or graph.

In practice, since we raise the number of reductions or configurations that satisfy

certain conditions to the power of themselves, we may encounter values that are too

large to compute. To solve this problem, we calculate the values in the log space. In

each iteration, we generate in the And-Or graph new rules introduced by the And-
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Or fragment. Also, since some parts of the original And-Or graph are replaced,

some rules are removed from our grammar. Initially, the grammar is represented

directly by all the training data observed. This can be very inefficient and we can

not generate new configurations using the grammar. So although we can generate

samples from the original dataset, the parsing accuracy of new testing data world

be zero if the testing data doesn’t appear in the training set. If the training goes

well, we should be able to see that during the training process, the number of

rules for representing the training data decreases. This is because more and more

”data” are grouped together as ”the same”. Here ”data” is actually the third level

representation of the data in the And-Or graph if we regard the root or-node as

the top level and the And-node of each different data as the second level. This

data representation is then updated in each iteration. By ”the same” we mean that

although the data itself never change, as we update the And-Or graph, the third

level representation for some of the data will become the same.

In conclusion, in this part we implemented the algorithm in [TPZ13] and applied

it to a 1D text dataset and a robotic command dataset. After 50 iterations of

learning, each iteration with 100 inner loops to choose new And-Or fragment, the

generated data using the learned grammar for the 1D text and robotic commands is

shown in Figure 4.4 and Figure 4.5. When using 2419 robotic commands sentences

to learn and 794 robotic commands to test, 8.0506% of the unseen test robotic

commands can be parsed correctly using Earley Parser [Ear70] in 50 iterations. The

learned samples are not perfect and contain many fragments. To improve the result,

we may need to use beam search as pointed out by the paper and use a larger expand

limit to modify the randomly initialized And-Or fragment.
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Figure 4.1: Structure learning training data: 1D text

Figure 4.2: Structure learning training data: robotic commands
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Figure 4.3: The learning algorithm in [TPZ13]
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Figure 4.4: Sample of 1D text generated by learned grammar

Figure 4.5: Sample of robotic commands generated by learned grammar
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