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ABSTRACT OF THE THESIS

Sampling and Learning

of the And-Or Graph

by

Ruize Zhang
Master of Science in Statistics
University of California, Los Angeles, 2020
Professor Yingnian Wu, Chair

The And-Or graph is a tool for knowledge representation. In this thesis we first study
the sampling of the And-Or graph with or without context constraints. Without
any constraint on the potential functions of the And-Or graph nodes, the positions
and shapes of different components of the face images are not aligned properly. In
contrast, with both unary constraints and binary constraints, the components are
aligned and the samples are more representative of the And-Or graph. We further
explore parameter and structure learning of the And-Or graph by implementing
and applying some existing algorithms. The experimental results on 1D text data
and 2D face image data are shown. While there is no apparent difference between
the sampling results of the parameter learned And-Or graph and the true And-Or
graph, the sampling results of the structure learned And-Or graph are not perfect

and could be further improved.
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CHAPTER 1

Introduction

1.1 Grammar

In real world signals like natural languages or images, a grammar can be used to
describe how the basic elements can be grouped together to form larger parts of
the signals. We can observe that many small parts appear together very often. For
example, a noun-phrase is a "reusable” part in language. Such parts repeated a lot
as building blocks of more complex sentences. According to [Cho57], a grammar can
be formulated as G = (Vy, V, R, S). In this formulation, Viy represents the parts of
the signals that can be further separated into smaller parts. V7 represents the most
elementary parts, i means the rules of generating those smaller parts from higher
lever parts and S stands for the root for us to expand. As an illustration of that,
we can define a simple grammar ourselves:

S—M

M — N

M—-N+/-N

N —0/1/2/3/3/5/6/7/8/9

In the example above, S is the starting point, the rules are represented by arrows,
and M and N are non-terminal nodes. The plus and minus tokens and numbers

from 0 to 9 are terminal nodes.



1.2 Parse Graph

Parsing can be regarded as the way of analyzing or interpreting a signal and a parse
tree can be used to represent how the signals are separated recursively into reusable
parts and then more elementary parts. Each non-terminal node of the parse tree
can be replaced by its children until the leaf nodes are reached. A parse graph can
be regarded as the combination of a parse tree to represent the grammar structure
introduced in Section 1.1 and also the relations between the vertices, which are
defined as {(v,u)} C V x V. Here V denotes the vertex set. For example, the
relations can be the chance of co-occurrence of words in text and the orientations
and relative positions for different components of images. An example parse tree of

a sentence is given in Figure 1.1.

S
NP VP
Vv NP
/\
NP PP
N /N
Det N P NP
N
Det N
|
I ate the cake with a cherry.

Figure 1.1: Example of a parse tree of a sentence



1.3 And-Or Graph

In parse graphs, there is no or-node to represent substitutions between multiple
components. To represent this relation of substitution in the possible parse graphs,
we can use the And-Or graph. An And-Or graph contains and-nodes to combine
different parts, or-nodes for parts that can be substituted and leaf nodes at the
bottom as basic elements of the signals. Each of the children of the or-nodes has a
weight associate with it, determining the probability that this specific child being
chosen. An And-Or Graph can also have links between nodes of the same level to
describe the relation between different parts of the same level of the graph. An
example And-Or tree structure is given in Figure 1.2. Given that an And-Or graph
is a recursive structure that can potentially contain multiple or-nodes in each level,
it has strong expressive power to generate large amount of combinations of the leaf
nodes using relatively small number of non-terminal and-nodes and or-nodes. As
an efficient way of knowledge representation, it is first explicitly used in [CXLO6].
In Statistics M232B: Statistical Computing and Inference in Vision and Cognition,
spatial, temporal, causal and attribute And-Or graphs are introduced for different
objects of modeling and in this thesis we only consider the application of the And-Or

graph in modeling text and images.

Or
And And
Or Or Or Or

_—— /N N NT——

Leat Leatf Leaf Leat Leat Leaf Leaf Leaf

Figure 1.2: Example of a AOG tree structure



1.4 Content Overview

In the following chapters, we first explore the sampling of the And-Or graph with
or without context constraints. As we can see from the sampling results of the
face images, if we don’t consider the constraints on the potential functions of the
And-Or graph nodes, the positions and shapes of different components of the face
image are not aligned properly. In contrast, when we add both unary constraints
and binary constraints, the components are aligned and we the samples are more
representative of the And-Or graph. Then in chapter 3 and 4 we explore parameter
and structure learning of the And-Or graph by implementing and applying the
algorithms introduced in [HNF18] and [TPZ13]. The experimental results on 1D
text data and 2D face image data are shown. While there is no apparent difference
between the sampling results of the parameter learned And-Or graph and the true
And-Or graph, the sampling result of the structure learned And-Or graph is not

perfect and may be further improved as suggested in the conclusion of chapter 4.



CHAPTER 2

Sampling of the And-Or Graph

2.1 Unconstrained Sampling

An And-Or graph can generate multiple configurations, which are the sequences
formed by all of its leaf nodes. In this section, we sample from all the possible
configurations of the And-Or graph. Since the weights of the or-nodes represent
the likelihood for their children to appear, if we randomly choose one child of each
or-node according to its weight and choose all children of each and-node, we can get
the unconstrained sampling result, which turns out to be a single parse tree. Here
we use two examples to illustrate the sampling, one is the sampling from an And-Or
Graph for 1d text and the other is for 2d face images. Figure 2.1 shows the And-Or
structure of the 1d text. Similarly, Figure 2.2 shows the And-Or structure of the 2d
face images. The 1D text And-Or graph defines how the sentences can be composed
by the leaf words. And the 2D face images shows how the face image is composed by
left eye, right eye, left ear,right ear, nose and mouth of different types. During the
sampling process, we start from the top level root node and expand each node in a
top-down order. To generate the samples with each component in the proper order,
we also need to record the order of occurrence of the ancestors of the leaf nodes and
the leaf nodes themselves from left to right. Examples of the sampling result of the
text and face are shown in Figure 2.3 and Figure 2.4. Figure 2.3 contains the rules
used in generating the sequence of text and then the text itself. Given that this is

unconstrained sampling, we do not consider the attributes and relations associate



with the nodes. So we can see that for each rule in Figure 2.3, the two attributes
of each node are randomly selected. And in Figure 2.4 the parts of the face are not

aligned properly.
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Figure 2.1: AOG 1D text
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Figure 2.2: AOG 2D face
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(27-8):b2:[0.285, 0.44]> -> <(35-0):b2A1:[0.53, 0.21]> <(36-0):b2A2:[0.04, 0.67]>
):0:[8.33, 0.365]> -> <(2-0):B:[0.33, 0.365]>

):0:[0.33, 0.365]> -> <(3-8):0:[0.33, 0.365]>

):8:[0.33, 0.365]> -> <(34-0):b1:[0.375, 0.29]> <(48-0):b2:[0.285, 0.44]>
4-6):b1:[0.375, 8.29]> -> <(33-0):b1:[6.375, 0.29]>

0-0):b2:[6.285, 0.44]> -> <(27-8):b2:[0.285, 0.44]>

33-0):b1:[6.375, 0.29]> -> <(31-8):b1B1:[0, 0.13]> <(32-08):b1B2:[0.75, 0.45]>
b1B1b1B2b2A1b2A2

<(9-8):a3:[6.05, 8.52]> -> <(22-0):a31:[0.05, 0.52]>

<(19-0):32:[0.83, 0.83]> -> <(18-8):322:[0.83, 0.83]>

(7-0):a1:[6.525, 8.72]> -> <(10-0):a1A1:[0.67, ©8.93]> <(11-0):a1h2:[0.38, 0.51]>
(8-0):0:[0.468333, 0.423333]> -> <(1-8):A:[0.468333, 0.423333]>
(4-0):0:[0.468333, 0.423333]> -> <(0-0):0:[0.468333, 0.423333]>
(
(
(
<(

2
<(3-
<(4-
<(2-
<(3
4

<(
<

25-0):a3:[0.05, 0.52]> -> <(9-0):a3:[0.05, 0.52]>

1-0):A:[0.468333, 0.423333]> -> <(16-0):al:[0.525, 0.72]> <(20-0):a2:[0.83, 0.83]> <(25-0):a3:[0.05, 0.52]>
16-6):a1:[6.525, ©.72]> -> <(7-0):a1:[0.525, 0.72]>

20-0):a2:[0.83, 0.03]> -> <(19-0):a2:[0.83, 0.03]>

alAlalA2a22a31

<(54-0):c2: []> -> <(52-8):c2B1:[0.58, 0.93]> <(53-0):c2B2:[0.84, 0.52]>

<(6-0):0:[]> -> <(5-8):C:[]>

(41-0):cl: []> -> <(43-8):c1A1:[0.67, 0]> <(44-0):c1A2:[0.38, 0.06]> <(45-0):c1A3:[0.41, 0.68]>
(55-0):c2:[]> -> <(54-0):c2:[]>

(4-08):0:[]> -> <(6-0):0:[]>

(5-0):C:[]> -> <(49-0):c1:[]> <(55-0):c2:[]>

<(49-0):c1:[]> -> <(41-8):cl:[]>

c1A1c1A2c1A3c2B1c2B2

Figure 2.3: Unconstrained sample of 1D text
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Figure 2.4: Unconstrained sample of 2D face



2.2 Constrained Sampling with Unary Potential Function

Without the constraints for the attributes of the vertices in the And-Or Graph, we
can generate texts or images with correct components. However, as we can see from
the unconstrained face images, the components are not arranged in the proper way.
So we can introduce complexity into the model using the stochasticity brought by
potential functions.

According to the course materials and slides of STATS-232B taught by professor
Song-Chun Zhu, using the maximum entropy principle to match the frequency of
the or-nodes and other statistics one can get the following probability model on the
parse graph contained in the And-Or Graph:

e(pg) = Lievorpg) M(W(V) + Xicicafpgiuvand pg) M((t))

+ X (6.j)eEmg) Mo (Vis Vg5 Vigs Pig)

p(pg) = z@gerp(—<(pg))

In the equations above, £(pg) is the total energy. The first term A, in the energy
function accounts for the or-node weights, which corresponds to the probability of
occurrence for each of its’ children. The second and third term are related to the
potential function as the constraints in the model. Specifically, the second term
A corresponds to energy of a single node, which is related to the attributes a(t)
of the node. The third term A;;, on the other hand, corresponds to the relation
between pairs of nodes. 7;; and p;; here can be regarded as attributes relating to
the structure that binds the pair of vertices and the compatibility of the pair of
vertices. In Figure 2.5 and 2.6, the sampling of the same And-Or grammar, from

section 2.1, for both the text and images, are shown.

As we can see from the sample of the 1D text, the two attributes of the leaf
nodes are now similar to each other. For the 2D face images, the parts of the face

are now aligned in better positions but different parts, for example the two eyes or



ears, may not be the same type. Also the orientation of the parts may not align

with each other.

In the constrained sampling, we first use the unconstrained sampling to generate
the parse tree of the And-Or Graph as in chapter 2.1, then use Gibbs Sampling
method to modify the attributes of the nodes. To perform Gibbs Sampling, we first
randomly initialize the attributes. Since each of the attribute values has different
range and is continuous, we can’t directly sampling from all possible values from
the range. One way we can use is to divide the range of the attribute values into
100 bins. In each modification, we choose one value from the bins. Then in each
iteration, we calculate the conditional probability of one single attribute of one leaf
node given the attributes of all other attributes, which is proportional to their joint
probability. The joint probability is then given by the probability model above.
Since for each leaf node there are multiple attributes and for each attribute there
are 100 bins, for each leaf node, we need to calculate | attribute | *100 values. After

200 Gibbs iterations, we obtain the results in Figure 2.5 and 2.6.
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<

4-0):0:[0.3925, 0.465833

]
]
]
]

<(34-8):b1:[0.43, 8.426667]> -> <(26-0):b1:[0.43, 0.426667]>
<(40-0):b2: [0, 355 9.505]> -> <(27-0):b2:[0.355, 0.505]>
26-8):b1: [0 43, 0.426667]> -> <(28-0):b1A1:[0, 0.01]> <(29-8):b1A2:[0.79, 0.79]> <(30-8):b1A3:[0.5, 0.48]>

biA1b1A2b1AZb2ATb2A2

27-0):b2:[0.255, 8.715]> ->

<(3-8):0:[6.3625, 8.5325)> ->

<(4-08):0:[0.3025, 8.5325])> ->
]

«(34-0):b1:[0.35, 0.35]> -> <(33-0):b1:[0.35, 0.35]>

<(35-8):b241:[0.45, 0.44]>

> <(2-0):B:[6. 3025 8.5325]>
<(3-0):0:[0.3025, 6.5325]>

-> <(34-0): bl [0.35, 8.35)> <(40-0):b2:[0.255, 0.715]>

<(46-8):b2:[8.255, 8.715]> -> <(27-6):b2:[0.255, 0.715]>
33-0):b1: [e 35, 0.35]> -> <(31-0):b1B1:[6.43, 0.43]> <(32-0):b1B2:[0.27, 0.27]>

<
5
<(2-0):B:[0.3025, 0.5325]>
(
(
<

b1B1b1B2b2A1b2A2

<
<
<
<
<

5-0):C:[]> -> <(49-0):cl:

[1> <(55-8):c2:[]>

<(49-0): Cl [17 -> <(41-0):c1:]]>

c1A1c1A2c1A3c2B1c2B2

<(36-0):b242:[0.06, 0.08]>

<(54-8):c2:[]> -> <(52-0):c28B1:[0.62, 0.62]> <(53-0):c2B2:[0.38, 0.36]>
6-0):0:[]> -» <(5-0):C:[]>
H-9):cl:[]> -> <(43-8):c1AL:[0.97, 0.98]> <(44-8):c1A2:[0.14, B.12]> <(45-8):c1A3:[0.76, 0.76]>
55-0):c2: [ > -> «(54-0):2:[]>
4-0):0: [ > -> <(6-0):0:[]>

(27-8):b2:[6.355, 0.505]> -> <(35-0):b2A1:[0.03, 0.82]> <(36-6):b2A2:[.68, 0.65]>
(3-0):0:[0.3925, 0.465833]> -> <(2-6):B:[0.3925, 0.465833]>
( > -> <(3-0):0:[0.3925, 0.465833]>
<(2-0):B:[0.3925, 8.465833]> -> <(34-0):b1:[6.43, 0.426667]> <(40-8):b2:[6.355, 0.505]>
( ]

(

<(

Figure 2.5: Unary-constrained sample of 1D text
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2.3 Constrained Sampling with Binary Potential Function

We can further add binary constraints to the sampling. That is, we consider the
binary potential functions in the energy equation in Section 2.2. Since the binary
potential function is determined by the attributes of pairs of nodes, we need to
calculate the attributes of non-terminal nodes which have relations with other non-
terminal nodes in addition to the potential of the single leaf node calculated in
Section 2.2. In every iteration of the Gibbs Sampling, we again divide the attribute
range of each node that has a potential function into 100 bins. Then when calculating
the joint probabilities, we add the third term in the probability equation in Section
2.2. Since the attributes of the non-terminal nodes here are set as the sum of their
children nodes, we can start from the leaf level and calculate the attributes of non-
terminal nodes recursively. Given that different pairs of nodes have different binary
potential functions, we set different binary potential parameters according to the
semantic states of the nodes and pass that as a parameter to the binary potential
function. In the process of the Gibbs Sampling, since we need to calculate the joint
probabilities for all possible values of the attributes of the leaf nodes and the joint
probability is related to the potential energy of the non-terminal nodes, we need to
modify all the attributes of the non-terminal nodes accordingly. Figure 2.7 and 2.8
show the results generated after 200 Gibbs Iterations. This time we can see that
the face images generated have all the components in the proper positions and also

aligned with each other.

In conclusion, in this chapter we sampled from the And-Or graph for the 1D text
and 2D face image. In this process we explored unconstrained, unary constrained
and binary constrained sampling. While in the unconstrained sampling we just
consider the structure of the And-Or graph, in the constrained sampling we also

consider other factors in the energy function, including the unary potential function

11



of the terminal nodes and binary potential functions between pairs of nodes. To
sample from the distribution, Gibbs sampling is applied. From the sampling results
of the face images, we can see that when both constraints are added, positions and

shapes of different components of the faces are aligned properly.

<(39-0):02:[0.63, 0.785]> -> <(37-0):b2B1:[0.58, 0.58]> <(38-0):b282:[8.68, 0.66]>
0:[0.6275, 0,695 -> <(2-0):8:[0.6275, 0.695}
(3-0):0
(

}
3.4): |
4-8):0:[8.6275, 0.695]> -> <(3-8):0:[0.6275, 0.695]>
14); |

5)>

¢
¢

(
(
(
(2-0)B:0.6275, 0.695]> -> <(34-0):b1:[0.625, 0.605]> <(46-0):02:[0.63, 0.785)>
C(34-0):8:[0.625, 0,605 -> <(33-8):b1:[0.625, 8.605)>

<(40-0):b2: 0,63, 0.785]> -> <(39-0):b2:[0.63, 0735}

(

!

<(33-0):b1:8.625, 8.605]> -> <(31-0):b11: [04 0.4]> <(32-0):b182:[8.85, 0.81)>
b1B1b182628117282

Figure 2.7: Binary-constrained sample of 1D text
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CHAPTER 3

Parameter Learning of the And-Or Graph

In the previous sections, the And-Or graph structure and parameters are known. In
this section, we continue using the face image example to explore the learning of the
And-Or graph parameters with the structure known. The parameters that we want
to learn include the or-node weights and potential function parameters. To learn
the or-node weights, we just need to count the or-node frequencies in the training
data. That is, we count the number of occurrence of the children of each or-node.
If we denote the children of one or-node as V,,,...V,,. , this formulation is given as:

Vor,
w(Vir,) = |\\Z:\"

In Section 2.2 and 2.3, we have mentioned that the potential is a function of
attributes of the nodes. For unary potential function, the potential function of a
node is related to the attributes of the node itself. For binary potential function,
the potential of a pair of nodes is related to the attributes of this pair. For this
face example, we can define 14 variables to represent the mean x and y position of
the face, nose, left eyeright eye, left ear, right ear and mouth. These 14 variables
are then used in the calculation of the potential function. In this section, we aim
to learn the value of those variables. To be more specific, we set those parameters
as following: face x mean=64, face y mean=64, nose x mean=64, nose y mean=70,
mouth x mean=64, mouth y mean=85, ear left x mean=118, ear left y mean=50,
ear right x mean=10, ear right y mean=>50, eye left x mean==80, eye left y mean=42,

eye right x mean=48, eye right y mean=42. During the learning, we can use the L2

13



distance of the parameter values we learned and the ground truth values to check
the correctness of this procedure. In the experiment, we witness this L2 distance

reduces to around 5.

To learn the parameters, we apply the self-critic learning of energy based models
in [HNF18]. We use the relation: 2KL(quata(2) || Ta(®)) = Byl fa(z)] —
Er, |2 f.(2)]. Here o is the parameter we learn and f,(z) is the total potential
function, i.e., the sum of unary potential and binary potential given in section 2.2.
And here we need to minimize the KL divergence between the training sample data

distribution and our parameterized probabilistic distribution.

To calculate the averaged potential gradient function of both training and sam-
pled data, we need to first get the sum of the gradient introduced by the potential
function of each node or pair of node. For the leaf nodes, the unary potential func-
tion is only related to their attributes and the parameters we set. So we can easily
compute the gradient using the unary potential function. However, for binary po-
tential function, the gradient is not that easy to compute. To solve this problem,
we can apply the numerical way of computing the gradient. Since the parameters in
this image case is actually the positions of the components of the face, the value is
discrete and the difference between the adjacent values is 1. Therefore, we can cal-
culate the binary potential of parameter and parameter plus 1 and use the difference
as the potential gradient. To decide which of the 14 parameters should be used to
calculate gradient towards, we can first give each of them a index. A binary poten-
tial parameter is passed to each binary potential gradient function, which records
the index of the parameters that is used. After we get each single gradient, we add
them together as the total potential gradient of one data, which is then averaged

over the dataset.

During the experiment, We use 1000 training data and generate samples in each

iteration. Specifically in each iteration, we use the current potential function to
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sample new data and use the average potential function gradient with respect to
each of the 14 parameters to compare with that of the training data. Although we
have 1000 training data, generating 1000 samples in each iteration can be slow to
compute. To reduce the amount of computation we reduce the number of samples
to 50. Figure 3.1 shows the samples generated by the learned model. The true

grammar and learned grammar are given in Figure 3.2 and Figure 3.3.

In conclusion, in this part we apply the self-critic learning of energy based mod-
els in [HNF18] to learn the And-Or graph parameters. From the sampling result,
we can see that the positions of the different parts of the face are aligned correctly.
And there is no apparent difference between the binary constrained samples we gen-

erated in Section 2.3 using the true grammar and the samples we generated using

the learned And-Or graph parameters.
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Figure 3.1: Parameter learned sample of 2D face
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Figure 3.2: True face grammar in parameter learning

.689379,-1,FaceShape, -1 ,FaceShapeTypel
.185557,-1,Nose, -1,NoseType3
.307924,-1 ,Mouth,-1,MouthType3
.330993, -1,RightEar,-1,REarType3
.318621, -1 ,FacesShape, -1 ,FacesShapeTypez2
.238956,-1,LeftEye, -1,LEyeType4d
.187563,-1,LeftEar,-1,LEarTypez2
.419258, -1 ,Mouth, -1, MouthType2
.411234,-1,RightEar,-1,REarTypel
.184739,-1,LeftEye,-1,LEyeType?2
.328313,-1,LeftEye, -1,LEyveTypel
.200803,-1,RightEye, -1 ,REyeType?2
,-1,Eye,-1,LeftEye,-1,RightEvye
.272818,-1 ,Mouth, -1 ,MouthTypel
.4160381, -1,Nose, -1,NoseTypez2
,-1,Face,-1,FaceShape,-1,Eye,-1,Nose,-1 ,Mouth,-1,Ear
.355422 ,-1,RightEve, -1,REyeTypel
.354062,-1,Nose, -1,NoseTypel
.24498,-1,RightEvye, -1 ,REveType3
.198795, -1,RightEve, -1,REyeType4d
247992 ,-1,LeftEye,-1,LEyeType3
.424273,-1,LeftEar, -1,LEarTvpe3
.388164,-1,LeftEar,-1,LEarTypel
,-1,Ear,-1,LeftEar,-1,RightEar
.257773,-1,RightEar,-1,REarType2

Figure 3.3: Learned face grammar in parameter learning
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CHAPTER 4

Structure Learning of the And-Or Graph

In the previous sections, we know the structure of the And-Or graph and only need
to determine the parse tree or parameters of the potential functions. In this section
we learn the structure of the And-Or graph behind the training data. In this section
we use the 1D text data and another robotic commands dataset to illustrate the

learning.

To learn the structure of the And-Or graph, we apply the algorithm that is
introduced in [TPZ13]. In this paper, the notion of And-Or fragment is introduced.
According to the paper, an And-Or fragment is a combination of and-node and
or-node, with an and-node as the root and several or-node as its children. Each or-
node can then have several children as leaf nodes. This And-Or fragment structure is
better than fragments that only contain and-node and or-node as merely adding and-
fragment to the grammar may be insufficient to cover the structure of the grammar
while merely adding or-fragment decreases the posterior probability of the grammar

and may need more expensive search algorithms [TPZ13].

In [TPZ13], an algorithm for adding And-Or fragment to the grammar piece by
piece is introduced. In each iteration, a randomly chosen And-Or fragment with two
or-nodes and two children for each or-node is chosen from data and then modified by
deleting or adding or-node or leaf-node using its neighboring nodes in the data. The
paper also introduces the notion of posterior gain, which is the product of likelihood

gain and prior gain. These two notions are defined as:
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P
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The or-node weight of the And-Or fragment is set as:
P(O; = a;) = i)

In the equation above, X is the observed data and G, is the grammar at iteration
t. n is the length of the configuration generated by the And-Or fragment, which
is equal to the number of children or-node of the root node and m; is the number
of children for a or-node in the And-Or fragment. CM is a notion introduced
in the paper as the context matrix for a selected And-Or fragment, where each
entry represents the number of occurrence of one possible configuration of the And-
Or fragment in that specific context in the training data. The context is defined
as the rest of one training data with the parts that can be substituted by the
And-Or fragment removed. RD here denotes the reductions we can make in the
training data, which are the patterns in data that can be generated using the And-
Or fragment. And RD;(a;;) are the reductions in which the i-th node reduced is a;;.
The last equation here shows that the And-Or fragment add in each iteration uses

the weights that is proportional to the occurrences of the leaf nodes replaced in the

training data, just like the way of setting or-node weights in section 2.2.

In this section, the form of training data for 1D text and robotic commands are
shown in Figure 4.1 and Figure 4.2. The 1D text data is sampled from the same
And-Or graph in section 2.1. We can implement the algorithm in [TPZ13], which is

shown in Figure 4.3 with greedy search to learn the structure of the And-Or graph.

In practice, since we raise the number of reductions or configurations that satisfy
certain conditions to the power of themselves, we may encounter values that are too
large to compute. To solve this problem, we calculate the values in the log space. In

each iteration, we generate in the And-Or graph new rules introduced by the And-
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Or fragment. Also, since some parts of the original And-Or graph are replaced,
some rules are removed from our grammar. Initially, the grammar is represented
directly by all the training data observed. This can be very inefficient and we can
not generate new configurations using the grammar. So although we can generate
samples from the original dataset, the parsing accuracy of new testing data world
be zero if the testing data doesn’t appear in the training set. If the training goes
well, we should be able to see that during the training process, the number of
rules for representing the training data decreases. This is because more and more
"data” are grouped together as "the same”. Here "data” is actually the third level
representation of the data in the And-Or graph if we regard the root or-node as
the top level and the And-node of each different data as the second level. This
data representation is then updated in each iteration. By "the same” we mean that
although the data itself never change, as we update the And-Or graph, the third

level representation for some of the data will become the same.

In conclusion, in this part we implemented the algorithm in [TPZ13] and applied
it to a 1D text dataset and a robotic command dataset. After 50 iterations of
learning, each iteration with 100 inner loops to choose new And-Or fragment, the
generated data using the learned grammar for the 1D text and robotic commands is
shown in Figure 4.4 and Figure 4.5. When using 2419 robotic commands sentences
to learn and 794 robotic commands to test, 8.0506% of the unseen test robotic
commands can be parsed correctly using Earley Parser [Ear70] in 50 iterations. The
learned samples are not perfect and contain many fragments. To improve the result,
we may need to use beam search as pointed out by the paper and use a larger expand

limit to modify the randomly initialized And-Or fragment.
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Bb1B1 b1BZ bZB1 bZ2B2
biladl blaz blAas bz2zal bzaz
aldd alAaz az2d a3l

Bb1B1 b1l1BZ2 bZ2Aal bzaz
b1B1 b1BZ2Z bZB1 bZB2
—cI1B1 cil1BZ2 2Bl c2B2
cAdAad Ccl1lAZ Ccl1lAS cCcZ2B1 2B 2
adlasd adla> a1 o231

b1B1 b1l1BZ bZB1 bZB2
alBEdl alBs>2 a1 a3 2

bil1B1 b1lBZ bZAal bzaz
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P T 2 W 1 = T s Nl a2 A =31

b1B1 b1l1BZ2 bZ2al bzaz
alBl alBzZ2 azzZ2 a3l

b1B1 b1l1BZ2 bZB1 bZ2B2
bilal1l blaAaz blAas bz2B1 bZ2zB2
b1B1 b1l1B2 bZ2al bz2zaz
aldd alAazZz az2z2 a3ld2

adlasd adla> a2 a3

b1B1 b1l1BZ bZAal bzZzaz
b1B1 b1l1BZ2 bZ2Aoa1 bZ2zaz
alBl alBZz az2zZz2 a3l

bi1B1 b1BZ2 bZB1 bZ2BZ2
alaad alaal a1 =35 A

P T 2 W 1 = T s Nl a2 2 =31

adlad alosaR a2 = N

aldad alAaz a2l a3d2

alBEa1 alBs=2 a2 =3 A

bi1B1 b1BZ2 bZ2Aal bzaz

Figure 4.1: Structure learning training data: 1D text

place blue block on top of the single red block

place green block on top of blue block

place green brick on top of the blue one

place current block on top of blue block

pick the red block and put it above the yellow block

pick up the white block that is on the top of green block in the corner and place it on the white single block
pick the red block and put it above the purple block

pick up the green pyramid

place grey pyramid on top of grey block

put the blue block above the yellow block

pick up the nearest block

put the red block above the blue block

place the red brick on top of the blue brick

place blue brick on top of the green brick

place the green pyramid down

place the blue block on top of the green block

place the turquoise pyramid on top of the turquoise block

pick the yellow block on top of the red block and place it on top of the green block
take the green pyramid and put it on the yellow box

place the green pyramid on top of the blue block in the far left corner

grab the red pyramid

put the yellow pyramid on top of the grey tower

grab the yellow pyramid

move the green cube one square to the left

move the turquoise pyramid on top of blue block to the top of the other blue block

Figure 4.2: Structure learning training data: robotic commands
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Algorithm 1 Structure Learning of And-Or Grammars

Input: the training set X
Output: an And-Or grammar
l: G < the initial grammar constructed from X

2: loop

3 F«<{}

4:  repeat

5 f < an And-Or fragment with two Or-nodes and two leaf nodes constructed from a ran-

domly selected bigram from X

6: optimize the posterior gain of f using greedy or beam search via four operators:
adding/removing Or-nodes, adding/removing leaf nodes

7: if f increases the posterior gain and f ¢ F' then

8: add f into F

9: end if

10:  until after a pre-specified number of iterations

11: if F'is empty then

12: return G

13:  endif

14:  f* <« the fragment in F' with the highest posterior gain

15:  insert f*into G

16:  reduce X using the grammar rules in f* and update 7 accordingly

17: end loop

Figure 4.3: The learning algorithm in [TPZ13|
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alAal a2l a2l a3l
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alAal az22 azZ22 a3l

clAl clA2 cl1A3 c2Al c2ZAZ2
b1B1 bl1BZ2 b2B1 bZB2

alAal a2l a2l a3l

alBl a2l az22 a3z
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clAl clAZ2 Ccl1lA3 c2Z2B1l c2B2
b1Aal1l b1AaZ2 b1A3 b2A1 b2Aa2
b1Aa1 bl1AaZ2 b1A3 b2Al1 b2AZ2
alAl a2l a2l a3l

alBl az22 a2z a3z

clBl cl1B2 c2Al c2A2

alBl a2l a22 a32

alAl a2l a2l a32

alBl a2l a2z a3l

alAal a2l az22 a3l

b1B1 bl1B2 b2B1 b2B2

clAal clAZ2 cl1A3 c2Bl cZB2
alAal az22 a2z a3l

alBl az22 a2l a3l

b1B1 bl1B2 b2B1 b2B2

alAl a2l a2l a3l

clAl clAZ2 Ccl1lA3 c2Z2B1l c2B2
b1Aal1l b1AaZ2 b1A3 b2B1 b2B2
b1B1 bl1B2 b2B1 b2B2

clBl cl1B2 c2B1 c2ZB2

Figure 4.4: Sample of 1D text generated by learned grammar

drop red box on red cube

pick red tetrahedron and put it right to the blue tetrahedron

pick yellow tetrahedron and put it the green the blue block placed left most red cube
pick red the green pink pyramid closest it left

put the blue cube on blue bleck

move the red pink prism

pick pink tetrahedron other blue block

to the top left corner

pick the red the tetrahedron from is at the top of pick red top left corner
single blue prism

on grey cube on grey cube

pick and closest it on the blue block in the corner and and place it on board

Figure 4.5: Sample of robotic commands generated by learned grammar
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