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Purpose: The health care sector is a major contributor of worldwide greenhouse gas (GHG) emissions. Indirect emissions, including
those associated with transportation, make up 82% of the US health care sector’s environmental footprint. Radiation therapy (RT)
treatment regimens present an opportunity for environmental health care−based stewardship owing to the high incidence of cancer
diagnosis, significant utilization of RT, and myriad treatment days required for curative regimens. Because the use of short-course RT
(SCRT) in the treatment of rectal cancer has demonstrated noninferior clinical outcomes compared with conventional, long-course RT
(LCRT), we investigate the environmental and health equity−related outcomes.
Methods and Materials: Patients treated with curative, preoperative RT for newly diagnosed rectal cancer at our institution between
2004 and 2022 and living in-state were included. Travel distance was estimated using patients’ reported home address. Associated
GHG emissions were calculated and reported in carbon dioxide equivalents (CO2e).
Results: Of 334 patients included, the total distance traveled for the treatment course was significantly greater in patients treated with
LCRT versus SCRT (median, 1417 vs 319 miles; P < .001). Total CO2e emissions for those undergoing LCRT (n = 261) and SCRT
(n = 73) were 665.3 kg CO2e and 149.9 kg CO2e, respectively, per treatment course (P < .001), with a net difference of 515.4 kg CO2e.
Relatively, this suggests that LCRT is associated with 4.5 times greater GHG emissions from patient transportation.
Conclusions: Using treatment of rectal cancer as proof-of-principle, we advocate for the inclusion of environmental considerations in the
creation of climate-resilient oncologic RT practices, especially in the context of equivocal clinical outcomes between RT fractionation schedules.
© 2023 The Author(s). Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction
The global health care sector, if it were a country, would
be the fifth largest emitter of greenhouse gas (GHG)
emissions worldwide.1 The US health sector is considered
the world’s number 1 emitter of GHG emissions, in regard
to both absolute and per capita terms.1 Indirect emissions
—known as Scope 3 emissions—are those primarily
derived from the production, transport, use, and disposal
of goods and services and make up 82% of the US health
care sector’s environmental footprint.2 Patient-related
transportation GHG emissions accounted for the largest
proportion (32%) of inventoried GHG emissions in 2020
at our institution—a large tertiary medical center.3
r
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Altering the transportation behavior of the population of
patients with cancer would have measurable effects on
reducing health care GHG emissions, not only because can-
cer is a leading cause of national morbidity and mortality
but also because cancer care requires myriad visits for evalu-
ation and treatment. Radiation therapy (RT) is an integral
part of oncologic care, with most patients with cancer
requiring RT at some point during their lifetime.4 Accumu-
lating data support hypofractionated RT schedules in cancer
care, for which rectal cancer is a prime example because
short-course RT (SCRT) has been shown to be a cost-effec-
tive, efficacious, and safe alternative to long-course RT
(LCRT).5 We herein characterize the outcomes of a hypo-
fractionated radiation schedule for transportation-associ-
ated GHG emissions using rectal cancer as a case study.
Methods and Materials
Patients treated with preoperative RT for newly diag-
nosed rectal cancer at our institution between 2004 and
2022 were included in this institutional review board
−approved study. Patients living out of state were
excluded. Travel distance and travel time to radiation
were estimated with the Google Maps directions feature
using patients’ reported home address. When multiple
routes were offered, the route with the shortest travel time
was selected. Associated GHG emissions were calculated
in proportion to vehicle type (gas, hybrid, electric, or
plug-in hybrid) and defined by published statewide vehi-
cle registration statistics using a published well-to-wheel
model,6 which accounts for all emissions related to fuel
(ie, gas, electricity) production and use (Table 1) (calcula-
tion method available from GHG [https://docs.google.
com/spreadsheets/d/1clhXip02wgZ9KGQyueh81x89TyI
mImGU61J7PVwauwg/edit#gid=0]7). GHG emissions
were converted into carbon dioxide equivalents (CO2e)
using global warming potentials, a measure of how much
energy 1 ton of an emitted gas will absorb relative to 1 ton
of emitted CO2; they provide a common unit of measure
(CO2e) and enable comparisons of emissions across
Table 1 Distance traveled, time spent in transit, and transport
course radiation therapy treatment, by daily round trip and tota

Daily round trip

Entire cohort Short course Long course P valu

Distance, median
(IQR), miles

55 (32-134) 61.4 (36-169) 53 (32-119) .10

Time, median
(IQR), min

68 (50-138) 78 (52-182) 68 (50-128) .22

Cost, median
(IQR), US$

32 (19-79) 36 (21-97) 31 (19-70) .12
sectors and gases.8 Travel-related costs were determined
by the 2022 Internal Revenue Service mileage reimburse-
ment rate of 58.5 cents per mile traveled, accounting for
gas, insurance, and vehicle depreciation. Comparative
analyses between variables were performed using t test
comparisons with Stata, version 14.2.
Results
A total of 334 patients treated with preoperative, defin-
itive chemoradiation were evaluable, with 73 and 261 hav-
ing received SCRT and LCRT, respectively. The median
dose delivered for SCRT was 25 Gy in 5 fractions and for
LCRT, 50.4 Gy in 28 fractions.

Total distance traveled for the treatment course was
significantly greater in patients treated with LCRT in
comparison with patients who received SCRT (median
for LCRT, 1417 miles; median for SCRT, 319 miles; P <
.001). Similarly, total time spent traveling was significantly
higher in the LCRT versus SCRT group (median for
LCRT, 30.6 hours; median for SCRT, 6.5 hours; P < .001).
Cost projections quantifying dollars spent per treatment
course additionally attributed higher transportation-asso-
ciated costs to LCRT (median for LCRT, $892; median for
SCRT, $187; P < .001) (Table 1).

Over the total treatment course, LCRT was associated
with nearly 4.5 times greater GHG emissions than SCRT.
Total CO2e emissions for LCRT and SCRT were 665.3 kg
CO2e and 149.9 kg CO2e per patient treatment course,
respectively (P < .001), with a net difference of 515.4 kg
CO2e (Table 2).
Discussion
Radiation treatment is an integral component of can-
cer care and presents an opportunity to reduce health
care’s environmental effects due to the large number of
visits requiring transportation. In the example of rectal
cancer, we found that for a single patient undergoing
ation-related costs associated with short-course and long-
l treatment course

Total treatment course

e Entire cohort Short course Long course P value

1193 (455-2436) 319 (179-874) 1417 (869-3030) <.01

1610 (896-2912) 390 (260-960) 1836 (1344-3234) <.01

698 (266-1425) 187 (105-511) 829 (509-1773) <.01
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Table 2 Transportation-related greenhouse gas emissions associated with total short-course versus long-course radia-
tion therapy treatment by primary emission gas and vehicle type and converted to CO2 equivalents by global warming
potential

Emission Gas Hybrid PHEV Electric Emissions, kg GWP Emissions, CO2e, kg

Short course

VOCs 0.08 0.00 0.00 0.01 0.09 Not defined -

CO 0.79 0.06 0.01 3.09 3.94 Not defined -

N2O 0.11 0.01 0.00 0.00 0.11 Not defined -

CH4 0.13 0.01 0.00 0.01 0.14 28.00 3.9

CO2 122.94 7.13 1.33 3.09 134.49 1.00 134.5

NO2 0.04 0.00 0.00 0.00 0.04 298.00 11.4

Total CO2e emissions - - - - - - 149.9

Long course

VOCs 0.35 0.02 0.00 0.03 0.40 Not defined -

CO 3.49 0.27 0.03 13.71 17.51 Not defined -

N2O 0.48 0.03 0.00 0.00 0.51 Not defined -

CH4 0.56 0.03 0.01 0.03 0.63 28.00 17.6

CO2 545.71 31.66 5.92 13.71 597.00 1.00 597.0

NO2 0.16 0.01 0.00 0.00 0.17 298.00 50.7

Total CO2e emissions - - - - - - 665.3

Abbreviations: CH4 = methane; CO = carbon monoxide; CO2 = carbon dioxide; CO2e = carbon dioxide equivalents; GWP = global warming poten-
tial; N2O = nitrous oxide; NO2 = nitrogen dioxide; PHEV = plug-in-hybrid electric vehicle; VOCs = volatile organic compounds.
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SCRT instead of LCRT, the nearly 80% reduction in GHG
emissions amounted to 515.4 kg of CO2e—the same
GHG emissions associated with electrifying an American
home for 37 days.9

Short-course neoadjuvant RT remains severely under-
used for treatment of rectal cancer in the United States,
with a National Cancer Database analysis showing that
less than 1% of eligible patients are treated with SCRT.10

Even a modest increase in SCRT utilization would impart
large savings in GHG emissions and patient-facing costs,
particularly because colorectal cancer is the third most
commonly diagnosed cancer in the United States.11

There have been recent calls to action directed at
physicians—especially oncologists—to adopt strategies
that minimize the environmental effects of care.12

Although our study did not aim to be a comprehensive
life-cycle analysis of the carbon footprint of RT for treat-
ment of rectal cancer, we provide new information
regarding transportation-related carbon emissions during
radiation treatment. Our study strongly complements a
recent report that estimates CO2 emissions associated
with linear accelerator energy use during external beam
RT for the most common cancer diagnoses.13 The authors
calculated that linear accelerator CO2 emissions associ-
ated with LCRT and SCRT for rectal cancer were 11.32
and 4.36 kg CO2 per treatment course, the GHG-equiva-
lent of 28.1 and 10.8 miles driven. Immediately apparent
is that patient transportation far overshadows linear accel-
erator energy use in its contribution to treatment-related
GHG emissions and highlights the patient commute as a
high-yield intervention when considering strategies to
reduce the environmental impact of care.

There are several limitations to our analysis that war-
rant future investigation. We were unable to identify
patients who used local housing during treatment and
therefore may have overestimated commute distances,
particularly for patients who traveled from afar. One
approach in mitigating this bias was excluding patients
who lived out of state. However, by following this exclu-
sion principle, we could not rationally define a threshold
that assumed patients were unwilling to commute. Our
analysis additionally did not factor in patients who
might have walked or used public transportation; given
our location in a densely populated, suburban environ-
ment, we assumed patients traveled by personal motor
vehicle. We also did not know the specific vehicle type
that our patients commuted in, which is why we extrap-
olated vehicle type from published statewide statistics.
Consideration of a future travel audit of our patients
may provide more granular information regarding all of
these aforementioned details. Although we describe
here only patients with rectal cancer treated at a single
institution, these findings can be more broadly applied
to compare any hypofractionated treatment regimen
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against conventional fractionation, regardless of disease
site.
Conclusion

In summary, hypofractionated RT can reduce patient
transportation-related carbon emissions. We additionally
provide a publicly accessible tool for providers to estimate
transportation-related CO2 emissions and compare across
fractionation schedules. We advocate for the inclusion of
these environmental considerations in the creation of cli-
mate-resilient oncologic practices, especially in the context
of equivocal clinical outcomes between treatment regimens.
Disclosures
All authors declare that they have no conflicts of interest.
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