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Research article 

Primary tumor type prediction based on US nationwide genomic profiling 
data in 13,522 patients 

Yunru Huang 1, Shannon M. Pfeiffer 1,2, Qing Zhang * 

Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States   

A R T I C L E  I N F O   
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A B S T R A C T   

Timely and accurate primary tumor diagnosis is critical, and misdiagnoses and delays may cause undue health 
and economic burden. To predict primary tumor types based on genomics data from a de-identified US 
nationwide clinico-genomic database (CGDB), the XGBoost-based Clinico-Genomic Machine Learning Model (XC- 
GeM) was developed to predict 13 primary tumor types based on data from 12,060 patients in the CGDB, derived 
from routine clinical comprehensive genomic profiling (CGP) testing and chart-confirmed electronic health re-
cords (EHRs). The SHapley Additive exPlanations method was used to interpret model predictions. XC-GeM 
reached an outstanding area under the curve (AUC) of 0.965 and Matthew’s correlation coefficient (MCC) of 
0.742 in the holdout validation dataset. In the independent validation cohort of 955 patients, XC-GeM reached 
0.954 AUC and 0.733 MCC and made correct predictions in 77% of non-small cell lung cancer (NSCLC), 86% of 
colorectal cancer, and 84% of breast cancer patients. Top predictors for the overall model (e.g. tumor mutational 
burden (TMB), gender, and KRAS alteration), and for specific tumor types (e.g., TMB and EGFR alteration for 
NSCLC) were supported by published studies. XC-GeM also achieved an excellent AUC of 0.880 and positive MCC 
of 0.540 in 507 patients with missing primary diagnosis. XC-GeM is the first algorithm to predict primary tumor 
type using US nationwide data from routine CGP testing and chart-confirmed EHRs, showing promising per-
formance. It may enhance the accuracy and efficiency of cancer diagnoses, enabling more timely treatment 
choices and potentially leading to better outcomes.   

1. Introduction 

Cancer is the leading cause of mortality worldwide, accounting for 
approximately 10 million deaths in 2020 [1]. While many landmark 
discoveries and efforts have been made against cancers with 
tumor-agnostic approaches, such as entrectinib, larotrectinib and pem-
brolizumab, the majority of treatment options, including targeted 
therapies, remain approved in specific tumor types. Oncologist training 
is also closely associated with the tissue of origin. However, locating the 

origin of a tumor can still be time-consuming and challenging, despite 
applying comprehensive clinical and diagnostic work-ups. The median 
duration of the diagnostic interval for different tumor types varies from 
1 to 8 weeks through traditional diagnostic analyses [2], such as histo-
logical criteria and immunohistochemical stains, and the diagnostic 
error rate is between 2.4% and 22.5% across different tumor types [3]. 
Meanwhile, some patients may even be unable to obtain diagnoses. In-
efficiency, misdiagnoses, or missed diagnoses may negatively impact 
therapy decisions, costs, and outcomes [4,5]. 

Abbreviations: AUC, area under the curve; BC, breast cancer; CGDB, clinico-genomic database; CGP, comprehensive genomic profiling; CI, confidence interval; CN, 
copy number; CM, Clinical Modification; CRC, colorectal cancer; CUP, cancer of unknown primary; DNA, deoxyribonucleic acid; EHR, electronic health records; FH, 
Flatiron Health; FMI, Foundation Medicine, Inc.; GC, gastric and esophageal cancer; HCC, hepatocellular carcinoma; HN, head and neck cancer; HR, hazard ratio; 
ICD, International Classification of Diseases; MCC, Matthew’s correlation coefficient; ML, advanced melanoma; MPC, metastatic prostate cancer; MSI, microsatellite 
instability; MSK-IMPACT, Memorial Sloan Kettering–Integrated Mutation Profiling of Actionable Cancer Targets; MSS, microsatellite stable; NSCLC, non-small cell 
lung cancer; OC, ovarian cancer; OS, Overall Survival; PANC, pancreatic cancer; RCC, renal cell carcinoma; SCLC, small cell lung cancer; SHAP, SHapley Additive 
exPlanations; SoC, standard of care; SV, short variant; TMB, tumor mutational burden; UC, advanced urothelial cancer; XC-GeM, XGBoost-based Clinico-Genomic 
Machine Learning Model. 
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Apart from enhancing conventional cancer diagnostic methods, ef-
forts have been made to utilize molecular alterations that are indicative 
of a tumor’s origin to improve diagnostic accuracy and efficiency. Many 
known alterations are more prevalent in specific tissues than others [6]. 
Tissue-specific genomic alterations are generally maintained after 
metastasis, making it possible to predict the primary tumor type from a 
metastatic sample based on genomic information [7]. Publicly available 
or research-use cancer genomics and transcriptomics data have been 
used to identify primary tumor type [8]. However, their clinical usage 
remains limited because transcriptome or whole-genome sequencing is 
not routinely performed in clinical care. An algorithm was published in 
2020 using a clinical sequencing test, the Memorial Sloan Ketter-
ing–Integrated Mutation Profiling of Actionable Cancer Targets 
(MSK-IMPACT) test [9], but the test is only available at Memorial Sloan 
Kettering Cancer Center. No algorithms based on a US nationwide 
comprehensive genomic profiling (CGP) test performed in routine clin-
ical practice have been developed yet. 

In this study, we used a US nationwide de-identified clinico-genomic 
database (CGDB), derived from Foundation Medicine, Inc. (FMI) CGP 
testing linked with Flatiron Health (FH) electronic health records 
(EHRs), to develop a novel XGBoost-based Clinico-Genomic Machine 
Learning Model (XC-GeM) to predict the primary site of tumors. Model 
performance was also assessed in patients who initially had missing 
primary tumor diagnoses at the time of CGP, evaluating the utility of XC- 
GeM in patients with unknown diagnoses at some point. Since CGP 
testing is increasingly performed in clinical practice according to the 
standard of care (SoC), XC-GeM may also be used as part of routine care 
without requiring additional tissue specimens or testing. If clinically 
validated, application of this algorithm may act as an assistive tool for 
effective and efficient diagnoses, potentially contributing to better 
treatment choices and outcomes, especially in patients with tumors 
whose primary origin is challenging to diagnose using traditional 
methods. 

2. Methods and theory 

2.1. Data source 

The population used in this study was obtained from the FH-FMI 
CGDB, a US nationwide de-identified retrospective longitudinal cancer 
database [10]. Clinical data were curated from multiple sources of EHRs 
across over 280 US-based cancer centers in the FH network. Structured 
data (e.g., demographic and diagnosis codes) were harmonized to a 
standard data model. Specific information from unstructured data (e.g., 
free text in the physician’s note) was collected and curated by 
technology-enabled abstraction and trained human chart reviewers. For 
genomic data, 322 clinically relevant cancer genes were included from 
the validated FoundationOne assay, a tissue-based CGP service for all 
solid tumors increasingly performed in clinical practice according to SoC 
[11]. The CGDB is updated every three months. Institutional review 
board approval of the study protocol was obtained before study conduct 
and included a waiver of informed consent. 

2.2. Study population 

The study population comprised patients in the CGDB aged 18 years 
or older who were diagnosed with only one tumor type after January 1, 
2011, limited to patients with solid tumors whose samples were tested 
with the FoundationOne assay and passed a quality control check per-
formed by FMI. 

All patients in the CGDB have primary tumor types abstracted and 
curated from FH EHRs. However, for some cases, at the time of the CGP 
test, limited context is available when FMI receives a specimen. There-
fore, some patients could have an unknown histopathology at the time of 
CGP testing. The primary cohort was derived from the CGDB with a data 
cut from September 30, 2019 and contained patients with known 

primary tumor types at the time of the CGP test (“patients with known 
primary”). New patients with known primary from a more recent data 
cut of the CGDB (June 30, 2020) were included as an independent 
validation cohort to evaluate model generalization. We further assessed 
the model’s performance in another cohort of patients with missing 
primary tumor diagnoses at the time of the CGP test (“patients with 
missing primary”). Patients in this cohort are not considered as patients 
with cancer of unknown primary (CUP) and eventually obtained pri-
mary tumor diagnoses based on the FH EHRs (Supplemental Fig. 1). 

2.3. Main outcomes 

The main outcomes were 13 primary solid tumor types from the FH 
EHRs with disease-specific databases in CGDB: advanced urothelial 
cancer (UC), breast cancer (BC), colorectal cancer (CRC), gastric and 
esophageal cancer (GC), hepatocellular carcinoma (HCC), head and 
neck cancer (HN), advanced melanoma (ML), metastatic prostate cancer 
(MPC), non-small cell lung cancer (NSCLC), ovarian cancer (OC), 
pancreatic cancer (PANC), renal cell carcinoma (RCC), and small cell 
lung cancer (SCLC). Pleural mesothelioma also has a disease-specific 
database in the CGDB; however, it was not included in the study 
because it did not have any cases with missing primary diagnoses at the 
time of CGP testing. International Classification of Diseases (ICD)− 9- 
Clinical Modification (CM) or ICD-10-CM were collected by FH to 
categorize the primary tumor diagnosis, which was further confirmed 
through chart review of clinical and pathology notes. 

2.4. Predictors 

Candidate clinical and genomic predictors were selected based on 
prior research and investigations into their contribution to differenti-
ating tumor types (Supplemental Table 7). Clinical variables were age at 
diagnosis (years), sex (categorized as either “female” or “male”), race 
(categorized as either “white” or “non-white”), stage at initial diagnosis 
(categorized as either “0-II”, “III”, “IV”, or “occult and unknown”) and 
body mass index (BMI, categorized as either “underweight” (<18 kg/ 
m2), “normal” (18–25 kg/m2), “overweight” (25–30 kg/m2), or “obese” 
(>30 kg/m2)). For genomic predicators, the altered gene (e.g., BRAF), 
variant type (i.e., short variant (SV), copy number (CN), rearrangement 
(RE), and non-human (NH)), and variant class (i.e., point, truncation, 
amplification, deletion, rearrangement, and non-human) information 
were aggregated (e.g., BRAF_SV_point, BRAF_CN_amplification). Other 
genetic variables were complex genomic signatures, including tumor 
mutational burden (TMB) (mutations/Mb) and microsatellite instability 
(MSI) (categorized as either "high", "intermediate", microsatellite stable 
("MSS"), or "unknown" (specimens with low coverage: median <250X)) 
to help inform immunotherapy decisions. We limited genomic alter-
ations to those whose functional consequence in cancer was either 
“known” (i.e., reported as a confirmed somatic mutation in the Catalog 
Of Somatic Mutations In Cancer or other literature sources, or so 
assessed by FMI scientists) or “likely” (i.e., not confirmed as somatic in 
the literature but occurring in or near a known oncogene mutational 
hotspot or truncating a known tumor suppressor gene). For patients with 
multiple CGP tests, alterations from the sample corresponding to the 
earliest specimen collection date were selected in order to indicate the 
disease state nearest to their initial diagnosis. Any non-numeric pre-
dictors were transformed into binary variables by one-hot encoding, and 
those present in < 10 patients were removed to reduce overfitting. A 
total of 586 predictors were included for model development. 

2.5. Model development and statistical analyses 

Descriptive and univariate analyses were conducted to summarize 
clinical and genomic characteristics in patients with known primary, 
patients in the independent validation cohort, and patients with missing 
primary. Missing data in BMI and race were imputed using multivariate 
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imputation by chained equations (MICE) [12]. 

2.5.1. Overall survival (OS) analysis 
A descriptive comparison of OS between patients with known pri-

mary and missing primary was performed using Kaplan-Meier curves 
[13] and Cox regression analyses [14]. We restricted cohorts to patients 
with advanced or metastatic diagnoses, who were more homogenous 
and thus comparable in terms of life expectancy. We also carried out risk 
set adjustment to handle left truncation bias introduced by CGP tests 
received after the advanced or metastatic diagnosis date [15]. Con-
founders included age at diagnosis, sex, race, stage, TMB (log--
transformed, mutations/Mb), BMI and the 13 primary tumor types (only 
included in the pan-tumor analysis). 

2.5.2. XC-GeM 
To predict the primary tumor type, we used the XGBoost algorithm 

[16], an implementation of gradient-boosted decision trees. This 
method offers several attractive properties, including 1) handling pre-
dictor collinearities internally by choosing one collinear variable from a 
group for each decision tree iteration; 2) offering more accurate pre-
diction and effectively preventing overfitting by optimizing both the 
training loss and regularization of the model; 3) showing superior per-
formance compared with other classification algorithms, including 
support vector machines, C4.5 decision trees, logistic regression, and 
random forest [17,18]. 

To form the training dataset, we randomly selected 80% of patients 
from the cohort with known tumor types. The remaining 20% were used 
for holdout validation, which had a similar distribution to the training 
set (Supplemental Fig. 1). Within the training set, parameter optimiza-
tion under repeated 5-fold cross-validation grid search was performed to 
maximize the area under the receiver operating characteristic curve 
(AUC) [19]. Since imbalanced data might significantly decrease the 
classification performance in multiclass machine learning algorithms 
[20], class weights were also incorporated into the model, imposing a 
heavier cost when errors are made in smaller classes. In the 5-fold 
cross-validation, the training data was split into 5 equal-sized sub-
groups: 4 were used for inner training and the rest for inner validation. 
This process was repeated 5 times by permuting the data blocks. The 
optimal model of the multiclass XC-GeM had parameters including: 
learning rate (eta) = 0.04, depth of the tree (max_depth) = 15, gamma =
0.01, fraction of columns to be randomly sampled for each tree (col-
sample_bytree) = 0.8, minimum number of instances required in a child 
node (min_child_weight) = 0.2, subsample ratio of the training instances 
(subsample) = 1, and maximum number of iterations (nrounds) = 1400. 

To evaluate the predictive power of XC-GeM, we calculated a mul-
ticlass Hand and Till’s AUC (outstanding: >0.9, 0.8–0.9: excellent, 
0.7–0.8: acceptable, 0.5: no discrimination), multiclass Matthew’s cor-
relation coefficient (MCC, very high positive (negative) correlation: 
0.9–1.0 (− 0.9 to − 1.0), high positive (negative) correlation: 0.7–0.9 
(− 0.7 to − 0.9), moderate positive (negative) correlation: 0.5–0.7 (− 0.5 
to − 0.7), low positive (negative) correlation: 0.3–0.5 (− 0.3 to − 0.5), 
negligible correlation: 0–0.3 (0 to − 0.3)) [21], confusion matrix, 
micro-averaged F1 score, micro-averaged precision, and micro-averaged 
recall. These metrics denote the capability of distinguishing among 
different imbalanced misclassification distributions. Since class weight 
was adjusted to overcome imbalanced data, we also scored accuracy, the 
most popular metric to evaluate classification. The model was fitted on 
the training set, and the prediction was evaluated on the holdout vali-
dation dataset. Moreover, we also assessed the model performance on 
new patients with known primary, as additional validation, and in pa-
tients with missing primary. Overall variables of importance were also 
evaluated using Gain. Additionally, to assess the contributions of 
genomic factors to the model, we performed XGBoost with only 
non-genomic predictors (i.e., age, sex, BMI, race, and stage at initial 
diagnosis) and compared its performance to that of XC-GeM. 

2.5.3. SHapley Additive exPlanations (SHAP) technique 
To interpret and understand the mechanisms of XC-GeM, the SHAP 

technique [22] was incorporated in our study. Thirteen SHAP summary 
plots were generated, one for each tumor type, to visualize each pre-
dictor’s importance and influence on classifying the specific tumor type. 
A SHAP value larger than zero suggested a higher probability of being 
classified as the specific cancer type (i.e., positive prediction), and a 
SHAP value below zero suggested a lower probability (i.e., negative 
prediction). 

All analyses were carried out using R 4.0.0. 

3. Results 

3.1. Baseline characteristics and OS in patients with missing primary and 
known primary 

About 4% of patients had a missing primary diagnosis at the time of 
CGP testing and varied across different tumor types (Supplemental 
Table 1). Compared to those with known primary, patients with missing 
primary were more likely to be older, male, have later initial diagnosis 
stage and higher TMB. They were also less likely to have APC short 
variant truncation, EGFR short variant point alteration and more likely 
to have RB1 short variant truncation. Interestingly, VHL and CDH1 short 
variant truncations were not present in any patients with missing pri-
mary. Baseline characteristics are presented in Table 1. 

A descriptive comparison of OS between advanced/metastatic pa-
tients with known primary and missing primary showed median OS of 
patients with missing primary (7.14 months, 95% confidence interval 
(CI): 5.86–9.01) was shorter than those with known primary (10.16 
months, 95% CI: 9.57–10.69). The difference was not statistically sig-
nificant after adjusting for confounders (hazard ratio (HR):1.10, 95% CI: 
0.99–1.22, P = 0.08) (Fig. 1A). For NSCLC patients, the individual tumor 
type cohort with the largest sample size, median OS of patients with 
missing primary (6.38 months, 95% CI: 3.82–7.89) was shorter than 
those with known primary (8.12 months, 95% CI: 7.14–8.85). After 
adjusting for confounders, NSCLC patients with missing primary were 
significantly associated with an increased risk of death (HR: 1.42, 95% 
CI: 1.20–1.68, P < 0.001) (Fig. 1B). Relevant patient characteristics are 
shown in Supplemental Table 2. 

3.2. Performance of XC-GeM in patients with known primary 

XC-GeM achieved compelling performance in both the holdout and 
independent validation datasets (Table 2), with multiclass AUC of 0.965 
and 0.954 and multiclass MCC of 0.742 and 0.733, respectively. The 
overall accuracy was 78.2% for the holdout validation and 77.4% for the 
independent validation datasets. 

The performance of XC-GeM varies across different tumor types. The 
confusion matrices in Figs. 2A and 2B show that six tumor types were 
well-predicted in both validation cohorts (accuracy range: 77–89%), 
including BC, CRC, ML, MPC, NSCLC, and PANC. However, misclassi-
fication also occurred; 21% of OC patients (38 out of 183) in the holdout 
validation and 16% of OC patients (13 out of 80) in the independent 
validation cohort were misclassified as BC, whereas 8% of SCLC patients 
(3 out of 40) in the holdout validation and 40% of SCLC patients (4 out 
of 10) in the independent validation cohort were misclassified as NSCLC. 
Additional performance metrics for each indication, such as F1, recall, 
and precision, are shown in Supplemental Table 4 and 5. 

3.3. XC-GeM assessment on patients with missing primary 

We further assessed XC-GeM’s performance in patients with missing 
primary and observed promising results. The model achieved 0.880 
multiclass AUC, 0.540 multiclass MCC, and 62.3% overall accuracy 
(Table 2). Similar to the holdout validation and independent validation 
datasets, the model predicted well in MPC (accuracy: 71%), NSCLC 
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(accuracy: 73%), and PANC (accuracy: 79%). Misclassification also 
occurred for some tumor types. For instance, 20% of patients with OC 
(10 out of 50) were misclassified as BC and 11.1% patients with SCLC (3 
out of 27) were misclassified as NSCLC (Fig. 2C). Additional perfor-
mance metrics for each indication, such as F1, recall, and precision, are 
shown in Supplemental Table 6. 

3.4. Important predictors 

The Top 10 overall important predictors were TMB score (Gain =
0.10), sex (Gain = 0.07), KRAS short variant point alteration (Gain =
0.07), TERT short variant point alteration (Gain = 0.06), body mass 
index (BMI) (Gain = 0.06), APC short variant truncation (Gain = 0.06), 
age at diagnosis (Gain = 0.05), RB1 short variant point alteration (Gain 
= 0.04), BRAF short variant point alteration (Gain = 0.02), and HPV-16 
non-human alteration (Gain = 0.02) (Table 3 and Supplemental Fig. 2). 

Consistent with the heterogeneity of tissue origins for various tumor 
types, significant variability in the most important predictors was 
observed across cancer types (Table 3 and Supplemental Figure 3). For 
example, patients with higher TMB scores were more likely to be pre-
dicted as NSCLC or ML. As a critical overall genomic alteration for the 
multiclass model, the KRAS short variant point alteration occurred at 
high frequency in multiple cancer types, including CRC, NSCLC, and 
PANC. However, its absence also contributed to the prediction of BC, 
HN, MPC and SCLC. In addition, some predictors are critical for 
detecting one particular tumor type, including the presence of EGFR 

Table 1 
Baseline Demographic and Genomic Characteristics for the Study Population.   

Known 
Primary 
(N =
12,060) 

Independent 
Validation 
(N = 955) 

Missing Primary 
(N = 507)   

Value P- 
value 

Value P- 
value 

Age at diagnosis, 
years, median 
(IQR) 

63 
(54–71) 

60 
(51–68) 

<

0.001 
64 
(57–71.5) 

0.006 

Sex, n (%)   0.31  0.04 
Female 6500 

(53.9) 
532 
(55.7)  

250 (49.3)  

Male 5560 
(46.1) 

423 
(44.3)  

257 (50.7)  

Race, n (%)   0.39  0.09 
Non-white 2760 

(22.9) 
231 
(24.2)  

99 (19.5)  

White 9300 
(77.1) 

724(75.8)  408 (80.5)  

TMB, median (IQR) 4.4 (2.6 
− 7.8) 

3.5 
(1.7–7.0) 

<

0.001 
4.4 
(2.6–10.4) 

0.02 

MSI, n (%)   0.006  <

0.001 
MSI high or 
intermediate 

185 (1.5) 10 (1.0)  5 (1.0)  

MSS 8692 
(72.1) 

650 
(68.1)  

313 (61.7)  

Unknown 3183 
(26.4) 

295 
(30.9)  

189 (37.3)  

Stage at initial 
diagnosis   

<

0.001  
<

0.001 
0 - II 2268 

(18.8) 
189 
(19.8)  

38 (7.5)  

III 2859 
(23.7) 

207 
(21.7)  

73 (14.4)  

IV 5963 
(49.4) 

433 
(45.3)  

345 (68.0)  

Unknown or 
Occult 

970 (8.0) 126 
(13.2)  

51 (10.1)  

BMI   0.83  0.65 
Underweight 458 (3.8) 39 (4.1)  17 (3.3)  
Normal 4081 

(33.8) 
320 
(33.5)  

166 (32.7)  

Overweight 4091 
(33.9) 

314 
(32.9)  

167 (32.9)  

Obese 3430 
(28.4) 

282 
(29.5)  

157(31.0)  

Alterations      
APC short variant 

truncation, n (%)   
0.03  <

0.001 
Yes 22 (19.1) 210 

(22.0)  
41 (8.1)  

No 9761 
(80.9) 

745 
(78.0)  

466 (91.9)  

KRAS short variant 
point, n (%)   

0.82  0.62 

Yes 3175 
(26.3) 

248 
(26.0)  

128 (25.2)  

No 8885 
(73.7) 

707 
(74.0)  

379 (74.8)  

TERT short variant 
point, n (%)   

0.92  1 

Yes 799 (6.6) 62 (6.5)  34 (6.7)  
No 11261 

(93.4) 
893 
(93.5)  

473 (93.3)  

EGFR short variant 
point, n (%)   

0.47  0.003 

Yes 560 (4.6) 39 (4.1)  9 (1.8)  
No 11500 

(95.4) 
916 
(95.9)  

498 (98.2)  

BRAF short variant 
point, n (%)   

0.55  0.14 

Yes 589 (4.9) 42 (4.4)  17 (3.4)  
No 11471 

(95.1) 
913 
(95.6)  

490 (96.6)   

Table 1 (continued )  

Known 
Primary 
(N =
12,060) 

Independent 
Validation 
(N = 955) 

Missing Primary 
(N = 507) 

VHL short variant 
point, n (%)   

0.90  - 

Yes 87 (0.7) 6 (0.6)  n < 4  
No 11973 

(99.3) 
949 
(99.4)  

n > 503  

VHL short variant 
truncation, n (%)   

-  −

Yes 117 (1.0) n < 4  n < 4  
No 11943 

(99.0) 
n > 951  n > 503  

RB1 short variant 
truncation, n (%)   

0.10  <

0.001 
Yes 608 (5.0) 36 (3.8)  44 (8.7)  
No 11452 

(95.0) 
919 
(96.2)  

463 (91.3)  

TP53 short variant 
point, n (%)   

0.20  0.44 

Yes 5430 
(45.0) 

409 
(42.8)  

219 (43.2)  

No 6630 
(55.0) 

546 
(57.1)  

288 (56.8)  

HPV16, n (%)   0.30  0.003 
Yes 84 (0.7) 10 (1.0)  10 (2.0)  
No 11976 

(99.3) 
945 
(99.0)  

497 (98.0)  

The P-value for categorical variables were derived from chi-square tests 
comparing primary tumor types in patients in the independent validation cohort 
or patients with missing primary (separately) to the patients with known pri-
mary. The P-value for continuous variables were derived from Mann-Whitney 
tests comparing primary tumor types in patients in the independent validation 
cohort or patients with missing primary (separately) to the patients with known 
primary. 
APC, adenomatous polyposis coli; BMI, body mass index; BRAF, proto-oncogene 
B-Raf; EGFR, epidermal growth factor receptor; HPV, human papillomavirus; 
IQR, interquartile range; KRAS, Kirsten rat sarcoma viral oncogene homolog; 
MSI, microsatellite instability; MSS, microsatellite stability; RB1, retinoblastoma 
protein; TERT, telomerase reverse transcriptase; TMB, tumor mutational 
burden; TP53, tumor protein P53; VHL, von Hippel-Lindau tumor suppressor; 
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short variant point alteration for NSCLC and CTNNB1 short variant point 
alteration for HCC. Among clinical predictors for the model, sex is the 
most predictive. Not surprisingly, males were more likely to be classified 
as MPC, while females were more likely to be classified as BC or OC. 

To evaluate the role of genomic predictors in XC-GeM, we developed 
another XGBoost model with clinical predictors only. This non-genomic 
model had worse performance than XC-GeM in both the holdout vali-
dation (AUC = 0.699, MCC = 0.157, accuracy = 25.7%) and indepen-
dent validation datasets (AUC = 0.693, MCC = 0.186, accuracy =
28.6%), indicating the importance of genomic predictors in the model 
(Supplemental Table 3). 

4. Discussion 

In this study, a novel XC-GeM algorithm was developed to predict 13 
primary tumor types based on a US nationwide routine clinical CGP test, 
achieving outstanding performance in both the holdout validation 
dataset (AUC = 0.965, MCC = 0.742) and the independent validation 
dataset (AUC = 0.954, MCC = 0.733). The top predictors associated with 
specific tumor types were supported by previous literature, suggesting 
the capability of XC-GeM to accurately capture key biological predictors 
specific to primary tumor tissue origin. The performance in patients with 

missing primary was also promising, with an excellent AUC of 0.880 and 
a moderately positive MCC of 0.540, suggesting potential clinical usages 
in this population. The XC-GeM might act as an assistive tool for faster 
and more accurate cancer diagnoses, especially for patients with missing 
primary at a certain point of time and patients with CUP. 

To our knowledge, XC-GeM is the first primary tumor type predictive 
model based on a US nationwide CGP test performed in routine clinical 
practice and chart-confirmed EHRs. There are over 200 types of cancer, 
and timely and accurate diagnosis is critical for subsequent care and 
survival outcomes [4,5]. A similar algorithm was developed using a 
single hospital system’s data derived from the routine clinical 
MSK-IMPACT CGP test [9], with 74% accuracy in the independent 
validation dataset. This model used similar top predictors to XC-GeM for 
identifying different cancer types, including sex for BC and MPC, APC 
alteration for CRC, and absence of KRAS alteration for BC. However, the 
test is only approved for use in one hospital system, restricting its ben-
efits. The majority of other previous genomic-based primary tumor type 
predictive algorithms were developed using data from whole-genome or 
exome, gene expression [8], miRNA [23], and deoxyribonucleic acid 
(DNA) methylation [24] sequencing techniques, which are not part of 
routine clinical practice. XC-GeM incorporated data from a US nation-
wide CGP test used in routine clinical practice according to SoC to guide 
molecularly targeted therapies. It may improve timely and accurate 
cancer diagnosis, and has the potential to be integrated as part of routine 
care without requiring another test or extra tissue samples. 

XC-GeM is also the first genomic-based primary tumor type predic-
tive model to assess its performance in patients with missing primary 
diagnosis at the time of CGP. The accuracy of 62.3% is similar to the 61% 
accuracy generated from the first and only deep-learning algorithm 
based on histology slides in patients who had a missing primary tumor 
diagnosis at some point during their diagnosis process [25]. In our 
cohort, over 4% of patients were missing primary tumor diagnoses, 
likely due to the inability to obtain a definitive diagnosis at the time of 
CGP testing. These patients may encounter delayed or restricted treat-
ment options, especially targeted therapies, because current treatment 
guidelines and approval of targeted therapies largely remain 
tissue-based. For example, many physicians use patients’ FMI reports to 
guide the usage of targeted therapies. However, without primary tumor 

Fig. 1. (A) OS of advanced or metastatic patients with known primary tumor site and patients with missing primary tumor site at the time of CGP testing. (A) Patients 
with known primary vs. patients with missing primary; (B) NSCLC Patients with known primary vs. NSCLC patients with missing primary. NSCLC, non-small cell lung 
cancer; LCL, lower control limit; OS, overall survival; UCL, upper control limit. 

Table 2 
Classification Performance of XC-GeM to predict cancer types.   

Holdout 
validation 

Independent 
validation 

Missing 
Primary 

Hand and Till’s 
multiclass AUC 

0.965 0.954 0.880 

Multiclass MCC 0.742 0.733 0.540 
Accuracy 78.2% 77.4% 62.3% 
Micro-averaged F1 

score 
0.786 0.778 0.631 

Micro-averaged 
Precision 

0.787 0.778 0.635 

Micro-averaged Recall 0.785 0.778 0.628 

AUC: area under the receiver operating characteristic curve; MCC: Matthew’s 
correlation coefficient 
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diagnosis, approved targeted therapies in specific “other” tumor types 
will be documented in the latter pages. Therefore, physicians may not 
initially consider those treatment options, and access to such targeted 
therapies for patients with missing primary might be challenging and 
delayed. This primary tumor type predictive model may also benefit 
patients with CUP [26]. 2.3–5% of cancer patients receive a diagnosis of 
CUP, commonly experiencing treatment delays and disproportionately 
ranking third to fourth in cancer-related deaths with a median survival 
of less than a year [27]. While the value of site-specific treatment in CUP 
is still unclear [28], a recent randomized study [29] demonstrated that 
site-specific treatment, including molecularly targeted therapy based on 
profiling of gene expression and gene alterations by next-generation 
sequencing, can contribute to improved outcomes in patients with the 
unfavorable subset of CUP, the major clinicopathologic subtypes. 
Interestingly, the predictive model based on the MSK-IMPACT assay [9] 
was able to classify likely tissues of origin among 95 of 141 (67.3%) CUP 
patients using the 50% probability threshold. XC-GeM’s performance in 
CUP was not assessed because this population was not included in the 
current CGDB as an individual tumor type. In addition, since the true 
primary tumor origin is unknown for CUP, the performance of primary 
tumor type predictive models cannot truly be evaluated for this disease. 

The high performance of XC-GeM is amplified by its accurate capture 

of key biological predictors specific to primary tumor tissue origin, as 
evidenced by the observation that predictors and their negative/positive 
contributions to predicting each specific cancer type are consistent with 
prior literature. For example, similar to previous research that TMB 
varies markedly in tumor types [30], XC-GeM used TMB score as the 
most vital overall predictor. Contributions of KRAS to positive pre-
dictions of PANC, CRC, and NSCLC in XC-GeM are supported by previous 
research that KRAS alterations predominantly occur in those cancer 
types [31]. Top predictors used by XC-GeM in identifying NSCLC were 
also reported in other studies, including higher TMB [30], EGFR alter-
ations [32,33], STK11 alterations [34], KRAS alterations [35], and 
absence of TERT alterations [36]. Unsurprisingly, cancers with smaller 
sample sizes, such as HCC, were not classified well. However, XC-GeM 
still captured predictors known to be enriched in HCC, including 
CTNNB1 alterations [37], TERT alterations [38], lower TMB [39], and 
the absence of CDKN2A alterations [40]. Some of these correlations are 
well known, and an oncologist or geneticist could guess the primary 
location from such data. However, as the number of entries rises, manual 
evaluation may no longer be feasible, and a machine learning approach 
like XC-GeM, when integrated with traditional methods, may be better 
than human experts. 

The performance of XC-GeM in the cohort with missing primary was 

Fig. 2. Confusion Matrix (A) holdout validation, (B) independent validation, and (C) patients with missing primary. Each row corresponds to the actual primary 
tumor type; Columns correspond to the class prediction emitted by the XC-GeM. Cells are labeled with numbers of tumors of a particular type that were classified by 
the XC-GeM and colored based on the percentages of correctly predicted tumors of a particular type from dark (high percentages) to light blue (low percentage). UC, 
advanced urothelial cancer; BC, breast cancer; CRC, colorectal cancer; CUP, cancer of unknown primary; GC, gastroesophageal cancer; HCC, hepatocellular carci-
noma; HN, head and neck cancer; ML, advanced melanoma; MPC, metastatic prostate cancer; NSCLC, non-small cell lung cancer; OC, ovarian cancer; PANC, 
pancreatic cancer; RCC, renal cell carcinoma; SCLC, small cell lung cancer. 

Y. Huang et al.                                                                                                                                                                                                                                  



Computational and Structural Biotechnology Journal 21 (2023) 3865–3874

3871

not as good as in patients with known primary. One potential reason 
might be errors in abstracted cancer diagnosis from EHR for patients 
with missing primary, as diagnostic errors existed across different tumor 
types [3]. Another potential explanation might be the intrinsic differ-
ences between the cohort with missing primary and that with known 
primary, which was used to develop the model. For example, among 
advanced NSCLC patients, EGFR short variant alterations, the 2nd top 
classifier for NSCLC and 23th overall important predictor, were less 
prevalent in patients with missing primary, compared to those with 
known primary (3.9% vs. 14.8%, P < 0.001). Since patients with 
missing primary at the time of CGP testing might be a unique popula-
tion, it would be interesting to train models directly in this cohort and 
explore the potential improvement of model performance. 

While XC-GeM showed good performance, and it could be included 
in routine care as an assistance tool for diagnosis if clinically validated, it 
is important to note that the model performance varies by cancer types, 
and there are potential downsides to wrong prediction, hence traditional 
methods should not be replaced nor stopped prematurely. In addition, to 
be used as part of standard care, XC-GeM might require continued im-
provements and investigations to achieve and expand clinical utility. 
First, the model was trained in solid tumor biopsies with only 13 cancers 
from FH US-based hospitals, where comprehensive cancer centers are 
under-represented. As the patient cohort and region coverage grow in 
the FH network, rare or other cancer types from a more generalizable 
population could be included. Second, the validated FoundationOne 
CGP test was a CLIA certified version, a prior iteration of the Founda-
tionOne CDx assay that was approved by the FDA in November 2017 but 
had a limited sample size at the time of model development. However, 

these two CGP versions are comparable and have high concordance for 
all alterations (ranging from 94.3% to 100%) [41]. Future studies should 
be considered to validate XC-GeM using FoundationOne CDx data. 
Moreover, trials should be conducted to clinically validate XC-GeM. 
Third, despite observing worse survival in patients with missing pri-
mary than those with known primary, it is important to note that the 
study was not designed nor powered to establish causal relationship 
between missing primary diagnosis at time of CGP and survival. Other 
factors, including challenging histology [42], might also be related to 
patient survival outcomes. A randomized design study for 
clinically-validated XC-GeM and survival of patients with missing pri-
mary might be helpful to evaluate the causation. Fourth, it would be 
invaluable to expand the usage of XC-GeM with less invasive liquid bi-
opsies to benefit patients with no available tissue samples and to reduce 
the time to obtain tissue-based testing results. Lastly, the clinical utility 
of XC-GeM in assisting primary tumor type diagnosis could be enhanced 
via earlier CGP testing (i.e. at the time of diagnosis), as it is currently not 
the case for most patients [43]. 

Several other limitations should be considered when interpreting our 
findings. First, sample sizes are imbalanced across different cancers, 
contributing to the relatively lower performance in the minority classes. 
However, while the prevalence of cancers largely varies, we incorpo-
rated class weights and evaluated models with AUC and MCC to over-
come the imbalance at the statistical level. Second, ~14% CGP assays 
failed QC (Supplemental Fig. 1). Third, for those patients with CGP that 
passed QC, we were unable to fully account for all predictors related to 
tumor type classification. The database lacked information on other 
possible influential factors, including sample purity, disease 

Fig. 2. (continued). 
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comorbidity, and smoking status across all tumor types. Moreover, 
causal non-human variants, including Hepatitis B in HCC, and HPV in 
HN cancer [44–46], are currently only exploratory in the CGDB; and the 
“known” or “likely” function designation for alterations is proprietary 
information in CGDB and is evolving with ongoing research. In addition, 
almost 8% of patients were missing data on "race", and 2.2% were 
missing BMI, which might lead to bias in the results. Nevertheless, we 
applied MICE imputation, which has been proven to be a very powerful 
technique in handling missing data [47]. Due to small sample size, 
detailed race information for "Asian” (2.6%), “Black or African Amer-
ican” (6.6%), “Hispanic or Latino” (0.2%), and “Other race” group 
(13.6%) has been recategorized to “non-white”. It would be interesting 
to assess model performance in “white” and “non-white” separately, and 
future study with larger sample size is encouraged to be conducted using 
more detailed race categories. Fourth, misclassifications exist, weak-
ening the classification. However, some might be interpretable because 
of biological similarities in tumor types at the molecular level. For 
example, since both reside in the lung, there is a possibility of misclas-
sification between SCLC and NSCLC (15–40%). Additionally, XC-GeM 
might rely on the “female” predictor for sex-specific cancers, causing 
difficulty differentiating between OC and BC. On the other hand, both 
OC and BC patients may have BRCA alterations and could benefit from 
PARP inhibitors [48]. 

5. Conclusions 

In summary, XC-GeM used data from a US nationwide CGDB, 

consisting of genomic information from a routine clinical CGP test, to 
predict 13 primary tumor types and showed good performance in both 
patients with known primary and missing primary. It may facilitate 
faster and more accurate cancer diagnosis, especially in patients with 
tumors whose primary origin is challenging to diagnose using traditional 
methods. 
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Table 3 
Selected Top Predictors for Each Cancer Type Identified by SHAP.  

Cancers top predictors (ordered by importance)* 

All 13 cancer 
types 

TMB score, sex, KRAS, TERT, BMI, APC, Age, RB1, BRAF, HPV-16 

BC Female, younger diagnosis age, absence of KRAS, absence of APC, 
higher BMI, earlier initial stage, PIK3CA, CDH1, absence of BRAF 

CRC APC, younger diagnosis age, RNF43, BRAF, absence of CDKN2A, 
KRAS, SMAD4, and absence of TERT 

GC Male, GATA6, CDK6, absence of TERT, TP53, KRAS 
HCC TERT, CTNNB1, lower TMB, ATRX, Male, absence of TP53 
HN HPV-16, lower BMI, lower TMB, CDKN2A, BCL2L2, TERT, FGF3, 

Male, absence of KRAS 
ML TERT, Higher TMB, BRAF, NRAS, KIT, higher BMI, NF1, absence 

of KRAS and absence of TP53 
MPC Male, TMPRSS2, PTEN, ERG, absence of KRAS, AR and absence of 

CDKN2A 
NSCLC Higher TMB, EGFR, absence of APC, STK11, absence of TERT, 

ALK, KRAS 
OC Female, lower TMB, absence of APC, initial stage III, absence of 

KRAS, absence of CDKN2A 
PANC KRAS, lower TMB, absence of APC, lower BMI, absence of 

PIK3CA, SMAD4, and CDKN2A 
RCC VHL, lower TMB, PBRM1, absence of TP53, BAP1, earlier initial 

stage, and MET 
SCLC RB1, higher TMB, later initial stage, absence of TERT, absence of 

KRAS, and PREX2 
UC TERT, higher BMI, FGFR3, MLL2/KMT2D, KDM6A, absence of 

BRAF, and absence of NRAS 

BC, breast cancer; CRC, colorectal cancer; GC, gastroesophageal cancer; HCC, 
hepatocellular carcinoma; HN, head and neck cancer; ML, advanced melanoma; 
MPC, metastatic prostate cancer; NSCLC, non-small cell lung cancer; OC, ovarian 
cancer; PANC, pancreatic cancer; RCC, renal cell carcinoma; SCLC, small cell 
lung cancer; UC, advanced urothelial cancer; 
APC, adenomatous polyposis coli; ALK, anaplastic lymphoma kinase; AR: 
androgen receptor; ATRX: alpha-thalassemia chromatin remodeler; BAP1, 
BCRA1 associated protein-1; BCL2L2, CBackspaceNBackspaceBCL2 apoptosis 
regulator like 2; BMI, body mass index; BRAF, proto-oncogene B-Raf; CDH1, 
cadherin 1; CDK, cyclin dependent kinase; CDKN2A, cyclin-dependent kinase 
inhibitor 2A; CTNNB1, catenin β 1; EGFR, epidermal growth factor receptor; 
ERG, ETS-related gene; FGF: fibroblast growth factor; FGFR, fibroblast growth 
factor receptor; GATA, GATA-binding protein; HPV, human papillomavirus; 
KDM6A, lysine demethylase 6A; KIT, KIT proto-oncogene, receptor tyrosine 
kinase; KMT2D, also known as MLL2, lysine methyltransferase 2D; KRAS, Kirs-
ten rat sarcoma viral oncogene homolog; MET, MET proto-oncogene, receptor 
tyrosine kinase; NF, neurofibromin; NRAS, neuroblastoma RAS viral oncogene 
homolog; PBRM1, polybromo 1; PIK3CA, phosphatidylinositol-4,5-bisphosphate 
3-kinase catalytic subunit α; PREX2, phsophatidylinositol-3,4,5-triphosphate 
dependent TBackspaceRac exchange factor 2; PTEN, phosphatase and tensin 
homolog; RB1, retinoblastoma protein; RNF43, ring finger protein 43; SMAD4, 
small mothers against decapentaplegic family member 4; STK11, serine/threo-
nine kinase 11; TERT, telomerase reverse transcriptase; TMB, tumor mutational 
burden; TMPRSS2, transmembrane serine protease 2; TP53, tumor protein P53; 
VHL, von Hippel-Lindau tumor suppressor. 

* All listed genes refer to gene alterations; All predictors were supported by 
previous literature. 
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