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The retina, the light sensitive tissue lining the interior of the eye, is the only part of the

central nervous system (CNS) that can be imaged at micron resolution in vivo. Retinal diseases

including age-related macular degeneration, diabetes retinopathy, and vascular occlusions are

important causes of vision loss and have systemic implications for millions of patients. Retinal

imaging is of great significance to diagnosing and monitoring both retinal diseases and systematic

diseases that manifest in the retina. A variety of imaging devices have been developed, including

color fundus (CF) photography, infrared reflectance (IR), fundus autofluorescence (FAF), dye-based

angiography, optical coherence tomography (OCT), and OCT angiography (OCT-A). Each imaging

modality is particularly useful for observing certain aspects of the retina, and can be utilized for
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visualization of specific diseases.

In this dissertation, we propose deep learning based methods for retinal image processing,

including multimodal retinal image registration, OCT motion correction, and OCT retinal layer

segmentation. We present our established work on a deep learning framework for multimodal

retinal image registration, a comprehensive study of the correlation between subjective and objective

evaluation metrics for multimodal retinal image registration, convolutional neural networks for

correction of axial and coronal motion artifacts in 3D OCT volumes, and joint motion correction

and 3D OCT layer segmentation network.

The dissertation not only proposes novel approaches in image processing, enhances the

observation of retinal diseases, but will also provide insights on observing systematic diseases

through the retina, including diabetes, cardiovascular disease, and preclinical Alzheimer’s Disease.

The proposed deep learning based retinal image processing approaches would build a connection

between ophthalmology and image processing literature, and the findings may provide a good

insight for researchers who investigate retinal image registration, retinal image segmentation and

retinal disease detection.
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Chapter 1

Introduction

The retina, the light sensitive tissue lining the interior of the eye, is the only part of the

central nervous system (CNS) that can be imaged at micron resolution in vivo [1]. The retinal

circulation is also part of the CNS circulation, and CNS diseases can be commonly observed in

the retina. Therefore, the retina is truly the window to the brain, and retinal diseases are usually

strongly connected to systemic disorders, such as emboli, strokes, diabetes, and so on.

Retinal imaging and the corresponding image processing techniques are of great significance

to diagnosing and monitoring both retinal diseases and systematic diseases that manifest in the retina

[2]. A variety of imaging devices have been developed, including color fundus (CF) photography,

infrared reflectance (IR), fundus autofluorescence (FAF), dye-based angiography, optical coherence

tomography (OCT), and OCT angiography (OCT-A). Each imaging modality is particularly useful

for observing certain aspect of the retina, and can be utilized for visualization of specific diseases

[3]. Therefore in clinical tests, multiple images are usually captured from multiple instruments to

synthesize their complementary information.

Use of artificial intelligence (AI), and deep learning in particular, is gradually starting to

grow in retinal analytics and does show promising results [4, 5, 6, 7, 8, 9]. In this work, we propose

deep learning-based methods for retinal image processing, including multimodal retinal image

registration, OCT motion correction, and OCT retinal layer segmentation. The proposed research

will not only benefit the observation and diagnosis of retinal pathologies in clinical applications, but

also build a connection between ophthalmology and image processing literature, providing insight
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for researchers who investigate retinal image registration, retinal image segmentation and image

domain transformation.

1.1 Background

1.1.1 The retina

The retina is a layered tissue that lines the back of the eye, playing a similar role to that of

the film or image sensor in a camera. As shown in Fig. 1.1, The light is first passed through the

cornea, the anterior chamber, the pupil, the lens, the vitreous, and then finally focused on the retina.

The ocular structure of the eye forms a two-dimensional image of the outside world on the retina,

and the latter converts the incoming light into neural signals that enables further processing in the

visual cortex of the brain to form visual perception [2].

Illustrated in Fig. 1.1, the retina is composed of several layers of neurons connected to each

other by synapses and supported by outer layers of pigment epithelium, choroid, and the sclera.

Photoreceptor cells, including cones and rods, are the major light-sensing cells in the retina. Cones

usually function in good light conditions providing color perception and high-acuity vision used

for tasks including reading, whereas rods operate in low light conditions providing luminance

information and peripheral vision. The third type of light-sensitive cells, photosensitive ganglion

cells, are important for entrainment of circadian rhythm and reflexive responses such as pupillary

light reflex.

The retinal region can be commonly divided into eleven layers from inner to outer retina [2]:

1. Internal limiting membrane (ILM): boundary between retina and vitreous;

2. Retinal nerve fiber layer (RNFL): axons of ganglion cells;

3. Ganglion cell layer (GCL): cell bodies of ganglion cells;

4. Inner plexiform layer (IPL): axons of bipolar cells;

5. Inner nuclear layer (INL): cell bodies of bipolar and horizontal cells;
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6. Outer plexiform layer (OPL): dendrites of horizontal cells and inner segments of rods and

cones;

7. Outer nuclear layer (ONL): cell bodies of the photoreceptor cells;

8. External limiting membrane (ELM): junctional complexes between photoreceptor and sup-

portive Müller cells;

9. Photoreceptor layers (PR): photosensitive outer segments of rods and cones;

10. Retinal pigment epithelium (RPE): pigmented cell layer;

11. Bruch’s membrane (BM): the innermost layer of the choroid;

1.1.2 Retinal manifestations of eye and systemic diseases

Many prevalent diseases originated in the eye, the CNS or the cardiovascular system, can

manifest in the retina. The following diseases are a few important diseases that can be analyzed by

retinal imaging.

Diabetic Retinopathy (DR) is a complication of diabetes that gradually damages the

retina. DR is the leading cause of blindness for the working age in the U.S. [11]. High glucose in

bloodstream damages the retinal vessels, which may cause ischemia, leading to new vessel growths,

which may then bleed and/or cause retinal detachment; or breakdown of the blood-retinal barrier,

resulting in fluid leakage, diabetic macular edema (DME), and damage to photoreceptor cells [2].

Age-Related Macular Degeneration (AMD) is the most common cause of blindness in the

U.S. for age group over 50, characterized by blurred or no vision in the center of the visual field

[12]. AMD includes both dry and wet form, where the dry AMD that makes up 70-90% of AMD.

In dry AMD, small white or yellow deposits, called drusen, form beneath the macula and causes

progressive loss of visual acuity. The wet form, also known as choroidal neovascularization (CNV),

leads to rapid irreversible vision loss. Wet AMD involves growth of new choroidal vessels through

a break in the BM into the RPE, causing abnormal fuid collection below the retina.
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Figure 1.1. Eye anatomy and retinal layers [10]. (a) Diagram of a human eye, (b) cells in the retina arrayed
in layers.
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Glaucoma is the third most common cause of blindness in the U.S. [2], that gradually

damages the optic nerve and loss of vision. Glaucoma is related to death of ganglion cells, and can

be observed by cupping of the optic disc in retinal imaging. There are two categories including

open-angle and closed-angle glaucoma. The open-angle glaucoma is known as the “silent thief of

sight” that progresses slowly over time [13], while the closed-angle can be sudden and painful.

Cardiovascular Disease can manifest in the retina in various ways. For example, hyperten-

sion and atherosclerosis cause changes in A/V ratio in the retina, that is, the ratio between diameters

of arteries and veins. An increased risk of myocardial infarction can be indicated by a decreasing

A/V ratio [14]. Besides that, systemic vascular diseases can also cause central and branch artery

and venous occlusions (CRAO, BRAO, CRVO, and BRVO).

Central nervous system (CNS) disorders can also manifest in the retina. The retina

and optic nerve are considered part of the CNS, not only because they are extended from the

diencephalon during embryonic development, but also due to the fact that fibers of the retinal

ganglion cells, whose axons form the optic nerve, are actually CNS axons [1]. In addition, many

retinal pathologies share similar features of other CNS pathologies, and CNS disorders can be

detected and characterized through the retina in ophthalmological assessments, such as stroke,

multiple sclerosis (MS), Parkinson disease (PD) and Alzheimer disease (AD) [1, 15].

1.1.3 Multimodal retinal imaging

As the optics of the eye is transparent to be imaged from the outside world, it is possible

to observe the retina non-invasively from the outside with proper imaging technique. A variety of

imaging devices have been developed, including color fundus (CF) photography, infrared reflectance

(IR), dye-based angiography, optical coherence tomography (OCT), and OCT angiography (OCT-

A).

The retinal imaging technologies can be categorized as structural tests and functional tests.

Structural tests reveal the anatomy of retinal tissues, whereas functional tests can be performed to

evaluate functionalities of tissues, which can be very helpful for detecting fluid leakage or vascular
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occlusions. There are several important structural tests, including:

Color Fundus (CF) images are the gold standard for clinical documentation in most retinal

diseases. A dedicated low-power microscope with attached white flash is used for capturing CF

images with field of view ranging from 25 to 60-degree, visualizing central and peripheral retina,

optic disc, and macula. Normal retina appears orange in CF images due to complexes of vitamin A

with opsin proteins in the retina. Importantly, because white floodlights are used to obtain color

fundus images, they are more representative of the clinician’s visual impression than other imaging

methods. Specially, true color of retina is useful to document vascular changes such as retinal

hemorrhages, in diabetic retinopathy [16], hypertension, HIV disease [17] and other major medical

problems.

Infrared Reflectance (IR) images, sometimes also referred to as infrared scaning laser

ophthalmoscope (SLO) images, are typically obtained using an infrared light source with confocal

SLO. The reflectance intensity is measured at each point to obtain a grayscale en-face image of the

fundus [18]. Non-invasive IR imaging does not cause discomfort to the patient, and can sometimes

be performed without dilation. It should be noted that many other SLO imaging modalities are

intrinsically co-localized with IR, including blue- or green-light Fundus Autofluorescence (FAF),

multicolor reflectance, and Optical Coherence Tomography (OCT), since they can be captured by

the same instrument.

Fundus Autofluorescence (FAF) imaging uses blue or green light to illuminate the retina,

and certain cellular components will “glow” without fluorescent dye injection [19, 20]. The

autofluorescence from the retina is captured in a grayscale image, whose characteristic patterns of

autofluorescence are useful in detecting and monitoring AMD, retinitis pigmentosa, central serous

chorioretinopathy (CSC), and macular dystrophies.

Optical Coherence Tomography (OCT) is a powerful technique for non-invasive 3D

imaging of the retina at micrometer resolution, that has become the standard of care for assessing

most retinal conditions [2]. In OCT imaging, the sample is probed with a low-coherent infrared beam

and the depth of backscattered light along the beam axis is measured by interference. Sequential
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cross-sectional images are acquired by raster-scanning through the sample, and a 3D volume can

be formed by stacking the cross-sectional images. An IR image is usually taken concurrently

with OCT for en-face location reference [21]. OCT imaging identifies retinal layers and measures

retinal thickness, which is helpful to detect drusen in AMD [2], DME in diabetic retinopathy [22],

glaucoma [13] and so on.

Common functional tests include the followings:

Fluorescein Angiography (FA) is a type of dye-based angiography and an invasive test

that requires intravenous administration of Sodium Fluorescein dye and imaging procedure of

10–30 minutes [23]. The fluoresce in the blood flow reveals abnormal blood vessels and leakage

of liquid in a grayscale image. FA is the gold standard for the detection of CNV as well as retinal

neovascularization, and is often used to help distinguish retinal diseases and determine whether

laser treatment is needed on the retina [24].

Indocyanine Green Angiography (ICGA) is also an invasive test to obtain angiography of

the choroid. Although the imaging procedure is similar to FA, the indocyanine green dye of ICGA

fluoresces in infrared light and enables observation of deeper layers in the choroid. ICGA is widely

used for detecting CNV in wet AMD [25] , focal delays, and hyperpermeability in central serous

chorioretinopathy (CSCR) [26].

OCT Angiography (OCT-A) is a novel non-invasive imaging technique to acquire 3D

angiography of the microvasculature of the retina and the choroid. After measuring temporal

intensity variations to consecutive OCT B-scans, a blood flow map is constructed [23]. The motion

caused by eye or head movement between or within sequential OCT scans must be eliminated,

otherwise the intensity difference between repeated B-scans may be misinterpreted as flow of blood

cells.

1.2 Retinal image processing

Retinal images can be processed and analyzed by image processing techniques to help

ophthalmologists in diagnosing and monitoring of retinal pathology. Some important applications
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in fundus photography include retinal image registration [27, 28, 29, 30, 31], montage of image

sequences [32, 33, 34], retinal vessel segmentation [35, 6, 7, 8, 31], retinal disease detection [36, 4],

and so on. However, most analysis of retinal images evaluate only one type of imaging modality.

Multimodal or multi-instrumental analysis with deep learning has not been addressed. The ability

to use deep learning to align and overlay different types of retinal images is a major innovation.

Besides 2D fundus photography, visualization of real 3D imaging in OCT and OCT-A

revolutionized retinal imaging. Developing advanced processing techniques is crucial to extract

clinically relevant information from the ever-increasing volume of data. Existing works include

segmentation of retinal layers [4], 3D segmentation of retinal vessels [37, 38, 39], registration of

3D volumes [40], and prediction of disease progression [5]. Since the noise and motion artifacts in

OCT scans significantly limit the performance of existing image processing techniques, it is very

important to develop algorithms to correct artifacts and to utilize 3D contextual information.

1.2.1 Multimodal registration

The diagnostic benefit of overlaying different imaging modalities in retinal diseases has

recently been demonstrated by different groups [15, 41, 42, 43]. However, it was extremely time-

consuming work to process the large data, because all of these groups used human specialists to

manually align multimodal images. Therefore, image registration, which overlays accurately and

automatically the retinal images across different modalities, is critical to help ophthalmologists

interpret each specialized test.

This can be illustrated with the following example. Fig. 1.2 shows that a color fundus photo

is aligned and overlaid onto an infrared image. From sub-Figures 1.2, the color image in (a) reveals

red (blue arrow) and white lesions (yellow arrow) in a diabetic patient. Note that color fundus

photography is a standard screening tool for population studies of diabetes. The infrared image in

(b) is taken simultaneously with the OCT raster images in (e1) and (f1). As infrared SLO images are

intrinsically aligned with other SLO modalities including OCT, overlaying an IR image onto the CF

image enhances analysis of any specified lesion in single modality with all these SLO modalities.
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It also builds an imaging matrix where each point of the retina has information from co-localized

multiple instruments. The blue arrows point to the red lesion seen on the color fundus photograph

(and by clinical examination), and the ability to co-localize it with infrared image (b) allows perfect

scanning through the lesion using OCT scan. In this case, the red lesion is not a retinal hemorrhage

(more common in hypertension) but rather a microaneurysm (more common in diabetes). The white

lesion (yellow arrow) on the fundus photograph is not well seen on IR images but is confirmed as a

cotton wool spot (superficial retinal infarction) by the second OCT in (f) (yellow arrow).

Figure 1.2. Alignment of color fundus (a), infrared image (b), and OCT scans (e), (f). The images reveal red
lesion (blue arrow) and white lesion (yellow arrow) in a diabetic patient.

It is therefore important to design an algorithm to automatically align the retinal images

across different modalities. However, it is complicated by the fact that the fields of view, lens

systems, light sources and manufactures of such devices are all different. Fortunately, since the

retinal vessels can be observed by all of these instruments in different ways, they are key features to

align and overlay various diagnostic modalities.

Conventional approaches for multimodal retinal image registration can be roughly divided

into two categories: area-based methods and feature-based methods. The area-based methods

are designed to minimize the mutual information [44] or the entropy correlation coefficient [45]
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between the images to be aligned, but they are sensitive to texture variations across modalities

and also require intensive computation. The feature-based methods overcame this limitation by

detecting sparse feature correspondences in both images to estimates the transformation. However,

these conventional methods are still not robust enough for image pairs affected by disease or poor

imaging quality, which covers up useful features for registration.

1.2.2 Eye motion correction

A major challenge in OCT imaging is the axial and horizontal motion artifacts introduced by

involuntary eye movements. Even when the patient fixates upon a fixed object, the eye still carries

out small and rapid movements including rapid microsaccades, high frequency tremors, and slow

drifts with various frequency and magnitude [46]. Although high-speed Spectral Domain-OCT

(SD-OCT) devices can acquire more than 300,000 A-scans per second [47], it typically takes several

seconds to scan a 3D volume [48]. Therefore, artifacts due to the fixational eye movements are

inevitable [46]. These involuntary eye movements would introduce both axial and coronal distortion,

which leads to discontinuity of the 3D OCT data as shown in Fig. 1.3, where the motion artifacts

are pointed by red arrows. It has also been shown that eye motion artifacts compromise subsequent

analysis including retinal layer segmentation, OCT-A imaging, and detection of retinal diseases

[49].

Figure 1.3. 3D OCT volume with motion artifacts. (a) Our dataset, (b) Dataset by Chiu et al. [50], (c) Dataset
by Farsiu et al. [36].

Existing literature on OCT motion correction can be categorized into prospective and

retrospective approaches [46]. Prospective approaches include hardware eye-tracking systems that
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detect and compensate for motions during image acquisition [51, 52, 21]. Specifically, Heidelberg

Spectralis [21] implemented the TruTrack Active Eye Tracking system, that tracks eye motion with

two beams of light simultaneously. Although hardware-based methods can usually achieve more

accurate results, they are difficult to implement and not available for every OCT device. Hence,

software based retrospective approaches remains an active field of study.

Retrospective approaches are applied after image acquisition is done, and most are software-

based methods. Most successful software methods require more than one OCT volumes [47, 53] or

multimodal images as reference, that introduce extra burden for clinical tests. Other methods based

on a single OCT volume tend to remove the curvature of the retina generating overly smoothed

result [54, 55]. It is therefore important to develop an accurate motion correction algorithm that

requires a single OCT volume and recovers the curvature of the retina.

1.2.3 Retinal layer segmentation

The retina is structured with multiple layers, and OCT segmentation aims to find the

boundary between different layers automatically. As thickness changes of layers can indicate the

status of diseases, layer segmentation will help ophthalmologists describe and locate lesions.

Most segmentation methods are categorized into 2D approaches, which is based on individual

B-scans [56, 57, 58, 59, 50], and existing commercial OCT systems such as Heidelberg Spectralis

[21] also integrate layer segmentation boundaries and thickness measurement features. Recently,

deep learning methods significantly improved the accuracy of layer segmentation [60, 61, 4, 62,

63, 64, 65] using convolutional neural networks, especially U-net [66] which is the most popular

structure for biomedical image segmentation in many recent works.

However, as shown in Fig. 1.4, most segmentation methods only operate on individual

OCT B-scans to produce a segmentation map for each image slice, such that they ignore any 3D

information contained in neighboring B-scans, which would be useful for segmentation [67]. This

would yield discontinuity between B-scans when visualizing the layer segmentation surface in

3D. Instead of operating on single 2D OCT B-scans as most segmentation algorithms do, a neural
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network can be trained directly on 3D OCT volume after motion correction to utilize contextual

information and obtain more accurate layer segmentation labels. The 3D input will not only benefit

the recognition of different tissue layers, but will also produce consistent segmentation boundaries

throughout individual B-scans.

Figure 1.4. 2D OCT segmentation failures. (a) 3D OCT volume, (b) one example segmentation surface, (c)
fast axis B-scan with layer segmentations, (d) cross-sectional slow axis B-scan with layer segmentations, red
and green arrows denoting segmentation failures.

1.3 Contribution

The contributions of the dissertation are:

• A deep learning framework that focuses on the globally coarse alignment for the multimodal

retinal image registration: It consists of three weakly supervised neural networks for vessel

segmentation, feature detection and description, and outlier rejection. Experimental results

demonstrate that the proposed framework can achieve state-of-the-art performance on two

different datasets: public dataset and clinical dataset with a wide field of view. Specially, the

framework is significantly robust to bad imaging quality compared to other methods.

• A comprehensive study on the existing evaluation metrics for multimodal retinal image regis-

tration, and a comparison of the Pearson correlation coefficient between the ophthalmologists’

subjective grade and several commonly used objective evaluation metrics. Experimental re-

sults show that the Dice coefficient with deep learning-based segmentation is highly correlated

with the subjective evaluation of the ophthalmologists.

• Convolutional neural networks that correct axial and coronal motion in OCT based on a single

volume, while recovering the overall curvature of the retina. To the best of our knowledge, this
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is the first fully deep learning-based method applied to the OCT motion correction problem,

and experiment results show significant improvement compared with conventional methods

in various resolutions an diseases.

• Combined motion correction and 3D neural network for retinal layer segmentation that utilizes

3D contextual information. The experimental result on three datasets shows the proposed

method can achieve improved segmentation result compared with both conventional and deep

learning methods, especially on a clinical dataset with severe diseases.
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Chapter 2

Multimodal retinal image registration

2.1 Introduction

In the multimodal retinal image registration task, images captured from multiple imaging

devices and modalities are aligned pixel-to-pixel to build a comprehensive co-localized database of

the eye, and help ophthalmologists confirming their diagnosis with multiple evidences. However, it

is challenging to detect and match common patterns across modalities [30], because multimodal

images not only significantly differ in appearance, but also be captured in different resolution and

field of view. Besides, poor imaging quality is ubiquitous in clinical applications, which could also

distort useful patterns for matching and increase the difficulty of registration. Therefore, it has been

a widely studied topic to design a robust registration approach for multimodal retinal images.

Many methods follow a coarse-to-fine registration pipeline [30, 68, 69]. The retina itself is

close to spherical shape, but the imaging area can be approximated by a plane and registered with

rigid, affine, or perspective transformation in the globally coarse alignment step. The remaining

error due to planar approximation can be corrected by a deformable registration method in the

locally fine alignment step. The coarse alignment step is crucial for successful registration, because

most fine alignment methods cannot correct large errors in the previous coarse alignment step.

Therefore, in this research, we focus on the coarse alignment step using perspective transformation.

Most existing coarse alignment approaches fall into two categories. The first category is area-

based, which aims to minimize the mutual information [44] or the entropy correlation coefficient
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[45] between the two images. Since the area-based methods are computationally intensive, and the

performance degrades when substantial texture difference exists, it is not suitable for multimodal

registration.

The second category is feature-based, that is based on detecting feature points and finding

point correspondences in both images. A feature-based pipeline often includes vessel extraction,

feature detection and description, initial matching and outlier rejection [30, 27, 28, 29, 70, 71].

Generally, the conventional algorithms for each step may not be optimal and adaptive to different

images, and the resulting registration pipeline is often not robust enough to poor imaging quality.

In this chapter, a content-adaptive registration framework is proposed for multimodal retinal

images, which focuses on the global alignment stage and includes three weakly supervised neural

networks for vessel segmentation, feature detection and description, and outlier rejection. Compared

with [72], we propose a novel content-adaptive segmentation network and fine-tune the feature

detection and description network that improves performance. We also include more thorough

comparison with literature and show robustness of the proposed registration with an extensive

analysis on the influence of image quality. We demonstrate that our proposed framework can

achieve state-of-the-art performance on two different datasets. Specifically, the framework is

significantly robust to bad imaging quality compared to other methods in the clinical dataset with a

wide field of view.

2.2 Related works

A number of conventional multimodal retinal image registration methods follow the pipeline

including vessel extraction (if any), interest point detection and feature description, initial matching

and outlier rejection. Various frameworks can be designed by choosing different combinations with

emphasis on different aspects and target applications.
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2.2.1 Vessel segmentation

Many retinal image registration approaches first extract vascular information from the source

and target images to enhance edges and corners in the vessel and unify the modality. For example,

[71] used an edge map based on strip fitting, [30] extracted a mean phase image using the Reize

transform and log-Gabor filters, and [73] explicitly generated the vessel segmentation to achieve

more robust matching result.

In deep learning literature, DRIU [6], DUNet [7], and IterNet [8] obtained accurate vessel

segmentation maps with strong supervision. That is, they are supervised by pixel-wise segmentation

ground truth, which requires intensive manual annotation. Since there is no known dataset with

ground truth vessel segmentation for IR retinal images, it is very challenging to directly apply them

to our dataset with limited time and cost.

2.2.2 Feature detection and description

The commonly used feature detection and description methods in computer vision can also

be utilized in the retinal registration task, including Harris corner detection [74], histogram of

oriented gradients (HOG) [75], scale invariant feature transformation (SIFT) [76], and speeded up

robust features (SURF) [77]. Particularly for the retinal image descriptor, [28] proposed a partial

intensity invariant feature descriptor (PIIFD) that is suitable for multimodality, and [71] proposed a

low-dimensional step pattern analysis algorithm (LoSPA) to improve the robustness for image pairs

affected by disease.

DeepSPA [9] proposed a learning-based descriptor for retinal images, but it was trained

based on the detected classes of hand-crafted step patterns using the conventional LoSPA descriptor

[71], which could limit the performance of the network. The learning-based approaches for general

images, including learned invariant feature transform (LIFT) [78] and universal correspondence

network (UCN) [79], improved matching performance compared to the conventional methods

[78, 79]. However, both methods are not very accurate, since descriptor and keypoints are not

derived jointly. LIFT can generate descriptors after detecting keypoints, and UCN generated only
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dense descriptors with each pixel considered as a keypoint. The SuperPoint network [80] overcame

the limitation with one encoder and two decoders to obtain keypoints and descriptors jointly in a

single forward pass, which outperformed LIFT and UCN [80]. However, the original model was

trained first on synthetic dataset and then refined with natural images, which is not optimal for

retinal images.

2.2.3 Outlier rejection

The most commonly used method for outlier detection in computer vision is Random Sample

Consensus (RANSAC) [81], which is an iterative approach that randomly selects matching points

and votes for models based on the number of inliers. Another popular method, least median of

squares (LMEDS) [82] computes the median of square error in each iteration, but it is only robust

when the inlier ratio is more than 50%. Other iterative methods such as PROSAC [83], R-RANSAC

[84], and USAC [85] achieved only marginal improvement over RANSAC with more complex

algorithms.

For the multimodal retinal image registration, iterative approaches such as GDB-ICP [27]

and ED-DB-ICP [86] applied the refining bootstrap regions. However, they are sensitive to scale.

Other methods include adaptive outlier rejection based on asymmetric Gaussian mixture model

(AGMM) [70], or root mean square error with feature distance (RMSEFD) [87] , but the methods

required longer runtime and intense tuning.

In deep learning literature, DSAC [88] introduced a differentiable RANSAC for end-to-end

training with marginal improvement. By contrast, [89] trained a network to learn the prior knowledge

of the problem and reject outlier matchings such that the network outperformed RANSAC by a

significant margin. Since the network was designed to estimate the essential matrix for camera pose

estimation, some modifications are necessary to estimate the perspective transformation matrix for

image registration.
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2.2.4 Learning-based image registration

Deep learning has been extensively used in the single-modal image registration task (more

commonly known as optical flow estimation). However, most methods such as FlowNet [90, 91],

PWC-Net [92], and the latest IRR-PWC [93] led to deformable registration for natural images. As

several large scale synthetic image datasets are publicly available, these models can be extended to

image pairs even with large displacements. For medical image registration, Voxelmorph [94], DIR-

Net [95] and DLIR [69] were proposed to register single-modal images like computed tomography

(CT) images, but their features are essentially different from those of retinal images, such that

directly applying these methods may not have desirable result on retinal dataset. Furthermore, these

methods are not suitable for multimodal registration.

Networks trained for multimodal retinal images [31, 96, 97] mostly focus on the deformable

(local) registration step. They assume that the input pair have been affinely aligned or the field

of view of multimodal retinal images are quite similar. If the deformable methods were directly

applied to the original input images where large displacement exists or large difference of the field

of view (45◦ color fundus, 30◦ IR as inputs in Fig 2.1), they would not be able to correctly align the

images, which will be discussed in section 2.4. CNNGeo [68] is an end-to-end network for semantic

alignment of multimodal natural images. It also follows the coarse-to-fine procedure by first

estimating 6 parameters for affine transformation, and then 12 parameters for spline transformation.

It could handle large displacements, but the success criterion in [68] is not as strict as that in retinal

image registration [29, 71, 70].

2.3 Deep learning-based multimodal registration framework

In Fig. 2.1, we propose a framework for multimodal retinal image registration, that consists

of a content-adaptive vessel segmentation network, a SuperPoint network, and an outlier rejection

network. The vessel segmentation maps of the source and target images are first extracted by

two separate content-adaptive vessel segmentation networks. Then the SuperPoint network [80]

detects and describes features in both segmentation maps. The keypoints are matched using the
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mutual nearest neighbor matching algorithm, and inlier matches are selected by the outlier rejection

network. Finally, the perspective transformation matrix is calculated based on the inlier matches,

and the source image is warped towards the target image.

The proposed method follows the feature based registration pipeline, and each step of the

pipeline is optimized with minimal supervision (weakly supervised learning). To the best of our

knowledge, the proposed method is the first fully learning-based approach for the global (rigid)

registration of multimodal retinal images.
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Network (IR)
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Figure 2.1. Block diagram of the proposed registration framework for multimodal retinal image registration,
consisting of a content-adaptive vessel segmentation network, a SuperPoint network, and an outlier rejection
network to estimate the perspective transformation matrix between source and target images.

2.3.1 Vessel segmentation network

The structure of the vessel segmentation network is shown in Fig. 2.2. The input image is

RGB CF for source or IR for target. The single channel IR image is converted to three channels.

The output segmentation map is a single-channel grayscale image with bright vessels and dark

background. The source and target segmentation networks have separate encoders, but share the

same decoder for segmentation output.

We propose the content-adaptive and unsupervised vessel segmentation network to overcome

the dependency on manually labeled vessel segmentation ground truth, and to improve the robustness

when aligning poor quality retinal images. To enable the network adaptive to different image

contents, the pixel-adaptive convolution (PAC) [98] is adopted. Neural networks benefit from the

weight-sharing nature of convolution whereas it is also content agnostic in the sense that the same
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Figure 2.2. Structure of the content-adaptive vessel segmentation network. PACT stands for transposed
pixel-adaptive convolution [98]

set of kernel is applied to different image contents and pixel locations. On the contrary, PAC [98]

weighs the original 2D convolution kernel according to the feature guidance at different locations,

such that the network can adapt to different content.

Similar to the example in [98], the upsampling transposed convolution blocks are replaced

with transposed PAC (PACT), where we use the mean phase image [30] of the input as a guidance

input, as illustrated in Fig. 2.2. The phase of image I at scale σ is first computed by

φσ (I ) = arctan(
Gσ (|fR(I )|)
Gσ ( fe(I ))

), (2.1)

where fR(I ) is the odd component of I extracted by the Reize transform [99], fe(I ) is the even

component [100], and Gσ () represents the log-Gabor filter at scale σ [101]. Then the mean phase

image is obtained by taking the average of phase images at multiple scales,

φ̄(I ) =
1
N

N

∑
i=1

φσi(I ). (2.2)

Empirically, the mean phase image is very robust in enhancing edges in the original even

with low contrast. The pixel adaptive convolution could adjust local convolution kernel weights in
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the segmentation network according to the pixel intensities of guidance mean phase image, and thus

help segmentation of vessels in bad quality retinal images. We will illustrate the benefits of content

adaptation in detail in the experiment section 2.4.

To train the segmentation network in an unsupervised fashion, the style transfer technique is

adopted [31]. Using style transfer, the network only requires one manually labeled segmentation

map from any dataset to serve as a style reference. In this way, the network can be trained without

pixel-wise segmentation ground truth for every image in the dataset, which would require extensive

manual annotation. Especially, since expert annotated vessel segmentation of IR images is not

publicly available, the unsupervised vessel segmentation network is a crucial step for the success of

the proposed framework.

The loss function (2.7) is a hybrid loss, where the first term is designed to make the network

mimic the style of the reference, while the last two terms regularize the network to keep the content

of the input in the same position. The style loss [102] of the first term, Lstyle measures the style

difference between the output segmentation and the style reference, which is a segmentation map

labeled by hand from DRIVE dataset [103]. The global style of an image I is characterized by the

output at different layers of a pretrained network ψ . Let ψ j(I ) be the output feature at the j-th

layer with shape C j×H j×Wj, the (i,k)-th element of the C j×C j Gram matrix is defined as

G j(I )i,k =
1

C jH jWj

H j

∑
h=1

W j

∑
w=1

ψ j(I )i,h,wψ j(I )k,h,w. (2.3)

Denoting the segmentation of image I with Seg(I ) and the style reference image Iref, then the

style loss is defined as the squared Frobenius norm over their Gram matrices

Lstyle(I ;Iref) =
NL

∑
j=1
||G j(Seg(I ))−G j(Iref)||2F . (2.4)

The second term of (2.7) is a self comparison loss that compares the mean squared error

(MSE) between the rotated segmentation of the rotated input and the segmentation of the original
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input, denoted as

Lself(I ) = MSE(rot(Seg(rot(I ))),Seg(I )), (2.5)

where rot(I ) rotates the image I by 180◦.

The last term is an image registration loss, which is a MSE on the aligned source and target

segmentation using the manually labeled ground truth transformation matrix. Denote the source

image by Isrc, the target image by Itgt, and the ground truth transformation matrix by MGT,

Lreg(Isrc,Itgt;MGT) = MSE(warp(Seg(Isrc),MGT),Seg(Itgt)). (2.6)

The total loss is a weighted sum of the three terms

Lseg(Isrc,Itgt;Iref,MGT) = λstyle[Lstyle(Isrc;Iref)+Lstyle(Itgt;Iref)]

+λself[Lself(Isrc)+Lself(Itgt)]+λregLreg(Isrc,Itgt;MGT),

(2.7)

where λstyle, λself, and λreg are weighting parameters.

2.3.2 Feature detection and description network
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Figure 2.3. Structure of the fine-tuned Superpoint network at inference time.

The feature detection and description network is fine-tuned based on the pretrained Super-
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Point model [80]. The structure of SuperPoint at inference time is shown in Fig. 2.3, which includes

an encoder, an interest point decoder, and a descriptor decoder. The input is a single channel H×W

image, and the output includes a H×W interest point heatmap and a 256×H×W descriptor.

At training time, we freeze the weights in the encoder and the interest point decoder, and

only fine-tune the descriptor decoder with the patches of the vessel segmentation map (input image)

in our dataset. The procedure to crop patches and generate ground truth transformation matrix H is

shown in Fig. 2.4. From sub-Figures 2.4, (a) the source segmentation image is warped using MGT,

which is the same as the ground truth transformation matrix used in the previous section, and the

source patch is cropped at a random position (x,y). (b) We then randomly perturb the four corners

of the patch , and (c) compute the transformation matrices H and Hp from the corner coordinates.

(d) we warp the target segmentation image using Hp, and crop at the same position (x,y) to get the

target patch. Finally, (e) we get the source and target patches, and the ground truth transformation

matrix between the patches is H.

The output of the descriptor decoder D in Fig. 2.3 is a semi-dense 256× H
8 ×

W
8 tensor,

where 256 dimensional descriptor is located at the center of each 8×8 cell in the original resolution.

Let pi j = [p1, p2]
T denote the center coordinate of the (i, j)th cell, and then the projected coordinate

T (pi j,H) of pi j under the transformation H is

T (pi j,H) =

q1/q3

q2/q3

 ,where


q1

q2

q3

= H


p1

p2

1

 . (2.8)

We can obtain the ground truth label si ji′ j′ for correspondence between the (i, j)th cell in the

source image patch and (i′, j′)th cell in the target image patch determined by the ground truth

transformation matrix H between the two patches. Let pi′ j′ be the center coordinate of the (i′, j′)th

cell,

si ji′ j′ =

 1, if ||T (pi j,H)−pi′ j′|| ≤ 5 pixels,

0, otherwise.
(2.9)
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(a) Crop a source patch at random
position (x,y) in the warped source
image.

(b) Randomly perturb four corners of
the patch.

(c) Compute transformation matrices
H and Hp.

(d) Warp the target image with Hp. Crop a target patch at
(x,y).

(e) The transformation matrix from the source patch to
the target patch is H.

Figure 2.4. Procedure to generate training patches for the SuperPoint network.

Here, we set the threshold to 5 pixels for better performance, instead of 8 pixels in [80]. The label

for all possible correspondences between a total of H
8 ×

W
8 cells in the source image and H

8 ×
W
8

cells in the target image is denoted by S.

The descriptor loss Ldesc in eq. (2.10) is a hinge loss to maximize the descriptor similarity

between matching points (si ji′ j′ = 1) and minimize the descriptor similarity between non-matching

points (si ji′ j′ = 0). The loss in eq. (2.11) is ignored when the correlation (dot product) of two

matching descriptors is already larger than the positive margin mp, or the correlation of two non-

matching descriptors is already less than the negative margin mn, in order to optimize for hard

examples. The weighting factor λd is used to balance matching and non-matching examples. Let di, j

denote the source descriptor at the (i, j)th cell and d′i′, j′ denote the target descriptor at the (i′, j′)th

24



cell,

Ldesc(Dsrc,Dtgt;S) =
1

(HW/64)2

H/8

∑
i=1

W/8

∑
j=1

H/8

∑
i′=1

W/8

∑
j′=1

ld(di j,d′i′ j′;si ji′ j′), (2.10)

ld(d,d′;s) = λds ˙max{mp−dT d′,0}+(1− s) ˙max{dT d′−mn,0}. (2.11)

At inference time, the interest point heatmap is post-processed by non-max suppression with

the 5-pixel threshold, and keypoints are detected above the confidence threshold at 0.015. Then

the corresponding descriptor vectors are matched by the mutual nearest neighbor algorithm, where

the nearest neighbor from source to target must be the same as the nearest neighbor from target to

source. After this step, we obtain the coordinates of keypoint correspondences x between source

and target segmentation maps, as illustrated in Fig. 2.1.

2.3.3 Outlier rejection network
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Figure 2.5. Structure of the outlier rejection network. “P” stands for Perceptron.

The outlier rejection network is shown in Fig. 2.5. The input x∈RN×4 is N pairs of keypoint

correspondences after the feature detection and description network, where xi = [xi,yi,x′i,y
′
i], for

1 ≤ i ≤ N. The output is a vector w ∈ RN×1 containing a probability score wi ∈ [0,1) for each

correspondence. The network consists of 12 residual blocks with 256 dimensional weight-sharing

perceptrons and instance normalization, which is similar to the learned-correspondence network

[89]. This structure guarantees that the output matrix is invariant to change of ordering in the input
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point correspondences, as the ordering of the weighting scores also change correspondingly. The

major difference to [89] is that we estimate the perspective transformation for image registration

instead of the essential matrix used for camera pose estimation.

It requires at least 4 pairs of correspondences to estimate the perspective transformation that

has 8 degrees of freedom. In order to estimate the 3×3 perspective transformation matrix M from

pairs of coordinates and weighting scores, we adapt a weighted version of 4-point algorithm, which

allows soft-assignment to put more weights on inliers with higher probabilities. The conventional

4-point algorithm uses hard-assignment, which is a special case of the weighted 4-point algorithm

with binary weighting scores. For the i-th pair of correspondence, denote the source and the target

coordinates by (xi,yi) and (x′i,y
′
i), respectively and define matrix A ∈ R2N×9 as

A =



0 0 0 x1 y1 1 −x1y′1 −y1y′1 −y′1

x1 y1 1 0 0 0 −x1x′1 −y1x′1 −x′1
...

...
...

0 0 0 xN yN 1 −xNy′N −yNy′N −y′N

xN yN 1 0 0 0 −xNx′N −yNx′N −x′N


, (2.12)

then the problem is to find the vectorized transformation matrix Vec(M) that minimizes ||WAVec(M)||,

where W∈R2N×2N is a diagonal matrix of the output scores W = diag([w1,w1, . . . ,wN ,wN ]). It can

be proved that the solution is the corresponding eigenvector of the smallest eigenvalue of AT W2A.

For the outlier rejection network, the loss function Loutlier in eq. (2.19) is a weighted sum

of three terms. The first term Lclass is a classification loss, that is a cross-entropy loss between the

predicted and ground truth labels for each correspondence (2.13). Let oi(x) be the last linear layer

output for the i-th correspondence, and yi(MGT) ∈ {0,1} be its label as an inlier given the ground

truth transformation matrix MGT, then the classification loss can be defined as

Lclass(x;MGT) =
1
N

N

∑
i=1

γiH(yi(MGT),σ(oi(x))) (2.13)
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where H(·) denotes the binary cross-entropy, σ(·) denotes the sigmoid function, and γi is a per-label

balancing factor. The label yi(MGT) for each correspondence is obtained by thresholding the L2

distance between the target coordinates p′i and warped source coordinates T (pi,MGT) (2.8)

yi(MGT) =

 1, if ||T (pi,MGT)−p′i|| ≤ 5 pixels

0, otherwise
(2.14)

The matrix regression loss Lmatrix is MSE between the predicted and ground thruth transfor-

mation matrix

Lmatrix(x;MGT) = MSE(MGT−Mpred(x)) (2.15)

where Mpred(x) denotes the predicted transformation matrix given x.

The Dice coefficient is commonly used to evaluate registration accuracy and the Dice loss

is defined as one minus the soft Dice coefficient on the aligned segmentation images. The Dice

coefficient for binary segmentation is defined as

Dice(I1,I2) =
2×∑(I1⊙I2)

∑I1 +∑I2
(2.16)

where ⊙ denotes element-wise product. It is a value between [0,1], and higher Dice coefficient

indicates more overlap. Since the binary Dice coefficient is not differentiable, the soft Dice

coefficient [31] is applied for grayscale segmentation maps as follows:

Dices(I1,I2) =
2×∑ele min(I1,I2)

∑I1 +∑I2
(2.17)

where ele min denotes the element-wise minimum. Its registration Dice loss can then be written as

LDice(x,Isrc,Itgt) = 1−Dices(warp(Isrc,Mpred(x)),Itgt), (2.18)

where Isrc is the warped source segmentation and Itgt is the target segmentation. Then the total
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loss is

Loutlier(x,Isrc,Itgt;MGT) = λclassLclass(x;MGT)

+λmatrixLmatrix(x;MGT)+λDiceLDice(x,Isrc,Itgt).

(2.19)

2.4 Experimental result

In this experiment, we compare the overall performance of our proposed framework to

several existing methods for multimodal retinal image registration that estimates the affine or

perspective transformation.

2.4.1 CF-IR dataset

Dataset

The first dataset collected by Jacobs Retina Center (JRC) at Shiley Eye Institute consists of

color fundus images (RGB, 3000×2672) for source and infrared reflectance (IR) images (grayscale,

768×768 or 1536×1536) for target. The image pairs contain a variety of pathologies including

diabetes, hemorrhages, and macular degeneration. It is partitioned into 530 pairs for the training set,

90 for the validation set, and 253 for the test set. The ground truth transformation matrices MGT for

the training and validation set are calculated by manually labeled correspondences. The quality of

each image in the dataset is rated by ophthalmologists as good, usable, and bad as listed in Table

2.1.

Table 2.1. Number of good, usable, and bad quality images in JRC CF-IR dataset.

Dataset Good Usable Bad Total

Training CF 256 193 81 530
Training IR 327 168 35 530
Validation CF 47 30 13 90
Validation IR 58 23 9 90
Test CF 124 90 40 253
Test IR 181 59 14 253
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Criteria

The robustness of registration is measured by the success rate. We determine successful

registration when the maximum error (MAE) in equation (2.20) is less than or equal to 10 pixels

[28, 29, 70, 71, 9] on 6 manually labeled correspondences P , as illustrated in Fig. 2.6.

MAE = max
p∈P

∣∣∣∣ T
(
T
(
p,M−1

GT
)
,Mpred

)
−p

∣∣∣∣ (2.20)

The accuracy of registration (regardless of success or not) is measured by the Dice coefficient

(2.16) on the binary segmentation maps of aligned images, where the binary segmentation maps

are obtained using our PAC vessel segmentation network with 0.5 threshold. We multiply the two

segmentation maps with a valid mask to compute the Dice coefficient in their overlapping region.

Implementation

All images are first padded to square shape and resized to 768×768 before applying different

registration methods. It is noticed that directly downsampling the source images will increase the

noise and adversely affect the segmentation. Therefore, the images are anti-aliased with Gaussian

filter before bicubic downsampling. In our method, all pixel intensities are normalized between

[0,1], and the target grayscale images are converted to 3 channels by stacking the input channel 3

times.

Training

Three networks in the proposed framework are trained sequentially in PyTorch using Adam

optimizer, and choose the best model with the lowest loss on the validation set. The content-adaptive

vessel segmentation network is trained on our dataset using learning rate 10−3, and batch size 1 due

to limited memory. We used λstyle = 1, λself = 10−4, and λreg = 10−3 for the loss function (2.7),

which yields the best result in our experiments. We observed that when λself and λreg are too large,

the network may output images completely black, but when they are too small, the network would

produce inaccurate segmentation maps. In the first 100 epochs, we replace PACT in Fig. 2.2 with
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Mpred

1

MGT
-1

(a) 

(b)

Figure 2.6. Procedure for calculating MAE. (a) Align the target image to the source image using M−1
GT, and

record the warped keypoints coordinates. (b) Align the source image to the target image using Mpred, and
compute the maximum L2 error on the keypoints to get the MAE.

transposed convolution in the encoder for IR to fit in one GPU. Then, we freeze the weights in the

CF encoder and the shared decoder, and train the IR encoder with PACT for 20 max epochs with

learning rate 10−4.

With weights in the encoder and interest point decoder frozen, the SuperPoint descriptor

decoder is fine-tuned on 256×256 patches of vessel segmentation maps for our training set. We

used mp = 1, mn = 0.2, and λd = 250 for the descriptor loss (2.10), and optimized the network

using learning rate 10−4, batch size 2, and 1000 max epochs.

The outlier rejection network is trained with the interest point coordinates after the feature

detection and description network is trained on the segmentation maps in our dataset. We set

λclass = 1, λmatrix = 0.1, λDice = 0.1 for the loss (2.19), and use learning rate 10−4, batch size 32,
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and 1000 max epochs. All the coordinates are normalized in [−1,1], and the transformation matrices

are modified accordingly.

Comparison

For comparison, we use the MATLAB code provided by the original authors for [29, 70]

and our own implementation in MATLAB for the affine registration part of [30]. Our preliminary

method in ICASSP [72] , which utilizes the vessel segmentation [31] and the pretrained SuperPoint

network [80], is also evaluated. We then investigate two learning-based methods, CNNGeo [68]

and IRR-PWC [93], to choose the better performing method for comparison.

We adopt the pretrained CNNGeo [68] affine model with ResNet101 feature extraction

in PyTorch provided by the authors, which is denoted as CNNGeo (pretrained) in Table 2.2. We

resize our images to 240×240 for CNNGeo because the input size should be fixed due to the fully

connected layers. Note that we also tried to retrain a model with 768×768 input, but the model

would not fit in one GPU. We also fine-tune CNNGeo on our training set using the same loss in

[68] for 1000 max epochs using Adam optimizer with learning rate 10−3 and batch size 16, which

achieves better performance than the pretrained model denoted as “CNNGeo (fine-tuned)” in Table

2.2.

Since IRR-PWC [93] uses the pretrained model on FlyingThings3D dataset [104] in PyTorch,

we fine-tune the model for our dataset using Adam optimizer with learning rate 10−4, batch size 1,

and weight decay 10−4 for 100 max epochs. We test IRR-PWC [93] with the pretrained model and

the fine-tuned model on our test set, which are denoted as “IRR-PWC (pretrained)” and “IRR-PWC

(fine-tuned)” in Table 2.2, respectively.

Table 2.2 shows the registration success rate of the two learning-based methods along with

different thresholds for MAE. The success rate of the pretrained models are all 0% for MAE

thresholds ranging from 10 to 30 pixels. As we increase the MAE threshold from 10 to 30 pixels,

the success rate of fine-tuned IRR-PWC increases from 1.19% to 50.19%, while the success rate of

fine-tuned CNNGeo only increases from 0% to 5.53%. IRR-PWC demonstrates better performance

than CNNGeo for this task, so we only compare with IRR-PWC for learning-based methods in the
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following experiments.

Table 2.2. Comparison between two learning-based methods on JRC CF-IR test set.

Success rate MAE≤10 MAE≤20 MAE≤30

CNNGeo [68] (pretrained) 0.00% 0.00% 0.40%
CNNGeo [68] (fine-tuned) 0.00% 1.58% 5.53%
IRR-PWC [93] (pretrained) 0.00% 0.00% 0.00%
IRR-PWC [93] (fine-tuned) 1.19% 21.34% 50.19%

Results and Discussion

We compare the proposed method with the conventional (not learning-based) methods and

the deep learning-based methods in Table 2.3 for the quantitative result and in Fig. 2.7 for the

qualitative result. We used MAE≤10 pixels to determine successful registration in this experiment.

As shown in Table 2.3, we first compute the Dice coefficient before registration (by simply padding

all image to square shape and resizing to 768×768) for baseline comparison. The average Dice

coefficient is expressed as mean (± standard deviation).

For conventional methods, SURF-PIIFD-RPM[29] achieves 27.27% success rate and an

average of 0.2615 Dice coefficient on the entire test set. The performance improves when excluding

bad quality images (both source and target image are “good” or “usable”), but degrades when only

considering bad quality images (either source or target image is “bad”). URSIFT-PIIFD-AGMM

[70] does perform better than SURF-PIIFD-RPM [29] in some cases in Fig. 2.7, but the overall

result is worse than [29] on our dataset, as shown in Table 2.3. Although the Phase-HOG-RANSAC

[30] method achieves the highest success rate and Dice coefficient overall among the conventional

methods, the 14.00% success rate on bad quality images still indicates very limited robustness.

The pretrained IRR-PWC [93] fails on every image pair, while the fine-tuned IRR-PWC

reaches 1.19% success rate and 0.0964 Dice coeffient on average. Since the original input image

pairs have large resolution gaps, a wide field of view difference, and large quality variations,

applying only a deformable registration method on the original input may not yield accurate results.

In Table 2.3, our proposed method clearly achieves the highest success rate 97.63% and
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average Dice coefficient 0.6306 in the test set with 11.07% and 0.0386 improvement upon the best

competitor, which is our ICASSP paper [72]. Our proposed method also ranks the highest and

reaches 99.51% success rate when excluding bad quality images (both source and target image are

good or usable quality). Our method improves the success rate in bad quality images (either source

or target image is bad quality) to 90.00% from the previous 50.00% in [72], which significantly

improves in robustness thanks to the content-adaptive segmentation method and the fine-tuned

SuperPoint network.

Fig. 2.7 shows registration results of different methods for three example pairs in sub-images

(1)-(3). For each pair, sub-images (a) and (b) are the input images resized to 768×768. Sub-image

(c) shows the checkerboard overlay of the aligned images, where the RGB tiles show the warped

source image, and the gray tiles show the target image. Note that the vessels should be continuous

across the tiles if the images are well aligned. Sub-image (d) shows the overlay of the aligned

segmentation images, where the source segmentation and the target segmentation are assigned to the

red channel and the green channel, respectively. The vessels appear in yellow if the segmentation

maps perfectly overlap. In the first pair (1), quality of both the source CF image and the target IR

image is good. SURF-PIIFD-RPM [29], Phase-HOG-RANSAC [30], and our ICASSP paper [72]

succeed, while URSIFT-PIIFD-AGMM [70] and fine-tuned IRR-PWC [93] fail since their MAE

is larger than 10 pixels. In the second example (2), which is an image pair with disease and the

CF image is blurred, [72] and the proposed method succeeds, while other methods fail. The result

of URSIFT-PIIFD-AGMM [70] is close, but the left part is not aligned. For the third image pair

(3), where the optic disc in CF image is located near the center of the image, only the proposed

method successfully aligned the images. Since the number of keypoint correspondences of [29, 70]

is insufficient to calculate an affine transformation matrix (less than 3), their results are set to be the

same as before registration.
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Input Proposed

1a 1c

1b 1d

2a 2c

2b 2d

3a 3c

3b 3d

SURF-PIIFD-RPM
URSIFT-PIIFD-

AGMM
Phase-HOG-

RANSAC Our ICASSP
IRR-PWC 

(finetuned)

Figure 2.7. Registration results of three example pairs in JRC CF-IR test set using different methods. (a) and
(b) show the input image pair resized to 768×768. (c) shows the checkerboard of the aligned original images
(RGB tiles: warped source image, gray tiles: target image). (d) shows the vessel segmentation overlay (red:
warped source segmentation, green: target segmentation, yellow: overlap).
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Pixel Adaptive Convolution vs Naive Convolution for Vessel Segmentation

To evaluate the benefits of content adaptation, we replace the content-adaptive segmentation

network in our image registration framework with a convolutional segmentation network trained in

the same way. It is denoted as “Proposed-ConvSeg” in Table 2.3, which achieves 94.86% success

rate on all images and 78.00% success rate on bad images. It demonstrates that the convolutional

segmentation network is less robust than the content-adaptive vessel segmentation network using

PAC in bad quality images.

Fig. 2.8 shows an example pair of images where quality of both the source CF and target IR

images are poor. The input images are shown in sub-images (a) and (b), and the mean phase images

are shown in sub-images (c) and (d). The mean phase image (b) can clearly represent better vascular

details than the original CF image (a). With the guidance of the phase image, the content-adaptive

vessel segmentation (f) can also show better details on the right part of the image compared to

the convolutional vessel segmentation (e). After applying the fine-tuned SuperPoint and outlier

rejection network on the segmentation results, the content-adaptive vessel segmentation achieves

successful alignment in sub-image (j), but the convolution version fails in sub-image (i).

a

b

c

d

e

f

g

h

i

j

Figure 2.8. Comparison on the PAC and convolution segmentation network. (a), (c): input image pair resized
to 768×768. (b), (d): mean phase images. (e), (g): convolution segmentation. (f), (h): PAC segmentation. (i):
registration result with convolution segmentation. (j): registration result with PAC segmentation.
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Outlier Rejection Network vs RANSAC

We replace the proposed outlier rejection network with RANSAC in our image registration

framework to check performance variations, which is denoted as “Proposed-RANSAC” in Table 2.3.

Compared to the entire proposed framework, the success rate decreases to 91.13% for good and

usable images, and decreases to 56.00% for bad images. It shows that the proposed outlier rejection

network leads to significantly more robust performance than RANSAC.

An example is illustrated by Fig. 2.9, where quality of the source image shown in sub-image

(a) is bad and quality of the target image shown in sub-image (c) is good. Sub-images (b) and (d)

show the keypoints detected by the fine-tuned SuperPoint network, and sub-image (e) shows the

mutual nearest neighbor matching result. Sub-images (g) and (h) show the outlier rejection results

of RANSAC and the outlier rejection network respectively, where the red lines show the outliers and

the green lines show the inliers. RANSAC fails to accurately register the image pair in sub-image

(h). However, the outlier rejection network (g) can find more correct inliers than RANSAC (f) such

that the alignment result (i) is accurate.

a

b

c

e

d f

g

h

i

Figure 2.9. Comparison on the outlier rejection network and RANSAC. (a), (b): input image pair resized to
768×768. (c), (d): detected keypoints on the segmentation maps. (e): mutual nearest neighbor matching
result. (f): RANSAC matching result (inliers: green, outliers: red). (g): RANSAC alignment result. (h), (i):
outlier rejection network results.
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Input Proposed

a c

b d

SURF-PIIFD-RPM
URSIFT-PIIFD-

AGMM
Phase-HOG-

RANSAC Our ICASSP

IRR-PWC 
(finetuned)

Figure 2.10. Registration results of one challenging pair in CF-FA dataset using different methods. (a) and
(b) show the input image pair. (c) shows the checkerboard of the aligned original images (RGB tiles: warped
source image, gray tiles: target image). (d) shows the vessel segmentation overlay (red: warped source
segmentation, green: target segmentation, yellow: overlap).

2.4.2 CF-FA dataset

We further test the performance of the proposed framework on a public dataset [105], which

consists of 59 pairs of color fundus (720×576, RGB) and fluorescein angiography (720×576,

grayscale) images. In this dataset, 29 pairs are normal, while the other 30 pairs of images have

diabetic retinopathy. The field of view of CF and FA images are similar there are no images with

poor quality. We manually labeled 6 pairs of keypoint correspondences to obtain the ground truth

transformation matrix for all image pairs. We fine-tuned our proposed framework and other deep

learning-based methods [72, 93] on this dataset using similar hyper parameters as in the JRC CF-IR

dataset (reducing batch size to 30 for outlier rejection network) for comparison. The 30 pairs with

odd indices are used for training, and the other 29 pairs with even indices are used for testing. Due

to the small number of images, we did not use a validation set, and simply stop training at the

maximum epoch.

Table 2.4 shows the experimental result of different methods on the test set of the CF-FA

dataset [105], where the success rate and Dice coefficient are evaluated in the same way as in the

JRC CF-IR dataset. Most methods achieve higher success rate compared to the JRC CF-IR dataset

overall, due to similar field of view of source and target images and better image quality. Both

Phase-HOG-RANSAC [30] and our proposed method achieve 100% success, while our proposed

method reached the highest Dice coefficient at 0.6794. When replacing the content-adaptive
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Table 2.4. Result of different methods on CF-FA test set.

Method Success rate Dice

Before registration – 0.1197 (±0.0228)

SURF-PIIFD-RPM [29] 82.76% (24/29) 0.5526 (±0.2184)
URSIFT-PIIFD-AGMM [70] 68.97% (20/29) 0.4999 (±0.2402)
Phase-HOG-RANSAC [30] 100.00% (29/29) 0.6481 (±0.1004)

IRR-PWC [93] (pretrained) 0.00% (0/29) 0.0984 (±0.0231)
IRR-PWC [93] (fine-tuned) 3.44% (1/29) 0.1977 (±0.0688)
Our ICASSP [72] 96.55% (28/29) 0.6453 (±0.1024)
Proposed 100.00% (29/29) 0.6794 (±0.0873)

Proposed-ConvSeg 100.00% (29/29) 0.6789 (±0.0863)
Proposed-RANSAC 100.00% (29/29) 0.6528 (±0.0856)

segmentation in our proposed framework with the convolutional segmentation network, as shown in

row “Proposed-ConvSeg”, or replacing the outlier rejection network with RANSAC, as shown in

row “Proposed-RANSAC”, the success rates remain at 100%, but the Dice coefficients decrease

slightly.

Fig. 2.10 shows one challenging pair in the CF-FA test set whose the overlapping ratio

between source and target images is small. SURF-PIIFD-RPM [29], URSIFT-PIIFD-AGMM [70]

and fine-tuned IRR-PWC [93] fail to align this pair, and our ICASSP [72] result also yields MAE

larger than 10 pixels. Both Phase-HOG-RANSAC [30] and our proposed method succeed, and our

method produces slightly more accurate alignment observed from the segmentation overlay.

The experiment on CF-FA dataset demonstrates that the proposed framework can be easily

generalized for other modalities of retinal images via fine-tuning on a small number of images

without drastically adjusting hyper parameters. It also shows that the advantages of the proposed

framework may be more salient when the dataset includes bad image quality.

2.5 Conclusion

In this chapter, we proposed a content-adaptive weakly supervised deep learning framework

for multimodal retinal image registration. The proposed method consists of three neural networks
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for vessel segmentation, feature detection and description, and outlier rejection. The content-

adaptive nature of the proposed method allows training with weak supervision form ground truth

transformation matrices. When compared with recent conventional and learning-based methods, our

method achieved the highest success rate and Dice coefficient, and showed significant robustness

in bad quality images. In future work, we can concatenate the proposed framework with a locally

fine alignment method to form a complete pipeline. The proposed framework could also be further

generalized for other modalities including fundus autofluorescence and multicolor imaging.

Chapter 2, in part, is a reprint of the material as it appears in 2020 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP 2020), Y. Wang, J. Zhang, C.

An, M. Cavichini, M. Jhingan, M. J. Amador-Patarroyo, C. P. Long, D. G. Bartsch, W. R. Freeman

and T. Q. Nguyen, IEEE, 2021, and in IEEE Transactions on Image Processing, Y. Wang, J. Zhang,

M. Cavichini, D. G. Bartsch, W. R. Freeman, T. Q. Nguyen, C. An, IEEE, 2021. The dissertation

author is the primary author of the two papers.
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Chapter 3

Correlation between subjective and objec-
tive metrics

Even though the multimodal retinal image registration has been widely studied, the eval-

uation metrics have not been thoroughly studied and compared. The ophthalmologists use their

own subjective grade to assess the accuracy of registration based on the aligned images, while most

papers in image processing literature adopt several objective metrics for their fairness and simplicity.

This divergence in evaluation metrics may cause performance variations from laboratory to clinical

application, and poses potential barriers to improve current registration methods.

In this chapter, we propose a method to mathematically compare the similarity of the

subjective grade and the commonly used objective evaluation metrics, and establish an objective

evaluation metric that is most correlated with the subjective evaluation of the ophthalmologists. To

the best of our knowledge, this work is the first extensive study on various evaluation metrics for

multimodal retinal image registration.

3.1 Subjective metric

Ophthalmologists adopt a subjective grading method, where the aligned multimodal images

are analyzed in 5×5 blocks and overlaid in two forms of checkerboard, as shown in Fig. 3.1. The

neighboring blocks in the checkerboard image show the registered images between two different

modalities. If the images are perfectly aligned, the vessels are expected to be continuous on the edge

across the neighboring blocks. In the subjective grading method, a score from 0 to 5 is assigned to
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each block in the checkerboard image, characterizing the ratio of overlap in vessels on the edge

closest to the optic nerve as specified in Fig. 3.1. The grading criteria are listed in Table 3.1 and

the corresponding grade examples are illustrated in Fig. 3.2, where grade 1 and 2 are considered

as poor alignment, 3 as reasonable, 4 and 5 as good/excellent matches, and grade 0 is assigned to

ungradable blocks due to absence of vessels, or no visible vessels because of noise or out-of-focus.

Note that in Figures 3.1 and 3.2, the deformations on the edges of the CF image is caused by the

deformable registration method, which will be explained in section 3.4.

Table 3.1. Grading criteria for the subjective grade.

Grade Implication (Vessel misalignment at the block boundaries)

5 Perfect alignment.
4 Less than 1/3 vessel width difference in continuity of the vessels.
3 More than 1/3 or and less than 1/2 vessel width difference in continuity between the two

vessels.
2 More than 1/2 and less than 1 vessel width difference in continuity between vessels.
1 More than 1 vessel width difference in continuity between vessels.
0 Ungradable due to no visible vessels.

(a) Form 1: Target first (b) Form 2: Source first

Figure 3.1. Two forms of checkerboard images are used for subjective grading in (a) and (b), where the blue
arrows point to the optic nerve and CF is a source image and IR is a target image for registration.
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(a) Grade 5 (b) Grade 4 (c) Grade 3

(d) Grade 2 (e) Grade 1 (f) Grade 0

Figure 3.2. Examples of subjective grade. Sub-images (a)-(f) are evaluated from grade 5 to 0. The grade is
assigned to the block in the center, and blue arrows point to the vessels are graded based on the Table 3.1
criteria.

3.2 Objective metric

Several objective metrics have been used in image processing literature. In this chapter,

we consider Maximum error (MAE), median error (MEE), root mean squared error (RMSE), and

percentage of correction keypoints (PCK) for supervised evaluation and structural similarity index

(SSIM) and Dice for unsupervised evaluation.

3.2.1 Supervised Evaluation

Supervised evaluation metrics require manually labeled keypoint correspondences between

source and target images. Popular metrics include maximum error (MAE) [71, 28, 29, 70], median

error (MEE) [71, 28, 29, 70], root mean square error (RMSE) [71, 29, 70, 87], and percentage of

correct keypoints (PCK) [68].

Denote keypoint coordinates with p = (x,y)T and the set of M pairs of manually labeled
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point correspondences with P = {(p1,q1), ...,(pM,qM)}. MAE (maximum error, different from

mean absolute error used in other fields) calculates the maximum L2 norm error on the selected

point correspondences

MAE = max
(p,q)∈P

||F(p)−q|| , (3.1)

where F(p) warps a source keypoint p towards the target location using the transformation F(·)

estimated by the registration algorithm. Using similar notation, MEE calculates the median L2

norm error on the selected points

MEE = median
(p,q)∈P

||F(p)−q|| , (3.2)

and RMSE calculates the root mean square error on the selected points

RMSE =
√

mean
(p,q)∈P

∥F(p)−q∥2. (3.3)

PCK sets a threshold T on the L2 norm to determine whether a pair of keypoints match correctly,

and calculates the percentage of correct keypoints

PCK =
|{(p,q) | ||F(p)−q||< T, (p,q) ∈P}|

|P|
×100%. (3.4)

Since the choice of threshold T is task dependent and RMSE with less than 5 pixels is usually

considered as success registration [71, 29, 70, 87], the threshold T is set to 5 pixels. To compute these

metrics, we need to first manually labeled pairs of keypoint correspondences (generally 6 or more

[71, 28, 29, 70, 87]) for all the multimodal images, where the keypoint locations should accurately

lie on salient landmarks like vessel bifurcations, and uniformly distributed in the overlapping area.

However, it is still difficult for human to select points at pixel-level accuracy and to make the points

uniformly distributed in the overlapping area even with the help of user friendly software (e.g. GUI).

Besides, labeling point correspondences by hand is very time-consuming for larger datasets with

more than hundreds of image pairs.
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3.2.2 Unsupervised Evaluation

Unsupervised evaluation metrics, on the contrary, do not require manually labeled keypoint

correspondences, and only take the registered images as input.

Denote the aligned images with I1 and I2 ∈ RH×W , then the mean square error (MSE) is

defined as

MSE = mean[(I1−I2)
2]. (3.5)

The structural similarity index (SSIM) [106] is designed to improve MSE, and it is averaged on all

the windowed patches W1 and W2 from two images I1 and I2

SSIM(I1,I2) = mean
W1,W2

(2µ1µ2 + c1)(2σ12 + c2)

(µ2
1 +µ2

2 + c1)(σ
2
1 +σ2

2 + c2)
, (3.6)

where µ j is the mean value of window W j ( j ∈ {1,2}), and σ2
j and σ2

12 are the variance of W j

and the covariance of W1 and W2, respectively. c1 = (k1L)2, c2 = (k2L)2 are two variables to

stabilize the division with small denominator, with L dynamic range of pixel intensity and k1 = 0.01,

k2 = 0.03 by default. SSIM is a value between 0 and 1, and the higher SSIM indicates higher

similarity between two images. Since SSIM is only designed for single-channel images image,

RGB images need to be first converted to grayscale.

The Dice coefficient is frequently used for evaluating the overlapping region between two

segmentation maps [30, 97, 31, 72]. With the aid of vessel segmentation algorithms, the Dice

coefficient can also be used to evaluate the accuracy of registration. Let S j denote the binary vessel

segmentation of image I j ( j ∈ {1,2}), with 1 assigned to vessels and 0 assigned to background,

the Dice coefficient for binary segmentation is defined as

Dice(S1,S2) =
2×∑(S1⊙S2)

∑S1 +∑S2
, (3.7)

where ⊙ denotes element-wise product. The Dice coefficient ranges between 0 and 1, and higher

number indicates larger overlap.
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The soft Dice coefficient [31] introduces a differentiable counterpart of the binary Dice

coefficient for vessel probability maps, and it is defined as

Dices(P1,P2) =
2×∑ele min(P1,P2)

∑P1 +∑P2
, (3.8)

with P j denoting the vessel probability map of I j image.

3.3 Correlation evaluation

In order to build a connection between the subjective metric of ophthalmology and the

objective metrics of image processing literature, we compute the Pearson correlation coefficient

[107] along with various objective evaluation methods to compare their degree of similarity.

3.3.1 Pearson correlation coefficient

The Pearson correlation coefficient (PCC) between random variables X and Y is defined as

ρX ,Y =
cov(X ,Y )

σX σY
, (3.9)

where the covariance of X and Y is

cov(X ,Y ) = E[(X−E[X ])(Y −E[Y ])], (3.10)

and σX and σY are the standard deviation of X and Y, respectively. For finite N samples {(x1,y1),

· · · ,(xN ,yN)}, PCC can be estimated by

rx,y =
∑

N
i=1(xi− x̄)(yi− ȳ)√

∑
N
i=1(xi− x̄)2

√
∑

N
i=1(yi− ȳ)2

. (3.11)

where x̄ = 1
n ∑

n
i=1 xi denotes the sample mean, and similarly for ȳ. The PCC value ρ ranges between

[−1,1], where higher absolute PCC value |ρ| implies higher linear dependency. Positive ρ value
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implies that Y increases as X increases, while negative value implies that Y decreases as X increases.

For example, the correlation between MAE and the subjective grade should be negative, while

the correlation between PCK and the subjective grade should be positive. Based on Cohen’s

interpretation [108], an absolute PCC value of 0.1 is small, 0.3 is medium, and 0.5 is large. An

important property of the PCC value is that it is invariant to separate linear transforms in X and Y

ρX ,Y = ρ(aX+b),(cY+d), where ac > 0, a,b,c,d ∈ R, (3.12)

which means that PCC can still be applied even when the scale and range are different for different

criteria.

3.3.2 Confidence interval

In order to test the certainty of the estimated PCC r in eq (3.11), we further calculate its

confidence interval to indicate the possible range of true PCC ρ values in eq (3.9). The confidence

interval for the population’s PCC ρ is can be computed with three steps [109]. Firstly, a z-score is

computed applying the Fisher transformation F(·)

z = F(r) =
1
2

ln
1+ r
1− r

= arctanh(r). (3.13)

Secondly, given a significant level α which is typically set to 95%, the critical z-score zα/2 for a

two-tail test can be obtained from a look-up table. Then the confidence interval for F(ρ) would be

F(ρ) ∈
[
F(r)− zα/2SE,F(r)+ zα/2SE

]
, (3.14)

where the standard error SE is 1√
n−3

. Finally, the confidence interval for r is converted back using

the inverse Fisher transformation

F(ρ) ∈
[
F−1 (F(r)− zα/2SE

)
,F−1 (F(r)+ zα/2SE

)]
, (3.15)
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where

F−1(z) =
e2z−1
e2z +1

= tanh(z). (3.16)

3.4 Experimental result

We derive the Pearson correlation between various objective metrics and the subjective grade

on the multimodal retinal image registration result. We apply two automatic deformable registration

methods to obtain aligned images: The first one is a conventional method, MIND [110], and the

second is a learning-based method [31]. As the deformable registration methods are designed

for small misalignment, source and target images are aligned with ground truth and then they are

deformed randomly [97, 31], as shown in Fig. 3.3. Finally, we apply two registration methods

[31, 110] to generate the aligned images. Ophthalmologists grade them for the subjective metric,

and we derive the objective metric with MAE, MEE, RMSE, PCK, SSIM and Dice coefficients.

Note that here, we use two automatic deformable registration methods [31] and [110] not because of

comparing performance between two methods but because of providing consistency of correlation

between the subjective and objective metrics for both the conventional and learning methods.

Random
Deform

Random
Deform

Registration 
Method

Target image

Source image Output form 1

Output form 2Target registration input

Source registration input

Target alignment GT

Source alignment GT

Ground Truth 
Alignment

Figure 3.3. Input generation and deformable registration pipeline where registration methods by Zhang et al.
[31] and Heinrich et al. [110] are used.

48



3.4.1 Dataset and ground truth

The dataset consists of 109 pairs of Color Fundus images (TRC-50DX color fundus images,

Topcon) and infrared Scanning Laser Ophthalmoscope images (Heidelberg Engineering Spectralis

SLO). The dataset includes a variety of pathologies including hemorrhages, diabetes, and macular

degeneration.

In this experiment, multimodal images include 3 different types of content change. Firstly,

the pathology has different appearance in the two imaging modalities, as illustrated in the example

in Fig. 3.4. Secondly, the images are not necessarily taken at the same time, which also changes

appearance as the disease progresses. Thirdly, images are distorted by artifacts such as out-of-focus,

reflection, and over or under exposed regions.

The source CF images are 24-bit RGB and their resolution is 3000×2672, and the target

SLO images are 8-bit grayscale and resolution of the images is 768×768 or 1536×1536. They

are both padded to square shape and resized to 768×768 before registration, and the ground truth

transformation matrices are derived by manually selected correspondences from the source to target

images. We use the SuperPoint network [80] to detect keypoints on the vessel segmentation of [31]

and select all possible pairs of point correspondences to compute MAE, MEE, RMSE, and PCK.

(a) CF image (b) IR image

Figure 3.4. Example image pair with disease (aligned by [31])
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3.4.2 Experiment setting

As shown in Fig. 3.3, the input is generated by randomly deforming the image pair aligned

by the ground truth transformation matrix, where the random deformation field is upsampled from a

4×4×2 matrix that follows normal distribution with 0 mean and standard deviation of 5 pixels.

The input pair is then registered using each of the two registration methods to generate the output

pair, where MIND [110] is implemented in MATLAB, and [31] is implemented in PyTorch.

Outputs of two registration methods are graded independently by 2 retina specialists and

3 medical students. All pairs of aligned images are graded two times based on two forms of

checkerboard overlay shown in Fig. 3.1. We take the average of the two grades assigned to the same

block if both of them are non-zero, take the non-zero grade if only one grade is zero, and keep the

grade zero if both grades are zero. To verify the reliability of the grades, each of the 5 graders first

grades the same subset of 10 images, and applies SPSS [111] to calculate an average intraclass

correlation coefficient (ICC). We obtain that the average ICC is 0.903, which indicates excellent

similarity among graders.

In the comparison, each block is treated as an individual sample, as illustrated in Fig. 3.5.

MSE, SSIM, and Dice coefficients are computed on the image patch within each block, where the

black area in CF image is excluded. MAE, MEE, RMSE, and PCK are calculated on all correspon-

dences within the block, as shown in Fig. 3.6. Especially, blocks with no valid correspondences or

marked as ungradable (grade 0) are excluded when calculating the correlation coefficient, otherwise

they may affect majorly the correlation coefficients.

We set the threshold T in eq. (3.4) at 5 pixels for PCK, which yields the maximum correlation

with grade at 0.1539, as shown in Fig. 3.7. MSE and SSIM are computed on the aligned images

after converting to grayscale. Two segmentation methods [35] and [31] are tested for the binary and

soft Dice coefficients where the optimal thresholds of the binary Dice coefficient for two methods

are set to 0 and 0.5, respectively, which yields largest correlation with the grade.
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Figure 3.5. Subjective and objective metrics on each block in an example image.

3.4.3 Results

Fig. 3.8 shows the correlations between the subjective grade and various objective metrics

and their 95% confidence intervals, which are evaluated on each block or image pair. The soft Dice

coefficient using segmentation [31] achieves the highest correlation with the subjective grade at

0.35, which can be considered moderate based on Cohen’s interpretation [108], and the binary Dice

coefficient [31] shows slightly lower correlation. The binary and soft Dice coefficient in [35] also

demonstrate lower correlation with the subjective grade. This result coincides with the fact that

the vessel segmentation of [31] is more accurate than that of [35]. PCK and SSIM show positive

correlation around 0.1, while the error metrics such as MAE, MEE, RMSE, and MSE show negative

correlation around −0.1. The main reason that the binary and soft Dice coefficient show the highest

correlation with subjective grade may lie in their common emphasis on retinal vessels. The Dice

coefficient calculates the overlapping of vessel segmentation, and the subjective grade also depends

on the continuity of vessels. Meanwhile, the other metrics do not explicitly depend on vessels,
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(a) Source keypoints (b) Target keypoints (c) Correspondences

Figure 3.6. Keypoint correspondences in an example block.

which leads to lower correlation with the subjective grade.

In order to evaluate the intrinsic correlation between different metrics, we calculate the

absolute PCC value between each pair of metrics shown in Fig. 3.9. We observe that the correlation

between the supervised metrics are very high, because they all operate on the selected keypoint

correspondences. MSE and SSIM also have very large correlation, as they both take the grayscale

images as input. The binary and soft Dice coefficient with the segmentation [31] are nearly perfectly

correlated, as the segmentation map of [31] is already close to binary. Meanwhile, the binary and

soft Dice coefficient with the segmentation [35] are different since the vessel segmentation is similar

to the probability map.

We further investigate the influence of different registration method. In the following

experiment, correlation is calculated separately using the two registration methods [31, 110]. As

shown in Fig. 3.10, the soft Dice coefficient with segmentation [31] still shows the highest absolute

correlation in both methods. Specifically, the soft Dice coefficient with segmentation [31] has

higher correlation using only registration method [110], where the grade distribution in Fig. 3.11,

better covers both higher and lower grades. This experiment demonstrates that adopting different

registration methods will lead to similar conclusion.
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Figure 3.7. Pearson correlation coefficient between subjective grade and PCK with different thresholds with
95% confidence interval.

3.5 Conclusion

In this chapter, we presented a comprehensive overview of the existing evaluation metrics

for multimodal retinal image registration, and compared the Pearson correlation coefficient between

the ophthalmologists’ subjective grade and several commonly used objective evaluation metrics.

We found that the soft Dice coefficient with the segmentation method in [31] achieved the highest

correlation with the subjective grades compared to many commonly used keypoint-supervised

metrics. This study established an objective metric, i.e. the Dice coefficient, that is highly correlated

with the subjective evaluation of the ophthalmologists. The experimental results would build a

connection between ophthalmology and image processing literature, and the findings may provide a

good insight for researchers who investigate retinal image registration, retinal image segmentation

and image domain transformation.

Chapter 3, in full, is a reprint of the material as it appears in IEEE Access, Y. Wang, J.

Zhang, M. Cavichini, D. G. Bartsch, W. R. Freeman, T. Q. Nguyen, C. An, IEEE, 2021. The thesis

author is the primary author of the this paper.
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Figure 3.8. Pearson correlation coefficient between subjective grade and objective metrics with 95%
confidence interval using two registration methods (Zhang et al. [31] and Heinrich et al. [110]).
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Figure 3.9. Absolute value of Pearson correlation coefficient between different metrics.
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Figure 3.10. Pearson correlation coefficient between subjective grade and objective metrics with 95%
confidence interval using registration method Zhang et. al. [31] or Heinrich et. al. [110] only.

Figure 3.11. Distribution of subjective grade using registration method Zhang et. al. [31] or Heinrich et. al.
[110].
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Chapter 4

OCT motion correction

4.1 Introduction

Optical Coherence Tomography (OCT) is a non-invasive imaging technique that visualizes

cross-sectional images of biological tissues at micrometer-resolution [112]. The impact of OCT

in retinal imaging is so significant in opthalmology, that OCT has become the standard of care for

diagnosing and monitoring most retinal diseases [2], including age-related macular degeneration

(AMD), diabetic macular edema (DME), glaucoma, and so on.

The imaging principle of OCT is based on low-coherence interferometry. The object is

probed with low-coherent infrared light, and the depth of backscattered light along the beam axis

is measured by interference. The interferogram intensities represent 1D depth (A-scan, Z axis of

Fig. 4.1) from the backscattering. 2D cross-sectional images (B-scan, XZ plane of Fig. 4.1) are

acquired in a sequence by moving the infrared beam through the object in a raster-scanning pattern.

Finally, a 3D volume can be formed by stacking the B-scans (XZ planes) to the Y axis, as illustrated

in Fig. 4.1. The direction for B-scan acquisition (X axis of Fig. 4.1) is called the fast scanning axis,

while the direction for stacking B-scans (Y axis of Fig. 4.1) is called the slow scanning axis, and

the plane spanned by the other two axes is called the coronal or en-face plane.

Motion correction is one of the major challenges in OCT imaging, as motion artifacts would

not only influence the visualization of the volumetric data, but also reduce the reliability of retinal

biomarkers [46]. Moreover, they may increase the difficulty of downstream tasks including disease
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Figure 4.1. Axial and coronal motion artifacts in OCT. (a) The axial motion artifacts in 3D OCT volume
indicated with red arrows, (b) cross-sectional B-scan (YZ plane) with motion artifacts, (c) en-face C-scan
(XY plane) with motion artifacts, (d) IR en-face image reference with true vessel shapes indicated by green
arrows.

classification and segmentation, layer segmentation and OCT-Angiography (OCT-A) imaging. Mo-

tion artifacts in OCT can be caused by head motion, respiration, vascular pulsation, and involuntary

fixational eye movements. Specifically, even when the patient is instructed to stay still and fixate

on an object, the eye may still carry out microsaccades, drifts, and tremors with various frequency

and magnitude [46]. These involuntary motions lead to axial and coronal distortions, shown in

sub-images 4.1(b) and (c) respectively, where the motion artifacts are indicated by red arrows.

The axial motion introduces discontinuity in the cross-sectional B-scan as in sub-image (b), while

coronal motion causes distortion of vessels in the en-face plane shown in sub-image in Fig. 4.1(c)
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compared with the reference IR image in sub-image (d).

Existing literature on OCT motion correction can be categorized into prospective and

retrospective approaches [46]. Prospective approaches include hardware eye-tracking systems that

detect and compensate for motions during image acquisition [51, 52]. Although hardware-based

methods can usually achieve more accurate results, they are not available for every OCT device

and their solution cannot eliminate all the motion artifacts. Retrospective approaches are applied

after image acquisition and most are software-based methods. Many successful software methods

require more than one OCT volume [47, 53] or multimodal images as a reference, which introduces

extra burden for clinical tests. Other methods based on a single OCT volume tend to remove the

curvature of the retina generating overly smoothed result [54, 55].

In this chapter, we propose a deep learning method that utilizes fully convolutional neural

networks to correct both axial and coronal motion artifacts in OCT with a single input volume.

The axial motion correction network is able to recover the overall curvature of the retina, which

compensates for the remaining error in eye-tracking hardware. To the best of our knowledge,

the proposed axial motion correction network is the first application of deep learning in the OCT

motion correction problem, and improvements upon conventional methods are demonstrated by

experimental results. We also present the preliminary results of the coronal motion correction

network and discuss possible improvements for future work.

4.2 Related work

Although artifacts caused by involuntary eye motion is a fundamental problem in retinal

OCT, it has not been widely researched according to existing literature. Existing literature in OCT

motion correction have been extensively reviewed and summarized in two papers published in

2017 [113] and 2019 [46]. It should be noted that this paper focuses on the inter-B-scan motion

correction problem in OCT. The time-domain OCT tracking problem [114] is not considered in this

paper, since the problem assumes motion-free 3D OCT volume and performs motion estimation

in time-domain. OCT-A domain motion artifacts correction [115] is also beyond the scope of this
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paper, as motion artifacts in OCT-A appear as a temporal-domain misalignment such that brighter

and noisy scans, while motion artifacts in OCT appear as a spatial-domain misalignment such that

unaligned raster scans.

Most works correct axial and coronal movement by treating fast B-scans as artifact-free

rigid bodies, since the acquisition speed of a fast B-scans is faster than that of the expected eye

motion using modern OCT devices [46]. Axial movement is observed to be more significant than

coronal movement in magnitude [47], and the axial resolution is also often higher than coronal

resolution [47, 53]. Coronal artifacts are caused by eye movement in the 2D en-face plane. The X

component of such motion, also called in-plane motion, is parallel to the X-Z plane of B-scans and

can be observed by discontinuities in retinal vessels, which are prominent features in the en-face

plane. The Y motion along the slow scanning axis, also called out-of-plane motion, is most difficult

to quantify [113]. Negative or positive displacement to the Y axis can cause repeated B-scans of the

same region or larger gaps between neighboring B-scans.

Most existing approaches can be divided in two major categories: prospective and retro-

spective approaches [46]. Prospective approaches often include active eye-tracking hardwares

mounted on OCT devices [51, 52] and usually produce more accurate alignment results [113].

There are also approaches that depend on specially designed scanning patterns [116] or signal

acquisition techniques [117] to obtain an artifact-free OCT volume. Nevertheless, they are difficult

to implement in existing OCT systems and cannot correct eye movements in conventional OCT

scans. The retrospective approaches on the other hand are software-based solutions. Many motion

correction algorithms require more than one OCT volume, either repeated in the same direction

[118, 119], or both horizontal and vertical scans in orthogonal directions [47, 53]. Potsaid et al.

applied orthogonal OCT volumes in both horizontal and vertical directions that corrects the axial

motion [47]. Gibson et al. proposed an axial motion correction algorithm based on optic nerve

head segmentation surface that requires parallel OCT volumes scanned in the same direction [118].

Niemeijer et al. proposed a graph-based method to register multiple OCT volumes and find the

optimal translation for each A-scan that can correct both X and Z motion [119]. Wu et al. proposed

60



a registration method for 3D OCT volumes based on Coherent Point Drift [40], which includes a

motion correction algorithm that detects and deforms 3D vessel center lines in source and target

volumes. The method proposed by Kraus et al. [53, 120] registers two or more OCT volumes in

orthogonal directions, which sequentially corrects axial and coronal motion in two stages. It has

been widely adopted as a standard pre-processing algorithm in OCT-A imaging [46]. However,

these methods need to capture multiple OCT volumes, such that they increase (double) the time

required for clinical examinations and impose additional burden on limited medical resources.

Other methods for estimating eye motion based on a single OCT volume are proposed to

save imaging time. The method proposed by Antony et al. [54] utilizes segmentation of the retinal

pigment epithelium (RPE) layer and thin-plate spline fitting. A major drawback of the method is

that it flattens the RPE layer into a plane, which leads to artifacts for diseases that manifest in the

RPE layer. It is also undesirable to observe diseases including myopic [121, 122] as it removes

the curvature of the retina. Xu et al. [55] proposed a particle filter method to correct axial and X

directional motion in optic nerve head (ONH) centered OCT volumes. The method also results

in flattened RPE surface, and is only validated on synthetic motions within 2-10 pixel range. The

algorithm of Montuoro et al. [48] corrects axial motion by smoothing the RPE segmentation with a

local symmetry assumption, and accounts for X directional coronal motion based on phase shift in

the Fourier domain. It can recover the retinal curvature to some extent, but the symmetry assumption

does not always hold for retina with diseases. Fu et al. [123] proposed a method to correct both axial

and X directional motion based on saliency detection, but the authors only tested the performance

of the X motion correction using synthetic data with X motion smaller than 15 pixels. Abdolmanafi

et al. [124] proposed a hybrid method for intracoronary OCT. The method combines features from

pre-trained AlexNet with conventional searching based on cosine similarity. However, the method

is not end-to-end optimized as the AlexNet features are not directly trained for motion correction

performance. Besides, the inference time of their method takes 119 minutes for each OCT volume,

which is difficult to be applied in practice.

In our previous work [125], we applied an end-to-end deep learning algorithm to correct the
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axial motion. It improved correction accuracy while preserving retinal curvature. In this paper, we

propose deep learning networks to jointly correct both coronal and axial motions. There are many

advantages of the proposed end-to-end neural networks compared to conventional [54, 55, 53] or

hybrid [124] methods. The proposed method can be end-to-end optimized, can be generalized to

various diseases and resolutions without tuning, and it can reduce the computational time from

nearly 2 hours [124] to 0.29 seconds when accelerated by a GPU. We include a comprehensive

comparison with several methods using different metrics for OCT volumes with analysis of various

diseases and different resolutions. The preservation of curvature is explicitly evaluated by the

curvature and distortion coefficient. Ablation studies of segmentation input, post-processing, and

stand-alone coronal motion correction network are included. We also add qualitative comparison of

the layer segmentation and vessel segmentation using different motion correction methods.

4.3 Axial motion correction network

We first apply axial motion correction to eliminate large Z displacement before correcting

coronal motion, because the axial motion is more significant compared with coronal motion in

retinal OCT. It has been observed that the axial motion is larger in micrometers compared with

coronal motion [47, 53], and the fact that the axial direction has higher resolution in most OCT

systems [47, 126, 127] makes the axial artifacts more dominant.

4.3.1 Network architecture

We present a modified U-Net [66] with residual blocks to predict a displacement map for a

single OCT volumetric input. The proposed network takes any number of stacked B-scans due to

the fully convolutional architecture. The proposed baseline method of Fig. 4.2 operates on a single

OCT volumetric scan V ∈ RH×W×N where W and H are the width and height of each B-scan and N

is the number of B-scans. Z axis of the input OCT volume is treated as channels (H), while X and

Y axes are considered as spatial dimensions (W ×N). The network outputs a displacement map

Dz ∈ RW×N where each pixel contains a displacement value to Z axis. Negative displacement shifts
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Figure 4.2. Architecture of the proposed OCT motion correction network to predict an axial displacement
map. The baseline network is circled in dashed lines, and the network with segmentation concatenates the
baseline output with the normalized segmentation boundary to enhance the final displacement prediction.

the A-scan upwards and positive displacement shifts it downwards. The magnitude of displacement

denotes the number of pixels to be shifted and it is divided by a normalization factor Znorm , which is

a tunable hyper-parameter to scale predicted Z displacement, for better numerical stability. Finally,

the motion corrected OCT volume Vdz is derived for a given displacement Dz in floating point value

as

Vdz(z,x,y) = V(z− int(ZnormDz(x,y)), x, y), (4.1)

where (x,y,z) ∈ [0,W −1]× [0,N−1]× [0,H−1] and int(·) denotes integer conversion.

As illustrated in Fig. 4.2, the network includes 4 resolution levels similar to U-Net. 1×1

convolution is applied at the first layer to compress the number of channels, and it is followed by

3×3 convolutions for further processing. Instance normalization (IN) is applied after convolutions

in order to normalize over the spatial dimensions without being influenced by other volumes in the

same batch. The skip connection is removed at the original resolution to enhance smoothness of

prediction and reduces memory consumption. For the three downsampling blocks denoted by red
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arrows, 2×1 convolution with stride 2×1 is adopted to downsample the X dimension by 2, while

keeping the resolution on the Y dimension unchanged, since the number of B-scans N in our dataset

is significantly smaller than the width of B-scans W . Similarly, 2×1 transposed convolution with

stride 2×1 is used to upsample X dimension by 2 in three upsampling blocks which are indicated

by purple arrows. Differently from the original U-Net, the input features on the same resolution are

processed by residual blocks before concatenation with the upsampled ones. Dropouts are applied

at blue blocks with black dashed contour in Fig. 4.2 to prevent overfitting during training.

We also propose an enhanced version of the baseline architecture by including the segmen-

tation of the inner limiting membrane (ILM) and the retinal pigment epithelium (RPE) layer. As

shown in Fig. 4.2, we first normalize two segmentation boundaries and concatenate them with

the output of the network, and then apply two additional layers with 1×1 convolution to get the

displacement prediction. The boundary normalization is computed by the following steps. We

denote the two segmentation boundaries with B ∈ R2×W×N , where B(0,x,y) and B(1,x,y) entries

represent Z coordinates of ILM and RPE layers at pixel (x,y), respectively. The overall retinal tilt

T ∈ R2×W×N is first computed by

T(z,x,y) = B(z,x,0)+
B(z,x,N−1)−B(z,x,0)

N−1
y, (4.2)

where z ∈ {0,1} and (x,y) ∈ [0,W − 1]× [0,N− 1]. Then, the normalized boundaries B′ can be

obtained by

B′ = (T−B)/Znorm. (4.3)

4.3.2 Ground truth acquisition

In order to obtain ground truth (motion artifacts-free) volumes and corresponding displace-

ment maps, pairs of horizontal and vertical 3D OCT volumes with motion artifacts are collected,

and each volume is corrected with its orthogonal reference using the motion correction algorithm in

[47], as illustrated in Fig. 4.3. Note that we use horizontal and vertical volume pairs for ground

truth, but the proposed network takes only one single (horizontal or vertical) OCT volume as input.
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Figure 4.3. Orthogonal method [47] for ground truth acquisition. Column (a) shows the horizontal volume,
(b) shows the paired vertical volume, (c) shows the motion-corrected horizontal volume using the motion
correction algorithm in [47]. Row (1) shows the 3D volumes, and row (2) shows the cross-sectional B-scan.

4.3.3 Post processing with linear least squares

During the inference time, we apply a post-processing step where a linear function is fitted

to the X axis of the predicted displacement Dz via linear least squares, in order to guarantee that the

resulting fast B-scans in Vdz have linear displacement in the Z direction. Specifically, denote the

coordinates X ∈ RW×2 as

X =

0, 1, · · · , W −1

1, 1, · · · , 1


T

, (4.4)

the line parameters β ∈ R2×N can be obtained by solving the linear least squares problem

β
∗(y) = argmin

β (y)∈R2×1

∥∥∥Dz(y)−Xβ (y)
∥∥∥2
. (4.5)

where β (y) and Dz(y) denote the y-th row of β and Dz, respectively. The solution is derived as

β (y) = (XT X)−1XT Dz(y), y = 0, · · · ,N−1 (4.6)
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and the displacement map obtained by solving the weighted least squares problem would be

D′z(y) = Xβ (y) = X(XT X)−1XT D(y), y = 0, · · · ,N−1. (4.7)

Fig. 4.4 illustrates an example, where the displacement maps without post-processing and

with post-processing are shown in (a) and (b), respectively. It can be observed that the noise in (a)

is removed along the X axis after the least square line fitting step.

(a) Without post-processing (b) With post-processing

Figure 4.4. Post processing with linear least squares. (a) shows the displacement without post-processing,
(b) shows the displacement after post-processing.

4.3.4 Loss function

The loss function consists of two loss terms, including a displacement L1 loss, and a

displacement smoothness loss. Denoting the predicted displacement Dz and the ground truth

displacement DGT
z ∈ RW×N , the displacement L1 loss is given by

Ldisp(Dz;DGT
z ) = mean

(
M⊙|Dz−DGT

z |
)
, (4.8)

where | · | denotes the absolute value, ⊙ is an element-wise multiplication, and M ∈ RW×N is a

predefined mask in [0,1], for assigning more weight at the center and less weight at the boundary of

the OCT scan, as the center is the most important region of interest in clinical applications.

The second term is a displacement smoothness loss inspired by [128] to enforce smoothness
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along the fast-scanning axis

Lsmooth(Dz,D′z) = mean
∣∣Dz−D′z

∣∣ , (4.9)

which is an L1 error between the raw displacement Dz and the least squares smoothed D′z in eq.

(4.7). Finally, the total loss is a weighted sum of the two loss terms

L = λdispLdisp +λsmoothLsmooth, (4.10)

where λdisp and λsmooth are tunable weighting parameters.

4.3.5 Data augmentation

The input OCT volume and segmentation boundaries in the training data are augmented by

random flipping on X and Y axes to prevent over-fitting. We also add random displacement for

augmentation on top of the existing eye motion as follows: An N-dimensional Gaussian random

vector with zero mean and unit variance g = (g0,g1, · · · ,gN)
T is generated, and its cumulated sum

is computed as [
g0, g0 +g1, · · · , ∑

N−1
k=0 gk

]T

. (4.11)

Then the tilt is removed from the axial augmentation on Y dimension δ Y ∈ RN×1 where δ Y(0) =

δ Y(N−1) = 0, and the n-th element is

δ Y(n) =
n

∑
k=1

gk−
n

N−1

N−1

∑
k=1

gk, n = 1, ...,N−2 (4.12)

and an example of δ Y is shown in Fig. 4.5(a). The axial augmentation on X dimension δ X ∈ RW×1

is generated by interpolating between 0 and a random number drawn from a Gaussian random

variable with zero mean and unit variance, as shown Fig. 4.5(b). Finally, the total augmentation

δ = 1W δ
T
Y +δ X1T

N is applied to the input OCT volume, where 1k ∈ Rk×1 denotes a k-dimensional

vector of ones. Finally, δ Y is subtracted from the ground truth displacement DGT
z = DGT

z −1W δ
T
Y.
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(a) Y dimension δ Y (b) X dimension δ X (c) Total δ

Figure 4.5. Data augmentation with random axial displacement. (a) Augmentation on Y dimension δ Y, (b)
augmentation on X dimension δ X, (c) Total augmentation δ is applied to the input OCT volume.

4.4 Coronal motion correction network

In the proposed coronal motion correction network, we only focus on X motion for two

reasons. Firstly, Y motion is very small compared to distance between neighboring B-scans based

on statistics in [46]. Secondly, it is difficult to obtain ground truth of Y motion using conventional

approaches, which will be discussed in subsection 4.4.1. The X motion correction network aims

to predict a 1D displacement vector to the X axis Dx ∈ RN×1, where N is the number of B-scans.

Negative displacement shifts the B-scan left and positive displacement shifts it right. The magnitude

of displacement denotes the number of pixel to be shifted and it is divided by a normalization factor

Xnorm for better numerical stability. Similar to the axial motion correction, the X motion corrected

OCT volume Vdx is derived by shifting the Z corrected volume Vdz by Dx displacement to the X

axis as

Vdx(z,x,y) = Vdz (z, x− int(XnormDx(y)) , y) , (4.13)

where (x,y,z) ∈ [0,W −1]× [0,N−1]× [0,H−1] and Xnorm is a normalization factor.

4.4.1 Ground truth acquisition

Many methods in the literature require registering and jointly optimizing multiple orthogonal

or parallel OCT volumes [119, 53, 120, 40]. Furthermore, since their methods use a large number of

B-scans in each OCT volume (e.g. 496×512×512) to obtain C-scans with high-resolution in both

fast and slow scanning axes, they fail to achieve visually desirable performance when resolution of
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the slow axis is low, as in our dataset (496×512×49). Therefore, it is a major challenge to prepare

the appropriate ground truth for training the coronal motion correction network.

The ground truth for X directional displacement DGT
x is obtained from the HEYEX software

by Heidelberg Spectralis, which corrects residual X motion from the hardware eye-tracking system

[21]. The magnitude of extracted X displacement is on average 0.96 pixel and 5 pixels at the

maximum.

4.4.2 Network design

1
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Figure 4.6. Network architecture of the vessel segmentation-based X motion correction network. The vessel
segmentation network in dashed block adopts a similar structure as the dashed block in Fig. 4.2.

The network consists of a segmentation sub-network and a motion prediction sub-network.

The segmentation sub-network first extracts a 2D vessel segmentation map on the en-face plane,

where the coronal motion artifacts can be best observed. A subsequent motion prediction network

then predicts a 1D displacement map Dx for motion to the X axis from the 2D vessel segmentation

map.

Vessel segmentation

Since the X motion can be best observed by discontinuities of retinal vessel in OCT C-scans,

and many related works also extract vessels for coronal motion correction [119, 40], we apply a

vessel segmentation sub-network before the X motion prediction sub-network to extract critical

information. Illustrated by gray dashed block in Fig. 4.6, the vessel segmentation network adopts a

U-Net architecture similar to Fig. 4.2, which takes the Z motion corrected volume Vdz to obtain the

en-face C-scan vessel segmentation S.

In order to train the OCT vessel segmentation sub-network, we utilize the IR multimodal

information captured concurrently with the OCT volume, which is aligned with the OCT en-face
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C-scan. In Fig. 4.7, we apply the IR vessel segmentation network [129] to extract the probability

of vessel (vesselness) from the IR image, and it is downsampled to W ×N to match the resolution

of OCT C-scan. The downsampled segmentation of the IR image is then converted to binary label

by thresholding at 0.5 and used as ground truth SGT for training the OCT vessel segmentation

sub-network.

A
lig

n
ed

IR SLO image

OCT volume Cscan (XY plane)

IR segmentation
Downsampled

IR segmentation
OCT vessel

segmentation GT

OCT Vessel 
Segmentation Network

Predicted vessel segmentation

Ground truth

Downsample
Y-dimension

IR Image Vessel 
Segmentation

Revert X 
motion

Y
X

Y
X

Figure 4.7. Procedure to obtain ground truth for training the OCT vessel segmentation sub-network.

The segmentation sub-network is first trained with a combination of binary cross-entropy

loss and soft Dice loss. The binary cross-entropy loss can be expressed as

LBCE(S,SGT) =−mean
(

SGT logS

+(1−SGT) log(1−S)
)
.

(4.14)

Note that the Sigmoid function for the predicted segmentation S can be integrated into the binary

cross-entropy loss using the “log-sum-exp“ trick for better numeric stability. The soft Dice loss is

defined as one minus the soft Dice coefficient

LDice(S,SGT) = 1− 2∑S⊙SGT

∑S+∑SGT , (4.15)

where ⊙ denotes elementwise product, which measures the overlapping ratio between predicted
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vessel and ground truth. Finally, the vessel segmentation sub-network is trained with a total loss

and λBCE = λDice = 1,

Lvessel = λBCELBCE +λDiceLDice. (4.16)

X motion prediction

After training the vessel segmentation sub-network, we freeze the weights in the vessel

segmentation network and train a X motion prediction sub-network to predict X displacement based

on the 2D vessel segmentation map. The input to the X motion prediction sub-network is 1×W ×N

with B batch size. In the X motion prediction network, the resolution on the fast scanning axis is

reduced by 3 downsampling convolutions with kernel size 2×1 and stride 2×1. The network output

is synthesized by averaging across the fast scanning axis to obtain Dx. Since the X displacement is a

1D vector whose element is a single displacement for each B-scan slice, we simplify the upsampling

branch in the U-Net structure. The MSE Loss function is applied between predicted and ground

truth displacement with normalization factor Xnorm:

Lxdisp = mean
y
||XnormDx(y)−DGT

x (y)||2. (4.17)

4.5 Experimental result

In the experiment, we compare the axial and coronal motion correction performance of our

proposed network to that of four other methods [48, 54, 123, 21] which operate on a single OCT

volume input.

4.5.1 Dataset

We evaluate the performance of motion correction algorithms on two datasets collected

by Jacobs Retina Center. The first dataset consists of 99 eyes with paired horizontal and vertical

OCT volumes which are obtained by Heidelberg Spectralis in an imaging volume of 1.9×5.8×5.8

(mm3) with 20 degree field of view. Hardware eye-tracking is always turned on during the imaging

process. All the OCT scans come with instrument’s segmentation boundaries of 11 retinal layers.
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Among 99 horizontal and 99 vertical volumes, the dimensions of 9 volumes are 496×512×25,

while those of the remaining 189 volumes are 496×512×49. The 198 OCT volumes (99 horizontal

and 99 vertical) are divided into 142, 19, 37 for training, validation, and testing, respectively. The

dataset include both healthy subjects as well as patients with wet and dry AMD, diabetic retinopathy,

and other diseases including epi-retinal membrane, macular edema, retinal detachment, macular

hole, chorioretinopathy, and posterior vitreous detachment.

The second dataset includes only 106 singular OCT volumes (horizontal direction only).

This dataset is also captured with the Heidelberg Spectralis OCT system, but covers a wider range

of resolutions: there are 95 OCT volumes of the same resolution 496× 512× 49 in the training

dataset, while there are also 3 volumes of resolution 496× 512× 25, 6 volumes of resolution

496×1024×97, and 2 volumes of resolution 496×1024×49.

4.5.2 Tilt correction

We apply a tilt correction algorithm after axial motion correction for all methods at inference

time, which leads to better visualization of OCT volume as illustrated in Fig. 4.8. The motion

corrected OCT volumes before and after tilt correction are shown in Fig. 4.8 row (1) and (2),

respectively. The four corners of the RPE segmentation boundary in sub-image (c1) are mapped to

the same reference plane at height Href = 300 by applying another displacement Dtilt
z ,

Dtilt
z (x,y) = Href−

1
(W −1)(N−1)

(
B(1,0,0)(W −1− x)(N−1− y)

+B(1,W −1,0)(N−1− y)x+B(1,0,N−1)(W −1− x)y

+B(1,W −1,N−1)xy
)
,

which is based on bilinear interpolation of the four corner coordinates. Finally, the tilt corrected

ILM and RPE surfaces are visualized in sub-image (c2).
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Figure 4.8. Tilt correction on motion corrected OCT volume. Row (1) shows the original OCT and row (2)
shows the tilt corrected result. The 3D OCT volume, the cross-sectional B-scan, and ILM and RPE surfaces
are presented in the columns (a), (b), and (c), respectively.

4.5.3 Criteria

We evaluate the algorithms based on two criteria: the pixel-wise mean absolute error (MAE)

and the smoothness of OCT scan. The first metric is MAE between the predicted and ground truth

displacement, which measures the overall accuracy and preservation of retinal curvature, where

smaller MAE indicates better performance.

MAEz(Dz;DGT
z ) = Znormmean

x,y

(
|Dz(x,y)−DGT

z (x,y)|
)
. (4.18)

Similarly, the MAE for X motion is

MAEx(Dx;DGT
x ) = Xnormmean

y

(
|Dx(y)−DGT

x (y)|
)
. (4.19)

We also include an intensity based metric, Pearson correlation coefficient (PCC) [107] to

measure the similarity between motion corrected OCT volume Vpred (could be Vdx or Vdz depending

on the experiment) and ground truth OCT volume VGT. The PCC, which is a commonly used metric
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in literature [46], is defined as

PCC(Vpred,VGT) =
cov(Vpred,VGT)

σVpredσVGT
, (4.20)

where σVpred and σVGT respectively are the standard deviations of volume Vpred and VGT, and the

covariance can be calculated by

cov(Vpred,VGT) = E[(Vpred−E[Vpred])(VGT−E[VGT])]. (4.21)

In order to evaluate the preservation of retinal curvature, we adopt the curvature index

proposed by [122]. The central B-scan (X-Z plane at Y = floor(N/2)) and the central cross sectional

B-scan (Y-Z plane at X = floor(W/2)) are taken to evaluate the X and Y curvatures, respectively.

For each direction, the tilt is first corrected, and the RPE curvature is obtained by fitting a 4-th order

polynomial to the segmentation boundary of the RPE using least squares. For the X direction, the

polynomial coefficients px are

px = argmin
p∈R5×1

W−1

∑
x=0

∣∣∣∣B(
1,x,floor

(N
2

))
− [1, x, x2, x3, x4]p

∣∣∣∣2 , (4.22)

and similarly for the Y direction,

py = argmin
p∈R5×1

N−1

∑
y=0

∣∣∣∣B(
1,floor

(W
2

)
,y
)
− [1, y, y2, y3, y4]p

∣∣∣∣2 . (4.23)

Then the curvature index Curv is defined as the ratio between length of the RPE curve and the

distance of a straight line after converting pixels to millimeters [122]. Denoting the OCT resolution

in millimeters with Lz,Lx,Ly, (in our case 1.9×5.8×5.8 (mm3) as mentioned in subsection A.)

Curvx =
Lz·length([1, x, x2, x3, x4]px)

H ·Lx
, (4.24)
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Curvy =
Lz·length([1, y, y2, y3, y4]py)

H ·Ly
. (4.25)

Then the distortion of curvature Dist to each direction is defined as the L1 difference between the

curvature index of ground truth and predicted OCT volumes,

Distt = |Curvpred
t −CurvGT

t |, t ∈ {x,y}. (4.26)

As observed in [122], the X and Y directional curvature should be relatively similar. When

ground truth Y curvature is not available, we evaluate L1 error between Y curvature Curvy and the

ground truth (same as the input) X curvature CurvGT
x

Distxy = |Curvpred
y −CurvGT

x |. (4.27)

Finally, we use the Dice coefficient between the corrected and ground truth vessel segmentation map

in the C-scan to evaluate the performance of X motion correction. Denoting the binary segmentation

maps as S1 and S2, the Dice coefficient can be obtained by

Dice(S1,S2) =
2×∑(S1⊙S2)

∑S1 +∑S2
. (4.28)

The Dice coefficient is a value between [0,1], and higher value shows higher overlapping ratio with

ground truth.

4.5.4 Implementation

The proposed networks are implemented in PyTorch. For Z motion correction, both the

baseline network and the network with segmentation input have 484K model parameters. Reflected

padding is used for convolutions and dropouts with p = 0.2 is applied on every resolution level.

We set Znorm = 10 for the normalization factor. The models are trained with Adam optimizer with

weight decay 10−3 and batch size 4. An initial learning rate of 10−3 and exponential decay with
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momentum 0.995 are set to train the network for 500 max epochs and λdisp = 1, λsmooth = 0.5 for

loss function. The best model, which is selected based on the lowest validation loss, is applied for

the test set.

For the X motion correction, the vessel segmentation sub-network is first trained for 500 max

epochs, using Adam optimizer with weight decay 10−3, batch size 4, initial learning rate 10−3, and

exponential decay with momentum 0.99. The best model selected on the validation set achieves an

average segmentation accuracy of 96.05% and Dice coefficient of 0.4776. After freezing the model

parameters in the vessel segmentation network, the X motion prediction sub-network is trained for

1000 max epochs, using Adam optimizer with weight decay 10−3, batch size 4, and learning rate

10−4. We set Xnorm =W/512 for the normalization factor depending on the B-scan resolution, and

use p = 0.4 for dropouts. Standard data augmentation techniques including random cropping and

flipping are included during training. Finally, the best model is selected on the validation set. At

inference time, we convert the predicted displacement vector to integer pixels to avoid interpolation

within fast B-scans.

We compare the proposed method with several other methods, which only take a single

OCT volume to correct motion. Since the method in [47] requires orthogonal OCT volume pairs

to obtain ground truth, it is excluded in the comparison. Two comparison methods [48, 54] are

implemented in Python. The method in [123] is implemented in MATLAB based on the original

authors’ implementation of saliency detection [130].

4.5.5 Evaluation on Test Dataset

In the first experiment, we evaluate the axial and coronal motion correction methods on the

testset with 37 volumes. The average inference time to correct one OCT volume is 0.29 seconds on

a NVIDIA GeForce RTX 2080 Ti GPU. The qualitative results for axial motion correction using

different methods are shown in Fig. 4.9. Rows (1-3) show the experimental results of one example

OCT volume with moderate motion, while rows (4-6) show another example with larger motion.

Rows (1,4) show the 3D volumes and rows (2,5) show the cross-sectional B-scans on the Y-Z plane
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(a1) Input (b1) Antony et al. (c1) Montuoro et al. (d1) Fu et al. (e1) Spectralis (f1) Ours-baseline (g1) Ours-with seg.
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Figure 4.9. Qualitative result of different Z motion correction methods on the test set. Row (1-3) and
(4-6) show two examples. Row (1,4) show the 3D volume, row (2,5) show the cross-sectional B-scans with
segmentation boundaries of RPE and ILM, and row (3,6) show the segmentation boundaries of RPE and ILM
in 3D.

with segmentation boundaries of RPE and ILM where they are overlaid onto the image in blue and

orange lines, respectively, and Gamma correction at 2.2 is applied for visualization. Rows (3,6)

show the segmentation boundaries of RPE and ILM after correction in 3D.

The input OCT volumes are visualized in column (a), and column (b) shows the method

by Antony et al. [54], which flattens the RPE and results in errors when the disease alters RPE in

(b2). The method proposed by Montuoro et al. [48] of column (c) is able to correct axial motion

without flattening the retina, but it results in unnatural curvature at large motion in (c2) and (c4)

that is not similar to the ground truth in column (h). The results of Fu et al. [123] in column (d)

are smooth in most B-scans, but the errors lead to abrupt discontinuities. The software correction

of Spectralis system [21] in column (e) can effectively smooth the motion, whereas the recovered
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curvature is different from the ground truth obtained from orthogonal OCT pairs. Finally, our

proposed baseline network in column (f) can reduce the motion artifacts in the input volume with

some residual motion, while the network with segmentation input in column (g) yields smoother

correction result while recovering the overall curvature.

Table 4.1. Quantitative result of different axial (Z) motion correction on the test set.

Z correction only

Method MAEz PCC(Vdz,VGT) Curvx Distx Curvy Disty Distxy

Before correction 22.742 (20.703) 0.5505 (0.149) 1.0020 (0.002) - - - -
Ground truth - 1.0000 (0.000) 1.0020 (0.002) - 1.0013 (0.002) - 0.0010 (0.001)

Antony et al. [54] 40.530 (17.118) 0.3517 (0.114) 1.0000 (0.000) 0.0020 (0.002) 1.0000 (0.000) 0.0012 (0.002) 0.0020 (0.002)
Montuoro et al. [48] 20.543 (19.853) 0.5666 (0.152) 1.0020 (0.002) 0.0000 (0.000) 1.0051 (0.008) 0.0040 (0.007) 0.0044 (0.007)
Fu et al. [123] 20.963 (18.394) 0.5605 (0.140) 1.0020 (0.002) 0.0000 (0.000) 1.0048 (0.007) 0.0043 (0.007) 0.0042 (0.006)
Spectralis [21] 15.253 (9.746) 0.6000 (0.140) 1.0020 (0.002) 0.0000 (0.000) 1.0003 (0.001) 0.0010 (0.001) 0.0017 (0.002)

Ours (baseline) - 13.948 (10.833) 0.6185 (0.112) 1.0017 (0.002) 0.0007 (0.001) 1.0013 (0.002) 0.0009 (0.001) 0.0013 (0.001)
LS 12.720 (9.504) 0.6388 (0.114) 1.0020 (0.002) 0.0000 (0.000) 1.0016 (0.002) 0.0009 (0.001) 0.0012 (0.001)

Ours (with seg.) - 9.102 (7.972) 0.7150 (0.097) 1.0012 (0.001) 0.0009 (0.002) 1.0009 (0.001) 0.0008 (0.001) 0.0015 (0.002)
LS 8.512 (8.211) 0.7277 (0.111) 1.0020 (0.002) 0.0000 (0.000) 1.0008 (0.001) 0.0006 (0.001) 0.0014 (0.002)

The quantitative results of different Z motion correction are shown in Table 4.1, where

each entry shows the mean and standard deviation value. We first evaluate the input OCT volumes

before correction as baseline, and we also compute the curvature for ground truth. As the method

by Antony et al. [54] flattens the retina, it achieves a curvature index of 1.0000 for both X and Y

direction, and it is the only method that distorts the curvature of the X direction (Distx = 0.0020).

It also yields larger MAE than the input (no correction) by removing the retinal curvature. The

method of Montuoro et al. [48] and Fu et al. [123] reduce the MAE and improve PCC compared

with the input by a small margin, but their Y curvature are still very different from the ground truth

(Disty = 0.0040, Disty = 0.0043 respectively). The software correction result of Spectralis [21]

produces a MAE of 15.253 and PCC of 0.6000, and the Y curvature is flatter compared with ground

truth. Overall, our method with segmentation and least squares (denoted by LS) post-processing

achieves the lowest MAE at 8.512 pixels and the highest PCC at 0.7277, and the Y distortion Disty

is the smallest. Our baseline network without segmentation input achieves a higher MAE and

lower PCC compared with the proposed network with segmentation, ranking as the second method.

The average Y curvature of our baseline network is most similar to ground truth, but the average
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distortion is larger compared with the network with segmentation input.

We also include an ablation study of the post-processing step, where we evaluate the raw

network output displacement and the post-processed result with least squares (LS) in Table 4.1. The

results show that LS post-processing lowers the MAE of both the baseline network from 13.948 to

12.720, and the network with segmentation input from 9.102 to 8.512. The PCC of the two networks

increase compared to the ground truth, demonstrating that LS post-processing also improves the

smoothness of corrected volume.

Table 4.2. Evaluation of different X motion correction networks on the test set.

GT Z correction + X correction only

Method MAEx PCC Dice

No correction 0.7484 (0.449) 0.9714 (0.019) 0.9205 (0.051)
Ground truth - 1.0000 (0.000) 1.0000 (0.000)

Antony et al. [54] 0.7484 (0.449) 0.9714 (0.019) 0.9205 (0.051)
Montuoro et al. [48] 1.6152 (0.460) 0.9506 (0.015) 0.8191 (0.056)
Fu et al. [123] 0.8185 (0.438) 0.9693 (0.019) 0.9127 (0.049)
Spectralis [21] - - -

Our X-network 0.7406 (0.437) 0.9716 (0.019) 0.9218 (0.048)

The qualitative results of X motion correction using different methods are shown in Fig.

4.10. The en-face X-Y view of the two examples (same as Fig. 4.9) are shown in rows (1-2) and

(2-4). The en-face projection C-scans shown in rows (1,3) are obtained by averaging from the

ELM to RPE layer [37], while the vessel segmentation is the intermediate output of our proposed

X motion correction network. Since the corrected result is shown in cyan and the ground truth is

assigned in the red channel, the overlapping region appears in gray. We also note the Dice coefficient

of the overlaid segmentation maps in Fig. 4.10. The IR SLO images and their vessel segmentation

maps [129] are presented in column (g) as reference for the true shape of vessels. Since the method

proposed by Antony et al. [54] only includes Z motion correction, it is excluded in this comparison.

The methods by Montuoro et al. [48] and Fu et al. [123] fail to reduce the x motion such that the

Dice values of the methods are even lower than one of input (No correction). Our proposed method

with both the baseline network and the network with segmentation are able to increase the Dice

coefficient and reduce the error.

The quantitative results of X motion correction is shown in Table 4.2. In order to evaluate X
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(a1) Input (b1) Montuoro et al. (c1) Fu et al. (d1) Ours-baseline (e1) Ours-with seg. (f1) GT / Spectralis (g1) IR-SLO

(a2) Dice=0.9233 (b2) 0.7758 (c2) 0.9221 (d2) 0.9265 (e2) 0.9250 (f2) (g2)

(a3) (b3) (c3) (d3) (e3) (f3) (g3)

(a5) (b5) (c5) (d5) (e5) (f5) (g5)

(a4) Dice=0.9029 (b4) 0.7551 (c4) 0.8935 (d4) 0.9070 (e4) 0.9119 (f4) (g4)

Y
X

Figure 4.10. Qualitative result of different X motion correction methods on the test set. Row (1,3) show the
overlay of C-scan of corrected OCT volumes and ground truth, and row (2,4) show the segmentation overlay.
The ground truth is shown in the red channel, and the corrected result is shown in cyan. Reference IR SLO
images and their segmentation maps are shown in column (g). Please zoom in to see details.

motion correction performance alone without the influence of different Z motion correction methods,

we include an ablation study using ground truth Z correction input for the X motion correction step

in each method. The amplitude of X motion is very small compared with Z motion in this ablation

study, however, it can still be observed that only our method reduces the X motion in the input

volume, achieving the lowest MAE and highest Dice coefficient. The results also demonstrate that

the methods of Montuoro et al. [48] and Fu et al. [123] fail motion correction, reflected by higher

MAE and lower Dice coefficient compared with the input (No correction).

Finally, we analyze the performance of joint Z and X motion correction algorithms based

on diseases in Table 4.3. We first test the performance with joint Z and X motion correction for

each method, denoted by “All data” in Table 4.3. The test set is classified into the following

categories: wet and dry Age-related Macular Degeneration (AMD), Diabetes, other diseases (foveal

contour distortion), and normal. Overall, our proposed methods achieve the best motion correction
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performance for all diseases, shown by lower MAE in both Z and X direction, higher PCC, higher

Dice coefficient compared with ground truth. Our proposed methods also achieve the best curvature

preservation for each type of disease, demonstrated by Curvx and Curvy closer to the ground truth

and smaller Distx, Disty, and Distxy values.

Table 4.3. Quantitative result of different motion correction methods on the test set with different
diseases.

Joint Z + X correction

Metrics Before correction GT Antony et al. [54] Montuoro et al. [48] Fu et al. [123] Spectralis [21] Ours (baseline) Ours (with seg.)

All data MAEz 22.742 (20.703) - 40.530 (17.118) 20.543 (19.853) 20.962 (18.394) 15.253 (9.746) 12.720 (9.504) 8.5118 (8.211)
MAEx 0.7484 (0.449) - - 1.8507 (0.544) 0.8232 (0.414) - 0.7428 (0.440) 0.7401 (0.440)
PCC 0.5505 (0.149) - 0.3517 (0.114) 0.5635 (0.151) 0.5604 (0.140) 0.6043 (0.141) 0.6388 (0.114) 0.7277 (0.111)
Dice 0.9205 (0.051) - - 0.7663 (0.070) 0.9119 (0.046) - 0.9214 (0.049) 0.9219 (0.049)
Curvx 1.0020 (0.002) 1.0020 (0.002) 1.0000 (0.000) 1.0020 (0.002) 1.0020 (0.002) 1.0020 (0.002) 1.0020 (0.002) 1.0020 (0.002)
Distx - - 0.0020 (0.002) 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000)
Curvy - 1.0013 (0.002) 1.0000 (0.000) 1.0051 (0.008) 1.0048 (0.007) 1.0003 (0.001) 1.0016 (0.002) 1.0008 (0.001)
Disty - - 0.0012 (0.002) 0.0040 (0.007) 0.0043 (0.007) 0.0010 (0.001) 0.0009 (0.001) 0.0006 (0.001)
Distxy - - 0.0020 (0.002) 0.0044 (0.007) 0.0042 (0.006) 0.0017 (0.002) 0.0012 (0.001) 0.0014 (0.002)

Wet AMD MAEz 34.120 (22.993) - 48.060 (25.124) 30.506 (21.708) 27.466 (11.263) 23.886 (11.221) 20.040 (12.736) 15.288 (12.868)
MAEx 1.0796 (0.243) - - 2.0673 (0.297) 1.1265 (0.227) - 1.0735 (0.236) 1.0673 (0.240)
PCC 0.4866 (0.112) - 0.3673 (0.191) 0.5080 (0.131) 0.5249 (0.087) 0.5338 (0.112) 0.5894 (0.115) 0.6705 (0.147)
Dice 0.8780 (0.035) - - 0.7389 (0.054) 0.8733 (0.032) - 0.8792 (0.033) 0.8803 (0.034)
Curvx 1.0039 (0.003) 1.0039 (0.003) 1.0000 (0.000) 1.0039 (0.003) 1.0039 (0.003) 1.0039 (0.003) 1.0039 (0.003) 1.0039 (0.003)
Distx - - 0.0039 (0.003) 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000)
Curvy - 1.0027 (0.002) 1.0000 (0.000) 1.0086 (0.013) 1.0088 (0.006) 1.0008 (0.001) 1.0031 (0.002) 1.0013 (0.001)
Disty - - 0.0027 (0.002) 0.0064 (0.011) 0.0072 (0.005) 0.0019 (0.002) 0.0016 (0.002) 0.0015 (0.002)
Distxy - - 0.0039 (0.003) 0.0070 (0.010) 0.0061 (0.005) 0.0031 (0.003) 0.0014 (0.002) 0.0026 (0.003)

Dry AMD MAEz 11.804 (6.017) - 45.505 (3.690) 11.121 (6.369) 12.051 (4.964) 15.767 (6.265) 10.019 (3.987) 5.5237 (2.252)
MAEx 0.9218 (0.146) - - 2.1088 (0.340) 0.9626 (0.116) - 0.9150 (0.124) 0.9150 (0.120)
PCC 0.6354 (0.087) - 0.3502 (0.010) 0.6313 (0.101) 0.6230 (0.071) 0.5718 (0.106) 0.6425 (0.101) 0.7663 (0.069)
Dice 0.9073 (0.027) - - 0.7440 (0.070) 0.9026 (0.026) - 0.9082 (0.023) 0.9085 (0.022)
Curvx 1.0015 (0.001) 1.0015 (0.001) 1.0000 (0.000) 1.0015 (0.001) 1.0015 (0.001) 1.0015 (0.001) 1.0015 (0.001) 1.0015 (0.001)
Distx - - 0.0015 (0.001) 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000)
Curvy - 1.0008 (0.000) 1.0000 (0.000) 1.0029 (0.002) 1.0012 (0.002) 1.0000 (0.000) 1.0005 (0.001) 1.0007 (0.000)
Disty - - 0.0008 (0.000) 0.0021 (0.002) 0.0013 (0.002) 0.0008 (0.000) 0.0003 (0.000) 0.0003 (0.000)
Distxy - - 0.0015 (0.001) 0.0025 (0.002) 0.0015 (0.001) 0.0014 (0.001) 0.0012 (0.001) 0.0011 (0.001)

Diabetes MAEz 46.258 (29.401) - 36.490 (5.383) 42.440 (31.524) 34.825 (37.760) 9.7601 (2.963) 15.162 (9.132) 7.6517 (4.250)
MAEx 0.9694 (0.140) - - 2.3214 (0.390) 1.0867 (0.091) - 0.9541 (0.128) 0.9643 (0.136)
PCC 0.3495 (0.139) - 0.3025 (0.039) 0.3687 (0.148) 0.4743 (0.204) 0.6248 (0.081) 0.5715 (0.109) 0.6948 (0.114)
Dice 0.9028 (0.019) - - 0.7489 (0.070) 0.8909 (0.016) - 0.9060 (0.018) 0.9039 (0.018)
Curvx 1.0007 (0.001) 1.0007 (0.001) 1.0000 (0.000) 1.0007 (0.001) 1.0007 (0.001) 1.0007 (0.001) 1.0007 (0.001) 1.0007 (0.001)
Distx - - 0.0007 (0.001) 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000)
Curvy - 1.0005 (0.000) 1.0000 (0.000) 1.0079 (0.007) 1.0091 (0.013) 1.0000 (0.000) 1.0023 (0.002) 1.0006 (0.000)
Disty - - 0.0005 (0.000) 0.0075 (0.007) 0.0090 (0.012) 0.0004 (0.000) 0.0018 (0.001) 0.0003 (0.000)
Distxy - - 0.0007 (0.001) 0.0073 (0.006) 0.0086 (0.012) 0.0006 (0.001) 0.0019 (0.001) 0.0004 (0.000)

Others MAEz 23.744 (3.940) - 37.313 (11.924) 19.286 (3.597) 19.624 (4.495) 12.659 (6.965) 11.626 (6.179) 5.8620 (2.543)
MAEx 0.9898 (0.181) - - 1.8316 (0.416) 1.0306 (0.185) - 0.9796 (0.184) 0.9796 (0.184)
PCC 0.4997 (0.029) - 0.3674 (0.013) 0.5304 (0.037) 0.5481 (0.054) 0.6416 (0.133) 0.6499 (0.082) 0.7660 (0.061)
Dice 0.8985 (0.008) - - 0.7788 (0.066) 0.8939 (0.010) - 0.8997 (0.007) 0.8997 (0.007)
Curvx 1.0010 (0.001) 1.0010 (0.001) 1.0000 (0.000) 1.0010 (0.001) 1.0010 (0.001) 1.0010 (0.001) 1.0010 (0.001) 1.0010 (0.001)
Distx - - 0.0010 (0.001) 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000)
Curvy - 1.0008 (0.001) 1.0000 (0.000) 1.0082 (0.007) 1.0043 (0.003) 1.0000 (0.000) 1.0014 (0.000) 1.0008 (0.000)
Disty - - 0.0008 (0.001) 0.0073 (0.007) 0.0035 (0.003) 0.0008 (0.001) 0.0007 (0.000) 0.0005 (0.000)
Distxy - - 0.0010 (0.001) 0.0071 (0.006) 0.0034 (0.003) 0.0010 (0.001) 0.0009 (0.000) 0.0009 (0.000)

Normal MAEz 11.494 (8.603) - 34.674 (13.856) 10.878 (8.487) 16.219 (16.053) 10.864 (7.048) 7.9207 (4.214) 5.7582 (2.287)
MAEx 0.2712 (0.378) - - 1.4260 (0.554) 0.3807 (0.344) - 0.2711 (0.364) 0.2649 (0.360)
PCC 0.6379 (0.129) - 0.3507 (0.087) 0.6451 (0.129) 0.5891 (0.168) 0.6556 (0.164) 0.6925 (0.100) 0.7524 (0.080)
Dice 0.9715 (0.039) - - 0.7990 (0.066) 0.9580 (0.037) - 0.9715 (0.038) 0.9725 (0.037)
Curvx 1.0014 (0.001) 1.0014 (0.001) 1.0000 (0.000) 1.0014 (0.001) 1.0014 (0.001) 1.0014 (0.001) 1.0014 (0.001) 1.0014 (0.001)
Distx - - 0.0014 (0.001) 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000)
Curvy - 1.0007 (0.001) 1.0000 (0.000) 1.0015 (0.002) 1.0021 (0.006) 1.0001 (0.000) 1.0006 (0.001) 1.0006 (0.000)
Disty - - 0.0007 (0.001) 0.0009 (0.002) 0.0023 (0.006) 0.0007 (0.001) 0.0005 (0.001) 0.0003 (0.000)
Distxy - - 0.0014 (0.001) 0.0015 (0.002) 0.0029 (0.006) 0.0013 (0.001) 0.0009 (0.001) 0.0010 (0.001)
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4.5.6 Evaluation on Dataset with Various Resolutions

In the second experiment, we test the performance of the Z and X motion correction methods

on another dataset with only horizontal scan OCT volumes and different resolutions. For X motion

correction, we still utilize the Spectralis software correction result as ground truth. The MAE for

X displacement and Dice coefficient between ground truth and corrected segmentation maps are

evaluated. Since we cannot obtain axial correction ground truth via orthogonal registration from the

single volume dataset, we only evaluate the distortion of curvature to the X and Y direction. Due to

lack of ground truth, we evaluate the curvature distortion to the Y direction based on Distxy in eq.

(4.27). Note that we derive the curvature distortion to the X direction Distx in the same way as the

previous experiment using eq. (4.26).

In Table 4.4, we compare the evaluation results of joint Z and X motion correction on the

whole dataset of 106 images, as well as on the subset of each resolution. For evaluation of X motion

correction result on the whole dataset, our proposed methods can reduce the MAE and increase the

Dice coefficient compared with the input without any correction, and the baseline network yields

a slightly better result. The methods proposed by Montuoro et al. [48] and Fu et al. [123] on the

other hand increase the MAE and decrease the Dice coefficient compared with the input, which

introduce larger X motion artifacts. When analyzing for each resolution, our proposed method still

achieves the best X motion correction performance for most resolutions, except on the resolution

of 496× 1024× 49. Fu et al. [123] achieves the best performance for this resolution, while our

methods remain the same as input. This may be due to the lack of data, as there are only 2 examples

of this resolution. For Z motion correction, the numeric range of curvature index is consistent with

our previous dataset. While the average Y curvature of our baseline network is more similar to the

X curvature reference for all resolutions except the resolution of 496×512×25, our network with

segmentation input achieves smaller average Y distortion for all resolutions except 496×1024×49.

Overall, our proposed methods achieve the best preservation of retinal curvature.
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Table 4.4. Quantitative result of different motion correction methods on dataset with different
resolutions.

Joint Z + X correction

Category Metrics Before correction Antony et al. [54] Montuoro et al. [48] Fu et al. [123] Spectralis [21] Ours (baseline) Ours (with seg.)

All data MAEx 0.8630 (0.227) - 8.1138 (6.219) 0.9156 (0.226) - 0.8607 (0.226) 0.8619 (0.225)
Dice 0.9200 (0.028) - 0.6125 (0.132) 0.9158 (0.028) - 0.9204 (0.028) 0.9202 (0.028)
Curvx 1.0012 (0.001) 1.0000 (0.000) 1.0012 (0.001) 1.0012 (0.001) 1.0012 (0.001) 1.0012 (0.001) 1.0012 (0.001)
Distx - 0.0012 (0.001) 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000)
Curvy - 1.0000 (0.000) 1.0027 (0.004) 1.0027 (0.005) 1.0003 (0.001) 1.0013 (0.001) 1.0007 (0.001)
Distxy - 0.0012 (0.001) 0.0025 (0.004) 0.0028 (0.004) 0.0012 (0.002) 0.0012 (0.001) 0.0009 (0.001)

496×512×49 MAEx 0.8997 (0.175) - 7.6411 (5.243) 0.9527 (0.180) - 0.8988 (0.172) 0.8990 (0.172)
Dice 0.9155 (0.024) - 0.6169 (0.132) 0.9111 (0.024) - 0.9157 (0.024) 0.9156 (0.024)
Curvx 1.0012 (0.001) 1.0000 (0.000) 1.0012 (0.001) 1.0012 (0.001) 1.0012 (0.001) 1.0012 (0.001) 1.0012 (0.001)
Distx - 0.0012 (0.001) 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000)
Curvy - 1.0000 (0.000) 1.0024 (0.003) 1.0025 (0.004) 1.0003 (0.001) 1.0012 (0.001) 1.0007 (0.001)
Distxy - 0.0012 (0.001) 0.0022 (0.003) 0.0025 (0.004) 0.0012 (0.002) 0.0012 (0.002) 0.0009 (0.001)

496×512×25 MAEx 0.0000 (0.000) - 10.350 (4.089) 0.1067 (0.038) - 0.0000 (0.000) 0.0000 (0.000)
Dice 1.0000 (0.000) - 0.5449 (0.078) 0.9938 (0.004) - 1.0000 (0.000) 1.0000 (0.000)
Curvx 1.0013 (0.000) 1.0000 (0.000) 1.0013 (0.000) 1.0013 (0.000) 1.0013 (0.000) 1.0013 (0.000) 1.0013 (0.000)
Distx - 0.0013 (0.000) 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000)
Curvy - 1.0000 (0.000) 1.0158 (0.011) 1.0039 (0.004) 1.0016 (0.002) 1.0027 (0.001) 1.0015 (0.001)
Distxy - 0.0013 (0.000) 0.0145 (0.011) 0.0031 (0.004) 0.0023 (0.001) 0.0014 (0.001) 0.0007 (0.000)

496×1024×97 MAEx 0.7663 (0.097) - 15.238 (13.442) 0.8058 (0.092) - 0.7388 (0.110) 0.7577 (0.106)
Dice 0.9378 (0.008) - 0.5308 (0.115) 0.9346 (0.009) - 0.9414 (0.004) 0.9390 (0.006)
Curvx 1.0017 (0.002) 1.0000 (0.000) 1.0017 (0.002) 1.0017 (0.002) 1.0017 (0.002) 1.0017 (0.002) 1.0017 (0.002)
Distx - 0.0017 (0.002) 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000)
Curvy - 1.0000 (0.000) 1.0014 (0.002) 1.0073 (0.010) 1.0001 (0.000) 1.0011 (0.001) 1.0003 (0.000)
Distxy - 0.0017 (0.002) 0.0016 (0.002) 0.0071 (0.009) 0.0016 (0.002) 0.0014 (0.001) 0.0014 (0.002)

496×1024×49 MAEx 0.7041 (0.092) - 5.8414 (1.168) 0.6939 (0.102) - 0.7041 (0.092) 0.7041 (0.092)
Dice 0.9626 (0.002) - 0.7477 (0.056) 0.9629 (0.002) - 0.9626 (0.002) 0.9626 (0.002)
Curvx 1.0020 (0.002) 1.0000 (0.000) 1.0020 (0.002) 1.0020 (0.002) 1.0020 (0.002) 1.0020 (0.002) 1.0020 (0.002)
Distx - 0.0020 (0.002) 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000) 0.0000 (0.000)
Curvy - 1.0000 (0.000) 1.0002 (0.000) 1.0007 (0.000) 1.0003 (0.000) 1.0014 (0.001) 1.0008 (0.001)
Distxy - 0.0020 (0.002) 0.0018 (0.002) 0.0018 (0.001) 0.0017 (0.002) 0.0009 (0.001) 0.0012 (0.001)
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4.6 Conclusion

In this paper, we proposed end-to-end deep learning neural networks for axial and coronal

OCT motion correction using only a single OCT volume. The proposed baseline axial motion

correction network adopts a modified U-Net architecture to predict a Z displacement map, which

can be enhanced with the OCT layer segmentation. We also proposed a coronal motion network,

which includes a vessel segmentation sub-network and an X motion prediction sub-network. The

experimental results show that the proposed method is able to correct axial and coronal motion

while recovering the retinal curvature and achieving significant improvement compared to the

conventional methods even with disease or large motion artifacts at various resolutions.

In future work, we can generalize the proposed method to different OCT systems and

investigate the possibility of training with simulation data to reduce dependency on large dataset

with ground truth. The proposed method will be integrated to better display and visualization of

3D OCT scans and benefit subsequent processing including retinal layer segmentation and OCT-A

imaging.

Chapter 4, in part, is a reprint of the material as it appears in IEEE International Conference

on Image Processing 2021 (ICIP), Y. Wang, A. Warter, M. Cavichini, W. R. Freeman, D. G. Bartsch,

T. Q. Nguyen, C. An, IEEE, 2021. The dissertation author is the primary author of this paper.

Chapter 4, in part, has been submitted for publication of the material as it may appear in

IEEE Transactions on Image Processing, Y. Wang, A. Warter, M. Cavichini, V. Alex, D. G. Bartsch,

W. R. Freeman, T. Q. Nguyen, C. An, IEEE, 2021. The dissertation author is the primary author of

this paper.
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Chapter 5

OCT layer segmentation

5.1 Introduction

Optical Coherence Tomography (OCT) is a 3D imaging technology widely used in ophthal-

mology. An infrared beam is used to obtain the cross-sections of the retina in vivo at high resolution

[112]. The role of OCT imaging is crucial in diagnosing and monitoring both retinal and systemic

diseases [2], including age-related macular degeneration (AMD), diabetic macular edema (DME),

glaucoma, multiple sclerosis (MS), and so on.

In OCT imaging, the back-scattered intensities of infrared beam represent 1D depth (A-scan,

Z axis of Fig. 5.1). By moving the beam in a raster scanning pattern, a sequence of 2D cross-

sectional images (B-scan, XZ plane of Fig. 5.1) can be acquired. Finally, the 3D OCT volume can

be formed by stacking the B-scans (XZ planes) to the Y axis. The fast scanning axis refers to the

direction where a B-scan is acquired (X axis of Fig. 5.1), and the slow scanning axis refers to the

direction where B-scans are stacked (Y axis of Fig. 5.1).

Cross-sectional imaging of OCT is useful for observing the layered structures of the retina,

and changes of the retinal layers are critical indicators of both retinal and systemic diseases

[131]. For example, thinning of the retinal nerve fiber layer (RNFL) and ganglion cell layer

(GCL) is frequently used for assessment of glaucoma. The overall retinal thickness is often used for

assessment of DME and choroidal neovascularization (CNV) [2]. It is therefore important to develop

an accurate segmentation for retinal layers to assess these changes automatically. In particular,
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Figure 5.1. OCT motion artifacts and segmentation. (a) The axial motion artifacts in 3D OCT volume
indicated with red arrows, (b) slow B-scan (YZ plane) with motion artifacts, (c) 2D segmented layers with
OCT motion artifacts, (d) 2D segmented layers after OCT motion correction, with 3D inconsistency indicated
by yellow arrows.

recent studies reveal that the thickness and vessel density of RNFL is related to Alzheimer disease

and Parkinson’s disease [1, 15], and joint OCT-A vessel density estimation with layer segmentation

algorithm could be used to develop clear and and non-invasive tool for early detection of these CNS

disorders.

Many OCT layer segmentation approaches have been proposed [58, 59, 132, 50], and com-

mercial OCT systems also provided their own segmentation softwares [21]. However, segmentation

error is prevalent with these approaches and compromises the quality of downstream tasks such

as OCT-A projections [49]. Recent deep learning segmentation neural networks led to significant

improvement of accuracy with publicly available annotated datasets [60, 4, 62, 64, 133, 65]. Most

networks are modified based on the 2D U-net [66] architecture, which has achieved remarkable

performance in numerous image segmentation tasks. However, most deep learning methods applied

on the 2D B-scan slides often ignore the 3D contextual information within neighboring B-scans.
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Motion artifact is one of the major reasons that hinder the development of 3D contextual

information [46]. Motion artifacts in OCT can be caused by involuntary head motion, respiration,

pulsation, or fixational eye movements during the imaging process [46]. These involuntary motions

lead to axial and coronal misalignment between neighboring B-scans, shown in sub-figures (b)

and (c) in Fig. 5.1, respectively, where major motion artifacts are indicated by red arrows. The

axial motion introduces discontinuities in the cross-sectional B-scan as in sub-figure (b), which

results in discontinuities in the 2D segmented layers in sub-figure (c). After motion correction, the

discontinuities are reduced in sub-figure (d), but the layers lack 3D consistency.

The first segmentation approach utilizing 3D information was proposed by Garvin et al.

(OCTExplorer) [67, 134], which applies 3D “feasibility” constraints to reduce failures of 2D graph-

based approach. Nevertheless, the motion artifacts are removed by flattening the bottom surface of

the retina, which also removes the retinal curvature. Besides constraining the 2D segmentation, 3D

information can also be used for denoising upon correction of motion artifacts. In the RETOUCH

OCT Fluid Detection and Segmentation challenge [135], the winner team [136] performs bounded

variation 3D smoothing to reduce speckle noise as pre-processing. However, the 3D information is

not fully utilized as their segmentation network is still trained on 2D slices.

In this chapter, we propose a deep learning method that combines motion correction and

3D segmentation. A motion correction neural network first corrects the axial motion artifacts in

the input OCT volume, and then a graph-assisted 3D neural network is trained with 3D input

and 3D output. The performance of the proposed method is compared with commercial OCT

software solutions, as well as several state-of-the-art methods in literature. Experimental results

show that motion correction and 3D contextual information enhance the accuracy of the OCT layer

segmentation.

5.2 Related work

With the development of OCT imaging systems in the past two decades, many OCT seg-

mentation methods have been proposed. However, segmentation errors in cases of various diseases
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and motion artifacts are still prevalent with existing segmentation algorithms [49].

Most existing OCT layer segmentation algorithms are 2D image-based, meaning that the

segmentation predictions are based on a single B-scan, and applied slice-by-slice for 3D data

[56, 132, 50, 58, 59, 137]. Some methods predict the 1D boundaries between each retinal layer,

while other methods predict the 2D pixel-wise label. The advantages of predicting 1D boundaries

include topology guaranteed layers (i.e. the first boundary will always be above the second

boundary) and robustness to outlier regions. However, the 1D boundary method is not able to

precisely characterize the layers in retinal disease such as the example illustrated in Fig. 5.2. Even

for human corrected segmentation boundaries, it is not possible to precisely follow the shape of the

disease to the one-to-one mapping nature of the 1D boundaries.

Figure 5.2. Limitations of 1D segmentation boundaries. (a) An example OCT B-scan with retinal disease,
(b) human corrected 1D segmentation boundaries. The boundaries could not precisely follow the shape of the
disease.

Conventional methods that predict the 1D boundaries include level set methods [58, 59], but

these methods take extremely long computational time for up to hours per OCT volume. Graph-

based methods are another popular category of algorithm [132, 138, 137], which post-process the

pixel-wise prediction from machine learning classifiers [50, 60]. However, these conventional

methods are difficult to generalize to various retinal diseases, and require manually established

features and extensive parameter tuning.

Thanks to several public datasets with available annotation [50, 36, 139], deep learning-

based methods have improved the accuracy of the pixel-wise label prediction via end-to-end training

[60, 4, 62, 64, 133, 65]. RelayNet [140] is one of the first deep learning application in retinal
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layer segmentation. It modifies the 2D U-Net architecture, and uses the weighted cross-entropy

loss to penalize error near each boundary. Other methods combine deep learning classifiers with

conventional post-processing to obtain layer boundaries from pixel-wise prediction. Fang et al.

[60] combined a patch-based neural network with graph search post-processing to segment 9 layer

boundaries. Pekala et al. [65] proposed a dense U-net classifier with post-processing using Gaussian

process regression to segment 5 layer boundaries. He et al. [62] proposed to use a second neural

network to correct topology based on initial U-Net prediction. Some methods aim to predict the 1D

boundary based on end-to-end regression networks. He et al. [64] proposed cascaded U-Nets to

learn the thickness map of each layer achieving topology constraints. The architecture was later

improved [63, 133] by multi-task training and including X, Y coordinates as input. The latest

state-of-the-art method is the MGU-Net [139] which combines U-Net with graph-convolution

inspired global reasoning blocks [141], achieving the highest Dice coefficient reported on the DME

dataset [50].

A major problem that impedes the development of 3D segmentation approaches is that

involuntary motion causes misalignment artifacts between neighboring B-scans in 3D OCT imaging.

Therefore, motion correction is required to recover the motion-free 3D OCT volume. Some OCT

systems integrate eye-tracking hardware to compensate for eye-motion, and there are also post-

processing algorithms to correct motion after OCT acquisition [46]. Axial movement is observed to

be more significant than coronal movement in magnitude [47], and the higher axial resolution also

result in larger axial shift in pixels [47, 53]. Hence, many methods solely focus on correction of

axial motion between B-scans [134, 54, 125].

The first OCT segmentation approach to utilize 3D information was proposed by Garvin et al.

(OCTExplorer) [67, 134], which could segment 7 boundaries for macular centered OCT scans. The

approach first flattens the bottom surface of the retina to remove motion artifacts (along with retinal

curvature) and then enhances 2D graph-based methods by additional 3D “feasibility” constraints.

The feasibility constraints take advantage of 3D contextual information and enforce smoothness

in neighboring surfaces and surface distance constraints. They demonstrate that their proposed
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method with 3D information could reduce segmentation failure compared to the 2D graph-based

approaches. Besides conventional approaches, DeepMind [4] proposed a 3D segmentation network

taking 9 consecutive B-scans that could segment 15 classes of features to aid disease classification.

The major limitation is that only two retinal layers can be identified by the segmentation network,

namely the neurosensory retina and the RPE. It is therefore promising to combine motion correction

and 3D neural networks in retinal OCT segmentation.

In this chapter, we proposed a 3D OCT segmentation pipeline that combines two neural

networks to correct motion artifacts and perform segmentation based on volumetric data, which

enables utilization of 3D contextual information to achieve improved accuracy. To the best of our

knowledge, this is one of the first 3D deep learning methods applied in the retinal layer segmentation

task.

5.3 Proposed method

In this chapter, we propose to combine OCT motion correction network with a graph-

assisted 3D neural network for retinal layer segmentation. The proposed 3D segmentation pipeline

is illustrated in Fig. 5.3. In the motion correction stage, a 2D segmentation method is first applied

to the input OCT volume V slice-by-slice to obtain the binary segmentation Sbin for retinal and

non-retinal regions. The motion correction network [125] then takes the 3D volume V and the

extracted top (inner limiting membrane, ILM) and bottom (Bruch’s membrane, BM) layer boundary

as input, to predict a 2D displacement map D that compensates for axial motion. The original 3D

volume V is warped using the 2D displacement map D to obtain the motion-corrected volume V′. In

the second stage, the specific retinal layers Spred are classified using a segmentation network based

on the 3D motion-corrected OCT volume V′.

The axial motion correction network [125] takes the raw OCT volume V∈RH×W×N as input,

where H, W , and N denotes the resolution along the Z, X, and Y axes. The BM and ILM boundaries

are also included for improved performance. The output of the network is a 2D displacement map

D ∈ RW×N , which compensates for Z directional motion in the 3D OCT volume. The architecture
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Figure 5.3. Proposed 3D OCT segmentation pipeline with motion correction.

of the network is modified based on a residual U-Net, and the performance is verified for various

diseases and resolutions [125]. After network prediction, the motion-corrected OCT volume V′ can

be obtained by warping the input volume V based on the predicted axial displacement map D.

V′(z,x,y) = V(z−D(x,y),x,y). (5.1)

After correcting the motion artifacts, the proposed network takes M neighboring B-scans

in the motion-corrected OCT volume as input and predicts the segmentation in K classes for the

M B-scans as shown in Fig. 5.4. The segmentation network is inspired by the U-net [66] and

MGU-Net [139], which includes analysis and synthesis of 4 resolutions. The 3D convolution blocks

are separated into spatial 3× 3× 1 convolutions and depth-wise 1× 1× 3 convolutions, which

utilizes 3D information without significantly increasing the number of parameters. Specifically, a

graph pyramid structure is used at the lowest resolution for global reasoning. The graph pyramid is

comprised of 4 resolutions with graph reasoning units (GRU) [141]. Each graph reasoning units

include three branches for projection to node space, re-projection to feature space, and fusion of

global features, where the two graph convolution blocks are used after projection to the node space.

The standard convolution on image data with grid coordinates could be interpreted as a nearest

neighbor graph. However, by utilizing the top projection branch of GRU, the input features could

be projected to latent space using a learned projection matrix, which enables global reasoning over

disjoint and distant areas. After projection to the latent node space, a graph is obtained where each
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node contains a feature state. Two graph convolutions are performed implemented by channel-wise

and node-wise 1D convolutions. Finally, the graph is re-projected from node space to image space

using a learned inverse projection matrix.

For comparison of the effect of 3D convolution, we train a 2D version of the segmentation

network by removing the 1× 1× 3 convolutions and replacing all the 3D operations with their

2D counterparts. We also use the 2D segmentation network to derive the top and bottom layer

boundaries for the motion correction network.

The proposed 3D architecture includes 1.940M trainable parameters, and the 2D version

includes 1.909M parameters. Both are reduced compared with MGU-Net which has 2.094M

parameters, yet the graph pyramid structure can effectively improve the segmentation performance

as demonstrated in the experimental result.
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Figure 5.4. Proposed 3D OCT segmentation network with graph pyramid architecture. Here “IN” operation
denotes Instance Normalization, “LReLU” denotes LeakyReLU activation, “T” in black circle denotes
transpose, and “×” in black circle denotes matrix multiplication.

The segmentation network is trained using a hybrid loss function, which is a weighted sum

of cross-entropy loss and Dice loss. Denoting the last convolution layer output as x ∈RH×W×M, the

ground truth class label as y ∈ RH×W×M, and the ground truth one-hot label as SGT. Note that we

also include a valid mask M ∈ RH×W×M to exclude regions without annotation, where 1 denotes
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annotated pixels and 0 denotes otherwise. The masked cross-entropy loss can be expressed as

LCE(x,y) =
−1

∑n Mn
∑
n

(
log

expxyn,n

∑
K−1
k=0 expxk,n

·Mn

)
, (5.2)

where n spans the batch and spatial dimensions. Note that the cross-entropy loss could be imple-

mented with better numeric stability by using the “log-sum-exp“ trick, combining log-softmax

activation with the negative log likelihood loss for the last convolution layer output x.

The Dice loss is included to regularize the class-imbalance issue of each retinal layer, and

emphasize retinal region (class k = 1 to K− 2) over non-retinal regions (k = 0 or K− 1). It is

defined as one minus the soft Dice coefficient, which is a score between 0 and 1 characterizing the

overlapping ratio between prediction and ground truth. The soft Dice coefficient can be expressed

as

SoftDicek(x,SGT) =
2∑n σ(xk,n)SGT

k,n Mn

∑n σ(xk,n)Mn +∑n SGT
k,n Mn

, (5.3)

where σ(·) denotes the softmax function along the channel dimension. Then the Dice loss for retinal

layers is defined as

LDice(x,SGT) = 1− mean
k=1:K−2

SoftDicek(x,SGT). (5.4)

Finally, the total loss is combined with weights λCE = 1, λDice = 2,

Ltotal = λCELCE +λDiceLDice. (5.5)

Simulated shearing along the X axis is used besides standard data augmentation methods

such as random cropping and horizontal flipping, which adds another degree of freedom to the

image transformation. The method to generate simulated shearing is described in [125]. The random

shearing is generated by an affine transformation with two Gaussian variables a ∼ N(0,
√

2/W )
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and b∼ N(0,1), 
x′

y′

z′

=


1 0 0 0

0 1 0 0

a 0 1 b





x

y

z

1


. (5.6)

Boundary extraction is a optional post-processing to convert the pixel-wise label prediction

Spred into segmentation boundaries Bpred. The boundaries are detected, joined, and interpolated

using the pseudo-code in Algorithm 1.

Algorithm 1. Pixel-wise label to boundary

1: Pixel-wise label Spred ∈ RH×W

2: K+1 boundaries Bpred ∈ R(K+1)×W

3: for k = 0 : K do
4: k-th edge C (W lists)
5: for x = 0 : W −1 do
6: C(x)← z s.t. Spred

(z,x) = k+1 & Spred
(z−1,x) ̸= k+1

7: if x = 0 then
8: Bpred

(k,x)←minC(x)

9: bprev← Bpred
(k,x)

10: else if C(x) is not empty then
11: Bpred

(k,x)← argmin
C(x)
|C(x)−bprev|

12: bprev← Bpred
(k,x)

13: end if
14: end for
15: Interpolate Bpred

(k) for missing x values using b-spline
16: end for

5.4 Experimental result

In the experiment, we test and compare the segmentation performance of our proposed joint

motion correction and 3D segmentation neural networks with several state-of-the-art conventional

or deep learning methods.
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5.4.1 Datasets

The methods are evaluated on three different datasets: DME dataset [50], AMD and Control

dataset [36], and our own dataset collected by Jacobs Retina Center.

We use the DME dataset [50] as a benchmark of the proposed method to compare with the

state of the art methods in literature. The DME dataset [50] is one of the most widely used public

datasets in literature [140, 63, 139]. The dataset includes 10 macular centered OCT volumes for

patients with DME imaged by Heidelberg Spectralis OCT system after motion correction. The

resolution for each volume is 496×768×61, with voxel size ranging from 3.87×11.07×118µm

to 3.87× 11.59× 128µm. 11 selected B-scans out of 61 B-scans in each volume (in total 110

B-scans) are manually annotated with 8 segmentation boundaries (K = 9 classes) in the central

region. We follow the training and test division in other papers [140, 63, 139], where the first 55

images from subject 1 to 5 are used for training, and the last 55 images from subject 6 to 10 are

used for testing.

We then use the AMD and control dataset [36] to evaluate the influence of the motion

correction network in 3D segmentation on OCT volumes with real motion artifacts. The AMD and

control dataset [36] is a public dataset with 384 macular centered OCT volumes from 269 patients

with AMD and 115 normal control subjects. The OCT volumes are imaged by the Bioptigen system

and mostly has resolution 512×1000×100, with some exceptions that has 82 B-scans. Manual

annotations for 3 layer boundaries (K = 4 classes) are provided in a central circular region. Due to

the different definition of the RPE-DC layer in AMD group [36], we only utilized normal control

group for evaluation of the segmentation methods. The first 55 OCT volumes are used for training,

and next 5 volumes are used for validation, and the last 55 volumes are used for testing.

Finally, the JRC dataset is used to compare the proposed method to OCT segmentation

solutions clinically available to ophthalmologists in segmentation of retinal layers with various

diseases. The JRC dataset contains 190 horizontal and vertical OCT volumes imaged with the

Heidelberg Spectralis system [21], and 8 layers for 30 OCT volumes are manually corrected using

the Heidelberg HEYEX software based on Heidelberg’s segmentation result. The OCT volumes
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without manual corrections are divided into 142 and 18 for training and validation using Heidelberg’s

segmentation as ground truth, and the 30 manually corrected volumes are divided into 15 and 15

for fine-tuning and testing. The resolution of the OCT volumes are 496× 512× 49 with size

1.9×5.8×5.8 mm3. The dataset includes both normal subjects and patients with wet and dry AMD,

nonproliferative diabetic retinopathy (NPDR), epi-retinal membrane (ERM), central retinal vein

occlusion (CRVO), retinal detachment, macular hole, chorioretinopathy, and so on.

5.4.2 Simulated motion for DME dataset

For the AMD and control dataset and JRC dataset, we directly apply our motion correction

approach on the original motion corrupted OCT volumes. Since the DME dataset [50] has been

motion-corrected, we include simulated motion on the input OCT volumes to test the performance

of our proposed motion correction approach. The simulated axial eye motion is generated using a

similar method in [125], which is based on cumulative sum of Gaussian vector. We also verify the

similarity of simulated motion and real eye motion by comparing their statistics in the AMD and

control dataset and JRC dataset. Fig. 5.5 sub-figure (a) shows the histogram of motion amplitudes

of the real and simulated motion vectors, and it can be observed that the real and simulated

motion amplitudes follow a similar distribution. Fig. 5.5 sub-figure (b)-(e) respectively shows the

normalized auto-correlation of 10 example motion vectors in the AMD and control dataset, JRC

dataset, simulated motion, and Gaussian random vectors. The auto-correlation of real motion on

both datasets are significantly different from Gaussian random vectors, and the auto-correlation of

simulated motion resembles that of real motion.

5.4.3 Evaluation metrics

The classification error and the Dice loss are used to evaluate the pixel-wise performance of

each segmentation algorithm. Specifically, we present the overall error, the error of retinal layers,

the averaged Dice loss for all layers, and the Dice loss for each layer. Denoting the predicted

binary segmentation map with Spred, ground truth segmentation with SGT, valid mask with M, and

element-wise product with ⊙. The Dice loss for the kth layer can be obtained by one minus the
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(d) (e)

Figure 5.5. Statistics of real and simulated eye motion. (a) Histogram of motion amplitudes, (b)-(e) auto-
correlation of 10 example motion vectors in the AMD and control dataset, JRC dataset, simulated motion,
and Gausian random vectors.

Dice coefficient

LDice,k(Spred,SGT) = 1−
2∑Spred

k ⊙SGT
k ⊙M

∑Spred
k ⊙M+∑SGT

k ⊙M
, (5.7)

and the averaged Dice loss for all retinal layers is

LDice(Spred,SGT) = mean
k=1:K−2

LDice,k(Spred,SGT). (5.8)

The pixel-wise error is calculated on the valid region given by M, and non-retinal regions (k = 0 or

K−1) are merged into one class. The layer error is calculated based on retinal layers corresponding

to class 1 to K−2 in the ground truth label.

Error(Spred,SGT) =
∑(Spred ̸= SGT)⊙M

∑M
. (5.9)

After converting the pixel-wise predictions into layer boundaries using the proposed Algo-

rithm 1, the mean absolute distance (MAD) is evaluated between the predicted and ground truth
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boundaries in the annotated region masked by Mb ∈ RK×W×N ,

MAD(Bpred,BGT) =
∑ |Bpred−BGT|⊙Mb

∑Mb . (5.10)

5.4.4 Implementation

In the experiment, we compare the performance of our proposed 3D segmentation with 7

B-scans input (center ±3 neighboring B-scans) and the 2D version using a single B-scan input with

or without OCT motion correction network. We compare with several conventional methods by

Chiu et al. [50] and Rathke et al. [137], the OCTExplorer software [134], as well as deep learning

method U-Net [66], RelayNet [140], MGU-Net [139], and the network proposed by He et al. [63].

Our proposed motion correction and segmentation networks are implemented in PyTorch.

The motion correction network utilizes the pre-trained model in [125]. On the DME dataset, the

2D network is first trained on the first 55 images with expert 1’s annotation as ground truth, using

batch size 4 for 200 epochs with an initial learning rate of 10−3 and decayed to 10−4 after 100

epochs, using Adam optimizer with weight decay of 10−4. Since the dataset is sparsely annnotated,

we use the prediction of the 2D network as pseudo-ground truth for B-scan slices without manual

annotations to obtain dense label for the 3D OCT volume. The 3D segmentation network is then

trained based on 3D labels with batch size 1. On the AMD and control dataset, the segmentation

networks are trained using batch size 4 for 15 epochs with an initial learning rate of 10−3 and

decayed to 10−4 after 10 epochs. We first pre-train the model on the JRC training set using

Heidelberg segmentation as ground truth for 15 epochs with initial learning rate 10−3 and weight

decay of 10−4, and then fine-tune on 15 OCT volumes with manual labels for 20 epochs with

learning rate 5×10−4 and 10 epochs with learning rate 10−4 using weight decay of 10−3.

The method by Chiu et al. [50] uses the predicted layer boundaries provided in the DME

dataset, and the method by Rathke et al. [137] uses the original implementation in Matlab. The

OCTExplorer [134] software version 3.8.0 is used. We include both the pre-trained PyTorch model

on the DME dataset provided by the original authors of RelayNet [140], and also include our
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retrained model on all three datasets. The network by He et el. [63] uses the prediction results

on the DME dataset provided by the authors. The U-Net [66] and MGU-Net [139] are trained in

PyTorch using similar hyper parameters as our proposed segmentation network.

5.4.5 DME dataset

The qualitative results of segmentation on the original motion-corrected DME dataset are

shown in Fig. 5.6, where the first group (a) shows the pixel-wise segmentation and group (b) shows

the layer boundaries. Sub-figure (1) shows the input B-scan cropped in the labeled retinal region,

sub-figure (2) shows the ground truth manual label, and sub-figures (3) to (10) show the segmentation

result of different segmentation methods. The results demonstrate that the conventional methods by

OCTExplorer [134] and Rathke et al. [137] could not accurately segment the retinal layers for the

B-scan with DME. The method by Chiu et al. [50] produces more accurate segmentation, while

the RNFL (in blue) is thinner than the ground truth, and the OPL (in yellow) does not follow the

shape of lesions in the B-scan. For deep learning methods, the boundaries between each class of the

RelayNet [140] prediction is noisier compared with the MGU-Net [139] and our proposed networks.

MGU-Net [139] yields mis-classification of the OPL, and He et al. [63] yields discontinuities

denoted by yellow arrows. The segmentation result of our proposed networks with 2D or 3D input

are both visually continuous, and our 3D network result in lower Dice loss and MAD.

We also visualize the central slow B-scans in Fig. 5.7 to compare the 3D consistency of the

MGU-Net and our proposed networks after applying simulated motion and our motion correction

network. It can be observed that the simulated motion in sub-figure (a1) causes axial distortion to

the slow B-scan, and it can be effectively corrected by our motion correction network in sub-figure

(b1). Overall, our proposed 3D network in sub-figure (b4) after motion correction achieves the

best consistency, compare to MGU-Net [139] in sub-figures (b2) and our 2D network in sub-figure

(b3) at the location denoted by yellow arrow. It demonstrates the joint motion correction and 3D

segmentation networks can improve the performance of 3D consistency.
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(a1) input (a2) GT (a3) Chiu et al. (𝐿Dice= 0.1337) (a4) OCTExplorer (𝐿Dice= 0.4209)

(a6) RelayNet (𝐿Dice= 0.1569) (a7) MGU-Net (𝐿Dice= 0.1300) (a8) He et al. (𝐿Dice= 0.1878) (a9) Ours - 2D (𝐿Dice= 0.1271)

(b1) input (b2) GT (b3) Chiu et al. (MAD = 1.2124) (b4) OCTExplorer (MAD = 5.2367)

(b6) RelayNet (MAD = 1.3930) (b7) MGU-Net (MAD = 1.2880) (b8) He et al. (MAD = 2.1283) (b9) Ours - 2D (MAD = 1.2789)

(a5) Rathke et al. (𝐿Dice= 0.3938)

(a10) Ours – 3D (𝐿Dice= 0.1211)

(b5) Rathke et al. (MAD = 4.9775)

(b10) Ours – 3D (MAD = 1.1857)

X

Z

X

Z

Figure 5.6. Qualitative results on the DME dataset [50]. Group (a) shows the pixel-wise prediction of each
method with corresponding Dice loss, and group (b) shows the layer boundaries with mean absolute distance
(MAD). (1) Input B-scan, (2) ground truth segmentation, (3) Chiu et al. [50], (4) Rathke et al. [137], (5)
OCTExplorer [134], (6) RelayNet [140], (7) MGU-Net [139], (8) He et al. [63], (9) our proposed 2D network,
(10) our proposed 3D network. Yellow arrows denote large segmentation errors.

(b1) Our motion correction (b2) MGU-Net - 2D (𝐿Dice= 0.1442) (b3) Ours - 2D (𝐿Dice= 0.1245) (b4) Ours - 3D (𝐿Dice= 0.1232)

(a1) Simulated motion (a2) MGU-Net - 2D (𝐿Dice= 0.1546) (a3) Ours - 2D (𝐿Dice= 0.1235) (a4) Ours - 3D (𝐿Dice= 0.1398)

Y

Z

Y

Z

Figure 5.7. Qualitative comparison of 3D consistency on the DME dataset [50]. Group (a) shows results
for OCT with simulate motion, group (b) shows results for motion-corrected OCT. (1) slow B-scan, (2)-(4)
segmentation result of MGU-Net [139] and our proposed 2D or 3D network. Yellow arrows denote large
segmentation errors.

Quantitative evaluation for pixel-wise accuracy on the DME dataset [50] is shown in Table

5.1. The raw network output without boundary detection post-processing described in Algorithm 1

is used in this evaluation for deep learning methods, and the pixel-wise labels are derived for

conventional methods using the predicted boundaries. The best performance in each column for

original OCT and OCT with simulated motion is denoted by bold text, and the second best is

denoted by blue text. We only include our proposed methods in the experiment with simulated

motion in order to evaluate the performance of our motion correction network. On the original

input, our proposed 3D segmentation network achieves the lowest error of 1.80%, layer accuracy

of 9.75%, and average Dice loss of 0.1155. The Dice loss of our 3D network is also the lowest in
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the each retinal layer, except for the RNFL layer where it ranks as the third best result. For OCT

with simulated motion, our proposed 3D segmentation network after motion correction achieves

the lowest error and Dice coefficient, and note that the error of the 3D network increases without

motion correction.

The mean average distance of layer boundaries are evaluated in Table 5.2. The proposed

boundary detection algorithm is used to post-process the deep learning methods. Overall, the

proposed 3D approach achieves the lowest average MAD at 1.1624 pixels, and the result by He et

al. [63] achieves the second lowest average MAD at 1.3190 pixels. When comparing the the results

on OCT with simulated motion, our 3D segmentation network with motion correction also achieves

the lowest MAD with a improvement upon our 2D network and our 3D network without motion

correction.

5.4.6 AMD and control dataset

We use the AMD and control dataset to evaluate the influence of the motion correction

network on real motion corrupted OCT volumes. We visualize one example OCT volume in Fig. 5.8,

where segmentation on the original 3D OCT volume is shown in group (1), and segmentation on

the motion-corrected OCT volume is shown in group (2). The 3D OCT is shown in sub-figure (a),

the segmentation surface of our 3D network is shown in sub-figure (b), and the partially annotated

ground truth segmentation surface is shown in sub-figure (c). Sub-figures (d)-(f) show the central

cross-section slow B-scan, our segmentation, and ground truth respectively, and sub-figures (g)-(i)

show segmentation on the central fast B-scan. It can be observed that eye motion distorts the slow

B-scan in sub-figures (a1), and causes jittered segmentation surface in (b1), (c1), (e1), and (f1).

After applying the motion correction network, the segmentation surfaces are smooth along the

slow-scanning axis and the slow B-scan provides better visualization.

The quantitative performance of several methods on the AMD and control dataset [36] are

shown in Table 5.3, where our proposed 3D network after motion correction achieves the lowest

error and Dice loss for each layer. It can also be observed that the performance of our 3D network
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degrades without the motion correction network, demonstrating the importance of motion correction

on dataset with real motion artifacts.

(1a) Original 3D OCT

(1d) Cross-sectional B-scan (1e) Ours - 3D (1f) Ground truth

(1g) Fast B-scan (1h) Ours - 3D (1i) Ground truth

(2a) Motion corrected 3D OCT

(2d) Cross-sectional B-scan (2e) Ours - 3D (2f) Ground truth

(2g) Fast B-scan (2h) Ours – 3D (2i) Ground truth
(2b) Our segmentation surface (2c) GT segmentation surface

(1b) Our segmentation surface (1c) GT segmentation surface

X

Y
Z

X

Y
Z

X

Z

Y

Z

X

Z

Y

Z

Figure 5.8. Qualitative results on the AMD and control dataset. Group 1 shows segmentation on the original
OCT, group 2 shows segmentation on the motion-corrected OCT. (a) 3D OCT volume, (b) our segmentation
surface, (c) ground truth (partially annotated) segmentation surface, (d)-(f) segmentation of the slow B-scan,
(g)-(i) segmentation of the fast B-scan.

Table 5.3. Quantitative result of different methods on the AMD and control test dataset [36], where
the best and the second best are denoted by bold and blue text, respectively.

Dice Loss per Layer
Method Error Layer Error RNFL-OS RPE
Rathke et al. [137] 1.21% 5.50% 0.0292 0.3078
U-Net [66] 0.83% 2.31% 0.0135 0.1039
RelayNet [140] 1.87% 2.86% 0.0172 0.1126
MGU-Net [139] 0.56% 2.03% 0.0111 0.1061
Ours (2D, original) 0.49% 1.82% 0.0093 0.1022
Ours (3D, original) 0.48% 1.86% 0.0092 0.0990
Ours (2D, motion corrected) 0.44% 1.61% 0.0083 0.0944
Ours (3D, motion corrected) 0.41% 1.56% 0.0074 0.0892

5.4.7 JRC dataset

We compare the proposed method to the clinically available solutions [134, 21] on the JRC

dataset with various diseases. The qualitative results on the JRC dataset are shown in Fig. 5.9.

Two examples with wet AMD and CRVO are illustrated in group (1) and group (2), respectively.

Sub-figure (a) shows the 3D OCT volume with motion artifacts, sub-figure (b) shows the motion

corrected 3D OCT volume, sub-figure (c) shows the slow B-scan with motion artifacts, sub-figure

(d) shows the motion corrected B-scan, and sub-figure (e) shows a reference vertical B-scan imaged

separately. Sub-figure (g) shows the segmentation of different methods on the fast B-scan, and
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sub-figure (h) shows the segmentation of different methods on the motion corrected slow B-scan.

The conventional methods by Rathke et al. [137], Heidelberg [21], and OCTExplorer [2] yield

significant segmentation errors of the OPL and GLC-IPL in example (1), as denoted by pink and red

arrows. These methods also produce large errors denoted by red circles in example (2) compared

to the ground truth in sub-figure (g2-8) and sub-figure (h2-8). This is because the conventional

methods rely on graph prior designed for normal eyes or diseases with mild deformations, which

could not generalize well for various diseases with large deformations. Deep learning methods

including the U-Net [66], RelayNet [140], MGU-Net [139], and our proposed 3D network could

produce segmentation with higher similarity to ground truth for both examples compared with

conventional methods. However, the segmentation results of U-Net [66], RelayNet [140], and

MGU-Net [139] yield mis-classifications as denoted by red circles in sub-figures (g2-4) to (g2-6),

and they also yield and 3D inconsistency as denoted by red circles in sub-figures (h2-4) to (h2-6).

The proposed 3D network produces more accurate segmentation in the fast B-scans, and also yields

better 3D consistency in the slow B-scans for both examples.

We also visualize the 3D segmentation surfaces of Heidelberg [21], MGU-Net [139], our

3D network, and ground truth in Fig. 5.10. One quarter of the OCT is cut to show the cross-

section of the segmentation surfaces. It could be observed that Heidelberg and MGU-Net produce

segmentation errors denoted in red circles, and the proposed method is the most similar to the

ground truth.

The quantitative results are presented in Table 5.4, where the proposed 3D segmentation

network is compared with different segmentation methods. Since the manual annotation is performed

based on Heidelberg’s segmentation, the quantitative results would be biased towards Heidelberg.

Therefore we also report the error evaluated only on manually corrected areas, where at least 4

out of 8 layers in the ground truth differ from Heidelberg’s segmentation. The OCT volumes in

the test set are divided into three categories, including normal, moderate deformation, and severe

deformation. The percentage of area that is manually corrected is 1.02% for normal, 11.41% for

moderate, and 21.47% for severe deformation. On the entire test set, our proposed 3D segmentation
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Table 5.4. Quantitative result of different segmentation methods on the JRC test dataset, where the
best and the second best are denoted by bold text and blue text, respectively. Note that ground truth
labels are manually corrected based on Heidelberg’s result.

Dice Loss per Layer

Data Method Error Layer Error Dice Loss RNFL GCL-IPL INL OPL ONL-ISM ISE OS-RPE

All Rathke et al. [137] 4.51% 27.09% 0.2820 (±0.076) 0.2755 0.2190 0.3228 0.2976 0.2240 0.4376 0.1976
OCTExplorer [134] 3.78% 22.11% 0.2291 (±0.063) 0.1983 0.1342 0.2195 0.3148 0.1657 0.2858 0.2855
Heidelberg [21] 1.74% 10.96% 0.1070 (±0.028) 0.0972 0.1152 0.1519 0.1378 0.0807 0.0693 0.0966
U-Net [66] 1.58% 9.34% 0.0930 (±0.024) 0.0855 0.0760 0.1217 0.1291 0.0566 0.0825 0.0998
RelayNet [140] 1.32% 7.93% 0.0816 (±0.024) 0.0739 0.0675 0.1134 0.1220 0.0523 0.0686 0.0736
MGU-Net [139] 1.25% 7.54% 0.0788 (±0.024) 0.0702 0.0635 0.1069 0.1215 0.0508 0.0715 0.0668
Ours (2D, original) 1.24% 7.45% 0.0771 (±0.023) 0.0694 0.0647 0.1043 0.1183 0.0516 0.0657 0.0656
Ours (3D, original) 1.49% 8.22% 0.0902 (±0.026) 0.0850 0.0838 0.1236 0.1329 0.0568 0.0659 0.0836
Ours (3D, motion corrected) 1.22% 7.13% 0.0766 (±0.024) 0.0709 0.0652 0.1055 0.1211 0.0508 0.0628 0.0596

Normal Rathke et al. [137] 3.22% 19.67% 0.2077 (±0.086) 0.2267 0.1399 0.2007 0.2027 0.1819 0.3955 0.1063
OCTExplorer [134] 2.99% 16.50% 0.1835 (±0.056) 0.2003 0.0928 0.1542 0.2499 0.1446 0.2637 0.1788
Heidelberg [21] 0.22% 1.26% 0.0138 (±0.004) 0.0165 0.0100 0.0167 0.0213 0.0096 0.0097 0.0126
U-Net [66] 1.02% 5.38% 0.0612 (±0.021) 0.0505 0.0409 0.1010 0.0820 0.0360 0.0542 0.0639
RelayNet [140] 0.87% 4.64% 0.0531 (±0.023) 0.0472 0.0404 0.0978 0.0753 0.0265 0.0359 0.0484
MGU-Net [139] 0.81% 4.67% 0.0511 (±0.019) 0.0478 0.0408 0.0815 0.0767 0.0269 0.0372 0.0471
Ours (2D, original) 0.78% 4.53% 0.0493 (±0.019) 0.0467 0.0404 0.0799 0.0742 0.0262 0.0341 0.0433
Ours (3D, original) 0.90% 4.93% 0.0558 (±0.020) 0.0513 0.0449 0.0870 0.0837 0.0310 0.0370 0.0558
Ours (3D, motion corrected) 1.22% 7.13% 0.0766 (±0.024) 0.0709 0.0652 0.1055 0.1211 0.0508 0.0628 0.0596

Moderate Rathke et al. [137] 3.48% 21.60% 0.2292 (±0.082) 0.2307 0.1734 0.2604 0.2380 0.1853 0.3983 0.1182
deformation OCTExplorer [134] 3.24% 19.01% 0.2025 (±0.058) 0.1919 0.1128 0.1883 0.2844 0.1429 0.2635 0.2338

Heidelberg [21] 0.55% 3.28% 0.0340 (±0.008) 0.0431 0.0315 0.0410 0.0427 0.0200 0.0279 0.0315
U-Net [66] 1.14% 7.20% 0.0722 (±0.021) 0.0708 0.0597 0.0995 0.1011 0.0386 0.0638 0.0719
RelayNet [140] 1.06% 6.51% 0.0675 (±0.022) 0.0677 0.0586 0.0998 0.0963 0.0350 0.0519 0.0631
MGU-Net [139] 1.04% 6.43% 0.0669 (±0.021) 0.0653 0.0552 0.0985 0.0960 0.0348 0.0562 0.0625
Ours (2D, original) 1.00% 6.12% 0.0642 (±0.021) 0.0647 0.0569 0.0959 0.0936 0.0347 0.0490 0.0547
Ours (3D, original) 1.25% 6.87% 0.0771 (±0.025) 0.0788 0.0734 0.1131 0.1079 0.0401 0.0485 0.0776
Ours (3D, motion corrected) 1.01% 6.09% 0.0654 (±0.023) 0.0662 0.0583 0.0997 0.0983 0.0355 0.0464 0.0531

Severe Rathke et al. [137] 7.48% 42.36% 0.4326 (±0.080) 0.3800 0.3618 0.5138 0.4904 0.3448 0.5596 0.3778
deformation OCTExplorer [134] 5.38% 31.43% 0.3097 (±0.088) 0.2088 0.2044 0.3142 0.4210 0.2404 0.3549 0.4245

Heidelberg [21] 5.18% 32.01% 0.3116 (±0.090) 0.2378 0.3694 0.4445 0.4143 0.2772 0.1977 0.2406
U-Net [66] 2.84% 15.82% 0.1545 (±0.033) 0.1246 0.1315 0.1754 0.2246 0.1237 0.1492 0.1526
RelayNet [140] 2.14% 12.55% 0.1289 (±0.037) 0.0945 0.1022 0.1477 0.2088 0.1200 0.1313 0.0979
MGU-Net [139] 1.95% 11.30% 0.1213 (±0.040) 0.0870 0.0946 0.1354 0.2068 0.1139 0.1316 0.0796
Ours (2D, original) 2.00% 11.71% 0.1213 (±0.036) 0.0859 0.0956 0.1324 0.1997 0.1186 0.1276 0.0895
Ours (3D, original) 2.34% 12.69% 0.1388 (±0.037) 0.1083 0.1289 0.1610 0.2197 0.1230 0.1294 0.1012
Ours (3D, motion corrected) 1.89% 10.53% 0.1157 (±0.037) 0.0872 0.0933 0.1264 0.1965 0.1105 0.1229 0.0734

Manually Rathke et al. [137] 6.85% 38.90% 0.4002 (±0.075) 0.3697 0.3332 0.4707 0.4529 0.3159 0.5242 0.3350
corrected area OCTExplorer [134] 5.10% 29.87% 0.2970 (±0.079) 0.2162 0.2025 0.3020 0.4072 0.2235 0.3368 0.3905

Heidelberg [21] 4.72% 29.22% 0.2855 (±0.077) 0.2458 0.3379 0.4000 0.3727 0.2386 0.1829 0.2207
U-Net [66] 2.56% 14.89% 0.1445 (±0.033) 0.1212 0.1268 0.1724 0.2114 0.1115 0.1356 0.1328
RelayNet [140] 2.10% 12.41% 0.1268 (±0.036) 0.0990 0.1056 0.1528 0.2032 0.1097 0.1210 0.0961
MGU-Net [139] 1.93% 11.37% 0.1203 (±0.038) 0.0927 0.0976 0.1419 0.2013 0.1044 0.1235 0.0808
Ours (2D, original) 1.96% 11.60% 0.1195 (±0.035) 0.0915 0.0993 0.1388 0.1956 0.1077 0.1163 0.0874
Ours (3D, original) 2.27% 12.45% 0.1351 (±0.036) 0.1125 0.1279 0.1632 0.2116 0.1120 0.1178 0.1005
Ours (3D, motion corrected) 1.85% 10.52% 0.1137 (±0.036) 0.0922 0.0964 0.1324 0.1911 0.1006 0.1107 0.0728

Normal Rathke et al. [137] 3.72% 22.40% 0.2211 (±0.083) 0.2283 0.1519 0.2352 0.2259 0.1863 0.3990 0.1208
OCTExplorer [134] 3.30% 17.98% 0.1968 (±0.052) 0.1690 0.1436 0.1806 0.2765 0.1511 0.2759 0.1808
Heidelberg [21] 1.28% 7.14% 0.0794 (±0.030) 0.0592 0.0721 0.1136 0.1362 0.0564 0.0501 0.0685
U-Net [66] 1.60% 7.56% 0.0914 (±0.036) 0.0561 0.0749 0.1614 0.1286 0.0666 0.0672 0.0850
RelayNet [140] 1.28% 6.80% 0.0785 (±0.035) 0.0475 0.0687 0.1397 0.1239 0.0488 0.0526 0.0686
MGU-Net [139] 1.18% 6.65% 0.0745 (±0.031) 0.0462 0.0662 0.1184 0.1253 0.0461 0.0534 0.0662
Ours (2D, original) 1.17% 6.65% 0.0740 (±0.031) 0.0463 0.0677 0.1170 0.1273 0.0481 0.0501 0.0618
Ours (3D, original) 1.21% 6.60% 0.0755 (±0.032) 0.0477 0.0682 0.1184 0.1299 0.0504 0.0479 0.0662
Ours (3D, motion corrected) 1.10% 6.11% 0.0696 (±0.032) 0.0446 0.0654 0.1145 0.1218 0.0446 0.0407 0.0552

Moderate Rathke et al. [137] 4.32% 25.80% 0.2771 (±0.079) 0.2770 0.2254 0.3183 0.3080 0.2224 0.4259 0.1624
deformation OCTExplorer [134] 3.78% 22.65% 0.2379 (±0.058) 0.2111 0.1660 0.2460 0.3390 0.1626 0.2723 0.2681

Heidelberg [21] 1.96% 12.12% 0.1263 (±0.036) 0.1590 0.1407 0.1649 0.1612 0.0767 0.0893 0.0923
U-Net [66] 1.66% 10.77% 0.1065 (±0.029) 0.1029 0.0993 0.1442 0.1521 0.0659 0.0882 0.0927
RelayNet [140] 1.62% 10.14% 0.1042 (±0.032) 0.0963 0.1007 0.1491 0.1549 0.0658 0.0778 0.0844
MGU-Net [139] 1.58% 9.95% 0.1029 (±0.031) 0.0958 0.0936 0.1454 0.1524 0.0645 0.0853 0.0830
Ours (2D, original) 1.51% 9.51% 0.0987 (±0.032) 0.0947 0.0964 0.1404 0.1506 0.0637 0.0713 0.0736
Ours (3D, original) 1.75% 10.07% 0.1103 (±0.034) 0.1083 0.1107 0.1561 0.1610 0.0691 0.0725 0.0944
Ours (3D, motion corrected) 1.48% 9.06% 0.0966 (±0.033) 0.0946 0.0949 0.1411 0.1481 0.0622 0.0672 0.0683

Severe Rathke et al. [137] 8.34% 45.96% 0.4695 (±0.081) 0.4221 0.3908 0.5499 0.5421 0.3766 0.5901 0.4150
deformation OCTExplorer [134] 5.88% 33.89% 0.3316 (±0.092) 0.2210 0.2219 0.3317 0.4501 0.2655 0.3803 0.4504

Heidelberg [21] 6.34% 38.47% 0.3746 (±0.104) 0.2981 0.4481 0.5204 0.4947 0.3414 0.2420 0.2777
U-Net [66] 3.08% 17.21% 0.1675 (±0.037) 0.1325 0.1415 0.1851 0.2487 0.1461 0.1702 0.1482
RelayNet [140] 2.39% 13.77% 0.1425 (±0.043) 0.1030 0.1094 0.1550 0.2330 0.1436 0.1522 0.1011
MGU-Net [139] 2.16% 12.27% 0.1337 (±0.047) 0.0940 0.1009 0.1413 0.2314 0.1359 0.1516 0.0805
Ours (2D, original) 2.23% 12.84% 0.1342 (±0.042) 0.0926 0.1020 0.1390 0.2228 0.1421 0.1483 0.0930
Ours (3D, original) 2.60% 13.87% 0.1526 (±0.042) 0.1178 0.1385 0.1680 0.2432 0.1457 0.1512 0.1035
Ours (3D, motion corrected) 2.07% 11.43% 0.1268 (±0.043) 0.0939 0.0986 0.1293 0.2175 0.1309 0.1427 0.0748
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Figure 5.9. Qualitative results on the JRC dataset. Group (1) and (2) show two examples. (a) Original 3D
OCT volume, (b) motion corrected 3D OCT volume, (c) fast B-scan, (d) original slow B-scan, (e) motion-
corrected slow B-scan, (f) reference vertical B-scan, (g) segmentation on the fast B-scan using different
methods, (h) segmentation on the slow B-scan using different methods. Pink arrows denote large error in
OPL, red arrow denotes large error in GCL-IPL, and red circle denotes large segmentation error.

(a1) Motion corrected 3D OCT
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Figure 5.10. Visualization of segmentation result in 3D on the JRC dataset. Group (1) and (2) show two
examples. (a) Motion corrected 3D OCT volume, (b)-(e) segmentation surfaces of Heidelberg, MGU-Net,
our 3D network, and manual annotated ground truth. Red circle denotes large segmentation error.
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network with motion correction yields the lowest error and Dice loss on average. When divided into

three categories based on diseases, Heidelberg achieves the lowest error for normal and moderate

deformation due to the bias of the ground truth. However, our proposed method outperforms

Heidelberg segmentation by a large margin for the category of severe deformation, decreasing the

layer error from 32.01% to 10.53%, and the average Dice loss from 0.3116 to 0.1157. For evaluation

on the manually corrected area, the proposed 3D segmentation network with motion correction

achieves the best performance overall and in each category of diseases. The results demonstrate a

significant advantage of the combined motion correction and 3D segmentation network for a clinical

dataset with various diseases.

5.5 Conclusion

In this chapter, we proposed to combine motion correction and 3D OCT layer segmentation,

which led to promising improvement upon existing 2D segmentation methods with or without

motion correction. Experimental results demonstrated that the motion correction is essential to

apply 3D segmentation, and combining motion correction with 3D segmentation achieved the best

performance for three datasets compared to conventional and deep learning state-of-the-art methods.

Specifically, the proposed network demonstrated a significant advantage over clinically available

segmentation solutions for severe diseases.

In future work, the segmentation network can be extended to support segmentation of retinal

fluid and other lesions. The proposed segmentation method could be used to generate more accurate

OCT-A projection images, promote the analysis of layer thickness and vessel density, which is

beneficial for diagnosing and monitoring retinal and systemic diseases.

Chapter 5, in part, has been submitted for publication of the material as it may appear

in IEEE International Conference on Image Processing 2022 (ICIP), Y. Wang, C. Galang, W. R.

Freeman, T. Q. Nguyen, C. An, IEEE, 2021. The dissertation author is the primary author of this

paper.

Chapter 5, in part is currently being prepared for submission for publication of the material.
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Y. Wang, C. Galang, A. Warter, A. Heinke, D. G. Bartsch, W. R. Freeman, T. Q. Nguyen, C. An.

The dissertation author is the primary author of this paper.
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Chapter 6

Conclusion and Future Work

Retinal diseases including age-related macular degeneration, diabetes retinopathy, and

vascular occlusions are important causes of vision loss and have systemic implications for millions

of patients. The role of imaging and image processing is crucial in retinal diseases. As treatments

advance, it is important to be able to scientifically analyze and interpret a large amount of information

procured from different areas on the retina, measured by different instruments, and evaluate retinal

structure and function over time and in response to therapies. It is increasingly difficult for any

individual specialist or reading center to reliably review the multiple types of imaging available in a

patient, nor align and overlay these imaging modalities to analyze retinal structure and function

and determine correlations and predictive value of these tests to clinical outcomes. The ability to

accurately align and overlay multimodal data, correct artifacts, and enhance data, segment and

extract critical information from data with novel image processing techniques will promote the

development of understanding and treatment of retinal disease.

This dissertation proposes multiple deep learning-based algorithms for retinal image pro-

cessing, including multimodal retinal image registration, OCT motion correction, and OCT retinal

layer segmentation:

• In Chapter 2, we proposed a content-adaptive weakly supervised deep learning framework

for multimodal retinal image registration. The proposed method consists of three neural

networks for vessel segmentation, feature detection and description, and outlier rejection.

The proposed method demonstrated significant improvement compared with conventional
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methods in both registration accuracy and robustness to diseases and poor imaging quality. A

preliminary version of the method proposed in this chapter was published in the 2020 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP 2020) [72],

and an enhanced version was published in the IEEE Transactions on Image Processing [129].

• In Chapter 3, we presented a comprehensive overview of the existing evaluation metrics

for multimodal retinal image registration, and compared the Pearson correlation coefficient

between the ophthalmologists’ subjective grade and several commonly used objective evalua-

tion metrics. We found that the soft Dice coefficient with the segmentation method in [31]

achieved the highest correlation with the subjective grades. The study in this chapter was

published in the IEEE Access [142].

• In Chapter 4, we proposed a deep learning approach to correct axial and coronal motion

artifacts in OCT. Experimental results demonstrated that the proposed method was able to

correct large motion while recovering the retinal curvature, achieving significant improve-

ments compared to the conventional methods. The preliminary axial correction network was

published in the 2021 IEEE International Conference on Image Processing (ICIP 2021) [125],

and an enhanced version was submitted to the IEEE Transactions on Image Processing.

• In Chapter 5, we proposed a joint OCT motion correction and a 3D retinal layer segmentation

network that utilizes 3D contextual information. The proposed networks achieved the best

performance for three datasets compared to conventional and deep learning state-of-the-art

methods. The preliminary study was submitted to the 2022 IEEE International Conference

on Image Processing (ICIP 2022), and an enhanced version was to be submitted to the IEEE

Transactions on Image Processing.

In future work, the proposed research could be further extended in the following aspects:

• The proposed multimodal retinal image registration framework could be optimized for image

pairs with larger field of view difference, in order to register standard FOV images with

ultra-wide angle images.
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• The proposed multimodal retinal image registration framework could be integrated into a

visualization software to help ophthalmologists observe co-localized multimodal images. The

aligned images can be visualized by checkerboard overlay or alpha-blending.

• The proposed multimodal retinal image registration framework could be applied to register

functional tests, such as microperimetry, with structural tests, such as OCT. Accurate registra-

tion would enable the development of structural-functional prediction algorithms based on

co-localized images.

• An alternative OCT motion correction network could be developed to flatten the BM surface

of the retina, when it’s only required to generate OCT-A projection images. As the retinal

curvature in the axial direction would not influence OCT-A projection, the motion correction

problem could be made easier by flattening the retina.

• The proposed joint motion correction and OCT segmentation network could be applied to

improve OCT-A projections especially for various diseases. It would lead to more accurate

visualization of vessels in each retinal layer and facilitate the analysis of OCT-A vascular

changes under various diseases.

• When applied for OCT-A segmentation, the proposed OCT segmentation network could be

improved by adding 3D OCT-A to the input. Combining OCT and OCT-A information would

help the segmentation of BM layer, which would be difficult using OCT alone in diseases like

CNV.

• The proposed OCT segmentation network could be extended to segment layer-specific fea-

tures, retinal fluid, and other lesions, which could potentially generate topology guaranteed

segmentation and enable automatic disease identification.

The proposed retinal image processing via the novel deep learning approaches will not

only promote diagnosis and analysis of retinal diseases, but will also provide insights on observing

systematic diseases through the retina, including diabetes, cardiovascular disease, and preclinical
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Alzheimer Disease. The proposed deep learning approaches for multimodal retinal image processing

would build a connection between ophthalmology and image processing literature, and the findings

may provide a good insight for researchers who investigate retinal image registration, retinal image

segmentation, and retinal disease detection.
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[114] M. Bengs, N. Gessert, M. Schlüter, and A. Schlaefer, “Spatio-temporal deep learning methods
for motion estimation using 4d oct image data,” International journal of computer assisted
radiology and surgery, vol. 15, no. 6, pp. 943–952, 2020.

[115] A. Li, C. Du, and Y. Pan, “Deep-learning-based motion correction in optical coherence
tomography angiography,” Journal of Biophotonics, vol. 14, no. 12, p. e202100097, 2021.

[116] Y. Chen, Y.-J. Hong, S. Makita, and Y. Yasuno, “Three-dimensional eye motion correction
by lissajous scan optical coherence tomography,” Biomedical optics express, vol. 8, no. 3,
pp. 1783–1802, 2017.

[117] S. Y. Ksenofontov, P. A. Shilyagin, D. A. Terpelov, V. M. Gelikonov, and G. V. Gelikonov,
“Numerical method for axial motion artifact correction in retinal spectral-domain optical
coherence tomography,” Frontiers of Optoelectronics, pp. 1–9, 2020.

[118] E. Gibson, M. Young, M. V. Sarunic, and M. F. Beg, “Optic nerve head registration via hemi-
spherical surface and volume registration,” IEEE transactions on biomedical engineering,
vol. 57, no. 10, pp. 2592–2595, 2010.

[119] M. Niemeijer, K. Lee, M. K. Garvin, M. D. Abràmoff, and M. Sonka, “Registration of 3d
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