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ABSTRACT: Polymer design requires fine control over syntheses and a thorough understanding of their macromolecular structure.
Herein, near-atomic level imaging of polymers is achieved, enabling the precise determination of one of the most important
macromolecular characteristics: molecular weight. By judiciously designing and synthesizing different linear metal(loid)-rich
homopolymers, subnanoscale polymer imaging is achieved through annular dark field-scanning transmission electron microscopy
(ADF-STEM), owing to the incorporation of high Z atoms in the side chain of the monomeric units. The molecular weight of these
polymers can be precisely determined by detecting and counting their metal(loid) atoms upon ADF-STEM imaging, at sample
concentrations as low as 10 yg-mL™". Notably, a commonly used C, H, and O-containing polymer (i.e., poly(methyl acrylate)) that
was thus far inaccessible at the atomic scale is derivatized to allow for subnano-level imaging, thus expanding the scope of our
approach toward the atomic-level visualization of commodity polymers.

he design of soft matter with predefined properties limited to the imaging of conjugated polymers or polymers
necessitates the (sub)nanoscale analysis of polymers, with very high MW and branching,
tailored with precision for significant performance."”” A Within the scope of visual understanding of polymers,
fundamental characteristic of polymers is their molecular electron microscopy (EM) techniques including (cryogenic)

weight (MW). The leading techniques for MW determination transmission electron microscopy, (Cryo-) TEM, and liquid-
cell electron microscopy (LC-EM) have revolutionized the

field of polymer imaging. Exem;)lary are the studies from
Patterson,?"™*° Gianneschi,>’ > Sommerdijl<,34’33 and de
Jonge,36_40 among others. However, the subnano level imaging
of nonconjugated synthetic polymers has been largely
inaccessible. Apart from their structural complexity, their
elemental composition is mostly limited to C, O, H, and N,
exhibiting similarity with most TEM support grids. Con-
sequently, the low contrast obtained during conventional TEM

are size exclusion chromatography (SEC), 'H nuclear magnetic
resonance ("H NMR), and high-resolution mass spectrometry
(HR-MS) (Scheme 1). Although well-established, these
techniques possess significant limitations when complex
systems are targeted, including organometallic”* and con-
jugated polymers,™® or complex architectures.”
SEC requires the combination of suitable solvents, columns
and MW standards,” "H NMR requires distinctive end-groups,

8 .
*® For instance,

while topologically complex polymers, with high dispersity and does not allow for precise subnano level imaging. Additionally,
MW, are not suitable for HR-MS."*"" their light element composition renders them challenging to
Acknowledging those challenges, Junkers and colleagues detect through atomic-level EM methods, such as annular dark
developed a universal approach to determine polymer MW field (ADF) scanning transmission electron microscopy
through diffusion-ordered NMR spectroscopy (DOSY), over- (STEM), where contrast depends on the atomic num-
coming calibration and solvent implications,"”™'* while ber. "
Haddleton and Lester developed a facile strategy for MW Our vision was to overcome those challenges and approach
online monitoring through DOSY.'>'® However, for polymers atomic-level analysis of polymers through ADF-STEM, as well
with compositional complexity and aggregation behavior in as to visualize their MW (Scheme 1), by strategically designing
most solvents, solid-state MW analysis is necessary. Costantini the synthesis of metalloid-rich homopolymers bearing one

and colleagues reported on the MW determination of arsenic (As) atom per monomer unit. For that purpose, free

conjugated polymers, through scanning tunnelling microscopy
(STM) and vacuum electrospray deposition (ESD),” while Received: October 2, 2024
another powerful example is the work from Matyjaszewski and Revised:  November 25, 2024
Sheiko who achieved in-depth analysis of high MW cylindrical Accepted: November 26, 2024
brushes using atomic force microscopy (AFM).'”~"? Although Published: December 4, 2024
STM and AFM have provided valuable insights into the

understanding of macromolecular characteristics, they are
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Scheme 1. Schematic Illustration of the Methods
Traditionally Used to Determine the MW of Polymers and
Our Approach through ADE-STEM

Molecular Weight of Polymers

- this work

conventional methods

H88 §
e pesd

radical polymerization (FRP) and reversible deactivation
radical polymerization (i.e., reversible addition—fragmentation
chain transfer polymerization, RAFT) were employed to
generate polymers with various MW and D values. To expand
to another polymer family and metal functionality, ferroce-
nylmethyl methacrylate was used to generate an Fe-rich
polymethacrylate. Finally, to render widely used polymers
visible on the atomic level, a poly(methyl acrylate) (PMA) was
derivatized with ferrocenecarboxylic acid, and its MW and D
were calculated through imaging.

Initially, an As-acrylamide monomer was synthesized
according to the literature*>* and used to generate an As-
polyacrylamide (PAsAm) through FRP (PAsAmggp, Figure S1,
SI). A highly dilute (50 ugmL™" in 0.1 M NaOH) solution of
the purified homopolymer was prepared and placed under
vacuum prior to imaging (SI). To gain a first understanding of
the As signal, we employed ADF-STEM through a double
aberration corrected JEOL ARM200F microscope, operated at
200 kV. At 3 million times magnification (X3M), bright
nanoclusters were evident (Figure S2), while at X8M and
X12M magnification, their structure was elucidated, depicting
the randomly coiled polymer chains consisting of As atoms
(appearing as bright spots, Figure S2). To enhance sample
stability and mitigate contamination, “beam shower” was
applied prior to imaging at high magnifications.”” Although the
organic content is sensitive and prone to beam damage under
the applied conditions,* the metalloid-rich chains remained
intact throughout imaging. An advantage of this approach is

that any potential damage to the organic components of the
polymers by the electron beam will not affect the results of the
MW analysis, as they depend only on the beam-stable metals.

Having achieved the detection of single chains and their As
atoms, we sought to visualize the MW distribution of the
polymers. Three well-defined PAsAms with targeted DP,, = S0,
20, and 10 were synthesized through RAFT polymerization
(SI, Figures S3—S5), while aqueous-SEC and DOSY NMR
were employed to determine the MW of the homopolymers
after purification (Table 1).The ADF-STEM of PAsAmg,

b

Q

Relative Frequency

0 1 2 3 4 5 6
Average diameter (nm)

Figure 1. (a) Histograms showing the distribution of chain diameter
for the four polymers and (b) high-resolution ADF-STEM image of
PAsAm,, (scale bar: 5§ nm).

PAsAm,, (Figure 1b), and PAsAm,, at X8M magnification
revealed polymer chains smaller than in the case of PAsAmgyp
(Figures la, 2c—f, and S6—S8). Owing to the different average
chain length of the imaged polymers, the chain diameter
increased with the increase in MW (Figure 1a), while the low
D polymers exhibited narrow diameter distribution, compared
to PAsAmggp. Importantly, when the As-monomer was imaged
under the same EM conditions, only individually scattered
single As atoms were detected (Figure S9).

To determine the polymer MW and D, the intensities of
single chains were calculated upon subtraction of their
background, while the intensity of single As atoms was used
as the calibrant, assuming a linear relationship between the
integrated ADF intensity of single atoms and very small
nanoclusters when kinematic diffraction effects dominate the
signals collected by ADF-STEM imaging (Figure $10).**7>°
The same process was repeated for each sample individually in
the same session. The integrated As atoms’ intensity allowed

Table 1. Molecular Weight and D Values from SEC, DOSY, and STEM for the Different Metal(loid)-rich Homopolymers

Polymer Mn,SEC“ DP, n,SEC“ Mw,SECu B
PAsAm,, 5,700 21 6,300 1.10
PAsAm,, 7,900 29 8,700 1.10
PAsAmyg, 12,100 45 13,900 1.15
PAsAmggp 218,000 N/A 509,000 2.30
PFerMMA, 5,900° 21°¢ 8,600° 1.4%"

7,100 25 10,200”

MWDOSYb DPn,DOSYb MWSTEMC DPn,STEMC BSTEMC’d
2,500 9 2,300 8 1.30
6,900 25 7,500 28 120
9,600 35 11,000 40 1.10

101,700 375 113,000" 417" 1.60
3,700¢ 148 3,500 13 1.40

“Aqueous-SEC, average molecular weight values expressed as MW equivalents relative to PEG/PEO standards, bin D,0/NaOH using an 80 MHz
benchtop NMR, calculated through MaDDOSY,"> “MWgrey exlpressed in g-mol™!, conditions: 200 kV at X8M magnification (and X10M for
PAsAm,, and PFerMMA,,), 9calculated based on the literature,”" “CHCL,-SEC, average molecular weight values expressed as MW equivalents to
PS or ’PMMA standards, $in CDCI, using an 80 MHz benchtop NMR, “average of the broad main distribution from 13,000 to 80,000 g-mol™’
(DP, = 48—295) and chains reaching up to 240,000 g-mol™" (DP, ~ 885).
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Figure 2. (a) Aqueous-SEC traces for PAsAm,,, PAsAm,,, PAsAmq,
and PAsAmgygp. (b) MWygpgy distributions for the different polymers
and ADF-STEM images showing segmented individual polymer
chains for (c) PAsAm;, (d) PAsAm,, (e) PAsAms, and (f)
PAsAmgygp (scale bars: 1 nm, images were smoothed post imaging).

for determination of the DP, for PAsAm, PAsAm,; and
PAsAm,, through atom counting (Table 1, SI).

In other words, the number of As atoms in each chain
corresponded to DP,, which was used to calculate the
corresponding MWgrgy. The Dgrpy of the polymers was
estimated according to the literature, based on standard
deviation (o), and the relation between P and ¢ (SI).”'

For the three well-defined polymers, MWygrgy was
comparable with MW(g, while there was particularly good
agreement between STEM and DOSY for PAsAm;, and
PAsAm,, (Table 1; Figures 2a—b, S4, S5, S7, and S8).
Importantly, in contrast with DOSY, STEM can provide a
distribution of MW, representative of the nonidentical chain
lengths in a synthetic polymer sample. For PAsAm,,, M, skc
was significantly higher than MWpogy because low MWs
necessitate better separation for higher accuracy. The Dgrgy
results for PAsAm,; and PAsAmys, exhibited proximity to Dggc
with both approaches resulting in Dgrgy < 1.2.

To push the limits of our system, we attempted to calculate
the MWgrgy of PAsAmgpp. As expected, the STEM results
showed a nonsymmetrical distribution of As atoms per chain,
with a predominant broad MWy, distribution from 13,000
to ~80,000 g~mol_1, along with the presence of high MW
species up to ~240,000 g-mol_l, with average MWygrgy =
113,000 gmol™" (Figure 2b, Table 1). The Dgrpy was 1.60,
and although lower than the corresponding Dgy, it illustrated
the broad MW distribution of PAsAmggp. Samples with such
high DP, heterogeneity are highly challenging to quantitatively
analyze with accuracy from single ADF-STEM images, since
the very high MW chains might exhibit similarities with
aggregated sgecies; thus, careful interpretation of the images is
necessary.*”>> In general, highly pure polymer samples, careful
sample preparation (ie., suitable support grids),””** and
thorough pretreatment (i.e., vacuum drying, beam shower,"”>
SI) are essential requirements, especially when sensitive
samples are used.>’

To expand the scope of metal functionality and polymer
type, we synthesized an Fe-rich polymethacrylate (PFerM-
MA,,) (Figures 3a and S11, SI). As in the case of PAsAms, the

a

° s s 1 OH
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Fe > [e]gh o]
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Figure 3. (a) Reaction scheme for the synthesis of PRerMMA,,, (b)
MWgrgy histogram for PFerMMA,, (c) SEC traces of PFerMMA,,
and (d and e) ADF-STEM images for PEerMMA |, (scale bar: 3 nm).

MWy (Figure 3b,de) was comparable to MWpogy while
lower than M, szc (Table 1, Figure 3b,c). The SEC analysis of
PFerMMA,, exhibited distinct deviations when PMMA and PS
standards were used (Figure 3c), highlighting the limitations of
SEC when samples deviate from the calibrant. The range of
MWgrgy (~1,000—12,000 g-mol™") with the existence of a
second smaller population with MW ~9,500—12,000 g-mol_l,
was depicted in the obtained Dgrpy = 140 (Table 1).
Therefore, the calculation of MWgrgy could be successfully
achieved both for metalloid- and metal-containing acrylamide
and methacrylate homopolymers, while their DP, hetero-
geneity could be estimated through Dgrgy,; calculation.
Finally, we were interested in applying our approach to
widely used C-, H-, and O-containing polymers, without using
specially designed monomers. Thus, a PMA,, was synthesized
(Figures 4a and S12, SI) and subsequently amidated using 4-
amino-1-butanol, according to a literature procedure.”® The
amidation of PMA,, to poly(hydroxybutyl acrylamide,
PHBAm) was quantitative, with a full shift of the PMA methyl
protons as verified by "H NMR (Figure S14d), and full shift of
the 1730 cm™! peak (C=0, PMA) along with the formation of
the 1635 cm™ (C=0, amide) and 1543 cm™' (N—H) PHBAm
peaks, as verified by FT-IR (Figure S13). The shift toward
higher MW was verified by THF-SEC (Figure 4b). The
obtained —OH functional polymer was further functionalized
through DCC/DMAP coupling with ferrocene (Fc) carboxylic
acid (Figure 4a, SI), leading to derivatization of the parent
PMA into an Fe-containing polyacrylamide. THE-SEC showed
a clear shift toward higher MW (Figures 4b and S14); FT-IR
verified the appearance of the C=O band (1700 cm™)
attributed to the Fc-ester (Figure S13), while 'H NMR
confirmed the incorporation of the Fc moieties in the polymer
(Figure S14d). ADF-STEM (Figure S1S5) revealed a
predominant MWgrgy distribution at 3,000—4,300 g-mol™*
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Figure 4. (a) Reaction scheme for the derivatization of PMA. (b)
SEC traces of the parent PMA, the amidated derivative PHBAm, and
the final PBAm-Fc, and (c) MWgpgy, histogram of the functional
PBAm-Fec.

(vs M,sec = 5,000, Figure 4b,c), indicating that on average
~11 monomer units per chain had been functionalized (vs ~14
from SEC). Therefore, the achievement of near-atomic level
imaging of a commonly used polymer through derivatization
has critical potential to serve as a promising strategy to
visualize materials that had thus far been unobtainable. To the
best of our knowledge, this is the first example of near-atomic
level imaging of such a widely used polymer. Owing to the
various synthetic tools available, we envisage that the
modification of other commonly used polymers (i.e.,
polystyrene, polyolefins) through different derivatization
approaches (i.e., Diels—Alder, click chemistry)®’~** will expand
the scope of this approach and establish it as a platform for
advanced polymer imaging.

Our work presents the first approach toward atomic level
imaging of synthetic polymers and MW determination through
atom counting. By combining metal(loid)-containing mono-
mers, different polymerization approaches, and atom counting
through ADF-STEM, fundamental polymer characteristics
were determined in the subnano scale. Additionally, the
subnano level imaging of a widely used polymer (i.e, PMA)
was achieved upon derivatization. Our combinatorial approach
sets the ground for atomic level analysis of polymer
fundamentals that could not be imaged with such precision
before and facilitates the profound understanding of their
structure—property relationships.
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