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ABSTRACT 

 

A Model-based Evaluation of the Impacts of Human Mobility and Prevention Behavior 

on Vector-borne Disease Transmissions: Implications for Disease Prevention and Control 

 

by 

 

Nana Luo 

 

For vector-borne diseases dynamics in human-vector contact play an importance role, 

and human behavior including mobility and prevention behavior has been studied as a key 

contributor to drive the variations in host-vector contact. Human mobility can increase the 

human risk of exposure to vector-borne pathogens, while human prevention strategies 

effectively introduced to communities can reduce the risk of disease transmission and 

outbreak. Various modeling approaches from mathematical to simulation have been applied 

to examine the impacts of human mobility and prevention behavior on disease 

transmissions; however, conventional models are often limited by their coarser and 

aggregated representations in space, time, and human behavior. This study proposes a novel 

modeling framework (Activity-ABM) that integrate the Activity-Based Model and the 

Agent-Based Model. The proposed model incorporates individual-scale human mobility 

and prevention behavior at the level of both individuals and population into an 

epidemiology simulation, and is capable of representing complex virus transmission 



 

x 

dynamics emerged from bottom-up human-vector interactions across space over time. Such 

individual-scale investigation also allows artificial laboratory experiments to explore 

scenarios with the intervention strategies associated with human mobility and prevention 

behavior and to examine the effectiveness of the interventions in the local context. The 

activity-based model embedded in the Activity-ABM creates heterogeneous daily 

movement of all individuals in a population from travel surveys and demographic data. The 

Activity-ABM then generates prevention behavior of all individuals in the population, 

including the host-based controls, the vector-based controls, and the host-vector contact-

based controls, and examines the disease transmissions engaged in the generated movement 

and prevention behavior. As a case study, this research takes the 2016 Zika outbreak event 

in Miami-Dade County, Florida. Our modeling results suggest that the vector-based 

controls are the most effective, as the 2016 Zika outbreak in Miami-Dade County ended 

after an outdoor spraying to control mosquitoes. With the emphasis on the role of human 

mobility and prevention behavior to disease transmissions, this dissertation research makes 

theoretical contributions to the literature on behavioral geography, complex systems, and 

spatial epidemiology. The proposed Activity-ABM is applicable to simulate other 

infectious disease transmission dynamics, and can be extended to a general disease. 
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1. Introduction 

1.1 Research Background 

Vector-borne disease outbreaks are a major threat to global health, economy, and 

society. In the United States, the Zika virus epidemic in 2015-16 resulted in 5,102 cases 

and the short-term economic impact of US$3.5 billion. For vector-borne diseases such 

as Dengue and Zika dynamics in host-vector contact are crucial because exposure to 

vectors to various extents in space and time often reduces or amplifies transmission 

rates (Galvani & May, 2005; Perkins et al., 2013; Reiner et al., 2014; Smith et al., 2007; 

Steven T. Stoddard et al., 2009). Therefore, exploring the factors that drive the 

dynamics in host-vector contacts is important to disease prevention and control as well 

as associated public health policy-makings(Eubank et al., 2004; Steven T. Stoddard et 

al., 2009; Woolhouse et al., 1997). Within the existing literature, human behavior as a 

key factor has been intricately linked to the spread of many vector-borne diseases, and 

has been broadly investigated in two aspects: (1) human mobility and (2) human 

prevention behavior. Human mobility often leads to high host-vector contact and 

ultimately increases transmission rates (S. T. Stoddard et al., 2013). Massad et al. 

(Massad et al., 2016) predicted 508 and 1,778 Zika infections to import into Europe in 

2016 using a previously developed mathematical model for the importation of dengue 

virus. This model recognizes the casual relationship between the extent of infection and 

mobility-related factors such as travel volume and travel time. On the other hand, 

human prevention behavior such as vaccinating behavior (Griffin et al., 2010; Perisic 
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& Bauch, 2009b, 2009a; Chen, 2006), bed-net usage behavior (Barnes et al., 2009; 

Kleinschmidt et al., 2007; O’Meara et al., 2008) and spraying behavior (Griffin et al., 

2010; Shanks et al., 2005), often causes expected declines in diseases. During the 

outbreak of Severe Acute Respiratory Syndrome (SARS) in 2003, the whole south 

China experienced empty streets, school closures, and wearing face masks. In the 

coronavirus disease 2019 (COVID-19) outbreak event, China prohibited all transport 

in and out of Wuhan city (Tian et al., 2020). These behavior responses have been found 

to be noticeably and clearly linked to the decline of the disease (Steven T. Stoddard et 

al., 2009; Tian et al., 2020). In 2016, the United States, especially the State of Florida, 

experienced a Zika outbreak. Miami-Dade County, Florida previously reported as the 

most Zika-active area experienced a dramatic decrease in Zika infection after an 

outdoor spraying to control mosquitoes. The Center for Disease Control and Prevention 

(CDC) also promulgated a variety of control behaviors including mosquito repellent, 

regular bed-nets, wearing long clothing, using screens on windows and doors via 

newspaper, social media and TV station. In contrast to human mobility, these prevention 

behaviors reduce Zika infection by blocking human-mosquito contact, decreasing 

peoples’ susceptibility to virus, or minimizing vector population. 

Despite the increasing interest among researchers in examining the role of human 

behavior underlying the transmission cycles of vector-borne diseases (Cooley et al., 

2016; Mao, 2011; Tian et al., 2020), little is known about the interrelated influences of 

human mobility and prevention behavior on epidemic dynamics. Conventional 

methodologies such as compartmental modeling and regression analysis have been used 
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to account for the effects of crucial variables on diseases (Bingenheimer & Raudenbush, 

2004; Hernán et al., 2000; Kim & Kim, 2019; Vanwambeke et al., 2006); however, they 

are ill equipped to investigate complicated host-vector, human-environment and vector-

environment interactions embedded in the transmission cycles of diseases (Auchincloss 

& Diez Roux, 2008a). 

Today, one approach is to regard epidemic dynamics as a complex system. In such 

a system, the dynamics emerge from bottom-up interactions of disaggregated, 

heterogeneous, and autonomous entities within an environment. The bottom-up 

interactions can lead to emergent behavior, which are more than a summing of 

independent activities (Holland 1998). Agent-based modeling (ABM) is a method to 

simulate such complex systems. In the past two decades, ABM has been employed to 

simulate vector-borne disease transmission dynamic (Alderton et al., 2016; Dommar et 

al., 2014; Jacintho et al., 2010; Jindal & Rao, 2017; Manore et al., 2015; Mniszewski 

et al., 2014; Mulyani et al., 2017). The approach takes into account individual 

heterogeneity and stochasticity among pathogens, vectors and hosts as well as 

interactions among them in respect to biological, geographical, behavioral, social, 

economic and environmental variables at a local scale. The population-level 

transmission dynamics then emerge from bottom-up interactions between autonomous 

individuals and environments, feedback effects, and adaptive behaviors in the non-

linear transmission system of an epidemic. 
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1.2 Research Questions and Solutions 

This research aims at exploring the impact of human mobility and prevention 

behavior on epidemic dynamics, in particular, finer-scale transmission dynamics of a 

vector-borne disease. In a broader sense, this research facilitates evaluating the locally 

efficient and effective public health intervention strategies. The specific research 

question to be answered in this dissertation is as follows: How does human-vector 

interaction dynamics engaged in human mobility and prevention behavior influence 

the transmission of a vector-borne epidemic in the local context? To answer this 

question, this study proposes a model-based investigation that consists of three primary 

modeling components: 1) individual-scale human daily mobility and travel behavior, 2) 

human (vector-borne diseases) prevention behavior, and 3) coupling of human mobility, 

human prevention behavior and dynamic human-mosquito interaction with an epidemic 

at a local scale. With the proposed model, three simulation scenarios are built to 

examine the effectiveness of the prevention strategies regarding human mobility and 

prevention behavior. The rest of this thesis intends to fill this overarching goal by 

answering the questions posted in each modeling component.  

Chapter 2 focuses on generating the daily mobility and travel behavior of all 

individuals of the population in a study area, and investigates the following question: 

Individual travels vary between weekdays and weekends and even across days of a week, 

which plays an important role in the transmission of vector-borne diseases as a crucial 

contributor to dynamic host-vector contacts. How can we model such day-varying 

human mobility and travel behavior? This section presents a novel activity-based 
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modeling framework that integrates Time Geography, activity-based models, and 

Bayesian network (BN) to simulate daily travels and activities of a population at the 

level of individual travelers. To generate daily activity scheduling of an individual, 

the proposed model formulates Time Geography by retrieving their alternating time 

budgets on weekdays and weekends. To take into account dynamics in an individual’s 

daily travels and activities, the model introduces Bayesian networks into an activity-

based model to compute probabilities of all travel-activity values, and interprets the 

alternating predictive results derived from random sampling as indicating their daily 

travel changes. The intellectual merit of Chapter 2 is the expected contribution to the 

methodology for modeling day-varying human mobility and travel behavior as well 

as creating a richer behavioral modelling component. 

Chapter 3 addresses defining the nature of various human (vector-borne diseases) 

prevention behaviors on disease prevention and control. This component intends to 

answer the following two questions: What prevention behavior have been applied to 

control vector-borne diseases? How should these controls become effective in the 

transmission cycles of vector-borne diseases? This study reviews and categorizes 

current human prevention behaviors for vector-borne diseases, formulates the 

transmission cycles of the diseases based on an earlier compartment model, and 

extends the transmissions to take into account the impacts of the categorized human 

prevention behaviors. The intellectual merit of Chapter 3 is the expected contribution 

to the behavior-based epidemiological theory by integrating human disease 

prevention behavior and virus transmission cycles. Another expected contribution of 
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this section is to aid disease prevention and control. 

Chapter 4 focuses on developing an integrated activity-based model and agent-

based model and apply it to a case study of the 2016 Zika virus epidemic in Miami-

Dade County, Florida. Three simulation scenarios are built to investigate the role of 

human mobility and prevention behavior in the local context. This study answers the 

following research question: How does human-vector interaction dynamics engaged in 

human mobility and prevention behavior influence the transmission of vector-borne 

diseases in the local context? What localized prevention should be the most effective? 

This study develops a novel agent-based modeling framework that embeds activity-

based behavioral modeling component to include heterogeneous individual travel 

behaviors. In this study, the role of human mobility and prevention behavior in the 

transmission cycle of an epidemic is investigated. According to the interaction 

between individuals and vectors, the model computes individuals’ risk of infection 

and updates their health state in a spatially and temporally explicit manner. Such 

individual-scale investigation will facilitate evaluating the effectiveness of a localized 

public health intervention. Another intellectual merit of this study is the expected 

contribution to the behavior-based spatial epidemiological theory by introducing a 

richer human activity-based mobility modeling component and a human disease 

prevention behavior modeling component into the transmission cycles of an epidemic.  

1.3 Zika 

As a case study, this research takes the 2016 Zika virus epidemic Miami-Dade 

County, Florida. The rest of this section presents an overview of Zika virus as well as 
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the past and recent outbreaks all over the world. 

1.3.1 Zika Overview 

Zika virus (ZIKV) is a mosquito-borne flavivirus, in the family Flaviviridae, and 

related to dengue (DENV), yellow fever, chikungunya and West Nile (WNV) viruses 

(Pierson & Diamond, 2018). Although Zika virus can be transmitted from the mother 

to the fetus, via sexual intercourse, and through a blood transfusion, this dissertation 

research is interested in the human-mosquito-human transmission cycle, including 

transmission from mosquitoes to people through the bite of an infectious mosquito and 

transmission from people to mosquitoes by biting an infectious person, which is the 

primary transmission cycle of Zika virus in suburban and urban environments (Petersen 

et al., 2016).  

On April 18, 1947, a rhesus monkey in the Zika Forest of Uganda was first 

discovered to get infected with Zika virus, and human infections were then found across 

Africa and Asia from the 1960s to 1980s (Kindhauser et al., 2016). In April 2007, the 

first known Zika virus outbreak occurred on Yap Island in Federated States of 

Micronesia, followed by a major epidemic in the French Polynesia in 2013–2014, and 

recent outbreaks in Camaçari, Bahia, Brazil, U.S. states and the District of Columbia in 

2015 (Campos et al., 2015; Hayes, 2009; Kama et al., 2019; Armstrong et al., 2016).  

The emergence of ZIKV in the continental United States has rapidly become a major 

public health concern across the country due to not only economic impacts but also the 

severe symptoms developed by newborn babies (Ferraris et al., 2019). In the United 

States, the Zika virus epidemic in 2015-16 resulted in 5,102 cases and the short term 



 

8 

economic impact of US$3.5 billion. And in the regions affected by ZIKV the apparent 

increased number of babies born with microcephaly and structural brain abnormalities 

have been reported (Mlakar et al., 2016; Pierson & Diamond, 2018; Vianna et al., 2018). 

Currently, no antiviral treatment or vaccine have been approved to cure Zika virus 

infection (Ferraris et al., 2019), although multiple vaccine candidates such as DNA 

vaccines, purified inactivated virus vaccines and mRNA vaccines have been developed 

(Abbink et al., 2018). 

1.3.2 Zika all over the World 

The CDC has conducted a number of works with respect to the geographical 

distribution of Zika in various scales including a global scale, a country scale and a state 

scale:  

1). In a global level, the 2016 Zika outbreak that excludes the areas only travel-

related infection have been reported in the South America such as Brazil, Peru, 

Argentina and Colombia, Mexico and the United States. 

2). In the United States the 2016 Zika outbreak is reported by state. These Zika cases 

are the laboratory-confirmed symptomatic Zika cases. Florida and New York have 

been reported to have the most serious Zika infection (1,083 and 1,004, 

respectively), while Wyoming, South Dakota, North Dakota, Idaho and Montana 

have less than 10 reports. 

3). In South Florida the 2016 Zika outbreak includes the areas where Zika is popular 

and pregnant women should consider postponing their travels, the areas where Zika 

is deadly serious and pregnant women should not travel, and the areas changing 
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from a red serious area to a yellow cautionary area. In August and October, 2016, 

three areas including a 1.5-square-mile area of Miami Beach, a 1-square-mile area 

of Little River, and a 1-square-mile area of the Wynwood neighborhood have 

reported Zika cases. 

4). In Brownsville, Texas the 2016 Zika outbreak reported the first case of local 

mosquito-borne Zika infection on November 8th, 2016, and additional cases have 

been identified later in this region. 

1.3.3 Case study 

Miami-Dade County, Florida is situated in the southeastern part of the United States 

(Figure 1). According to the CDC, the first outbreak of local transmission of Zika virus 

in the continental United States was observed in Miami-Dade County, Florida in August, 

2016. To investigate new cases of locally-acquired Zika infection, the CDC worked 

with Florida health officials. Infected individuals are generally characterized by fever, 

rash, arthralgia and conjunctivitis (Ferraris et al., 2019; Petersen et al., 2016). On 

August 1, 2016, a total 14 locally-transmitted cases have been reported in Miami-Dade 

County, and the local transmission ended after an outdoor spraying to control 

mosquitoes.  
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Figure 1. Study Area. 
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2. Human Daily Travel Modeling 

2.1 Introduction 

Human mobility and daily travel play a critical role in the diffusion of infectious 

diseases. Conventional travel demand modeling in urban transportation planning 

provides a useful tool to estimate travel behavior and travel demand based on a number 

of independent variables at various scales from population- to individual- levels. Four-

step models, known as one of the first-generation travel demand models developed in 

the late 1950’s, forecast traffic flows between traffic zones. This population-level model 

has been used to assess the impact of transport investments (e.g., new road construction) 

on travel demand typically applied at a regional or sub-regional scale (McNally, 2000). 

Later, the second-generation travel demand models, such as activity-based models 

(ABM*1), have been developed to model human activity and travel behavior at a 

household or an individual scale. This disaggregated approach estimates detailed daily 

trips and activities of individuals based on travel/activity dairies as well as their 

demographic and socioeconomic characteristics (Vovsha et al., 2005). Including such 

individual-scale human travel behavior in the transmission cycles of an epidemic will 

facilitate taking into account heterogeneity and stochasticity in individual decision-

makings concerned with preferred disease control measures in an epidemic outbreak 

event. Further, it is capable of examining epidemic transmission dynamics originating 

from complicated interactions of hosts, vectors and surrounding environments engaged 

in their behavior. 

A traditional activity-based model is often integrated with population synthesis to 
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simulate travel decision/behavior of individuals. Operated at the level of individual 

travelers, an activity-based model requires household- and personal- level attribute 

information for a population to forecast travel demand; however, no such detailed 

individual-scale data at a population level exist. Traditional travel diary surveys have 

disaggregated household and personal attribute information for a sample of households 

from a population. Therefore, the first step of an activity-based model is to generate a 

synthetic population with detailed comprehensive data on person and household 

attributes to represent the actual population. Advanced approaches have been developed 

such as Iterative Proportional Fitting (IPF), Iterative Proportional Updating (IPU), 

Entropy Optimization (EO) and Enhanced IPU to generate a synthetic population 

(Konduri et al., 2016; Ye et al., 2009; Bar-Gera et al., 2009). To evaluate an estimated 

population, Ye et al. proposed that a traditional method i.e. the absolute relative error 

may not be a good measure for comparing the desired and estimated joint distributions 

because it masks the differences in magnitude between the estimated and desired 

distributions (Ye et al., 2009). Some studies proposed an alternative measure of fit, the 

chi-square (χ2) statistic, to compare the desired and estimated distributions statistically 

(Ye et al., 2009; Bar-Gera et al., 2009). 

Within the existing literature, a conventional activity-based model that uses 

regression models to simulate travel/activity records often ignores the uncertainty from 

individual decision-makings in preferred activities. Human mobility and travel 

behavior are shaped by many factors such as location of interest, personal demographics 

and socioeconomic status, individual social tie, available transportation system and 
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environmental constraints. These factors increase the complexity of modeling human 

mobility and travel behavior (Kang et al., 2010; Laurila et al., 2012; Tatem et al., 2014). 

Individuals sharing same attributes would have different daily activity schedules. 

Individuals may have different travels and activities between weekdays and weekends, 

and even across days of a week (Lee and Goulias 2018). Earlier activity-based models 

are typically designed for weekdays, and ignores such dynamics, and fails to investigate 

epidemic transmission dynamics emerged from complicated interaction of individuals 

and their surroundings due to their behavior. Therefore, a key technique that models 

such dynamics in human daily mobility and travel behavior is needed, and will be 

studied in this section. 

*1: ABM in Chapter 2 refers to Activity-Based Model. 

2.2 Literature Review 

The activity-based approach to travel demand modeling and analysis was originally 

developed in response to demands for testing and analyzing a wide variety of 

transportation policies (Beckx et al., 2009; Goulias et al., 2011; Malayath & Verma, 

2013). The activity-based method can specify complete travel-activity patterns at a 

disaggregate level for a population and embed a rich behavioral modelling component. 

Earlier examples of activity-based model include PCATS (Kitamura & Fujii, 1998), 

RAMBLAS (Veldhuisen et al., 2000), TASHA (Miller and Roorda 2003), CEMDAP 

(Bhat et al., 2004), FAMOS (Pendyala et al., 2005), CT-RAMP (W. Davidson et al., 

2010), ALBATROSS (Shiftan & Ben-Akiva, 2011), SANDAG, and SIMBA MOBi 

(Scherr et al., 2019). These ABMs are designed to model activities and travels on 
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weekdays. Today, researchers have empirically observed different spatiotemporal 

patterns in traffic flows and peaks between weekends and weekdays (Soulakellis et al., 

2019), and even day-varying activities and travels of an individual (Clark & Doherty, 

2008; Nurul Habib et al., 2012; Ruiz & Roorda, 2008). Ignoring such travel variations 

could result in the simulation result that is not representative of the underlying 

population, and weekend travels play a crucial role in the spread of an epidemic as well 

as disease prevention and control (Cooley et al., 2016; Mao, 2011). 

Despite an increasing interest among researchers in understanding and modeling 

an individual’s daily travel dynamics, extending an activity-based model to generate 

complete daily-varying activity scheduling for a population has limited progress 

(Arentze et al., 2011). Some new activity-based models have been developed to account 

for certain dynamic aspects in individual travels. Cirillo and Axhausen (2010) have 

developed an activity-based model that considers dynamics in individual travel purpose 

and timing from a six-week multiple-day travel diary survey, part of Mobidrive Survey. 

Habib and Miller (2008) presented a comprehensive econometric modeling framework 

that takes into account day-to-day and within-day dynamics in individual travel purpose 

and frequency using random utility maximization approach. This utility-based 

framework models day-to-day dynamics by incorporating previous day’s total executed 

activities as variables and builds non-skeletal activity time-budgets for capturing 

within-day dynamics. Bhat (2005) proposed a similar modeling framework, the 

Multiple Discrete Continuous Extreme Value (MDCEV). These activity-based 

frameworks demonstrate successful applications in travel purpose, travel frequency and 
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travel timing. Recent activity-based models have been extended to generate complete 

intra-day and inter-day travel dynamics of a population; howbeit, they often require 

additional datasets. Bellemans et al. developed a multi-stage FEATHERS framework 

that formulates activity dynamics including transport mode, travel purpose and other 

travel-activity attributes as function of time pressure (Baqueri et al., 2019). In addition 

to a traditional travel diary survey, their FEATHERS framework requires data on 

individual-level activity rescheduling choices and household-level multi-day activity 

scheduling choices, which are not easily accessible.  

Today developing an activity-based model to generate complete, multi-day 

activity scheduling for a population is receiving growing interest (Arentze et al., 2011), 

and the activity-based models cited above provide a solid and suitable basis for this end. 

Against this background, the purpose of this section is to develop an activity-based 

model that is capable of generating multi-day activities and travels from a traditional 

one-day travel diary survey. To achieve this aim, here a novel activity-based modeling 

framework, BN-ABM that integrates Bayesian Network (BN), Activity-Based Model, 

and Time Geography is proposed. This proposed framework generates and forecasts 

complete dynamic activity scheduling for a population by taking into account individual 

fixed and mandatory activities as well as semi-dynamic time-budgets varying between 

weekdays and weekends. The rest of this section is organized as follows. Section 2.2 

describes the proposed methodology in detail, in particular, an overview of the BN-

ABM framework. Section 2.4 focuses on the results of the application of the BN-ABM 

to Miami-Dade County, Florida. Section 2.5 concludes with a summary of findings and 
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discusses problems as well as future works. 

2.3 Methodologies 

2.3.1 Overview of the BN-ABM Modeling Framework 

Figure 2 illustrates the overview of the BN-ABM that consists of two sub-models, 

the synthetic population generator and the activity attribute simulator. The BN-ABM 

model recognizes the relationship between travel-activity attributes, including travel 

frequency, travel purpose, travel mode, activity duration, travel destination location, 

and travel duration, and household- and person- level demographic and socio-economic 

attributes, including personal age, personal income, employment, household size, the 

number of children in the household, and if the individual uses a vehicle. A traditional 

ABM is utilized at the level of individual travelers, and requires household- and person- 

level attributes for an entire population, which is never available (Ye et al., 2009). 

Therefore, the BN-ABM begins with the synthetic population generator. This sub-

model generates a simplified microscopic synthetic population that represents the actual 

population, which serves as input to the activity attribute simulator to generate 

individual activity scheduling of the population and forecast travel demand at the 

population level. The input of the synthetic population generator is a traditional one-

day travel diary survey and the American Community Survey data (ACS). To generate 

a synthetic population, this sub-model samples households from the travel diary survey 

such that the joint distributions for the attributes of interest, including household size, 

household income, and personal age, in the sampled population match the known 
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distributions for these attributes derived from the American Community Survey data. 

The output of this sub-model is a microscopic synthetic population in which all 

synthetic individuals feature three types of attributes. They are person-level attributes 

such as age, income, employment, if the individual uses a vehicle, household-level 

attributes such as household size, the number of children in the household, and weekday 

time-budgets. 
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Figure 2. Overview of the BN-ABM framework and conceptual illustration of this 

model for daily travels of a population, and the sub-models underlying this 

proposed framework.
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The following sub-model is the activity attribute simulator that learns a BN 

predictive model for a travel-activity attribute and constructs activity scheduling of all 

individuals in the population. The inputs of this sub-model are the travel diary survey 

and all synthetic individuals generated in the synthetic population generator, and the 

output is their minute-level activity scheduling at the census tract level. The activity 

attribute simulator defines an individual in the BN-ABM as “featuring alternating time-

budgets from weekday to weekend”, “scheduling”, “executing”, and “traveling 

regularly and day-varyingly”: 

1). Alternating time-budgets from weekdays to weekends. To model individual 

dynamic travels, the activity attribute simulator retrieves weekday and weekend 

time-budgets of all individuals in the population. This time-budget retrieval is 

motivated by the recognition that various constraints in space and time are imposed 

on an individual’s daily travels and activities. A few fixed activities arise to govern 

their mobility. Fixed activities refer to long-term activities such as work activities 

or school activities, and limits the scheduling of non-fixed activities in respect to 

location, duration, travel mode, and type. Here we assume that an individual’s daily 

time-budgets vary from weekday to weekend, but not daily. We retrieve such “semi-

dynamic” time-budgets as follows: (1) an individual’s weekday time-budgets are 

directly derived from the survey, and (2) their weekend time-budgets resemble the 

unemployed peoples’ time-budgets in the survey, and are derived using random 

sampling. 
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2). Scheduling. The activity attribute simulator develops a BN-based scheduling 

generation algorithm, which learns predictive BNs for travel-activity attributes from 

the travel diary survey (model training) and generates individual activity scheduling 

from the learned BNs (model prediction). In the training step, the dependent 

variable is a travel-activity attribute, and the independent variables are the 

household-level and person-level demographic and socio-economic attributes from 

the travel dairy survey. The subjective of this step is to learn the conditional 

probabilities of a travel-activity attribute over these independent variables. In the 

prediction, the first stage of implementing the BN-based scheduling simulation is 

to generate long-term, fixed activity scheduling for all employed and student 

individuals, including work or school location choices. Next, the BN-based 

scheduling generates their non-fixed activity scheduling by predicting the travel 

frequency for each time-budget, and the travel purpose, the travel mode, the travel 

destination location, the activity duration, and the travel duration for each travel. 

One distinguishing feature of the BN-based scheduling is that it integrates BNs into 

an ABM by building BN predictive models for travel-activity attributes. Although 

the BN-based scheduling approach is fundamentally different from traditional 

methods such as decision tree, logit regression and utility maximizing theory (W. 

Davidson et al., 2010; Auld & Mohammadian, 2012; Yasmin et al., 2015), , our 

ABM has flexibility in using these scheduling methods. 

3). Executing. The following stage of the activity attribute simulator requires an 

executing function to construct an individual’s activity records from the BN-based 
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scheduling generation result and update their location based on current time. An 

activity record contains current activity type, travel purpose (next activity type), 

departure time, arrival time, travel mode, current location and travel destination 

location. If an individual is determined to execute the “travel” action based on 

current time, the model will update their travel mode, and travel duration. If an 

individual executes the “activity” action, their location, activity duration, and 

activity type will be updated. 

4). Regular and day-varying travel. The BN-based activity attribute simulator 

takes into account regularity and irregularity in an individual’s daily travels and 

activities by implementing probability-based scheduling generation algorithm 

based on the learnt BNs. A BN determines what variables are related to retrieve a 

travel-activity attribute and compute the conditional probability distributions over 

the travel-activity attribute and the selected variables from the travel survey. Next, 

the activity simulator predicts and constructs activity records of an individual by 

random samples based on the leant BN probabilities of travel-activity attributes. 

Such random sampling could ensure that both the most likely scheduling and the 

less likely scheduling be selected, especially for a large population. 

2.3.2 Synthetic Population Generator Sub-Model Overview and Statistical Test 

The BN-ABM starts with a population synthesis that generates a synthetic 

population at both the person-level and household-level using the Iterative Proportional 

Updating (IPU) algorithm proposed by Ye et al. (Ye et al., 2014). This approach can 

efficiently match both person-level and household-level attributes by iteratively 
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adjusting and reallocating weights for the households in a sample until the joint 

distributions of critical attributes in the weighted sampled population match the known 

distributions of the attributes available through the American Community Survey. As 

the goodness-of-fit between the sampled population and the Census population, the 

synthetic population generator based on the updated household weights random draws 

households from the survey to generate a synthetic population. 

The population synthesis is intrinsically a mathematical optimization problem as 

follows: 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ [
∑ 𝑑𝑖,𝑗𝑤𝑖𝑖 − 𝑐𝑗

𝑐𝑗
]

2

𝑗

 

 

where j is an attribute of interest, 𝑖 is a household in the survey, 𝑑𝑖,𝑗 is the frequency 

of the attribute 𝑗 in household 𝑖, 𝑤𝑖 is the weight attributed to household 𝑖, and 𝑐𝑗 is 

the value for the attribute  𝑗 . Minimizing this function represents measuring the 

inconsistency between the weighted frequency of the attributes of interest in the 

synthetic population and the known frequency available through the American 

Community Survey. The IPU, inherently a heuristic iterative procedure, monitors the 

goodness-of-fit to determine the point where the procedure should be terminated (Ye et 

al., 2014). And the steps are as follows (Ye et al., 2014): 
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Subsequently, it is necessary to evaluate the representativeness of the generated 

synthetic population as well as the performance of the synthetic population generator. 

The Pearson's Chi-square Test (χ2) is a statistical test to evaluate the difference between 

two frequency distributions. Integration of the χ2 test into the BN-ABM facilitates 

Generate a frequency matrix D where a row is a household from the travel diary 

survey, a column is a value of an attribute 𝑗, and an element is the frequency of a 

specific attribute value in the household or the number of individuals for a specific 

attribute value in the household. 

Obtain joint distributions of the attributes of interest using the standard IPF 

procedure and store them into a column vector C where 𝑐𝑗 represents the value of 

the attribute 𝑗 and j = 1, 2 … m. 

Initialize the weight vector W, such that 𝑤𝑖 = 1, where 𝑖 = 1, 2… N, initialize a 

scalar δ =  
(∑ [

∑ 𝑑𝑖,𝑗𝑤𝑖𝑖 −𝑐𝑗

𝑐𝑗
]

2

 𝑗 )

𝑚
, and set δ𝑚𝑖𝑛 = δ. 

For each iteration 

   Go through matrix D:  

      For each column 𝑗𝑘 

         For each row  𝑖 

            Calculate 𝑠𝑖,𝑗𝑘
=  𝑑𝑖,𝑗𝑘

∗  𝑤𝑖 

         End Loop 

         Sum 𝑠𝑖,𝑗𝑘
, 𝑤ℎ𝑒𝑟𝑒 𝑖  = 1, 2… N, to 𝑠𝑗𝑘

, and calculate the adjustment 

for 𝑗𝑘,  

𝜌𝑗𝑘
=  

𝐶𝑗𝑘

𝑠𝑗𝑘

  

      End Loop 

   Update W, w𝑗𝑘
=  𝜌𝑗𝑘

∗  w𝑗𝑘
 

   Set δ𝑃𝑟𝑒 =  δ 

   Update δ =  
(∑ [

∑ 𝑑𝑖,𝑗𝑤𝑖𝑖 −𝑐𝑗

𝑐𝑗
]

2

 𝑗 )

𝑚
 

   Calculate the improvement in goodness-of-fit, Δ = |δ −  δ𝑃𝑟𝑒| 

   If    δ < δ𝑚𝑖𝑛  

      Then δ𝑚𝑖𝑛 = δ 

   If    Δ < 휀, which is a small positive number i.e. 1 ∗ 10−5 

   Break 

 

Return W 
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testing the null hypothesis stating that the distribution of the synthetic population is 

consistent with the Census distribution. The p-value serves as an appropriate measure 

of fit in respect to the matching of person-level distributions. 

2.3.3 Activity Attribute Simulator Sub-Model Overview and Validation 

Conceptual considerations. The aim of the activity attribute simulator is to 

uncover the relationship between an individual’s daily travels and their person-level 

and household-level attributes as well as environmental impacts. Here we take into 

account two types of environmental impacts that governs peoples’ daily activities and 

travels. They are environmental attractions such as local business, recreational sites, 

school enrollment and land use types, and environmental restrictions such as 

environmental endangered sites, contamination areas and dump sites. 

Model specification. Bayesian Networks as a probabilistic graphical model learn 

and estimate conditional dependencies among a large set of variables based on Bayesian 

statistical inference, and use graph-based representation to express conditional structure 

between these critical variables. A BN typically consists of a directed acyclic graph and 

a joint probability distribution of the variables that is computed by P(X1, X2, …  Xn) at 

a specific value, for example X1 = a1, X2 = a2, … , X n = an: 

 

𝑃(𝑋1, 𝑋2, …  𝑋 𝑛) = ∏ 𝑝(𝑋𝑖|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))𝑖  

 

where X1, X2, …  Xn denotes the variables of interest, or called nodes in the graph, and 

Parents(Xi) denotes all parent variables of variable Xi . Here the variables are the 
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person-, household- and travel- level attributes from the travel diary survey. The aim of 

this section is to learn a travel-activity attribute BN. To achieve this goal, we identify 

the crucial variables that are related to predict the travel-activity attribute, find all parent 

nodes for each selected variable, and compute conditional probabilities among them. 

Incorporation of BNs into activity-based models (the activity attribute simulator) is to 

build and learn a predictive BN for a travel-activity attribute. A travel-activity attribute 

BN is defined as BN (A, A_), where A is the activity attribute and A_ are the variables 

considered to be conditionally related to A: 

 

𝐵𝑁 (𝐴, 𝐴−) =  𝑃(𝐴, 𝐴1, … , 𝐴𝑛) 

 

Model Learn. Learning BN from observations generally consists of two steps: 

structure learning and parameter estimating. Structure learning is to identify the BN 

graphical structure that best describes the data, and parameter learning is to compute 

conditional probability distributions of all variables in the leant structure. Given the 

data, learning BN structure is to explore conditional dependencies between variables 

and represent these relationships using directed arrows. For example, an arrow A->B 

denotes that variable B is conditionally related to variable A, and the probability of B 

at a specific value given A at a specific value is computed by parameter learning. 

Several methods have been developed to learn BN structure and broadly classified into 

two categories: score-based structural learning and constraint-based structural learning 

(Daly et al., 2011; Gámez et al., 2011; Larrañaga et al., 2013; Yuan, n.d.). Behjati and 
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Beigy summarized the pros and cons of these two methods and proposed the hybrid 

method that integrates their advantages (Behjati & Beigy, 2018). The score-based 

approach due to well-defined scoring functions, regardless of data, is theoretically well-

suited in every situation. In practice, it is known to generate better structures than the 

constraint-based approach. Its major drawback is time consuming as variables increase. 

The constraint-based approach is known to be unstable and sensitive to a small change. 

The hybrid method has been proposed to integrate the advantages of constraint-based 

methods and score-based methods to solve the structure learning problem. Here we use 

the Min–Max Hill Climbing (MMHC) algorithm, one of the widely-used hybrid 

learning methods, to learn travel-activity attributes’ BNs. This method starts with an 

initial structure learned from the constraint-based method and identifies higher-scoring 

structures using greedy search technique. Using MMHC, we identify the best travel-

activity attribute BNs given a set of household-level and person-level attributes from 

the travel diary survey. To learn a travel-activity attribute BN, we compare all possible 

BNs derived from adding and/or deleting variable nodes and selects the BN wherein all 

variables are effectively directed and conditionally dependent on each other. Next, we 

estimate conditional probability distributions of all variables in the learnt structure 

using the maximum likelihood estimation method (MLE), and the principle of this 

method is to find the parameters that maximize the likelihood function: 

 

Maximize 𝐿(𝜃: 𝐷) = 𝑃(𝐷|𝜃) = ∏ 𝜃𝑘
𝑁𝑘𝐾

𝑘=1  
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where L is the likelihood function, D is the data for an attribute variable,  𝜃 is the 

probability distribution for the attribute variable,  𝐾 is the number of the values in 𝐷,

𝑘 = 1, … , 𝐾, 𝑁𝑘 is the frequency of the value 𝑘 occurring in 𝐷, and 𝑃(𝐷|𝜃) is to 

measure how likely 𝜃 represents the observed data 𝐷. 

Model validation. The activity attribute simulator inputs synthetic individuals to 

the learnt BNs, and generates their activity scheduling. To validate the learnt BNs, we 

employ the k-fold cross-validation by dividing the travel diary survey into training and 

testing datasets (k=10). The training dataset (90% of the total survey) is to learn the BN 

structures and estimate the BN parameters, while the test dataset (10% of the survey) is 

to validate the learnt BNs. We use accuracy to measure the cross-validation results of 

discrete activity choices, including travel mode, travel purpose and travel destination 

location, and use residual to measure cross-validation results of continuous activity 

choices, including travel frequency, travel duration, and activity duration. The equations 

are as follows: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑟𝑒𝑐𝑐𝑜𝑟𝑑𝑠

𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑟𝑒𝑐𝑐𝑜𝑟𝑑𝑠
 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =  |𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑡ℎ𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒| 

 

2.3.4 Finer-scale utility-based location choices 

Although the BN-ABM can operate at various spatial scales ranging from census 

block group to traffic analysis zone, this study utilizes the model at the census tract 

level. One disadvantage of the BN-ABM is its poor performance in predicting a great 
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number of choices. Using a simple example, the destination location choices in the case 

study have 519 values, which makes training and learning the location choice BN 

difficult. To solve this issue, we propose a hieratical location choice model that 

integrates the coarse-scale BN-based location choice model and the finer-scale utility-

based location choice model. In the utility-based location choice model, we use random 

forest to determine the first four “most important” variables to a specific travel propose 

or activity type, and compute utility-based scores of all census tracts in the study area 

based on the importance measure in random forest. This utility-based model is 

motivated by the utility-based choice theory that an individual has preference in the 

alternative maximizing their utility. Here we assume that the utility that an individual 

derives from one location to another location is a function of environmental attractions, 

environmental limitations, and travel purpose. The independent inputs of the sub-model 

are a set of GIS-based environmental variables, including the number of groceries, the 

number of restaurants, the number of dump sites, the number of parks, the number of 

major malls, the number of golf sites, the number of trips, area for a specific land use 

type, and school enrollment per tract, the tract to the nearest environmental-endangered 

site distance, and the tract to the nearest contamination area distance. The dependent 

input is the number of a specific activity type per tract derived from the travel survey. 

The outputs are the importance measures of each independent variable mentioned above 

for a specific activity type. Then the total utility-based score of a census tract i for a 

particular travel purpose a is computed as follows: 
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𝑈𝑖(𝑎) = 𝑖𝑚𝑣1 ∗  𝑣1,𝑖 + 𝑖𝑚𝑣2 ∗  𝑣2,𝑖 + ⋯ +  𝑖𝑚𝑣𝑛 ∗  𝑣𝑛,𝑖 

 

where i denotes the census tract i, U𝑖(a) denotes the total utility-based score of the 

census tract i for travel purpose a, v1,i, … , vn,i denotes the values of the independent 

variables v1, … , vn at the census tract i, and im𝑉1, … , im𝑉𝑛  denotes the importance 

measure for the variable v1, … , vn.  Finally, we combine the finer-scale utility-based 

scores and the coarse-scale BN-based probabilities to simulate individual location 

choices.  

2.3.5 In-travel and out-travel ratios 

The in-travel and out-travel ratios per tract at particular times based on a one-

weekday simulation result are calculated as follows: 

 

𝑖𝑛 𝑟𝑎𝑡𝑖𝑜 (𝑧) =  
𝑖𝑛 𝑡𝑟𝑎𝑣𝑒𝑙𝑠 (𝑧)

𝑖𝑛 𝑡𝑟𝑎𝑣𝑒𝑙𝑠(𝑧) + 𝑜𝑢𝑡 𝑡𝑟𝑎𝑣𝑒𝑙𝑠(𝑧)
 

𝑜𝑢𝑡 𝑟𝑎𝑡𝑖𝑜 (𝑧) =  
𝑜𝑢𝑡 𝑡𝑟𝑎𝑣𝑒𝑙𝑠 (𝑧)

𝑖𝑛 𝑡𝑟𝑎𝑣𝑒𝑙𝑠(𝑧) + 𝑜𝑢𝑡 𝑡𝑟𝑎𝑣𝑒𝑙𝑠(𝑧)
 

 

where z denotes a tract census zone, out travels (z) denotes the number of activities 

that departure from the zone z, and in travels (z) denotes the number of activities that 

origin from other zones and go to the zone z. 

 2.4 Data Sources 

To test the efficacy of the proposed BN-ABM, we take Miami-Dade County, Florida 

as a case study. The required data are the American Community Survey, a traditional 
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travel diary survey, and multiple GIS data. In the BN-ABM, the travel diary survey is 

combined with the ACS to generate a synthetic population in the population synthesis 

generator, and then is used to train and test the BNs for travel-activity attributes in the 

activity attribute simulator. The activity attribute simulator also requires multiple GIS 

data to model and predict location choices. 

2.4.1 Travel Diary Survey Data 

The 1999 Southeast Florida Household Travel Survey was collected by the Florida 

Department of Transportation (FDOT) Districts and metropolitan areas, and was 

intended to investigate how Southeast Florida residents use transportation services in 

the region. The respondents were asked for their activities and travels during a 24-hour 

period as well as detailed information regarding their travel mode, travel purpose, 

departure and arrival time, and pairs of origin-destination location. We extract the 

Miami-Dade travel survey data from the 1999 Southeast Florida Household Travel 

Survey that includes Broward, Miami-Dade and Palm Beach. Figure 3 visualizes the 

survey data for the Miami-Dade region. This survey also includes 18 sociodemographic 

variables at both the person- and household- level, and Table 1 depicts these variables 

as well as their values and types.  
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Figure 3. Visualization of the 1999 Southeast Florida Household Travel Survey for 

the Miami-Dade region. The black lines are the daily travel trajectories of the 

respondents in the survey. 
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Table 1. The sociodemographic variables in the 1999 Southeast Florida Household 

Travel Survey.

Description Values Type Description Values Type 

Annual 

income 

21 levels from 

under 5k to 

over 100k 

Person 
Number of 

persons 
Integer Household 

Personal Age Integer Person 
Number of 

persons 
Integer Household 

Residential 

status 

Full time or 

Part time 
Person 

Number of 

Children 
Integer Household 

Employed 
Yes, no or 

child under 16 
Person 

Number of 

licensed 

drivers 

Integer Household 

Employ 

Status 

Full time or 

Part time 
Person 

Number of 

out of town 
Integer Household 

Work Type 
11 work types 

e.g. farming 
Person 

Number of 

vehicles 
Integer Household 

Retired 
Retired or 

Unemployed 
Person 

Dwelling 

unit type 

13 housing 

types e.g. 

single 

family 

home 

Household 

Vehicle use Yes or no Person 
Annual 

income 

21 levels 

from under 

5k to over 

100k 

Household 

Telecommute Yes or no Person 
County of 

residence 

Broward, 

Miami-

Dade and 

Palm Beach 

Household 
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2.4.2 Census and Environmental Data 

The American Community Survey data provides information about people, housing, 

business and industry, governments, and other topics at various spatial and temporal 

scales in the United States. Here we use the 2012-2016 ACS 5-year estimates data at 

the census tract level for Miami-Dade County regarding age, household income, 

household size, and the number of workers in a household.  

In addition to the Census sociodemographic data, the BN-ABM requires multiple 

GIS data, including groceries, restaurants, contamination areas, dump sites, parks, 

major malls, golf sites, land cover and land use, school enrollment, and environmental 

endangered sites. We collect the grocery and restaurant data for Miami-Dade County 

by using Yelp Search API to access their local businesses with the keywords “groceries” 

and “restaurants”. The searching returns the latitudes and longitudes of all groceries or 

restaurants in Miami-Dade County on the search day. Then we aggregate the data, 

originally collected at the point level, to the total of groceries or restaurants per census 

tract.  

Miami-Dade County also provides many open GIS data in respect to boundaries, 

buildings, education, environment, infrastructure, location, parks, zoning property, and 

planning. We collect point-based dump site, park, major mall, golf site, and school 

enrollment data, and polygon-based contamination area, land cover and land use, and 

environmental endangered site data. Then, the point-based datasets are aggregated to 

the total per census tract. The polygon- based land cover and land use data is intersected 

with the Census tract shapefile, and aggregated to the total area per land type per census 
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tract. The distance of a census tract to the nearest environmental endangered polygon, 

and the distance of the tract to the nearest contamination polygon are also calculated. 

Table 2 depicts the statistical summary of all datasets required in the BN-ABM as well 

as how they are utilized in the model.
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Table 2.  The statistical summary of all datasets required in the BN-ABM. 

 

Dataset Variable Description Scale 
Statistic 

Summary 
Simulation 

American 

Community 

Survey 

Household size, 

household income, the 

number of workers in 

the household, and 

personal age 

Census 

tract 

2016 

Total 

2,680,607 

Persons, and 

860,380 

Households 

Input of the 

synthetic 

population 

generator 

Southeast 

Florida 

Household 

Travel 

Survey 

Household-, person-, 

and travel- level 

attributes (current 

activity type, next 

activity type, begin time, 

end time, travel 

duration, travel mode, 

latitude of the origin, 

longitude of the origin, 

latitude of the 

destination, and 

longitude of the 

destination) 

Minute-

level 

GPS 

1999 

Total 1,253 

Households 

and 2,445 

Persons 

Input of the 

synthetic 

population 

generator; 

Input of the 

activity 

attribute 

simulator 

Miami-Dade 

County 

Open GIS 

Data 

Contamination areas, 

dump sites, parks, major 

malls, golf sites, land 

cover and land use, 

school enrollment, and 

environmental 

endangered sites 

Point or 

polygon 

2016 

Total 

394,470 

enrollment 

and 1,163 

schools 

Input of the 

location BN 

in the activity 

attribute 

simulator 

Yelp Local 

Business 

Data 

Restaurants and 

groceries 

Point 

2016 

Total 6,791 

restaurants 

and groceries 

Input of the 

location BN 

in the activity 

attribute 

simulator 
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2.5 Results 

This section describes the results of the case study of Miami-Dade County. A 

synthetic population that represents the actual population in Miami-Dade County is 

generated, and the goodness-of-fit of the generated synthetic population is tested using 

the Pearson's Chi-square Test. A total 9 BNs are then built and validated using k-fold 

cross-validation. Finally, one-weekday individual activity scheduling for the population 

in the study area is created, and in-travel and out-travel ratios of the prediction results 

at 8:00 am and 18:00 pm are calculate. 

2.5.1 Synthetic Population Generation 

Four valuables including household size, household income, personal age, and the 

number of workers in the household are used to create the populations of all census 

tracts in Miami-Dade County. To assess the goodness-of-fit of the generated synthetic 

population and the ACS population, we use the Pearson's Chi-square Test (𝜒2) and the 

computed p-value as a measure of fit. Here the hypothesis H0 is that the distribution of 

a synthetic population is consistent with the ACS distribution, and the alternative 

hypothesis H1 is that the distribution of a synthetic population is inconsistent with the 

ACS distribution. Of 505 synthetic populations (excluding 14 zero cells in the 519 tract-

level populations in Miami-Dade County), 122 populations exhibit the 𝜒2  value 

greater than the critical value for 5 degrees of freedom at the significance level α=0.05. 

We reject the null hypothesis and conclude that the distributions of the 122 populations 

are significantly different from the ACS distributions. 388 synthetic populations are 
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consistent with the ACS. 

2.5.2 Predictive BNs in the Activity Attribute Simulator 

We build a total of 9 BNs including travel purpose BN, travel mode BN, employed 

people and students’ travel frequency BN, unemployed people and children’s travel 

frequency BN, employed people and students’ activity duration BN, employed people 

and students’ travel duration BN, unemployed people and children’s activity duration 

BN, and unemployed people and children’s travel duration BN from the survey data. 

The BNs of travel frequency, employed people and students’ activity duration, and 

employed people and students’ travel duration are continuous Gaussian Bayesian 

networks, while the rest are discrete. Table 3 shows the detail description of the 9 BNs 

as well as the values of all trip-level variables in the model.  
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Table 3. The detailed description of the 9 BNs. 

 BN Model BN Type Variable Description 

1 Travel purpose Discrete 

6 discrete travel purpose choices 

including home activities, work 

activities, school activities, social 

activities, shopping activities or other 

activities; 3 discrete employment status 

(1: yes, 2: no, 3: children under 16) 

2 Travel mode Discrete 

5 discrete travel mode choices including 

car, pool car, public transport, walk or 

bike 

3 

Travel frequency for 

employed individuals 

and students 

Continuous 

Integer travel frequency choices; 4 

discrete age ranges including 0 under 

20, 1 from 20 to 50, 2 from 50 to 70, or 

3 over 70; continuous open-period 

duration choices 

4 

Travel frequency for 

unemployed 

individuals and 

children 

Discrete 

5 travel frequency choices ranging from 

under 2 to over 8; 6 discrete open-period 

duration choices ranging from under 100 

to over 1000 

5 

Activity duration for 

employed individuals 

and students 

Continuous 
Integer activity duration choices; Integer 

open-period duration choices 

6 

Travel duration for 

employed individuals 

and students 

Continuous Integer travel duration choices 

7 

Activity duration for 

unemployed 

individuals and 

children 

Discrete 
8 activity duration choices ranging from 

under 40 to over 800 

8 

Travel duration for 

unemployed 

individuals and 

children 

Discrete 
6 travel duration choices ranging from 

under 10 to over 60 

9 
Coarse-level travel 

destination 
Discrete 

Coarse-level travel destination location 

choices including 6 administrative zones 
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Figure 4, 5, 6, and 7 show the conditional dependencies and the crucial conditional 

probability tables (CPT) of the 9 BNs. In particular, person-level, household-level and 

trip-level attributes including residential type, employment status, personal income, 

whether an individual use a vehicle, the number of children in the household, current 

location, current activity, and begin time, end time and duration of peoples’ time-budget 

are closely associated with their travel-activity choices. The BNs exhibit the direct 

conditional relationship between a travel-activity attribute and these person-level, 

household-level and trip-level variables: (1) between travel mode and employment 

status, (2) among travel purpose, current activity and employment status, (3) among 

travel frequency, time-budget duration, age, and residential type, (4) among activity 

duration, time budget, and travel purpose, and (5) among travel duration, travel mode, 

current time, and current activity. 

Next step is to compute a CPT for all variables in a BN. In the travel mode BN, the 

probability that an employed individual drives to conduct an activity is 0.642, the 

probability that a child is a passenger to conduct an activity is 0.765, and the probability 

that an unemployed individual drives to conduct an activity is 0.405. In the travel 

purpose BN, the probability that an employed individual goes to work from home is 

0.550, the probability that a child goes to school from home is 0.573, and the probability 

that an unemployed individual goes shopping or conducts other activities from home is 

0.235 and 0.452. In the employed and children’s travel frequency BN, the conditional 

density of travel frequency over time-budget and personal age is estimated rather than 

a CPT, which instinctively is liner Gaussian regression between travel frequency and 
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time-budget in a specific age group: 

 

Travel Frequency= 1.001 +0.0040 ∗ time budget          age< 20 

Travel Frequency= 1.107+0.0060 ∗ time budget        20≤age< 50 

Travel Frequency= 1.157+0.0052 ∗ time budget        50≤age< 70 

Travel Frequency= 1.038+0.0050 ∗ time budget           age≥ 70 

 

In the employed and children’s activity duration BN, the conditional density of 

activity duration over time-budget is as follows: 

 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 1.899 + 0.413 ∗ 𝑡𝑖𝑚𝑒 𝑏𝑢𝑑𝑔𝑒𝑡 

 

In the location BN, the probability that an individual goes to Zone 1 from Zone 2 is 

0.441, while the probability that they remain in Zone 1 for next activity is 0.440.  

 



 

41 

Figure 4. The travel purpose and travel mode BNs. In A, the top is the travel mode 

BN, and the bottom is the conditional probability table of travel mode given 

employment status. In B, the bottom is the travel purpose BN, and the top is the 

conditional probability table of travel purpose given employment status. The 

values in the CPTs are the conditional probabilities of travel mode at a specified 

value over employment status at a specified value. 

 

Figure 5. The travel frequency BNs. In A, the bottom is the employed people and 

students’ travel frequency BN, and the top is the conditional density of employed 

people and students’ travel frequency choices given time budget and personal age. 

In B, the bottom is the unemployed people and children’s travel frequency BN, 

and the top is the conditional probability table of unemployed people and 

children’s travel frequency choices given time budgets and residential status. The 

values in the CPT are the conditional probabilities of travel frequency at a 

specified value over time budget at a specified value, and the conditional density 

is the Gaussian liner regression of travel frequency from age and time-budget. 
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Figure 6. The activity duration and travel duration BNs. A is the employed people 

and students’ travel duration BN, B is unemployed people and children’s travel 

duration BN, C is the employed people and students’ activity duration BN, and D 

is the unemployed people and children’s activity duration BN. 

 

 

Figure 7. The location BN. The left depicts the macro-level location values in the 

study area. The right top is the location BN, and the right bottom is the conditional 

probability table of travel destination location given current location. The values 

in the CPT are the conditional probabilities of travel destination location at a 

specified value over current location at a specified value. 
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Finer-scale utility-based activity location choices. Using random forest, we 

determine the first four “most important” variables to a specific activity type including 

work activities, school activities, shopping activities, social activities, unknown 

activities, and other activities (Figure 8). We uncover close relationships among activity 

type, environmental restrictions including distance to the nearest endangered area or 

containment site, and environmental attractions including employment opportunities 

(restaurants and shopping area), education opportunities (total school enrollment and 

number of schools), and recreation opportunities (shopping area). The importance 

measure scores of these variables are computed from random forest and serves as 

weight to calculate the total utility-based scores of all tracts in the study area for a 

specific activity type, which finally combines the BN probabilities to simulate an 

individual’s location choice. Figure 9 shows the total utility-based score of all census 

tracts in the Miami-Dade region for a specific travel purpose. The results suggest that 

high scores occur mostly in downtown areas for social activities, other activities, 

unknown activities and shopping activities. This is interpreted that while people 

conduct these activities, the probability that they go to the downtown area is greater 

than the other areas. 

 



 

44 

 

Figure 8. The first four “important” variables’ for a specified activity type, 

including work activities, school activities, shopping activities, social activities, 

unknown activities, and other activities, as well as the important measure scores 

computed from random forest. The x axis is the importance measure score, and 

the y axis is the variable. A variable with high scores for a specific activity type is 

interpreted as great contribution of the variable to this activity (Restaurant: the 

number of restaurants per tract, Commercial: the commercial area per tract, 

Dis2Contam: the tract to the nearest contamination area distance, Shopping: the 

shopping area per tract, School: the number of schools per tract, Dis2endager: the 

tract to the nearest endangered area distance, Enrollment: the total school 

enrollment per tract, Area: the tract area, Other Land: the total area of other land 

use types, excluding residential and school, per tract, and Numofschool: the 

number of schools per tract). 
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Figure 9. The total utility-based scores of all tracts in the study area for a specific 

activity type derived from random forest. The scores are discretized into “low”, 

“medium” and “high”. A high score of a tract is interpreted as large probability 

that the tract is selected for a specified activity type. For instance, people are most 

likely to choose the downtown area to conduct shopping activities, social activities, 

unknown activities and other activities. 
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2.5.3 Predictive BNs Validation and Improvement 

To validate the 9 BNs, 10-fold cross-validation is utilized. Figure 10 summarizes 

the results of 10-fold cross-validation. With running cross-validation 200 times, we find 

that travel purpose and travel mode are replicated at 62%, while travel destination 

location is only 45%. To improve the BN-ABM prediction, we can include a couple of 

strategically selected behavioral aspects that are known to improve the prediction in 

other ABMs, e.g. the home to work distance and the home to school distance. This has 

already been done in many activity-based models, and this is also supported by the 

anchor point theory in time geography (Goulias, 2004; Goulias, 2005; Pribyl and 

Goulias, 2005). Table 4 depicts the independents variables, the training datasets, the test 

datasets and the summary of the cross-validation results for the BN-ABM and the 

enhanced BN-ABM. Figure 11 summarizes the cross-validation results of the enhanced 

model. To include the tract-based home to work distance, the tract-based home to school 

distance, the tract-based origin to destination location distance, and the index of current 

travel in the BN-ABM, we see improvements in the travel mode BN (5% up), the 

location BN (10% up), the travel duration BN (6 minutes less), and the activity duration 

BN (15 minutes less). In particular, the travel frequency, travel duration and activity 

duration BNs for unemployed people and children, originally built discretely, are learnt 

continuously in the improved BN-ABM by including the current time, the tract-based 

origin to destination location distance, and the index of the travel. 

 



 

47 

Table 4. The independents variables, the training and test datasets, and the 

average of the 10-fold cross-validation results for the BN-ABM and the enhanced 

BN-ABM. 

 

Travel-

activity 

Attributes 

Independent 

Variables 

Training 

(records) 

Test 

(records) 

Mean 

Accuracy 

(%) or 

Residual 

The BN-

ABM 

Travel 

Purpose 

Age, number of 

children in the 

household, 

employment 

status, personal 

income, current 

activity, and 

vehicle use 

5,139 600 62% 

Travel Mode 

Age, number of 

children in the 

household, 

employment 

status, 

employment 

type, and vehicle 

use 

5,139 600 62% 

Travel 

Destination 

Location 

Current location, 

time budgets, 

travel mode and 

employment 

status 

5,139 600 45% 

Travel 

Frequency for 

Employed 

People and 

Students 

personal income, 

time budgets, age 

and employment 

status 

1,891 200 1 trip 

Travel 

Duration for 

Employed 

People and 

Students 

Current time, 

current activity, 

and employment 

status 

2,403 300 
18 

minutes 

Activity 

Duration for 

Employed 

People and 

Students 

 

Personal income, 

employment 

status and time 

budgets 

458 60 
55 

minutes 
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Travel 

Frequency for 

Unemployed 

People and 

Children 

time budgets and 

residential type 
656 70 53% 

Travel 

Duration for 

Unemployed 

People and 

Children 

Age, travel 

mode, vehicle 

use, residential 

type, and 

personal income 

2,175 200 44% 

Activity 

Duration for 

Unemployed 

People and 

Children 

Time budgets, 

travel purpose 

and current 

activity 

320 40  

The 

enhanced 

BN-ABM 

Travel 

Purpose 

Age, number of 

children in the 

household, 

employment 

status, personal 

income, current 

activity, vehicle 

use, and 

household size 

5,139 600 62% 

Travel Mode 

Age, number of 

children in the 

household, 

employment 

status, vehicle 

use, and time 

budgets 

5,139 600 67% 

Travel 

Destination 

Location 

Current location, 

time budgets, 

travel mode 

employment 

status, home-to-

school distance, 

and home-to-

work distance 

4,578 500 55% 

Travel 

Frequency 

personal income, 

time budgets, 

age, employment 

status and 

current time 

2,547 300 1 trip 
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Travel 

Duration 

employment 

status, travel 

mode, travel 

purpose, age, 

current time, and 

tract-based 

origin-to- 

destination 

location 

distance 

4,578 500 
12 

minutes 

Activity 

Duration 

employment 

status, time 

budgets, personal 

income, travel 

purpose, current 

time and the 

index of the 

travel 

778 80 
40 

minutes 
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Figure 10. The 10-fold cross-validation for the total 9 BNs, including travel 

purpose choices, travel mode choices, travel destination location choices, employed 

people and students’ travel frequency choices, employed people and students’ 

travel duration choices, employed people and students’ activity duration choices, 

unemployed people and children’s travel frequency choices, unemployed people 

and children’s travel duration choices and unemployed people and children’s 

activity duration choices. With the cross-validation running 200 times, the x axis 

are the accuracy or residual intervals, and the y axis is the frequency of the cross-

validation results for a specified accuracy or residual range. Travel purpose, travel 

mode, travel destination location, unemployed people and children’s travel 

frequency, unemployed people and children’s travel duration and unemployed 

people and children’s activity duration are evaluated by the accuracy, while 

employed people and students’ travel frequency (trip), employed people and 

students’ travel duration (minute) and employed people and students’ activity 

duration (minute) are validated by the difference between the predicted and the 

observed.  
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Figure 11. The k-fold cross-validation for the enhanced model, including travel 

purpose choices, travel mode choices, travel destination location choices, travel 

frequency choices, travel duration choices and activity duration choices. With the 

cross-validation running 200 times, the x axis are the accuracy or 

residual intervals, and the y axis is the frequency of the cross-validation results for 

a specified accuracy or residual range. Travel purpose, travel mode, and travel 

destination location are evaluated by the accuracy, while travel frequency (trip), 

travel duration (minute) and activity duration (minute) are validated by the 

difference between the predicted and the observed. 
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2.5.4 One-weekday BN-ABM Simulation 

Here we conduct a one-weekday simulation. For each time-budget of an individual, 

we predict peoples’ travel frequency as well as travel purpose, travel mode, travel 

duration, travel destination location, and activity duration for each travel. Using a 

predicted activity record as example (Figure 12), an individual leaves home at 7:30 am, 

drops off his child at 7:50 am, and goes to work at 8:00 am; in the afternoon, he goes 

back home at 16:00 pm. The transport mode that he uses to conduct these activities as 

well as the destination locations of these activities are also simulated. 

Figure 13 shows the in-travel and out-travel ratios per tract at 8:00 am and 18:00 

pm derived from our one-weekday simulation results. We can see that Miami-Dade 

downtown areas have a greater number of in-travels at 8:00 am and a greater number 

of out-travels at 18:00 pm, while residential and rural areas experience a contrary trend. 

Gariazzo et al. presented high-resolution population presence and urban mobility, 

derived from mobile phone data, in the city of Rome, Italy (Gariazzo et al., 2019). They 

also found that at the downtown cells, the time pattern of peoples’ mobility shows a 

maximum and a minimum value at approximately 9:00 a.m. and 7:00–8:00 p.m., 

respectively, corresponding to morning and evening commuting times. 
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Figure 12. A simple prediction from the BN-ABM. 
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Figure 13. The out/in ratios at 8:00 am and 18:00 pm derived from the one-

weekday modeling result (Top: 8 am, and Bottom: 6 pm). The blue circle is the in-

ratio of a tract, the red circle is the out-ratio of the tract, and the radius of the 

circle is the out/in ratio value of the tract. 
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 2.6 Conclusions 

In this study we include Bayesian Networks to extend an activity-based model to 

simulate individual day-varying travels and activities. The case study in Miami-Dade 

County, Florida demonstrates the efficacy of this proposed, enhanced model in large-

scale application. Our one-weekday simulation results suggest that downtown areas in 

Miami-Dade County have a greater number of in-travels at 8:00 am and a greater 

number of out-travels at 18:00 pm, while residential and rural areas experience converse 

trends. 

In the model, unemployed people and children are “flexible” on both weekdays and 

weekends; employed people and students are “semi-flexible” on weekdays and 

“flexible” on weekends since they have mandatory activities such as work activities or 

school activities at specific times of weekdays. The model retrieves weekday and 

weekend time-budgets of an individual based on how “flexible” they are. The BNs 

embedded in the model then compute conditional probabilities of a travel-activity 

attribute including travel frequency, travel propose, travel duration, travel mode, travel 

destination location, and activity duration over a large set of crucial, independent 

variables, and infer an individual’s most-likely activity at a specified time. The BN-

ABM allows for both regular and irregular activities occurring, and such rich activity-

based travel modelling component is capable of modeling individual travel dynamics. 

Another important feature of the BN-ABM is that it is an individual-scale simulation 

and facilitates tracking individual travelers regarding where they are, what activity they 

conduct, what transport mode they use to conduct the activity, and when they will go to 
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next activity in a very spatially and temporally explicit way, which adds the ability to 

test various policy scenarios to the model. For instance, what shall be the effect on 

peoples’ daily travels of a transit expansion in Miami-Dade County? Or the effect of 

land-use intensification such as regional population growth and labor resettlement 

within the study area? Or price of travel such as fuel cost, parking pricing and poll-road 

charging? 

There are some components of the BN-ABM that require further improvements. 

Unemployed people and children experience highly “flexible” activities since there are 

few long-term, fixed activities that limit their travels and they have a greater number of 

time-budgets. Today, most open-source BN platforms such as the bnlearn package in R 

allow for continuous BNs by computing Gaussian regression- based probability density. 

This simple linear method has a bad performance in estimating unemployed people and 

children’s highly “flexible” travels. A greater probability density computation method 

for continuous travel-activity attributes can hold extraordinary potential for improving 

the dependability and accuracy of the BN-ABM. Another important future work is 

model validation, although we validate the model in a narrower sense. In this study we 

test the built 9 BNs by using k-fold cross-validation (k=10), but a boarder-sense 

evaluation of the dependability of our simulation results is missing. Recent studies have 

presented three validation frameworks including: (1) expanding model to a large-scale 

region and comparing aggregate simulation results between multiple sites, (2) aggregate 

analysis between model results and additional datasets such as cellphone data, travel 

survey data and traffic count data, and (3) comparing model results with another model 
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(Baqueri et al., 2019; Bassolas et al., 2019; Liu et al., 2018). These examples of activity-

based models validation help improving the value of the proposed BN-ABM model. 

These examples of ABM validation helps to improve the value of the BN-ABM.  

Despite these limitations, our simulation results confirm clear advantages of the 

activity-based modeling framework and methodology in terms of model structure, 

model development, data collection efforts, and hieratical location decision. Our model 

can also provide an appropriate tool for a range of stakeholders to explore the potential 

influence of current and future transport-related policies on public travel demand and 

help evaluating these policies. Further development of the model and approach outlined 

here shall ultimately lead to developing the BN-ABM with high dependability. 
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3. Human Prevention Behavior Modeling 

3.1 Introduction 

For many vector-borne diseases human prevention behavior is important to the 

transmission of the diseases as well as disease control and prevention. Mathematical 

models such as compartmental models have a long history of being applied to study the 

impact of human prevention behavior on these diseases. These aggregation models 

stratify a population into board subgroups such as susceptible, exposed, infectious or 

recovered, and describe the transmission between these compartments by the total 

number of individuals in the subgroup and health-state transferring rate (e.g., 

transmission probability, infectious rate or recovery rate). For example, classical 

compartmental models such as Susceptible-Exposed-Infectious-Recovered (SEIR) 

models and Susceptible-infectious-Susceptible (SIS) models have been widely used to 

model the spread of influenza and Sexually Transmitted Infections (STIs) (Mills et al., 

2014; Dukic et al., 2012; Liljeros et al., 2003; De Vries et al., 2006), and different 

assumptions have been made. For influenza, people are not likely to be infectious 

immediately after infection; for STIs, they assume that all exposed individuals are 

infectious. However, Zika is more complicated since it is a vector-borne disease that 

involves two species populations: (1) human hosts and (2) mosquito vectors. Kucharski 

et al. developed a SEIR model that stratifies hosts into four subgroups: susceptible, 

exposed, infectious and recovered; and vectors into three subgroups: susceptible, 

exposed, and infectious. The simulation result of their model shows a good performance 

(Kucharski et al., 2016). 
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Although there are fewer efforts on studying Zika, researchers have applied 

compartmental models for studying other mosquito-borne diseases like Dengue and 

Malaria (Aron 1988; Yang 2000; Van den Driessche and Watmough 2002; Otero 2011) 

(Carvalho et al., 2019; Knerer et al., 2015; Nawawi & Aldila, 2020; Ndii, 2020; M. J. 

Otero et al., 2010; Song et al., 2020; Hyun Mo Yang & Ferreira, 2008). Carvalho et al. 

evaluated the control strategies of Dengue including the Aedes aegypti mosquito 

control and vaccination campaign using their compartmental model: (1) the vector 

mechanical control accomplished by a discrete function that represents the removal of 

breeding, (2) the chemical control carried out using insecticide and larvicide, and (3) 

the vaccination studied through the transfer of a fraction of individuals, proportional to 

the vaccination rate, from the susceptible to the recovered compartments (Carvalho et 

al., 2019). Nawawi and Aldila assumed that humans infected with Dengue virus and 

treated in a hospital will be protected (hospitalization), and divided human population 

into 4 compartments i.e susceptible (S), infected non hospitalized (In1), infected 

hospitalized (In2), and recovered (R) compartment in their SIR model (Nawawi & 

Aldila, 2020). In addition to vector-borne diseases, compartmental models have been 

applied to many infectious diseases like COVID-19. Tian et al. investigated the controls 

of the COVID-19 outbreak in China such as the Wuhan travel ban and level 1 response 

using a SEIR model (Tian et al., 2020). Against this background, the key is to define 

the nature of these human prevention behaviors on disease prevention and control, 

which will be studied in this dissertation research. 
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3.2 Literature Review 

Vector-borne disease outbreaks are a major threat to global health, economy, and 

society (Mlakar et al., 2016; Cao-Lormeau et al., 2016; Cauchemez et al., 2016; Eisen 

et al., 2017; Flores & O’Neill, 2018; Gubler, 1998; Heukelbach & Werneck, 2016; 

Malone et al., 2016; Mysorekar & Diamond, 2016; Petersen et al., 2019; Rasmussen et 

al., 2016; Shaw & Catteruccia, 2019; Swei et al., 2020; van den Berg et al., 2017). In 

the United States, the Zika virus epidemic in 2015-16 resulted in 5,102 cases and the 

short term economic impact of US$3.5 billion. Therefore, assessing the emerging 

intervention strategies for vector-borne diseases is significantly important [87]– [96]. 

Take the 2016 Zika epidemic in Miami-Dade County, Florida as a case study, we 

conduct model-based evaluation of the emerging vector-borne disease intervention 

strategies. A greater understanding of the intervention strategies that successfully 

combat the 2016 Zika epidemic in Miami-Dade County, Florida will aid many countries 

that remain suffering from vector-borne diseases (Campos et al., 2015; Hayes, 2009; 

Cao-Lormeau et al., 2016; N’Dri et al., 2020; Cruvinel et al., 2020; Zhao et al., 2020; 

Caminade et al., 2019; Grillet et al., 2019). 

In 2016, the United States reported an increase in Zika due to the bites of Aedes 

mosquitoes, especially in the state of Florida (Malone et al., 2016). Miami-Dade County 

in Florida reported as the most Zika-active area experienced a dramatic decrease in 

infection after a countywide truck/aerial adulticide/larvicide outdoor spraying applied 

by Miami-Dade County as well as other controls recommended by the CDC. In 

particular, the CDC suggested environmental interventions such as draining any water 
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containers including garbage cans and toys and discarding old tires and drums that 

potentially keep water. These recommendations reduce the living aquatic habitat of the 

larva mosquitoes. They also suggested individual interventions including using 

mosquito repellent and regular bed-nets, wearing long clothing, installing screens on 

windows and doors, and avoiding travelling to mosquito-active areas. These advices 

reduce/block the contacts between humans and the adult mosquitoes. 

Within the exiting literature, mathematical models have become well established 

in the past two decades to assess emerging vector-borne disease intervention strategies 

including regular nets, artemisinin-combination therapy (ACT), long-lasting insecticide 

treated nets (LLINs), indoor residual spraying (IRS), mass screening and treatment 

(MSAT) and vaccination (Agusto et al., 2013; Bhattarai et al., 2007; Bi et al., 2020; 

Biswas et al., 2020; Burattini et al., 2008; Counotte et al., 2019; Griffin et al., 2010; 

Miyaoka et al., 2019). In particular, compartmental models are capable of taking into 

account these intervention strategies in the transmission cycles of vector-borne diseases 

and qualifying their impacts on disease control and prevention using ordinary 

differential equations (Majumder et al., 2020; Padmanabhan et al., 2017; Biswas et al., 

2020; Miyaoka et al., 2019; Goswami et al., 2018; Ajelli et al., 2017; Ebenezer Bonyah 

et al., 2017; Funk et al., 2016; Hyun M Yang, 2000; Aron, 1989). 

Therefore, the aim of this study is to examine the nature of various prevention 

strategies that combats emerging vector-borne disease outbreaks. In comparison of the 

Activity-ABM, a compartmental model that incorporates the prevention strategies cited 

above is proposed and applied to the 2016 Zika outbreak event in Miami-Dade County, 
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Florida. The rest of this study is organized as follows. Section 3.2 describes the 

proposed methodology in detail, specifically an overview of the baseline model and the 

intervention model as well as the model parameterization. Section 3.4 focuses on the 

results of applying the proposed model to the 2016 Zika epidemic in Miami-Dade 

County, Florida, including human infections predicted from the baseline model and the 

intervention model. Section 3.4 concludes with a summary of findings and discusses 

problems as well as future works. 

3.3 Methodologies 

3.3.1 The Baseline Model, SEIR 

Model Overview. The SEIR model where human hosts and mosquito vectors 

transmits virus by interaction and bite, one of the simplest compartmental models, 

stratifies hosts and vectors into four and three subgroups, in particular, Susceptible (S), 

Exposed (E), Infectious (I) and Recovery (R) for hosts, and Susceptible (S), Exposed 

(E), and Infectious (I) for vectors. To build the baseline model, we assume that: 1) after 

getting infected with Zika, humans do not become infectious immediately; 2) people 

acquire lifelong immunity after recovery; 3) the population is closed; and 4) in a 

transmission cycle, mosquitoes die before recovery. Although mosquitoes regarding 

population, spatiotemporal distribution, movement, reproduction rate and feeding rate 

are driven by climate factors such as temperature and humidity (Monaghan et al., 2016),  

the climate impact would be weaken by the outdoor spraying applied in Miami-Dade 

County. Such large-scale vector control program could kill a great deal of vectors on a 
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short time scale. Compared to dramatic and rapid declines in vector population due to 

outdoor sprayings, the climate- and environment- driven impact becomes inappreciable. 

Originally developed by Kucharski et al. (Kucharski et al., 2016), Figure 14 depicts 

the details of the SEIR. 𝛽𝐻 represents the transmission probability from vectors to 

humans (contact rate per human to vectors); 𝛽𝑉 is the transmission probability from 

humans to vectors (contact rate per vector to humans); 𝛼𝐻  and 𝛼𝑉  are the latent 

periods for humans and vectors; 𝛾 stands for the recovery rate of humans; 𝛿 is the 

lifespan of vectors; SH, EH, IH and RH are the population for susceptible, exposed, 

infectious and recovery humans; and SV, EV and IV are the population for susceptible, 

exposed and infectious mosquitoes. Transmission occurs when a susceptible vector 

bites an infectious host and/or an infectious vector bites a susceptible host, and is 

formulated as follows: 

𝑆𝐻(𝑡 + 1) = 𝑆𝐻(𝑡) − 𝛽𝐻 ∗ 𝑆𝐻(𝑡) ∗ 𝐼𝑉/𝑁𝐻                      

𝐸𝐻(𝑡 + 1) = 𝐸𝐻(𝑡) + 𝛽𝐻 ∗ 𝑆𝐻(𝑡) ∗ 𝐼𝑉/𝑁𝐻 − 𝐸𝐻(𝑡) ∗ 𝛼𝐻          

𝐼𝐻(𝑡 + 1) = 𝐼𝐻(𝑡) + 𝐸𝐻(𝑡) ∗ 𝛼𝐻 − 𝐼𝐻(𝑡) ∗ 𝛾                    

𝑅𝐻(𝑡 + 1) = 𝑅𝐻(𝑡) + 𝐼𝐻(𝑡) ∗ 𝛾                               

𝑁𝐻(𝑡) = 𝑆𝐻(𝑡) + 𝐸𝐻(𝑡) + 𝐼𝐻(𝑡) + 𝑅𝐻(𝑡)                       

𝑆𝑉(𝑡 + 1) = 𝑆𝑉(𝑡) − 𝛽𝑉 ∗ 𝑆𝑉(𝑡) ∗ 𝐼𝐻/𝑁𝑉 + 𝑁𝑉(𝑡) ∗ 𝛿 − 𝑆𝑉(𝑡) ∗ 𝛿   

𝐸𝑉(𝑡 + 1) = 𝐸𝑉(𝑡) + 𝛽𝑉 ∗ 𝑆𝑉(𝑡) ∗ 𝐼𝐻/𝑁𝑉 − 𝐸𝑉(𝑡) ∗ 𝛼𝑉 − 𝐸𝑉(𝑡) ∗ 𝛿  

𝐼𝑉(𝑡 + 1) = 𝐼𝑉(𝑡) + 𝐸𝑉(𝑡) ∗ 𝛼𝑉 − 𝐼𝐻(𝑡) ∗ 𝛿                      

𝑁𝑉(𝑡) = 𝑆𝑉(𝑡) + 𝐸𝑉(𝑡) + 𝐼𝑉(𝑡)                                

where 𝑡  is the current time step; 𝑡 + 1  is the next time step; 𝑁𝐻  is the total 
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population for humans; and 𝑁𝑉 is the total population for mosquitoes. 

 

Figure 14. The baseline model. Human host is divided into four compartments, 

namely susceptible, exposed, infectious and recovered. People who are not 

currently infected with, but susceptible to Zika are susceptible, people who are 

infected with Zika but unable to transmit Zika virus are exposed, people who are 

able to transmit the virus are infectious, and people who recover from Zika disease 

are recovered. Mosquito vectors are divided into three compartments, including 

susceptible, exposed and infectious. Mosquitos that may potentially become 

infected with Zika are susceptible, mosquitoes that are infected with Zika but 

unable to transmit the virus are exposed, and mosquitos that are able to transmit 

the virus are infectious. 

Baseline Parameters. Table 5 lists the values and sources of the parameters 

required in the baseline model. The average latent periods for humans 𝛼𝐻  and 

mosquitoes 𝛼𝑉 are 5.9 days and 10.5 days (Lessler et al., 2016); the recovery period 

for humans 𝛾 is 5 days (Goswami and Shanmukha, 2020); the average lifespan of 

mosquitoes 𝛿 is 15 days (Kucharski et al., 2016); the transmission probabilities from 

vector to human 𝛽𝐻 and from human to vector 𝛽𝑉 are 0.417 and 0.418 (Kucharski et 

al., 2016). 
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Table 5. Parameters for the baseline model. 

Initial States. According to the collected CDC Zika data, the local infection in 

Miami-Dade Country began on 1 August 2016, when is the initial date of the baseline 

modeling exercise. According to the United States Census Bureau, the population in 

Miami-Dade Country on that day was 2,692,990. Estimating the initial states of the 

vectors is difficult. As Kucharski et al. proposed, the exposed and infectious 

hosts/vectors are initially equal (Kucharski et al., 2016). On 1 August 2016, Miami-

Dade County had 99 travel-related infections and 14 local-acquired cases. We assume 

that these 99 travel cases aroused the 14 local infections, and estimate 203 exposed (E) 

and 203 infectious (I) mosquitos.  

3.3.2 The Intervention Model, SEIR-IM 

Model Overview. In the review of literature, we find that emerging vector-borne 

disease interventions promote disease prevention and control in the context of human 

hosts, mosquito vectors, and human-vector contacts (Bi et al., 2020; E. Bonyah et al., 

2019; Bouzid et al., 2016; Nepal. et al., 2016; Goswami et al., 2018; Hunter, 2016; 

Ngonghala et al., 2019; Rather et al., 2017; Singh et al., 2018). In particular, the host-

Parameter Definition Sources Values 

𝜷𝑯 
Transmission probability of 

human host 
Kucharski et al., 2016 0.417 

𝜶𝑯 Latent period of human host Lessler et al., 2016 0.169 

𝜸 Recovery rate of human host 
Goswami and 

Shanmukha, 2020 
0.200 

𝜷𝑽 
Transmission probability of 

mosquito vector 
Kucharski et al., 2016 0.418 

𝜶𝑽 Latent period of mosquito vector Lessler et al., 2016 0.095 

𝜹 
Death/Birth rate of mosquito 

vector 
Kucharski et al., 2016 0.128 



 

66 

based controls including regular bed-nets usage, wearing long clothing, and avoiding 

traveling to virus-active areas prevent diseases by completely separating people from 

virus; the vector-based controls such as outdoor sprayings and LLINs reduce infections 

by minimizing mosquitoes; the contact-based controls like mosquito repellent usage 

prevent diseases by reducing human-vector contacts.  

 According to the nature of these three controls on disease prevention and control, 

many researchers performed model-based vector-borne disease intervention evaluation 

by formulating the effects of the interventions in the transmission cycles of the diseases. 

In Agusto et al., the LLINS control on malaria is a decreasing function of how long 

people use it since the pesticide treatment on nets loses efficacy due to frequent washing 

and exposure to sunlight (Agusto et al., 2013). Griffin et al. supposed that IRS decreases 

mosquito population or blocks human-mosquito contacts because it kills mosquitoes 

when they rest on the wall and repel them before they feed (Griffin et al., 2010).  

Analogously, we formulate the three controls, namely the host-based controls, the 

vector-based controls, and the contact-based controls, as follows: 1) people who use the 

host-based controls are not susceptible to Zika; 2) people who use the contact-based 

controls have a lower human-mosquito contact rate; and 3) the vector-based controls 

minimize the vector population. Figure 15 illustrates how we formulate these three 

interventions in the transmission cycles of Zika. The host-based controls reduce the 

population for susceptible humans SH by the rate  𝑑𝐻. The contact-based controls affect 

the human-vector contact rates 𝛽𝐻 and  𝛽𝑉 to be new, lower values 𝛽2
𝐻 and 𝛽2

𝑉.  The 

vector-based controls minimize the population for susceptible vectors SV by the 
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rate  𝑑𝑉. 

 

Figure 15. The intervention model. Building on the baseline model, the 

intervention model takes into account three interventions, including the vector-

based controls, the host-based controls, and the contact-based controls. The 

vector-based controls minimize the vector population. The host-based controls 

separate humans from virus. The contact-based controls reduce the contacts 

between humans and mosquitoes. 

Intervention Parameters. Table 6 lists the values and sources of the parameters 

required in the intervention model, where the transmission probabilities from vector to 

human and from human to vector 𝛽2
𝐻 and  𝛽2

𝑉, and the rates 𝑑𝑉 and 𝑑𝐻 , by which 

the populations for susceptible vectors and susceptible hosts 𝑆𝑉and 𝑆𝐻 decrease due 

to using the host controls and vector controls are unknown and estimated by fitting the 

model to the data using MCMC. And the intervention transmissions are formulated as 

below: 
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𝑆𝐻(0)′ = 𝑆𝐻(0)(1 − 𝑑𝐻) 

𝐸𝐻(𝑡 + 1) = 𝐸𝐻(𝑡) + 𝛽𝐻
2

∗ 𝐼𝑉 ∗ 𝑆𝐻(𝑡) − 𝐸𝐻(𝑡) ∗ 𝛼𝐻 

𝑆𝑉(0)′ = 𝑆𝑉(0)(1 − 𝑑𝑉) 

𝐸𝑉(𝑡 + 1) = 𝐸𝑉(𝑡) + 𝛽𝑉
2

∗ 𝐼𝐻 ∗ 𝑆𝑉(𝑡) − 𝐸𝑉(𝑡) ∗ 𝛼𝑉 − 𝐸𝑉(𝑡) ∗ 𝛿 

Table 6. Parameters for the intervention model. 

Parameters Definition Sources 
Values 

(After) 

Values 

(Before) 

𝜷𝑯2 

New transmission 

probability for human 

(contact control) 

Modeled Unknown 0.417 

𝜶𝑯 Latent period for human 
Lessler et al., 

2016 
0.169 0.169 

𝜸 Recovery rate for human 

Goswami and 

Shanmukha, 

2020 

0.200 0.200 

𝜷𝑽2 

New transmission 

probability for mosquito 

(contact control) 

Modeled Unknown 0.418 

𝜶𝑽 Latent period for vector 
Lessler et al., 

2016 
0.095 0.095 

𝜹 
Death/Birth rate for 

vector 

Kucharski et al., 

2016 
0.128 0.128 

𝒅𝑯 

Percentage of human 

hosts insusceptible to 

Zika after using host 

controls 

Modeled Unknown NA 

𝒅𝑽 

Percentage of 

mosquitoes being killed 

after using vector 

controls 

Modeled Unknown NA 
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3.3.3 MCMC-based Parameterization and Model Fit for the Invention Model  

Method Overview. To fit the intervention model and estimate the unknown 

parameters, namely the new transmission probabilities from vector to human and from 

human to vector 𝜷𝟐
𝑯 and  𝜷𝟐

𝑽 due to using the contact-based controls, the decreasing 

rate for humans 𝒅𝑯 due to using the host-based controls, and the decreasing rate for 

vectors 𝒅𝑽 due to using the vector-based controls, we use the MCMC. This stochastic 

approach repeatedly generates random sampling from the potential space of the 

parameters and summarizes their distributions (Greenland, 2006). This 

parameterization performs in two stages. First, we generate Markov chains by searching 

though the parameter space and identifying the most likely search region. Second, we 

undertake the expectation approximation, summarize the samples and calculate the 

statistical summary of the sampling (Greenland, 2006). In this study, we use the 

maximum likelihood estimation, and the likelihood of the four target parameters is 

formulated as follows: 

 

𝑃(𝐷|𝜃) = 𝑒− ∑ (𝑦𝑖−�̃�𝑖)2𝑛
𝑖=1  

 

where 𝑦𝑖 is the 𝑖𝑡ℎ Zika data, and �̃�𝑖 is the 𝑖𝑡ℎ modeled data, which are computed 

from the Eq. (1) – (13). And the posterior distribution of the four target parameters is 

given: 

 

𝑃(𝜃|𝐷) = 𝑒− ∑ (𝑦𝑖−�̃�𝑖)2𝑛
𝑖=1 ∗ 𝑃(𝜃) 

 

The aim of MCMC is to identify the combination of the four parameters that 



 

70 

minimizes ∑ (𝑦𝑖 − �̃�𝑖)2𝑛
𝑖=1  and fits the data best. Accordingly, 𝑃(𝐷|𝜃) and 𝑃(𝜃|𝐷) 

needs to be maximized. MCMC starts with an initial user-defined value for the target 

parameters, computes 𝑃(𝐷|𝜃), searches the next potential values through the parameter 

space, and calculates new 𝑃(𝐷|𝜃). By comparing these two 𝑃(𝐷|𝜃), we will keep the 

larger one. By analogy, we construct a Markov chain and calculate the statistic summary 

of the chain. 

3.3.4. Data Sources 

In 2016-17, the CDC daily updated the counts of Zika infection by county across 

Florida, including travel-related cases, locally-acquired cases, pregnant women cases 

and sexual-transmitted cases. Travel-related Zika cases are non-residents who get 

infected in Florida while local cases are infected residents. They use Polymerase Chain 

Reaction technique (PCR) to identify present virus, and Antibody Capture Enzyme-

Linked Immunosorbent Assay technique (IgM Antibody) to identify recent past 

infection. Next they query the patients with positive results about their travel history, 

close contact, sexual history and mosquito contact rate. Finally, the laboratory and 

interview results determine whether the infection is travel-related, locally-acquired, 

congenital or sexual-transmitted. In this study we focus on the local transmission of 

Zika in Miami-Dade County, and collect the locally-acquired cases during 1 August 

2016 to 17 May 2017 available through the CDC.  

As the CDC reported, in the 2016 Zika outbreak event of the United States, Florida 

was the only state with the locally-transmitted cases, and most cases have been within 

Miami-Dade County. The first Zika case in Florida was reported on 19th January 2016, 

and was travel-related. As the count of the travel-related cases increased, the first local 

case was reported on 1 August 2016 in Miami-Dade County, and triggered a local 

outbreak across the county. 
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3.4 Results 

3.4.1 Human Infections in the Baseline Simulation 

Results for the Zika infections by day for human hosts in the baseline simulation 

are shown in Figure 16, where the x-axis stands for the simulated Zika cases, and the 

y-axis represents the infection cases reported by the CDC. Within the simulation, the 

first 60 days (1st August 2016 – 30th September 2016) experienced a good match of 

the model and the data (R2 = 0.9662), and thus the 61 day (1st October 2016) is the 

initial date of the intervention modeling exercise. It is noteworthy that October 1st 2016 

is at the stage that Miami-Dade County implemented the countywide truck/aerial 

adulticide/larvicide outdoor spraying. 

 

Figure 16. The baseline simulation results, in particular, the comparison between 

the predicted and the observed. The x axis is the predicted, and the y axis is the 

data. 

Figure 17 depicts the timeline of the 2016 Zika epidemic in Miami-Dade County. 

Although we collect data from Jan 19 2016 to May 12 2017, the local outbreak began 

in 1 August 2016. Our baseline modeling result suggests that the following two months 

(August and September, 2016) experiences few interventions, regardless of individual 

or public interventions, and October 2016 is the start date of the intervention modeling 
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exercise. 

 

Figure 17. The timeline of the 2016 Zika epidemic in Miami-Dade County, Florida.  

3.4.2 Human Infections in the Intervention Simulation 

Results for the model fit and parameter estimation of the intervention model SEIR-

IM are shown in Figure 18, which are the four well-constructed Markov chains for the 

intervention parameters  𝜷𝑯,  𝜷𝑽,  𝒅𝑯 and  𝒅𝑽 . These four chains converge to the 

parameter space quickly and display a stable sampling, and the four parameters 

 𝜷𝑯,  𝜷𝑽,  𝒅𝑯 and  𝒅𝑽 are estimated to be 0.39, 0.18, 0.98 and 0.99. 
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Figure 18. The MCMC samplings for the four intervention parameters (A: 

 𝜷𝑯 the new transmission probability for humans due to using the contact-based 

controls; B:  𝜷𝑽 the new transmission probability for mosquitoes due to using the 

contact-based controls; C:  𝒅𝑯 the percentage of humans who are insusceptible 

to Zika due to using the host-based controls; and D:  𝒅𝑽  the percentage of 

mosquitoes being killed by using the vector-based controls). 

Results for the Zika infections by day for human hosts in the intervention simulation 

are shown in Figure 19. While the data reaches the peak at around day 150 versus the 

peak at around day 180 in the intervention simulation, the model clearly tallies with the 

data. 

 

Figure 19. The intervention modeling result, where the x axis is number of days 

starting from 1 August 2016, and the y axis is the accumulated cases of Zika 

infection. The grey line is the modeled, and the orange line is the data. 

3.5 Conclusions 

In this study we propose a novel SEIR intervention model, SEIR-IM to evaluate the 

emerging interventions that combats vector-borne diseases, and applies the model to 

the 2016 Zika epidemic in Miami-Dade County, Florida as a case study. We find that 

vector-borne disease intervention strategies promote disease control and prevention in 

the context of humans, vectors, and human-vector contact. In particular, the host-based 

controls such as avoiding traveling to virus-active areas aim to separate people from 

virus; the vector-based controls such as outdoor sprayings and LLINs aim to minimize 
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vectors; the contact-based controls such as vector repellent aim to reduce the contact 

between humans and vectors. 

To model the impacts of the three interventions, namely the host-based controls, the 

vector-based controls, and the contact-based controls, on the transmission cycles of 

vector-borne diseases, we define four intervention parameters in the SEIR-IM. They 

are the new transmission probability from vector to human  𝛽2
𝐻 by using the contact-

based controls, the new transmission probability from human to vector  𝛽2
𝑉 by using 

the contact-based controls, the proportion of the humans who are not susceptible to Zika 

virus by using the host-based controls   𝑑𝐻, and the proportion of the vectors that are 

killed by using the vector-based controls  𝑑𝑉. Using the MCMC approach, we estimate 

the four unknown intervention parameters   𝛽2
𝐻,   𝛽2

𝑉,  𝑑𝐻 , and 𝑑𝑉  to be 0.39, 0.18, 

0.98 and 0.99. Although 0.98 usage of the host controls in Miami-Dade County seems 

overestimated, it is modeled as a representative of all interventions sharing the nature 

of the bed-net usage for vector-borne diseases control and prevention, for instance, 

wearing long-sleeved shirts and long pants, using screens on windows and doors, and 

avoiding traveling to virus-active areas. In general, the proportion of the humans who 

are insusceptible to Zika due to using the host-based controls, regardless of with or 

without awareness to completely avoid contact with vectors, are 98%. 

Our results confirm findings by others that compartmental models can depict the 

macro-scale transmission dynamics of diseases based on data accessible at an aggregate 

scale and revealing valuable general characteristics of the diseases (Goswami & 

Shanmukha, 2020; Griffin et al., 2010; Hay et al., 2010). Within the simulation, we 

recognize one general characteristic of vector-borne diseases modeling. At early stage 

of an outbreak, few people would utilize interventions. In this case, the simplified 

assumptions of the compartmental modeling are reasonable to model a disease. As the 
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epidemic spreads locally and widely, governments begin applying public interventions, 

and people start using individual interventions. At that time, the baseline model fails to 

understand the disease and parameters regarding the interventions applied must be 

included in order to achieve the disease’s modeling. Another reason is that vector-borne 

diseases have distinctive lifestyles and transmission cycles in comparison to non-

communicable diseases, which makes the spread of the diseases complicated and 

unpredictable. Additional factors such as the biology of the vector itself, host immunity, 

geography, and climate must also be considered. This is also why the SEIR-IM cannot 

perform long-term prediction. 

In this study we pay little attention to a heterogeneous mixing in a target population 

as well as individual heterogeneity and stochasticity in probability of infection. In 

general, our model is incapable of capturing heterogeneity and stochasticity among 

pathogens, hosts and vectors in respect to climate, biological, geographical, behavioral, 

social, economic and environmental variables at a local scale. Due to the underlying 

simplified assumptions, i.e. well-mixed populations in which all individuals have equal 

chance of contact, the SEIR-IM neglects spatiotemporal variation in human-vector 

contact and fails examining the transmission dynamics of diseases emerging from 

complicated interactions among multi-species agents at a local scale. 

Despite these limitations, our model provides an appropriate tool for a range of 

stakeholders to explore the potential influence of emerging interventions on vector-

borne disease transmissions and help determining optimal policy or program for 

elimination of the diseases. Due to the convenient simplified assumptions, our model 

also requires less in computation ability and memory, and has a good performance in 

parameter estimation, model fit and model parameterization. These ultimately lead to 

the built SEIR-IM with the potential goal of global eradication of vector-borne diseases.  
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4. Model-based Evaluation of Human Mobility and Prevention 

Behavior 

4.1 Introduction 

Human mobility and prevention behavior are two key factors to the transmissions 

of vector-borne diseases. Mathematical models such as aggregate compartmental 

models and disaggregate individual-based models are useful to study these diseases. 

However, the compartmental modeling is often limited by over-simplified assumptions, 

such as the spatially and temporally even distributions of virus transmission rate, 

human-vector contact rate, human demographics, mobility and behavior. For instance, 

several studies assume that people either work or study from 9:00 am to 5:00 pm, 

ignoring temporal variations (e.g., weekday vs. weekend, daytime vs. nighttime) and 

individual variations (e.g., night shift worker, retired people, or unemployed people), 

while others simply assume that interaction between humans and mosquitoes is random 

(Adams & Kapan 2009; Meloni et al., 2011; Belik et al., 2011). 

To cope with these limitations discussed above, individual-based models have been 

developed. Perez and Dragicevic (2009) considered the spread of a communicable 

disease in an urban environment as a result of individuals' interactions in a geospatial 

context and developed an Agent-Based Model (ABM*2). To represent the spatial 

heterogeneity and the complexity involved in infectious diseases diffusion, the model 

endowed human agents with mobility through a transportation network allowing them 

to move between places. Their results provide an insight into the application of the 

agent-based modelling approach to calculate the infected agents in specific urban 

environments and time frames emerging from agents’ interactions. There are two 

additional reasons that make this modeling method significantly meaningful and 
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realistic. First, chance often greatly affects the outbreak of an infectious disease. In a 

given population, sometimes we may see an outbreak occur; at other times, outbreaks 

would not happen under similar conditions (Vynnycky and White, 2010). Second, a 

susceptible individual may contact more than one infectious individual, but only one of 

them would have caused the infection (Vynnycky and White, 2010). However, 

compartmental models are incapable of modeling such two facts. 

To model the two facts above: (1) chance, this agent-based modeling method uses 

the Reed-Frost equation to calculate individuals’ risk of the infection, draws a number 

at random and specifies the range where it is located; and (2) only one effective 

exposure to virus, an ABM once determines whether an individual is exposed, and 

ignores their possible, following exposures to virus. 

The Reed-Frost equation is defined as follows (Vynnycky and White, 2010): 

λ = 1 − (1 − 𝑝)𝐼𝑡 

where p is the probability of an effective contact between two individuals in each time 

step 𝑡, and 𝐼𝑡 is the number of infectious individuals at time t. A traditional ABM 

assumes that individuals mix random and even, and p is identical to all individuals. 

However, the p varies temporally and spatially (e.g. an individual would have high 

contact probabilities in the daytime or would contact few individuals when they go to 

work). This is why an agent-based model works better in a small population such as 

hospital, school or workplace. Therefore, to simulate an infectious disease in a county 

or coarser level using this method, calculating risk of the infection that is specific to an 

individual is important and will be studied in this dissertation research. 

*2: ABM in Chapter 4 refers to Agent-Based Model 

4.2 Literature Review 

Human behavior as a key factor has been studied to drive the variation in host-
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vector contacts (Galvani & May, 2005; Perkins et al., 2013; Reiner et al., 2014; Smith 

et al., 2007; Steven T. Stoddard et al., 2009). In this section, we conduct a model-based 

investigation to evaluate the importance of the variation in host-vector contact due to 

human behavior to the transmission cycles of a vector-borne disease. Such exploration 

is important to the associated public health intervention strategies. 

In the literate of review, agent-based models have become well established in the 

past two decades by viewing vector-borne disease transmission dynamics as a complex 

adaptive system (Alderton et al., 2016; Dommar et al., 2014; Jacintho et al., 2010; Jindal 

& Rao, 2017; Manore et al., 2015; Mniszewski et al., 2014; Mulyani et al., 2017). 

Alderton et al. (2016) presented a new ABM for investigating the 2013 T.b.rhodesiense 

human African trypanosomiasis (rHAT) outbreak in Eastern Province, Zambia and 

explored the influence of multi-hosts’ movement including human, cattle and other 

domestics animals. This rHAT ABM permits incorporating finer-scale human mobility 

and demographic attributes such as age and gender into the simulation. Dommar et al. 

(2014). formulated a network-based ABM for understanding the spatiotemporal 

transmission of a chikungunya outbreak driven by tropical rainfall, human mobility and 

social structures, where host agents ‘live’ in the network nodes and are allowed to travel 

to their neighborhood nodes.  

However, the ABMs cited above often ignore the interrelatedness of human 

behavior and an epidemic as well as dynamic patterns of contact between hosts and 

vectors. In a disease outbreak event, human mobility as a key behavioral factor may 

lead to great exposure to vectors across locations that people visit and ultimately high 

transmission rates (S. T. Stoddard et al., 2013). And on the other hand, increased 

distributions of prevention behavior such as vaccination (Chen, 2006; Griffin et al., 

2010; Perisic & Bauch, 2009a, 2009b), bed-net usage (Barnes et al., 2009; Kleinschmidt 
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et al., 2007; O’Meara et al., 2008) and outdoor sprayings (Griffin et al., 2010; Shanks 

et al., 2005), and ultimate, expected declines in infection often occur. A greater 

understanding of such complicated interrelatedness of human behavior and disease 

transmissions will aid disease prevention and control as well as associated public health 

policy-makings.  

Against this background, we propose a novel agent-based model, Activity-ABM 

that couples of individual-scale human daily mobility and travel behavior, human 

prevention behavior, and host-vector contact dynamics with virus transmission cycles. 

This proposed Activity-ABM can be applied to answer the following questions: What 

prevention should be the most effective? Where prevention should be targeted? What 

mobility could generate large amounts of infection in the human population? Who 

would be the most likely to get infected with virus? The model also addresses modeling 

host-vector contact dynamics driven by human mobility and prevention behavior. We 

assume that individual exposure to vectors varies as activities that they perform and 

preventions that they use. Using a simple example, high host-vector contact rates may 

occur when people stay at home versus low contact rates when they go to school/work. 

Individual heterogeneity in human mobility and prevention behavior causes dynamic 

interaction between hosts and vectors as well as altering interaction between individuals 

and environments. These dynamics often lead to unexpected, emergent outbreaks. A 

deeper understanding of such dynamics will also help health-related policy-makings. 

The rest of this section is organized as follows. Section 4.2 presents the detailed 

methodology including the overview of the Activity-ABM as well as the four 

components embedded the Activity-ABM. Section 4.4 focuses on the results for the 

case study, scenario test and uncertainty analysis. Section 4.5 concludes with a 

summary of findings and discusses problems as well as future works. 



 

80 

4.3 Methodologies 

4.3.1 Overview of the Activity-ABM 

The Overview, Design concepts, & Details Protocol (ODD) is a set of universal and 

standardized guidelines that outline an ABM’s purpose, variables, framework, and data 

(Grimm et al. 2006; Grimm et al. 2010). According to the OOD, this section describes 

the proposed Activity-ABM model. Figure 20 illustrates the overview of the proposed 

Activity-ABM that consists of four primary components: (1) human agents’ daily 

mobility and travel behavior, (2) human agents’ prevention behavior, (3) mosquito 

agents, and (4) virus transmission engaged in human agents’ behavior, mosquito agents’ 

distribution and human-mosquito contact dynamics.  

 

Figure 20. Overview of the Activity-ABM model and conceptual illustration of this 

model for daily travels of a population, daily prevention behaviors of the 

population, mosquito distribution, and the sub-models underlying this proposed 

framework.  

The Activity-ABM recognizes the relationship between an epidemic and human 

behavior at the individual- and population-levels. Therefore, the model begins with an 
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activity-based model that creates a simplified microscopic synthetic population to 

represent the actual population and generates daily travels of the population at the level 

of individual travelers. Next, the model creates mosquito agents, and updates the health 

states of humans and mosquitoes based on their risk of the infection associated with 

where they are, what activity they perform, what prevention behavior they use and the 

number of infectious individuals in their neighborhoods. The proposed model serves 4 

purposes: 

1). To simulate the mobility and travel behavior of humans, including travel 

frequency, travel propose, travel mode, travel duration, travel destination locations, 

and stay duration. These travels are simulated on a travel diary survey, the 

American Community Survey, and many GIS-based environmental and zonal 

attributes (Table 2). Each human agent features person-, household-, and 

mobility- level characteristics such as age, income, number of children in the 

household and activity records (Table 1). 

2). To simulate the individual-level and population-level disease prevention 

behavior of humans, including the host controls (e.g. travel ban, stay at home and 

bed-net usage), the vector controls (e.g. outdoor spraying and drain any water 

containers), and the host-vector contact controls (e.g. mosquito repellent usage). 

Lacking the ground data, these prevention behaviors are estimated by model 

fit, and distributed random. Each human agent features whether they use 

prevention as well as what prevention they use. 

3) To simulate the distribution of mosquitoes including the number of mosquitoes 

per census tract and mosquito agents in each tract. Lacking the ground data, the 

mosquito population per tract is calculated based on human population from 

the American Community Survey, and mosquito agents are finally generated 
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for each tract. 

4). To simulate the transmission between humans and mosquitoes, including the 

number of infectious individuals in each agent’s location, contact probability 

engaged in their behavior, and risk of the infection. Each agent features a health 

state that is updated based on the current time, the current location, the 

behavior, and the physical activity of the agent. 

Design Concepts. The Activity-ABM views an epidemic as a complex adaptive 

system where the disease transmissions emerge from complex agents interacting with 

each other as well as environments. The whole epidemic system’s behavior is more 

complex than aggregation of agents’ actions but also adapting to the changing 

environment. The primary concepts of the model, including adaptation, stochasticity, 

interaction and observation are discussed as follows: 

1). Stochasticity. For mosquito agents, birth and death behaviors are random and 

determined by a birth rate. For both human and vector agents, infections are random 

chances determined by risk of the infection. 

2). Interaction. Human agents due to daily mobility interact with the environment. 

Human agents and vector agents interact with each other in a spatial and temporal 

explicit manner to transmit the virus. 

3). Observation. The output of the Activity-ABM are a .txt file of the county-level 

aggregation of infections by three hours for human hosts, a .txt file of the county-

level aggregation of infections by day for human hosts, and a .csv file of 1000 

random-selected human agents’ mobility and health state per three hours, from 

which a shapefile file and a point map are generated per day. 

Spatial Scale. The model utilizes at the census tract level, and the census tracts are 

used to query the neighborhood of an individual agent in the simulation. For example, 
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a human agent staying in a census tract, all mosquito agents in the same tract are counted 

when calculating the person’s risk of the infection.  

Temporal Scale. If the temporal resolution was very high, more possible contacts 

between humans and mosquitoes would occur, and the simulation result would be 

greater than the real cases. If the resolution was coarse, it would increase the change of 

missing possible host-vector contacts, and cause the simulation result less than the real 

cases. At the same time, high temporal resolution could increase the demand in 

computation ability and memory. In this study we determine the temporal scale of the 

model based on minimizing the model and the data as well as computer memory and 

computation ability; therefore, time in the model is split into 8 time-steps per day across 

a 285-day period. 

Scenario Test. We build three local-context scenarios that apply each control to 100 

random-selected census tracts, and compare the simulation results to identify what 

prevention is the most effective in the local context (Table 7). In scenario 1, the host-

based controls are evaluated. If human agents in the 100 selected census tracts use the 

host-based controls, they will be insusceptible to Zika infection. In scenario 2, the 

vector-based controls are evaluated. If mosquito agents in the 100 selected census tracts 

use the vector-based controls, they will be insusceptible to Zika infection. In scenario 

3, the contact-based controls are evaluated. If human agents and mosquito agents in the 

100 selected census tracts use the contact-based controls, they will be susceptible to 

Zika infection with a low probability estimated in the baseline modeling exercise (0.1 

(e-5) and 0.15 (e-5), respectively). These results can be explored, in depth, to make the 

associated public health intervention strategies evidenced-based. For example, how 

does localized intervention strategies influence the population-based public health? Or 

the model serves as evidence to identify the best intervention strategy. 
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Table 7. Description of the scenarios 

Scenario 
Agents’ Attributes Regarding Prevention 

Behavior 
Prevention Behavior 

𝟏 Human agent’s risk infection ( Yes: 0; No 1) The Host Control 

𝟐 Mosquito agent’s risk infection (Yes: 0; No 1) The Vector Control 

𝟑 
Human/mosquito agent’s risk infection 

(from the baseline modeling exercise) 
The Contact Control 

Uncertainty Analysis. To assess and evaluate the performance of the Activity-

ABM, uncertainty analysis is conducted by fixing all inputs of the baseline model and 

testing what range of the output the model generates. This section builds a large-scale 

Activity-ABM where 3,000,000 human agents and 5,000,000 mosquito agents are 

created and their current location, current activity, host-vector contact probability, risk 

of the infection and health state are updated in 8 time-steps per day. Such large- and 

finer- scale modeling causes a great demand in computer memory and computation 

ability. In the uncertainty analysis the Activity-ABM only runs 5 times. 

4.3.2 Human agents in the Activity-ABM 

Human agents. Human agents are created using the demographic census data and 

a traditional travel diary survey. Each human agent is given their home location in the 

census tract level, and socio-economic and demographic attributes (Table 1). The 

Activity-ABM then generates their daily mobility and travel routine represented by a 

list of trips including current activity, travel purpose (next activity), current location, 

travel destination location, current time (departure time), travel mode, travel duration 

(arrival time), and random attributes each human agent with what prevention they use. 

Human agents’ daily mobility and travel behavior. The dynamics of human daily 

mobility and travel behavior, the activities generated to represent human daily mobility 

as well as the transport mode, the start time, the duration, the arrival time and the origin-

destination locations for each activity have been simulated and predicted by 

transportation geographers using activity-based models (Goulias et al., 2011; Kitamura 
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& Fujii, 1998; Veldhuisen et al., 2000; Bhat et al., 2004; Pendyala et al., 2005; W. 

Davidson et al., 2010; Shiftan & Ben-Akiva, 2011; Scherr et al., 2019; Baqueri et al., 

2019; Yasmin et al., 2015; B. Davidson et al., 2011). This activity-based method 

simulates human daily mobility and forecasts travel demand at the level of individual 

travelers, and the generated activity-based mobility that refers to traveling between 

those locations where people conduct activities results in dynamic exposure to vectors 

and ultimate activity-specific transmission rates (Steven T. Stoddard et al., 2009). For 

the purpose of studying vector-borne diseases underlying dynamic host-vector contact, 

ABMs are effective as individual exposure to vectors can be calculated by the sum of 

exposure through their activity-based daily routine as well as their activity- and 

prevention- specific risk of the infection. 

To simulate a disease outbreak underlying human mobility, Chapter 2 begins with 

creating a synthetic population that represents the actual population using the Iterative 

Proportional Updating algorithm proposed by Ye et al. (Ye et al., 2014), and generates 

individual-scale activities and travels of the population using the Prism-Constrained 

Activity Simulation Framework proposed by Pendyala et al. (Pendyala et al., 2005). 

Their framework has been developed to investigate travels on weekdays and assumes 

that travel patterns of an individual are stable in the short term. However, weekend 

travels plays a crucial role in the spread of an epidemic (Cooley et al., 2016; Mao, 2011). 

To generate day-varying activities of an individual, Chapter 2 integrates Bayesian 

network into the Prism-Constrained activity-based model. 

Human agents’ prevention behavior. Chapter 3 summarizes vector-borne disease 

intervention strategies into three categories in the context of host, vector and host-vector 

contact (Bi et al., 2020; E. Bonyah et al., 2019; Bouzid et al., 2016; Nepal. et al., 2016; 

Goswami et al., 2018; Hunter, 2016; Ngonghala et al., 2019; Rather et al., 2017; Singh 
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et al., 2018), and defines how they become effective in the transmission cycles of 

diseases (Agusto et al., 2013; Killeen & Smith, 2007); Griffin et al., 2010; Musso et al., 

2015; M. Otero et al., 2011; Hyun M Yang, 2000). In particular, human agents who use 

the host controls are not susceptible to virus since the host controls such as regular bed-

nets usage, wearing long clothing, and avoiding traveling to virus-active areas prevent 

diseases by completely separating humans from vectors; human agents who use the 

contact controls have a low human-vector contact rate since the contact controls such 

as mosquito repellent prevent diseases by reducing human-vector contacts; the vector 

controls such as outdoor sprayings and long-lasting insecticide treated nets prevent 

diseases by minimizing vectors. 

4.3.3 Mosquito agents in the Activity-ABM 

Researchers conducted many studies to model mosquito population and seasonal 

movement (Depinay et al., 2004; Gu & Novak, 2009; Kraemer et al., 2015; Messina et 

al., 2016; Monaghan et al., 2016; Samy et al., 2014). In review of these studies, 

independent variables such as nutrient competition, socioeconomic status, land-cover 

and land use, resource attraction, predation and climate have been proposed to be 

related to mosquito distribution and movement (Table 8). Depinay et al. proposed that 

predation is an important factor to vector distribution; therefore, the Activity-ABM 

takes into account human population density to create mosquito agents in the study area. 

Mosquito agents. We assume that mosquito agents in the model cannot move in a 

long distance although human agents can move autonomously from a short- to long- 

distance at any time. At the start of the simulation, 5,000,000 “static” mosquito agents 

are created according to the human population density available thought the ACS, and 

each mosquito agent is given their home location in the census tract level. At the end of 

each simulation day, the model updates the mosquito births and deaths. Births and 
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deaths random occur in the study area at a rate of 0.128 (Kucharski et al., 2016), and 

the lifespan of mosquito is 15 days (Lessler et al., 2016). Table 9 depicts all agents 

living in the Activity-ABM as well as their state variables and scales. 
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Table 8. Literature review of Mosquito Distribution and Movement Modeling 

Model Method Objective Source 

Individual-

based Model 

(IBM) 

Temperature (life span), Moisture (e.g. 

precipitation and relative humidity), 

Nutrient Competition (mortality in the 

larval stage), Predation and Disease, and 

Dispersal (seeking blood meals and 

oviposition sites) 

Anopheles 

Population 

Dynamics 

Depinay et 

al. 2004 

Individual-

based Model 

Landscape (20 houses that are aligned 

diagonally, vertically or horizontally), and 

Resource Attraction (hosts and oviposition 

sites, e.g. random flight when the resource 

was not within the mosquito’s perception 

range, and directional flight) 

Status and 

Movement 

of 

Anopheles 

Mosquitoes 

Gu and 

Novak 2009 

Geographic 

Information 

Systems-based 

Model (GIS) 

Temperature, Rainfall and Photoperiodic 

Responses 

(using ESRI ArcGIS, Spatial Analyst and 

Arcobjects that determines the start of 

spring egg hatching and onset of autumn 

egg diapause for all grids within the study 

zone) 

Survival 

and 

Seasonal 

Activity of 

Aedes 

Albopictus 

Medlock et 

al. 2006 

Boosted 

Regression 

Trees(BRT) 

Temperature, Precipitation, Humidity, 

Vegetation Indices and Urban land cover 

(predict the probability of vector occurrence 

from 0 to 1) 

Global 

Distribution 

of Aedes 

Mosquitoes 

Kraemer et 

al. 2015 

Messina et 

al. 2016 

Ecological Niche 

Modeling 

Climate, Socioeconomic Status, Land-

cover, Mosquito Abundance, and 

Accessibility (explore what factors driven 

Zika risk for different zones) 

Global 

Geographic 

Potential of 

Zika 

Samy et al. 

2016 

Forecasting 

Regional Model 

(FRM) 

Remote Sensing-based Normalized 

Difference Vegetation Index (NDVI), 

Temperature, Precipitation, and Humidity 

(multiple linear regression analyses) 

Aedes 

aegypti 

larval 

indices 

Estallo et al. 

2008 

Meteorologically 

Driven Models 

Poverty, DENV and CHIKV transmission 

data, Transportation data, Temperature and 

Rainfall (daily counts of egg, larval, pupal 

and adult Ae. Aegypti using Skeeter Buster 

and DyMSiM) 

Seasonal 

Occurrence 

and 

Abundance 

of Aedes 

Aegypti 

Monaghan et 

al. 2016 
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Table 9. Agents and State Variables in the Activity-ABM 

Agents State Variables 

Human (individual moving agents) 

 

Humans are created by the individuals in the BN-ABM 

(Chapter 2). 

 

In the Activity-ABM, all humans move to different census 

tracts based on their activity records generated from the BN-

ABM (Chapter 2). 

Unique ID 

Activity Records 

Current location 

Risk of the infection 

Health state 

Mosquito (individual static agents) 

 

Mosquitoes are created in the Activity-ABM. 

Unique ID 

Location 

Risk of the infection 

Health state 

Environment (Census tract) 

Unique ID 

Number of human agents by 

health state 

Number of mosquito agents in 

health state 

4.3.4 Virus Transmission Simulation in the Activity-ABM 

The virus transmission cycles between humans and vectors are formulated as 

follows. The model builds on an earlier compartment model that assumes the 

acquisition of immunity to diseases after recovery (Kucharski et al., 2016), but is 

extended to include dynamics in human-vector interaction due to human behavior. 

Individuals begin susceptible (S) to exposed (E) with risk of the infection determined 

by effective contact probability between any two individuals and number of infectious 

individuals in their neighborhoods. Human agents become infectious (I) after 6 days 

and recovered (R) after 5 days [76], while mosquito agents become infectious (I) after 

7 days and their recovery (R) will not be considered in the simulation since the average 

lifespan of mosquito is 15 days (Kucharski et al., 2016). 

Risk of the infection. To compute risk of the infection of an individual in the 
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Activity-ABM, the Reed-Frost equation is used: 

 

𝑃−𝑖,𝑗(𝑡) = 1 − 𝑃𝑖,𝑗(𝑡) 

𝐼𝑅𝑖(𝑡) = 1 − (1 − 𝑃𝑖,𝑗(𝑡))𝐼𝑣(𝑡) 

 

where 𝑃𝑖,𝑗(𝑡)  is the probability of an effective contact between individual 𝑖  and 

vector 𝑗 at time t, 𝑃−𝑖,𝑗(𝑡) is the probability that individual 𝑖 and vector 𝑗 cannot 

interact with each other at time t, 𝐼𝑣(𝑡) is the number of infectious vectors at time t in 

the neighborhood of individual 𝑖, and 𝐼𝑅𝑖(𝑡) is risk of the infection for individual 𝑖. 

Earlier Reed-Frost equation assumes that individuals mix random, defines 𝑃𝑖,𝑗(𝑡) 

identical to all individuals in a population, and ignores dynamic interaction among 

individuals due to their mobility and prevention behavior, for instance, individual 

mobility on weekdays and weekends, individual mobility during daytime and nighttime, 

individual mobility in commercial areas and residential areas, and prevention behavior 

for children, student, employed and unemployed individuals. These dynamics cause 

host-vector contacts to various extents in space and time and ultimate transmission 

dynamics of diseases. The proposed Activity-ABM takes into account host-vector 

contact dynamics by assuming that the effective human-vector contact probability 

𝑃𝑖,𝑗(𝑡) varies as daily activities and prevention behavior of a human agent, thereby 

changing their susceptibility to diseases. In the Activity-ABM, the Reed-Frost equation 

is modified as follows: 
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𝑃−𝑖,𝑗(𝑡) = 1 − 𝑃𝑖,𝑗,𝑎(𝑡) 

𝐼𝑅𝑖,𝑎(𝑡) = 1 − (1 − 𝑃𝑖,𝑗,𝑎(𝑡))𝐼𝑣(𝑡) 

 

where a is the activity that individual 𝑖 performs at time t, 𝑃𝑖,𝑗,𝑎(𝑡) is the probability 

of an effective contact between individual 𝑖 and vector 𝑗 at time t specific to activity 

a, 𝑃−𝑖,𝑗(𝑡) is the probability that individual 𝑖 and vector 𝑗 will not interact with each 

other at time t, 𝐼𝑣(𝑡) is number of infectious vectors at time t in the individual 𝑖’s 

neighborhood, and 𝐼𝑅𝑖,𝑎(𝑡) is the risk of the infection for individual 𝑖 when they 

conduct activity a. If individual 𝑖 use prevention, their 𝑝𝑖,𝑗(𝑡) will be modified. In 

particular, 𝑝𝑖,𝑗(𝑡) will be 0 if individual 𝑖 use the host control, or will decrease if he 

uses the contact control. 

Initial states. The CDC reported that the local infection in Miami-Dade Country 

began on 1 August 2016, when is the initial date of the baseline modeling exercise. 

According to the United States Census Bureau, the human population in Miami-Dade 

Country on that day was 2,692,990. Estimating the initial state of the vectors is difficult. 

As Kucharski et al. proposed, the infected and infectious hosts/vectors are initially equal 

(Kucharski et al., 2016). On 1 August 2016, Miami-Dade County had 99 travel-related 

infections and 14 local-acquired cases. The model assumes that the 99 travel cases 

aroused the 14 local infections, and estimates 203 infected (E) and 203 infectious (I) 

mosquitos for the initial simulation. 

Simulation. Step 0 (initialization) – all human agents and their activity-based 

mobility, sociodemographic attributes, prevention behavior, and health state, and 
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mosquito agents and their location and health state are initialized and created. Each step, 

the health states of all human agents and vector agents living in the Activity-ABM are 

updated, which is based on the census tract that each agent stays in, the number of 

infectious individuals in the census tract, and the contact probability in regards to the 

current activity and prevention behavior of the individual. 

Baseline, Intervetion and Scenario Modeling Exercise: The Activity-ABM 

model starts with a baseline modeling exercise that considers only human mobility. To 

include human-vector contact dynamics due to human mobility, we define three 

parameters. They are the probability of an effective contact between humans and 

infectious mosquitoes when people conduct home activities 𝑃ℎ𝑜𝑚𝑒, the probability of 

an effective contact between humans and infectious mosquitoes when people conduct 

work/school activities 𝑃𝑤𝑜𝑟𝑘/𝑠𝑐ℎ𝑜𝑜𝑙, and the probability of an effective contact between 

humans and infectious mosquitoes when people conduct other activities  𝑃𝑜𝑡ℎ𝑒𝑟𝑠. Table 

10 shows all parameters required in this baseline modeling exercise. Next is the 

intervention model exercise that considers both human mobility and prevention 

behavior. To include human-vector contact dynamics due to human prevention behavior, 

we define three parameters. They are the new probability of an effective contact 

between humans and infectious mosquitoes due to using the contact-based 

controls 𝑃𝑐𝑜𝑛𝑡𝑎𝑐𝑡, the percentage of humans using the host-based controls 𝑃ℎ𝑜𝑠𝑡, and the 

percentage of mosquitos affected by the vector-based controls  𝑃𝑣𝑒𝑐𝑡𝑜𝑟. Table 11 shows 

all parameters required in this intervention modeling exercise. Finally, three scenarios 

are built to evaluate what prevention is the most effective in the local context. 
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Table 10. The parameters required in the baseline modeling exercise of the 

Activity-base model. 

 

 

Parameter Definition Sources Values 

Num_mos Initial population for mosquito agents Chapter 3 5,000,000 

Num_human Initial population for human agents 
The ACS 

data 
2,680,607 

Num_infected_mos 
Initial population for infected mosquito 

agents 
Chapter 3 100 

Num_infectious_mos 
Initial population for infectious mosquito 

agents 
Chapter 3 100 

Num_infected_humans 
Initial population for infected human 

agents 

The CDC 

data 
7 

Num_infectious_humans 
Initial population for infectious human 

agents 

The CDC 

data 
7 

Birth/Death_rate_mos Mosquito birth/death rate 

Kucharski 

et al., 

2016 

0.128 

EI_human Latent period for human agents 
Lessler et 

al., 2016 
6 (days) 

IR_human Recovery period for human agents 
Lessler et 

al., 2016 
5 (days) 

EI_mos Latent period for mosquito agents 
Lessler et 

al., 2016 
11 (days) 

Life_mos Life span for mosquito agents 

Kucharski 

et al., 

2016 

15 (days) 

𝑃ℎ𝑜𝑚𝑒 

Probability of an effective contact between 

humans and infectious mosquitoes when 

people conduct home activities 

Modeled Unknown 

 𝑃𝑤𝑜𝑟𝑘/𝑠𝑐ℎ𝑜𝑜𝑙 

Probability of an effective contact between 

humans and infectious mosquitoes when 

people conduct work/school activities 

Modeled Unknown 

𝑃𝑜𝑡ℎ𝑒𝑟𝑠 

Probability of an effective contact between 

humans and infectious mosquitoes when 

people conduct other activities 

modeled Unknown 
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Table 11. The parameters required in the intervention modeling exercise of the 

Activity-base model. 

Parameter Definition Sources Values 

 𝑃𝑐𝑜𝑛𝑡𝑎𝑐𝑡 
The new probability of an effective 

contact between humans and infectious 

mosquitoes due to using the contact-based 

controls 

Modeled Unknown 

 𝑃h𝑜𝑠𝑡 
The percentage of humans using the host-

based controls 

Modeled Unknown 

𝑃𝑣𝑒𝑐𝑡𝑜𝑟 The percentage of mosquitos affected by 

the vector-based controls 

modeled Unknown 
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4.4 Data Sources 

To test the efficacy of the proposed Activity-ABM, this study applies the model to 

the 2016 Zika outbreak in Miami-Dade County, Florida. The required data are the 

counts of Zika cases in Miami-Dade County, a traditional travel diary survey, the 

American Community Survey, and multiple GIS datasets. In the Activity-ABM, the 

travel diary survey is combined with the ACS data to create a synthetic population that 

represent the actual population, and used to generate individual daily activities for the 

entire population. The model also requires the counts of Zika cases to estimate the 

modeling parameters and validate the simulation results. 

4.4.1 Zika Dataset 

In 2016-17, the CDC has daily released the counts of Zika cases by county across 

Florida, including travel-related cases, locally-acquired cases, pregnant women cases 

and sexual-transmitted cases. This study focuses on the local Zika transmission in 

Miami-Dade and collects the locally-acquired cases during 1 August 2016 to 17 May 

2017 available through the CDC. 

4.4.2 Travel Diary Survey Dataset 

The 1999 Southeast Florida Household Travel Survey that was collected by the 

Florida Department of Transportation (FDOT) Districts and metropolitan areas is 

downloaded. As the study area is Miami-Dade County, the Miami-Dade travel dataset 

is extracted from the survey including Broward, Miami-Dade and Palm Beach. 
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4.4.3 Census and Environmental Data 

The 2012-2016 ACS 5-year estimates data at the census tract level in Miami-Dade 

regarding age, household size, household income, number of workers in a household 

and number of households is downloaded. A set of open GIS environmental and zonal 

datasets, including environmental endangered sites, contamination areas, dump sites, 

golf sites, parks, major malls, school enrollment, groceries, restaurants and land cover 

and land use, are also downloaded via the Miami-Dade County. For the grocery and 

restaurant data in Miami-Dade County, Yelp Search API is used to access the local 

businesses and search all groceries or restaurants. They are then aggregated to the total 

per census tract. The details are shown in Section 2.4.2. 

4.5 Results 

4.5.1 Mosquito Population 

The weights for mosquito agents are shown in Figure 21. According to the 2012-

2016 ACS 5-year estimates data, human population density in the south part of Miami-

Dade County reaches to the peak, where the maximum mosquito population occurs. At 

the beginning of the simulation, 5,000,000 “static” mosquito agents are created and 

distributed based on these calculated weights. 
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Figure 21. The tract-level weights for mosquito agents in the study area computed 

from the human population density. A high weight of a tract is interpreted as a 

large mosquito population in the tract. 

4.5.2 Human Infections in the Baseline Modeling Exercise 

The county-level aggregation of Zika infections by day for human hosts from the 

baseline modeling is shown in Figure 22. The baseline modeling parameters, including 
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the effective human-vector contact probabilities for home activity  𝑃ℎ𝑜𝑚𝑒 , for 

work/school activity  𝑃𝑤𝑜𝑟𝑘/𝑠𝑐ℎ𝑜𝑜𝑙 , and for others   𝑃𝑜𝑡ℎ𝑒𝑟𝑠 , are estimated by locally 

minimizing the simulation result and the CDC Zika data. They are estimated to be 0.4 

(e-5), 0. 1 (e-5) and 0. 15 (e-5), respectively. Our baseline modeling results confirm 

findings by others that high risk of Zika infection happens when people stay at home 

while low risk of infection happens when people go to school/work (Stoddard et al., 

2009). Within the simulation, the first 60 days (1 August 2016 – 30 September 2016) 

experienced a good match of the model and the data (Figure 23). It is noteworthy that 

October 1st 2016 is at the stage that Miami-Dade County implemented the countywide 

truck/aerial adulticide/larvicide outdoor spraying. Thus the 61 day (1st October 2016) 

is the initial date of the intervention modeling exercise. 

 

Figure 22. The baseline simulation result across a 285-day period. The x axis is the 

number of days starting from August 1st 2016, and the y is the accumulated cases 
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of Zika. The blue line is the model prediction, and the yellow line is the data. 

 

Figure 23. The baseline simulation result for the first 60 days (August 1st to Sept 

30th 2016). The x axis is the number of days starting from August 1st 2016, and 

the y is the accumulated cases of Zika. The blue line is the model prediction, and 

the yellow line is the data. 

4.5.3 Human Infections in the Intervention Modeling Exercise 

The county-level aggregation of Zika infections by day for human hosts from the 

intervention modeling is shown in Figure 24. The intervention modeling parameters, 

including the new probability of an effective contact between humans and infectious 

mosquitoes due to using the contact-based controls  𝑃contact, the percentage of humans 

using the host-based controls  𝑃host, and the percentage of humans using the host-based 

controls  𝑃vector are estimated be 0.05 (e-5), 0. 6 and 0. 8, respectively. 
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Figure 24. The baseline and intervention simulation result during August 1st 2016 

to May 12th 2017. The x axis is the number of days starting from August 1st 2016, 

and the y is the accumulated cases of Zika. The blue line is the model prediction, 

and the red line is the data. 

4.5.4 Human Infections in the Scenario Modeling Exercise 

The county-level aggregation of Zika infections by day for human hosts from the 

scenario modeling is compared in Figure 25. Across a 100-day period, the human 

infections in the host scenario are the most, while the fewest infections occur in the 

vector scenario. The result suggests that the vector controls are the most effective, as 

the 2016 Zika outbreak in Miami-Dade County ended after an outdoor spraying to 

control mosquitoes. 

Within the simulation, the human infections in the vector scenario are mostly and 

significantly fewer than the host and contact scenarios. In the first 60 days the number 

of infections is similar between the contact scenario and the host scenario, while the 

subsequent simulation shows an increasing difference between these two scenarios, in 

the host scenario mostly with more human infections. After 100 days, the outbreaks in 
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the vector and contact scenarios end, while the infection in the host scenario still 

increases. 

 

Figure 25. The scenario test for the three controls, including the vector-based 

controls, the host-based controls, and the host-vector contact-based controls. The 

x axis is the number of days starting from August 1st 2016, and the y is the 

accumulated cases of Zika predicted from each scenario. The blue line is the 

vector-control scenario prediction, the yellow line is the host-control scenario 

prediction, and the orange line is the contact control scenario prediction. 

4.5.5 Human Infections in the Uncertainty Analysis Exercise 

The county-level aggregation of Zika infections by day for human hosts from the 

uncertainty analysis is compared in Figure 26. In this uncertainty analysis, the baseline 

mode runs five times across a 100-day period. The human infections in the five runs 

shows an initial period of stability, including a similar 50-day infection increase from 

the initial population of 3,000,000 humans. Within the 5-run uncertainty analysis, the 
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human infections of the 1st and 3rd runs shares a peak of 65 at around day 30, before 

being near-stable at around day 60, while the rest 3 runs shares a stable increasing across 

the simulation period. In this case, it is hard to evaluate the uncertainty of the Activity-

ABM since there are only 5 runs for the uncertainty analysis. 

 

Figure 26. The uncertainty analysis result. The x axis is the number of days 

starting from August 1st 2016, and the y is the accumulated cases of Zika. The blue 

line is the model prediction, and the yellow line is the data. 

 4.6 Conclusions 

This section presents a novel model, Activity-ABM that integrates activity-based 

models and agents-based models to evaluate the effectiveness of the prevention 

strategies that combats vector-borne diseases. We find that vector-borne disease 

prevention strategies are primarily related to human mobility and prevention behavior, 

and promote disease control in the context of humans, vectors, and human-vector 

contacts. Takes the 2016 Zika epidemic in Miami-Dade County, Florida as a case study, 
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our modeling results suggest that high risk of Zika infection happens when people stay 

at home while low risk of infection happens when people go to school/work, and the 

vector-based controls are the most effective. This case study also demonstrates the 

efficacy of the proposed, enhanced model for a large-scale application. 

To understand human-vector contact dynamics due to human mobility, we define 

three parameters in the baseline modeling exercise, including the effective human-

vector contact probability for home activities 𝑃ℎ𝑜𝑚𝑒, the effective human-vector contact 

probability for work/school activities  𝑃𝑤𝑜𝑟𝑘/𝑠𝑐ℎ𝑜𝑜𝑙 , and the effective human-vector 

contact probability for other activities  𝑃𝑜𝑡ℎ𝑒𝑟𝑠. By locally minimizing the simulation 

results with the CDC data, we estimate these three baseline parameters  𝑃ℎ𝑜𝑚𝑒 ,

𝑃𝑤𝑜𝑟𝑘/𝑠𝑐ℎ𝑜𝑜𝑙 , and 𝑃𝑜𝑡ℎ𝑒𝑟𝑠  to be 0.4 (e-5), 0. 1 (e-5) and 0. 15 (e-5). Based on this 

baseline modeling results, we can see that high risk of Zika infection often happens 

when people stay at home while low risk of infection often happens when people go to 

school/work (Stoddard et al., 2009). We also define three parameters to include human 

prevention behaviors, namely the host-based controls, the vector-based controls, and 

the contact-based controls. They are the new probability of an effective contact between 

humans and infectious mosquitoes due to using the contact-based controls  𝑃contact, the 

percentage of humans using the host-based controls   𝑃host , and the percentage of 

humans using the host-based controls  𝑃vector, and are estimated be 0.05 (e-5), 0. 6 and 

0. 8.  

To evaluate the effectiveness of the three prevention behaviors, we build three 

scenarios that apply the host-based controls, the vector-based controls or the contact-
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based controls in same locations. Within the scenario simulation across a 100-day 

period, we find that the vector-based controls cause 76 human infections and the 

outbreak ends by day 85; the contact-based controls cause 178 human infections and 

the outbreak ends by day 90; the host-based controls cause 325 human infections and 

the outbreak still occurs by the end of the simulation period. Our scenario results 

suggest that in the local context the vector-based controls are the most effective.  

Our model also allows for individual heterogeneity and stochasticity among 

pathogens, vectors and hosts as well as host-vector-environment interactions embedded 

in the transmission cycles of an epidemic. These interactions and variations are crucial 

to disease prevention and control because they often lead to unexpected and emergent 

outbreaks. Another important distinguishing feature of the Activity-ABM is that it is an 

individual-scale model and facilitates tracking the health state of a human agent who 

has prevention behavior and human infections of the locations that apply prevention 

behavior in a spatially and temporally explicit manner. It adds the ability to test various 

public health intervention scenarios and to identify the best localized intervention 

strategy for a population. For instance, what intervention should be the most effective? 

Where interventions should be targeted? So that local managers can make evidence-

based decisions about what program to support, government and health organizations 

can make proven policy and funding decisions, and practitioners can devise evidence-

inspired programs. The model can also test various modeling initials, for instance, a 

specified, initial distribution of human/mosquito infections, and a specified, initial 

distribution of mosquitoes (e.g. vegetation-based or precipitation-based). 
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However, two issues raise for the model. In this study, we conduct a large-scale 

application of the Activity-ABM, including 5,000,000 mosquito agents, 3,000,000 

human agents, 8 time-step modeling per day, a 285-day simulation period, and 519 

census-tract locations. Such finer-, individual- and large- scale modeling has great 

demand in computation ability and memory. Although we carry out the asynchronous 

multiprocessing, one simulation across a 100-day period still takes 2-3 days, and a 285-

day simulation needs one week or more. Therefore, model fitting and parameter 

estimation is significantly difficult. Another limitation of this model is that agents in an 

ABM are defined to be heterogeneous and thus cause this agent-based modeling 

approach’s high dependency in data. Within the existing literature ABMs are often built 

on a detailed, comprehensive survey (Alderton et al., 2016; Dommar et al., 2014; 

Jacintho et al., 2010; Jindal & Rao, 2017; Manore et al., 2015; Mniszewski et al., 2014; 

Mulyani et al., 2017). Such data is expensive, and never available to the public, and 

ultimately, limits the application of ABMs.  

Despite these limitations, our model provides an appropriate tool for a range of 

stakeholders to explore the potential influence of emerging interventions on vector-

borne disease transmissions and help determining optimal policy or program for 

elimination of the diseases. The case study also demonstrates the efficacy of our model 

for large-scale application, and the data required in the model are always available to 

the public. These ultimately, therefore, leads to the proposed Activity-ABM model with 

high value. 
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5. Summaries, Contributions, Limitations and Future Works 

5.1 Research Summaries 

To examine the role of dynamics in patterns of contact between hosts and vectors 

engaged in human behavior in the transmission cycle of an epidemic, this dissertation 

proposes an activity-based ABM that couples of individual-scale human daily mobility 

and travel behavior, human prevention behavior, and host-vector contact dynamics with 

virus transmission cycles, and applies the model to the 2016 Zika virus in Miami-Dade 

County, Florida as a case study. To evaluate the performance of the model, Chapter 3 

builds a compartmental model (SEIR), and Chapter 5.2 presents detailed comparison 

of these two models regarding model assumption, model fit, parameter estimation and 

model application. An important feature of the Activity-ABM is that it is a local-, large- 

and individual- scale modeling framework and facilitates tracking the health state of an 

individual traveler through time and space, which adds the ability to test various policy 

scenarios to the model. To evaluate what control should be the most effective in the 

local context, Chapter 4 builds three scenarios that random selects 100 locations (census 

tracts) that apply only the host controls, the vector controls or the contact controls, and 

evaluates how effective these controls are. Such investigation helps public health 

intervention strategy-makings that attempt to improve human health in the population 

level, using a simple example, prospective planning of financial resources for 

epidemiologically relevant and cost intensive diseases like dengue. The rest of this 

section is organized as follows. Chapter 5.1 concludes with a summary for the findings 
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from Chapter 2-4. Chapter 5.2 discusses contributions and limitations. 

 

5.1.1 Human Daily Travel Modeling 

Chapter 2 generates the daily travels and activities for the entire population in the 

study area – Miami-Dade County, Florida using activity-based microsimulation method 

that has been developed for transportation modeling and planning. An important 

distinguishing feature of the activity-based model is its ability to test various policy 

scenarios by tracking travel-activity patterns of an individual in a spatially and 

temporally explicit way. Earlier activity-based models have been designed to study 

weekday travels by assuming that individual travels are stable in the short term. 

However, people could have different travels between weekdays and weekends and 

even across days of a week. Compared to weekday travels, weekend travels with 

significantly different patterns are crucial disease control and prevention. Ignoring such 

variation could result in the simulation that is not representative of the underlying 

population. This section aims at extending an activity-based model to model dynamics 

in individual daily travels by defining activity scheduling changes of an individual as 

“daily and uncertain changes”. The proposed activity-based model computes 

probability distributions for six travel-activity attributes i.e. travel frequency, travel 

duration, travel mode, travel destination location, travel propose, and activity duration, 

and interprets the alternating predictive results underlying different time-budgets on 

weekdays and weekends as indicating an activity scheduling change. To conduct this 

task, Bayesian Networks are built to learn the probability distribution for each travel-
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activity attribute and infers the probability that a specific activity attribute arises at a 

given time. This proposed BN-ABM framework is tested by using a case study in 

Miami-Dade County, Florida, and the result demonstrates the efficacy of the enhanced 

model. 

 

5.1.2 Human Prevention Behavior Modeling 

Chapter 3 reviews emerging human (vector-borne diseases) prevention behavior, 

and examines how they become effective in the transmission cycles of the diseases. In 

August 2016, Miami-Dade County implemented Zika intervention strategies to combat 

a dramatic increase in the infection. Encouragingly, there was a significant decrease; 

howbeit, the effectiveness of these interventions remains unclear, and many countries 

in the world still suffer from many vector-borne diseases such as Dengue, West Nile 

Virus and Zika. To evaluate these intervention measures, a Susceptible–Exposed–

Infectious–Recovered Intervention Model is proposed and applied to the 2016 Zika 

outbreak in Miami-Dade County, Florida as a case study. Within the exiting literature, 

we find that Zika intervention measures control the infection in the context of host, 

vector and host-vector contact. According to the nature of the three categorized controls 

in disease prevention and control, the SEIR model is extended to evaluate the three 

interventions, and then is parameterized using the Markov Chain Monte Carlo. The 

modeling results successfully suggest that the three interventions result in a remarkable 

decline of the Zika infection in the study area, as reported by the daily-updated cases 

from the CDC. 
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5.1.3 Model-based Evaluation of Human Mobility and Prevention Behavior 

To evaluate the importance of variation in human-vector contact due to human 

behavior including mobility and prevention behavior, Chapter 4 develops an activity 

and agent-based model, Activity-ABM. It couples human prevention behavior (Chapter 

3), individual human daily mobility and travel behavior (Chapter 2), dynamic human-

mosquito contact (Chapter 4), and virus transmission cycles (Chapter 3). Take the 2016 

Zika epidemic in Miami-Dade County, Florida as a case study, the model illustrates 

how human-mosquito contact dynamics engaged in daily regular travels and activities 

of individual humans as well as a variety of disease prevention behaviors influence the 

transmissions of vector-borne diseases. For instance, Chapter 4 estimates the effective 

human-mosquito contact probability (𝑃𝐻,𝑉) of 0.2 (e-5) both in home and for multiple 

activities (e.g. shopping and social recreation activities) and 0.1 (e-5) at work/school. 

The model also shows what prevention behavior is the most effective by building three 

scenarios. The scenario testing results suggest that the vector controls such as outdoor 

sprayings cause the fewest infections for humans, as the 2016 Zika outbreak in Miami-

Dade County ended after an outdoor spraying to control mosquitoes. Practically, the 

proposed Activity-ABM will aid determining what mobility generates large amounts of 

infection in the human population as well as what behavior should be the most effective 

to control diseases. Combined with human behavior, the model will also facilitate 

identifying key locations where prevention should be targeted. These may provide 

targets for evidence-based public health interventions and disease prevention and 

control. 
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5.2 Research Contributions and Limitations 

This dissertation highlights the role of space in health research by integrating 

demographics of a population, individual daily mobility and travel behavior, prevention 

behavior at the level of both individual and population and diffusion of an epidemic, 

specifically the finer-scale spatiotemporal transmission dynamics of a vector-borne 

disease. Similar behavior-based health studies have been conducted; however, this 

dissertation research is designed to consider both mobility and prevention behavior and 

investigate the impacts of dynamics in patterns of contact between hosts and vectors 

engaged in individual daily travels and disease prevention behaviors. Finally, the 

proposed model is tested by a large-scale application. 

 

5.2.1 Theoretical Contribution 

Highlight the role of space in health research. Space has long been instinctively 

linked to health research in terms of scale, human mobility and interaction etc. Recent 

developments in geospatial data acquisition techniques are enabling geographers to 

increase their interest in the transmission, prevention and control, and public health 

intervention of many diseases (Richardson et al., 2013). This dissertation based on 

interdisciplinary spatial and temporal data including health, environment, social, and 

demography data, Global Positioning System (GPS) data, and approaches in geography 

and related fields including agent-based modeling and activity-based transportation 

modeling, is generating advances in behavior, interaction and infectious diseases 

studies.  
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For vector-borne diseases human behavior is one key geographic factor to drive 

variation in patterns of contact between hosts and vectors, and ultimately infections to 

various extents in space and time. In particular, movements of infected humans can 

increase the dispersal of parasites, and this human travel-mediated spread of parasites 

could become global concerns (Wesolowski et al., 2012). Many advanced approaches 

have been developed to define and measure the interactions between humans and 

mosquitoes engaged in their behavior: “many-to-many”, “one-to-many” and “one-to-

one”. Actually, this is a modeling-scale issue that we focus on population-population 

transmission, individual-population transmission or individual-individual transmission. 

Adams and Kapan (2009) assumed that a large mosquito population causes a high 

infection probability and measured the interaction using human population in travel, i.e. 

travel rate to a given zone and mosquito size in a zone. Wesolowski et al. (2012) 

proposed a travel network where an individual travels between different zones or nodes 

and defined the interaction as a function of the mosquito population in the zone. Funk 

et al. (2010) developed an individual-based model where human agents get infected by 

interacting with an infected mosquito, and defined a parameter called “bite-success-rate” 

(also known as contact rate in an epidemic mathematical model) to measure the 

interaction. If an individual is successfully bitten by a mosquito, the mosquito must be 

within a sensible range. In this case, the interaction is viewed as a spatial colocation of 

humans and mosquitoes by biting. Kiszewski and Darling (2010) proposed another way 

to connect human and mosquito populations in the transmission cycle of an epidemic: 

the interaction duration of humans and mosquitoes. If an individual stays in an area 
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with mosquitos for a long time, the infection probability is large. In this case, the 

infection probability is a function of the stay duration, i.e., an exponential function of 

time and contact rate per time. Against this background, this thesis models the 

interaction using the “one-to-one” overlapping of humans and mosquitoes engaged in 

human behavior and mosquito distribution. Humans can move autonomously from a 

short- to long- distance at any time, but mosquitoes cannot move in a long distance, for 

instance, Matheson et al. (2017) assumed that the mosquitoes in a local scale can only 

move in 5 meters. This is why mosquitoes are designed as “static” agents in the 

Activity-ABM. On the other hand, we are accessible to mosquitoes at any time in a 

mosquito area except for when mosquitoes sleep or we use prevention strategies. 

Matheson et al. (2017) assumed that the accessible period to mosquitoes for humans is 

from 9:00 pm to 5:00 am based on the habitual cycle of mosquitoes, and others 

presumed that the accessible period only happens when people travel (Adams & Kapan, 

2009; Funk et al., 2010; Wesolowski et al., 2012). Lacking such information or data in 

the study area, this thesis defines the entire simulation period as the accessible period. 

Spatial scale is also important as it could cause the variation in results from the same 

model utilized at different levels of spatial resolution – the spatial effect of the 

modifiable areal unit problem (MAUP) (Kwan, 2020; Kwan, 2009). This thesis 

research uses two different views to deal with the MAUP. One way is to identify the 

best spatial scale at which the model operates to minimize the difference between 

modeling results and data. Another view that mitigates the MAUP is to use scale-

independent modeling measures. Since vector-borne diseases are primarily transmitted 
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by interacting with infected vectors, the interaction modeling component is the key to 

the proposed model and it is designed to be scale-independent. Further, individuals who 

live in the same unit are modelled to experience different levels of exposure to vector, 

regardless of where they live or how much time they spend within the area. Such 

dynamics in exposure to vector is assumed to primarily depend on peoples’ activity-

based mobility and prevention behavior, not the areas where they live. Such taking into 

account the impacts of human behavior, dynamic human-vector interaction and spatial 

scales on the transmission cycle of an epidemic will hold extraordinary potential for 

creating new discovery pathways in disease prevention and control, and contribute to 

the behavior-based spatial epidemiologic theory. 

Contribute to methodologies in multiple fields. Another intellectual merit of this 

dissertation is its expected contribution to the methodologies for day-varying human 

mobility and travel behavior modeling as well as dynamic multiple-species interaction 

simulation. Previous studies often ignore daily variation in individual travels as well as 

dynamic interactions among them, which could result in simulation results that are not 

representative of the underlying population.  

People are often endowed with travels and activities varying between weekdays and 

weekends and even across days of a week, which leads to disease transmission to 

decrease or increase. The study by Hens et al. (2009) estimated a 10~20% reduction in 

influenza infections during weekend when compared to weekdays using a population-

based prospective survey of mixing patterns in eight European countries. Decreasing 

weekend travels and activities due to workplaces, school, and many other locations of 
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higher transmission closed may expect disease transmission to decrease (Mao, 2011). 

Some studies have been performed to explore the impacts of weekends as well as 

holidays on decreasing disease transmission (Cauchemez et al., 2008; Eames et al., 

2011, 2012; Hens et al., 2009; Mao, 2011). In order to generate day-varying travels and 

activities of a population at the level of individual travelers, this thesis proposes a novel 

activity-based modeling framework, BN-ABM that integrates Time Geography, ABM, 

and Bayesian network. This proposed BN-ABM generates and forecasts complete 

dynamic activity scheduling for a population by taking into account individual fixed 

and mandatory activities as well as semi-dynamic time-budgets varying between 

weekdays and weekends, which has the potential to be used in transportation modeling 

and planning. The BN modeling component embed in the BN-ABM defines daily 

travels and activities of an individual as “daily and uncertain changes”, computes 

probability distributions for each travel-activity attribute, and interprets the alternating 

predictive results underlying time-budgets on weekdays and weekends as indicating 

their daily travel changes. 

In addition to the dynamics of human daily mobility and travel behavior discussed 

above, the variations in individual preference in human prevention behavior (human 

response) are also important as it causes their exposure to vector to various extents in 

space and time and reduces or amplifies the infections. Further, individual prevention 

behavior choice thoroughly varies as the source of health information available to them, 

such as public news by websites, TV stations, newspapers and other media platforms, 

and their attitudes, beliefs and perceptions of infection risk, which explains the clustered 
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occurrence of people susceptible to or infected with the diseases, or infectious or 

recovered (Funk et al., 2010). One reason is the dynamic human-vector interaction due 

to the variation in individual preference in human prevention behavior. In order to take 

into account such dynamics in human-vector interaction, this thesis builds the BN-

ABM based on the assumption that individual exposure to vector varies as activities 

that they perform and prevention behavior that they use, and adjust the interaction-

based risk of the infection modeling component. This method can be applied to many 

communicable diseases. 

Integrate time geography, complex system theory and spatial epidemiology. 

For vector-borne diseases dynamic interaction between humans and vectors as well as 

altering interaction between individuals and their specific environments plays an 

important role in minimizing exposure to vector and the transmission of the diseases. 

Traditional methods such as statistical regression analysis are unable to examine these 

dynamic interactions engaged in the transmission cycles of the diseases. A complex 

system consists of large numbers of interacting entities, and explores and draws out 

these dynamic interactions by creating interacting agents and defining rules that guide 

an agent’s behavior as well as interaction with each other, which traditional geographic 

methods fail to capture. This thesis views the transmission of an epidemic as a complex 

adaptive system that emerges from complex interdependent processes in which 

individuals interact with each other and their environment and in which both 

individuals and environments adapt and change over time (Auchincloss & Diez Roux, 

2008b), which motivates us to consider health research as the dynamics processes 
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characterized by interactions and relationships between agents, environment, 

emergence and adaption. In particular, integrating complexity theory into health 

systems, we assume that the population in a given place are not separated but 

interrelated, and they can be influenced by external environments (Cilliers & Spurrett, 

1999), which is usually reflected and modeled in communicable diseases that spread 

among people in the same (geographic) community as well as though transportation 

networks – interactions. Complexity theory also presumes that health systems are 

dynamic, nonlinear and have the capability to organize and reorganize themselves, 

which is a good example of the outbreak and re-outbreak of diseases – emergence 

(Griffiths & Sweeney, 2002). And learning from experiences, these dynamic and 

nonlinear health systems adjust their present behaviors – adaption. This is why health 

behaviors are stable and established but occasionally are in a slight state of change 

(Griffiths & Sweeney, 2002). The population-level dynamics of the diseases ultimately 

emerge from these micro-scale interactions and adaptations (Auchincloss & Diez 

Roux, 2008b). Another important distinguished feature is that the adoption behavior 

of complex systems dynamic models allows us to take into account the causes of the 

diseases at multiple levels, reciprocal relations and interrelation between causes that 

characterize the causation of the diseases (S. Galea et al., 2010; Sandro Galea et al., 

2009).  

To generate and construct daily activity scheduling of a population at the levels of 

individual travelers engaged in the transmission cycle of an epidemic, this dissertation 

formulates Time geography, often derived from the ontology that individual activities 
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and travel paths become captured within a set of constraints in space and time, in the 

proposed BN-ABM model. Time geography, originally proposed by the Swedish 

geographer Torsten Hägerstrand in the mid-1960s to explore migration patterns in 

Swedish, describes a powerful conceptual framework to capture peoples’ life paths 

and understand their spatial behaviors within constraints (Hägerstrand, 1970). Later, a 

lot of efforts have been made to computationally represent time geography entities and 

relationships, such as time-space prisms, capability constraints, coupling constraints, 

and authority constraints (Miller, 2005; Hägerstrand, 1970). ‘Capability constraints’ 

are those that limit individual activities due to biological structure/transportation tools. 

Some capability constraints are time-oriented i.e. individuals have to sleep for a 

minimum number of hours. Others are distance-oriented and creates individual 

concentric rings of accessibility in their surroundings. The radii of the rings based on 

the ability that individuals move can create a series of tubes to visualize their mobility 

area, i.e. the inner tube where their arms can reach, the middle tube where they can 

communicate with each other or see other staff, and the outer tube where they can 

reach but have to make sure that they can return for the next activity (Hägerstrand, 

1970). ‘Coupling constraints’ define where, when, and how long individuals join 

activities, also known as bundles. It refers a group of individual paths sharing the same 

space and time, and provides a way to measure interactions between individuals i.e. in 

a restaurant, the waiters and customers form a bundle. Although individuals have the 

freedom to choose where they work or go to school, after that they have to obey the 

arrangement and requirement of their companies or schools. They have to work or go 

https://en.wikipedia.org/wiki/Torsten_H%C3%A4gerstrand
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school during a given period and thus share common paths. ‘Authority constraints’ are 

those areas or domain under control of a given individual or group. These areas are 

where other individuals cannot access. Domain can be also viewed to protect resources 

i.e. natural or artificial ecosystem (Hägerstrand, 1970), and is a cylinder where 

individuals cannot access or have to access with some invitation or payment. These 

three constraints always interact in many ways to model human mobility and travel 

behavior. An individual's choice of a specific activity pattern is viewed as being an 

allocation problem involving limited resources of time and space to achieve the highest 

quality of life (McNally & Rindt, 2000), and all human activities have spatial and 

temporal dimensions: activities occur at particular places for limited durations 

(Rainham et al., 2010). On a weekday, from Monday to Friday when people go to 

work/school, an employed individual or student always has a fixed activity schedule, 

probably from 8:00 am to 3:00 pm (except for lunch time). During this period, their 

activity area is fixed and they interact more with their colleges/classmates; therefore, 

their prisms are mornings before work/school, lunch hours and evenings after 

work/school, and they as well as their colleges/classmates mainly form the bundles. 

On a weekend, from Saturday to Sunday, an individual has more flexible time; 

therefore, their prisms are the whole weekend, and they as well as their families and 

friends mainly form the bundles. How can we model such dynamics in peoples’ daily 

movement? Some studies have provided some potential solutions. Bhat and 

Koppelman (1999) collected 63,114 geo-tagged tweets from 116 unique users in Santa 

Barbara, California, created their activity spaces based on the minimum bounding 
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geometry theory, and compared their activity spaces between weekday and weekend. 

They located a significant difference in downtown areas (downtown Santa Barbara 

and old town Goleta): during weekday the downtown area is highly visited, but during 

weekends individual activities are very limited in Isla Vista. It suggested that during 

weekday people are highly engaged with work, home and school, but during weekend 

people mainly stay at home and join some leisure activities. Pendyala et al. (2005) 

based on a travel diary survey built an activity-based model to simulate human daily 

movement. In their model, for employed individuals and students, there are three 

“flexible” weekday prisms, also called “open periods”, are determined to model their 

daily movement; for unemployed individuals and children, there is only one weekday 

prism. For weekend prisms, there is only one weekday prism. Against this background, 

this dissertation research introduces Hägerstrand’s Time geography into the BN-ABM 

by constructing individual time budgets limited by time (weekdays vs. weekends) and 

individual choices of a specific travel-activity pattern limited by their demographics 

and socio-economic characteristics as well as their specific surroundings. 

5.2.2 Practical Contribution 

Investigate finer- and larger- scale spatiotemporal transmission dynamics of 

an epidemic. This dissertation conducts model-based investigation to understand the 

role of human mobility and prevention behavior in the transmission cycle of a vector-

borne disease and evaluate the efficiency of the associated public health interventions. 

The developed model is built for the entire Miami-Dade County, involves 3 million 

human agents and 5 million mosquito agents, and runs in 8 time-steps per day across a 
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285-day period. Meanwhile, the model utilizes at the census track level and includes 

519 locations. Each step an aggregate infection for human hosts by county also emerges. 

The proposed model can be applied to many vector-borne and communicable diseases, 

and the assumptions underlying the model need to be adjusted. 

Implications for disease prevention and control. Modeling and exploring the 

impact of human behavior on the transmission of an epidemic can support decision-

makings for infectious disease prevention and control. It facilitates the strategic 

decision-making processes in the field of health care and public health, in particular, 

prospective planning of financial resources for epidemiologically relevant and cost 

intensive diseases like Zika and dengue. To conduct this task, this dissertation research 

focuses on modeling finer-scale spatiotemporal transmission dynamics of an epidemic, 

and building three scenarios. This scenario test examines the effectiveness of various 

prevention strategies regarding human mobility and prevention behavior, in particular, 

recommend people which strategy should be the most effective to prevent diseases. 

More public health policy-related questions can be answered. For instance, where 

prevention should be targeted? What mobility could generate large amounts of infection 

in the human population? Who would be the most likely to get infected with virus? 

Transportation modeling and planning. The human mobility and travel behavior 

modeling component (BN-ABM) embedded in the Activity-ABM can be used to 

estimate and forecast travel demand at the level of individual travelers. It can track 

travel-activity patterns of an individual in a spatially and temporally explicit way, and 

thus is capable of answering various transportation policy-related questions. For 
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instance, what shall be the effect on peoples’ daily travels of a transit expansion in 

Miami-Dade? Or the effect of land-use intensification such as regional population 

growth and labor resettlement within the study area? Or price of travel such as fuel cost, 

parking pricing and poll-road charging? 

Promote evidence-based public health policies. A public health intervention is a 

policy or effort that intends to improve human health in the population level.  

Informing health-related decision-makings such as introduction of vaccination and 

implementation of outdoor sprayings using evidence-based approaches has received 

increasing attentions. The billions of U.S. tax dollars spent on the support of human 

health in the population level reveals the necessary in choosing the programs and 

policies that are the most effective to prevent diseases. This dissertation has the 

potential to informing these decisions using evidence, and serves as evidence to 

determine the best available program and policy by building various scenarios. 

Applicable to a general disease and the interventions. The Susceptible-Exposed-

Infectious-Recovered model and the activity and individual-based model built in this 

dissertation research can be extended to model a general disease and to evaluate the 

public health interventions associated with the disease. Tian et al. estimated the effect 

of the transmission control measures for an outbreak of a novel coronavirus [agent of 

coronavirus disease 2019 (COVID-19)] in China by building a SEIR model (Tian et al., 

2020). Their model describes the transmission rate of the COVID-19 virus decreasing 

proportionally as the control measures, including suspending intracity public transport, 

closing entertainment venues, banning public gatherings, and banning travel to and 
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from Wuhan City. Our SEIR model also holds extraordinary potential for modeling the 

COVID-19 outbreaks and evaluating the associated interventions. To achieve this aim, 

new discovery pathways in measuring the dynamic transmission rates among humans 

due to the interventions has to be included in the model. 

5.2.3 Limitations and Future Works 

Although the case study in Miami-Dade County demonstrates the efficacy of the 

Activity-ABM, there are some components of the Activity-ABM that require further 

improvements. 

Human Daily Mobility and Travel Behavior Modeling Component. In the model, 

human mobility and travel behavior regarding travel frequency, activity duration and 

travel duration for unemployed people and children has been originally designed to be 

continuous, but are trained and leant discretely. Since fewer long-term fixed activities 

such as work activities and school activities limit their travel routines, unemployed 

individuals and children have higher flexibility in daily travels and activities and a 

wider range of time budgets compared to employed individuals and students. Today, 

most open-source BN platforms such as the bnlearn package in R allow modeling 

human mobility and travel behavior continuously using simple linear Gaussian 

regression that has poor performance in modeling such ambiguous travels discussed 

above. Therefore, training continuous BNs for these “flexible” individuals including 

unemployed people and children by exploring conditional relationships between travel-

activity attributes and independent variables rather than building simple regression 

relationships among them is essential as it improves the accuracy of the human mobility 

and travel behavior modeling component embedded in the Activity-ABM as well as the 

dependability of the Activity-ABM. Another important future work is to validate the 
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generated travels and activities in a broader sense. This dissertation research validates 

the 9 BNs for travel-activity attributes by dividing the survey data into training and 

testing datasets. The training dataset is to learn the BNs, while the test dataset is to 

validate the BNs. However, the dependability and accuracy of the generated mobility 

or how well the generated travels and activities fit into the real world is not examined 

and discussed here. In review of the literature, three types of validation have been 

proposed, including: (1) applying model to multiple sites and comparing aggregate 

simulation results between these sites, (2) aggregate analysis between simulation results 

and additional datasets e.g. cellphone data and traffic count data, and (3) comparing 

simulation results and another model (Baqueri et al., 2019; Bassolas et al., 2019; Liu et 

al., 2018). Integration of these validation frameworks into an activity-based model will 

aid improving the value of the BN-ABM embedded in the Activity-ABM as well as 

developing the BN-ABM with high dependability. 

Human Prevention Behavior Modeling Component. To generate the individual- 

and population- level prevention behavior for the study area, this dissertation research 

randomly determines what prevention an individual uses and where population-level 

prevention is targeted in a disease outbreak event. Apparently, it is problematic due to 

the simple “random distribution” assumption. A future, additional survey regarding 

individual preference in prevention choices and a field dataset regarding sites where 

community prevention is applied will be crucial to improve the performance of the 

Activity-ABM. In addition, this dissertation distributes mosquitoes in space based on 

human population. Within the existing literature, a great deal of additional factors e.g. 

nutrient competition, land cover and land use, resource attraction, predation climate and 

socioeconomic status have been proposed to influence the distribution and movement 

of mosquito (Table 8). Therefore, additional mosquito field data can be collected in 
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future to improve the model. 

The Coupling-of Component in the Activity-ABM model. Mathematical 

methods such as compartmental models and agent-based models have been widely 

adopted to simulate the transmission of many emerging vector-borne diseases including 

Dengue and Malaria, and to mitigate risks and impacts by elucidating transmission 

dynamics of diseases underlying various assumptions and scenarios. This dissertation 

research develops a novel agent-based model, Activity-ABM (Chapter 4). To evaluate 

the proposed Activity-ABM, Chapter 3 builds a SEIR compartmental model, and the 

pros and cons as well as future work of the model are discussed as follows. 

Although compartment models are capable of describing the transmission of an 

epidemic at the population level based on the data accessible at the aggregation scale, 

these models fail examining the transmission dynamics of the diseases emerging from 

complicated interaction among multi-species individual agents, agent-environmental 

interaction, and multi-variate local-scale factors due to the underlying simplified 

assumptions. Using a simple example, during the outbreak of an epidemic, people often 

change their behavior in space and time (e.g., avoiding travelling to virus-active areas 

or applying interventions while outside), the extent to which these changes vary 

depends on their perception of infection risk. It leads to variation in exposure to virus 

and ultimate, unexpected infections to various extents in space and time. The classical 

compartmental models fail to capture the transmission dynamics of an epidemic 

engaged in these behavioral changes as well as associated interaction dynamics. The 

Activity-ABM has been developed to address these limitations discussed above. 

However, this dissertation research conducts a large-scale application which includes 

millions of agents, and finer-scale updating of their behaviors, actions, locations and 

complicated interactions with all agents in the same location. It requires intensive 
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computation and memory, and makes model fit and parameter estimation significantly 

difficult. Although this dissertation research integrates the Python asynchronous 

multiprocessing into the simulation to improve the computation ability of the Activity-

ABM, one simulation i.e. across a 285-day period still takes one week or more. 

Therefore, exploiting high performance of ABMs, for instance, integration of CyberGIS 

(Tang and Wang, 2009) shall ultimately be an important future work to develop the 

Activity-ABM with better performance in model simulation, model fit and 

parameterization, and scenario tests. 
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Figure S1. The Day 1, Day 20, Day 30, Day 40, Day 55, Day 60, Day 70, Day 80, 

Day 90 and Day 100 scenario results for the vector-based controls. The color 

represents the accumulated cases of Zika infection predicted in the vector control 

scenario. 
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Figure S2. The Day 1, Day 20, Day 30, Day 40, Day 55, Day 60, Day 70, Day 80, 

Day 90 and Day 100 scenario results for the host-based controls. The color 

represents the accumulated cases of Zika infection predicted in the host control 

scenario. 
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Figure S3. The Day 1, Day 20, Day 30, Day 40, Day 55, Day 60, Day 70, Day 80, 

Day 90 and Day 100 scenario results for the contact-based controls. The color 

represents the accumulated cases of Zika infection predicted in the contact control 

scenario. 




